

低価格、低電圧 <u>真の RMS/DC コンバータ</u> AD8436

特長

真の RMS を瞬時に算出 精度:実際値の±10µV ±0.5% 幅広い入力ダイナミックレンジ 100µV RMS から 3V RMS(8.5V p-p) フルスケール入力範囲 外部スケーリングでより大きな入力可能 広帯域幅: 1MHz @-3dB (300mV) 65kHz で 1%の誤差増のみ ゼロ変換時の DC 出力オフセット 残余成分スイッチングによる誤差なし 300mV RMS 入力でのスペック規定 10 までのクレストファクタに対応の精密変換 低電力: 300µA @±2.4V 全ての入力レベルで早いセトリング 別電源、高インピーダンス FET 入力バッファ $R_{IN} \ge 10^{12} \Omega$, $C_{IN} \le 2 pF$ 高精度 DC 出力バッファ 幅広い電力範囲 両電源:±2.4Vから±18V 単電源:4.8Vから36V 小型:4mm x 4mm ESD 保護内蔵

機能ブロック図

図 1. AD8436 の簡略化したブロック図

概要

AD8436 は多くのオプションを備えた新世代のトランスリニア精 度、低電力、真の RMS/DC コンバータです。スイッチモード電源 やサイリスタによって発生する複雑なパターンの AC 波形の RMS 値と等価な DC 値を高精度で算出します。幅広い入力レベルと温度 でも精度を保ちます。(図 2 参照)最新のアナログ・デバイセズ 社の最新技術により、保証精度は \leq +0.5%で出力オフセットが \leq 10 μ V です。1~10のクレストファクタ値(CF 値)での誤差は<0.5% です。

AD8436 はピーク値による誤差の多い方法や平均化、デジタル演算 等より高速で真の RMS 値を瞬時に算出します。プログラミングや プロセッサのオーバーヘッドを気にすることなく、4mm x 4mm だ けのサイズであらゆるアプリケーションに対応できます。

基板上のバッファアンプは、どのような RMS/DC コンバータの中 でも一番幅広い応用の幅を備えています。もっとも簡単なプリケ ーションでも、たった一つの外部平均化コンデンサを必要とする だけです。内蔵された高インピーダンス FET バッファは外部アッ テネータや周波数補整や低インピーダンス負荷を駆動するための インタフェースになります。マッチングされた内蔵抵抗の対は 2 以上のゲインの簡易設定が可能で、入力範囲を広げることが出来 ます。低電力高精度入力バッファは携帯用マルチメーターやその 他の電池駆動のアプリケーションでの使用を可能にします。高精 度 DC 出力バッファはバイアス電電流補正回路により非常に低い オフセット電圧です。

デジタル演算とは違い AD8436 にはスイッチング回路がないため 振幅による性能の制限がありません(図2)。<100µVから>3Vと いった便利なレスポンス範囲はスケーリングすることなくダイナ ミックレンジを広げ、微小な信号でも対応できます。

図 2. AD8536 の使用可能な動的範囲と ΔΣ

AD8436 は±2.4V (4.8V) から±18V (36V) までの単電源または両 電源で動作します。A と J の 2 グレードがあり、どちらも 4mm x 4mm、20 リードチップスケールといったコンパクトサイズです。 動作温度は-40℃ から 125℃ と 0℃ から 70℃ です。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関 して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナ ログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予 告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©エラー! プロパティ名に誤りがあります。 Analog Devices, Inc. All rights reserved.

アナログ・デバイセズ株式会社

Rev. 0

本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03 (5402) 8200 大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 電話 06 (6350) 6868

目次

特長	1
機能ブロック図	1
概要	1
改訂履歴	2
什樣	3
治 対最大定格	2
教抵抗	
FSD に 関 す ろ 注 音	1
ビン 一 同	
こう記画で1液形の1	

代表的な性能特性	6
試験回路	9
動作原理	
概要	
アプリケーション情報	12
AD8436の使い方	12
AD8436 評価ボード	16
外形寸法	
オーダー・ガイド	

改訂履歴

7/11-改 0:初期版

仕様

指定がない場合 $e_{IN} = 300$ mV AC (RMS), frequency = 1kHz sine wave, AC-coupled, $\pm Vs = \pm 5V$ 、 $T_A = 25$ °C、 $C_{AVG} = 10$ µF 表 1.

パラメータ	試験状態/備考	最小	一般	最大	単位
RMS コア・ブロック					
変換誤差	初期状態	$\pm 10 - 0.5$	$\pm 0 \pm 0$	$\pm 10 + 0.5$	μV/% rdg
vs 温度	$-40^{\circ}C < T < 125 C$		0.006		%/°C
vs 電源電圧	±2.4 V から±18 V		±0.013		±%/V
入力オフセット電圧	DC カップリング	-500	0	+500	μV
出力オフセット電圧	初期状態、AC カップリング入力		0		V
vs 温度	$-40 \text{ C} < \text{T} < 125^{\circ}\text{C}$		0.3		µV/°C
DC 反転誤差	DC カップリング、 V _№ = ±300 mV		±0.5	±2	%
非直線性	$e_{IN} = 10 \text{ mV} $ から 300 mV ac (rms)		0.05		%
クレストファクタ誤差	誤差増分				
1 < CF < 10	$CCF = 0.1 \ \mu F$	-0.5		+0.5	%
ピーク入力電圧		$-V_{s} - 0.7$		$+V_{8}+0.7$	V
入力抵抗		7.92	8	8.08	kΩ
周波数応答	$V_{IN} = 300 \text{ mV rms}$				
1% 誤差增範囲			65		kHz
3 dB 帯域幅			1		MHz
セトリング時間					
0.1%	立上り/立下り		148/341		ms
0.01%	立上り/立下り		158/350		ms
出力抵抗		15.68	16	16.32	kΩ
電源電流	入力なし		325	400	uА
入力バッファ					
信号電圧振幅	G = 1				
入力	AC または DC カップリング	$-V_s$		$+V_s$	v
出力	ピンRMS に AC カップリング	$-V_{s} + 0.2$		$+V_{s} - 0.2$	mV
オフセット電圧		-1	0	+1	mV
入力バイアス電流				50	pA
入力抵抗			10^{12}		0
周波数応答			10		
0.1 dB 平坦性帯域			950		kHz
3 dB 帯域幅			2.1		MHz
電源電流		100	160	200	uА
オプションゲイン抵抗		-9.9	+10	+10.1	kQ.
ゲイン誤差	$G = \times 1$			0.05	%
出力バッファ	U = AI			0.02	70
オフセット電圧	ピンOUTに接続	-200	0	+200	шV
入力雷流		200	0	3	nA
出力電圧振幅		$-V_{e} + 0.0005$		$+V_{2} - 1$	V
ゲイン誤差		13 1 0.0000	0.003	0.01	%
· · · · · · · · · · · · · · · · · · ·			40	70	шА
雪源雷下			10	70	
西雷源		+2.4		+18	v
単電源		4.8		36	v

絶対最大定格

表2.

パラメータ	定格
電源電圧	±18 V
内部消費電力	18 mW
入力電圧	$\pm V_S$
出力短絡時間	無制限
差動入力電圧	$+V_{S} \geq -V_{S}$
温度範囲	
作動範囲	−40°C から+125°C
保存範囲	−65°C から+125°C
リード半田付け時(60秒)	300°C
ESD 定格	2 kV

絶対最大定格より大きいストレスをかけるとデバイスが壊れるこ とがあります。記されている数値以上での機能や状態についての 仕様に関しては一切触れません。絶対最大定格状態での長期使用 はデバイスの精度に影響がでます。

熱抵抗

θIA は表面実装部品や最悪の状況を仮定した数値設定です。

表3.

パッケージタイプ	θ_{JA}	単位
CP-20-10 LFCSP	86	°C/W
CP-20-10 LFCSP	48	°C/W
放熱パッドあり		

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。 電荷を帯びたデバイスや回路ボードは、検知されない まま放電することがあります。本製品は当社独自の特 許技術である ESD 保護回路を内蔵してはいますが、 デバイスが高エネルギーの静電放電を被った場合、損 傷を生じる可能性があります。したがって、性能劣化 や機能低下を防止するため、ESD に対する適切な予防 措置を講じることをお勧めします。

ピン配置と機能の説明

図3. ピン配置図(上面図)

表4. ピン機能の説明

ピン	名称	説明
番号		
1	DNC	接続しないでください。工場試験用端子。
2	RMS	RMS コアへの AC 入力
3	IBUFOUT	FET 入力バッファアンプの出力
4	IBUFIN-	FET 入力バッファアンプの反転入力
5	IBUFIN+	FET 入力バッファアンプの非反転入力
6	IBUFGN	オプション 10kΩ 高精度ゲイン抵抗
7	DNC	接続しないでください。工場試験用端子。
8	OGND	内蔵 16kΩ 電流/電圧変換抵抗。9番ピンのグラウンドと接続します。9番ピンから電流出力が必要なときは接続 を外します。
9	OUT	RMS コアの電圧または電流出力
10	VEE	負電源
11	IGND	電源の 1/2 の電圧。単電源動作のときは外します。
12	OBUFIN+	オプションの高精度出力バッファの非反転入力 OBUFIN+は一般的には OUT に接続します。
13	OBUFIN-	オプションの高精度出力バッファの反転入力 OBUFIN-は一般的には OBUFOUT に接続します。
14	OBUFOUT	ADC またはその他の負荷につながる低インピーダンス出力
15	OBUFV+	出力バッファの電源ピン
16	IBUFV+	入力バッファの電源ピン
17	VCC	RMS コアの正電源
18	CCF	クレストファクタ・コンデンサの接続ピン
19	CAVG	平均化コンデンサの接続ピン
20	SUM	加算アンプ入力ピン。外部抵抗を接続することで任意のスケーリングができます。
EP	DNC	エクスポーズドパッド。(放熱金属パッド)接続しません。

AD8436

代表的な性能特性

指定がない場合 $T_A = 25C$, $\pm V_S = \pm 5V$, $C_{AVG} = 10\mu$ F, 1kHz sine wave

図 6. RMS コア周波数応答 Vs = ±15 V (図 20 参照)

図 7. RMS コア周波数応答 Vs = +4.8 V (図 21 残照)

び、 グイン:0dBと6dB

デ

ータシート

7

図 16. 温度変化 vs FET 入力バッファバイアス電流

図 17. FET バッファの入力オフセット電圧 vs 温度

(動作原理参照)

試験回路

デ

ータシート

図 20. 両電源を使用したコア応答試験回路

動作原理

概要

AD8436 は AC 電圧の RMS 値(発熱量:実効値) にあたる DC 電 圧を出力する RMS/DC コンバータです。この集積回路には基本的 なコンバータの他に、二つの完全に自立したオペアンプ、スタン ドアローン FET 入力バッフアンプ、それと高精度 DC 出力バッフ ァアンプが備わっています(図 1)。RMS コア内には、電流信号 の高精度全波整流器と二乗/平方根を算出するための対数・逆対 数変換トランジスタアレイを備えていて、RMS 値の計算原理に沿 った処理を行います(式 1)。基本的な動作を行うには、平均化の ための外部コンデンサを追加するだけです。(図 30)。組み込ま れたオプションのアンプは柔軟性に富んでおりさまざまな用途に 対応でき、外部回路を補足で追加する必要性もありません。最低 消費電力を得るにはアンプの電力供給端子を未接続にするだけで す。

RMS を使用する理由

AC 電圧波形の RMS は同じ発熱量を負荷に加える DC 電圧と同等 です。一般的な AC 波形の測定法として、ダイオードアレイ等を追 加して信号を整流化して平均値を算出します。各種波形(正弦波、 方形波、三角波等)の平均値は幅広く異なります。全ての AC 波形 において共通の測定基準を得られるのは真の RMS のみです。RMS 応答ではない回路のエラーに関しては図 5 を参照してください。

「RMS」とは二乗平均のことで、定義は波形のピーク値の「二乗の合計の平均値の平方根」です。RMSの式は次のようになります。

$$e_{rms} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}{x_i}^2}$$
(1)

その他の参考文献としては、アナログ・デバイセズから入手できる「RMS-to-DC Application Guide, Second Edition」の第1項 を参照してください。

RMSコア

コア内には電圧電流コンバータ(高精度抵抗)、絶対値、トラン スリニア部が備えられています。トランスリニア部はバイポーラ トランジスタの特性により、2乗と平方根を算出できます(図 23)。 外部コンデンサ(CAVG)は平均値を計算します。図 19 が示すよ うに、信号入力による遷移時間への影響がなく、それは DC 出力か らもうかがえます。RMS コアは入力電圧に応答しますが、変換処 理は電流信号により行われます。推奨通り RMS 入力が AC カプリ ング使用された場合、表 1 に示されているように出力オフセット 電圧はありません。RMS 入力が DC カプリングされた場合、入力 オフセット電圧は出力に反映し、誤差として補正できます。

図 23. RMS コア・ブロック図

表 5. 一般的な AC パラメータ

波形タイプ (1 V p-p)	クレストファクタ	RMS 值	RMS 正弦波に較正した場合の平均値	誤差 (%)
正弦波	1.414	0.707	0.707	0
方形波	1.00	1.00	1.11	11.0
三角波	1.73	0.577	0.555	-3.8
ノイズ	3	0.333	0.295	
矩形波	2	0.5	0.278	-11.4
パルス波	10	0.1	0.011	-44
SCR				-89
DC = 50%	2	0.495	0.354	-28
DC = 25%	4.7	0.212	0.150	-30

出力の 16k Ω 抵抗は、出力バッファや後続の回路に繋げられるよう に出力電流を DC 電圧に変換します。出力は 16k Ω と直列の電圧源 として表記することができます。電流出力を望む場合は、グラウ ンドと抵抗の接続は開放して、電流加算アンプの加算ノード等の 後段の回路に出力電流を送ります。すなわちコアの接続設定によ り電流・電圧出力のどちらも選択することができます。0 Ω 電源イ ンピーダンスの電圧出力を得るためには出力バッファを使用しま す。グレードによってバッファのオフセット電圧は 25 μ V または 50 μ V と異なります。

FET 入力バッファ

参考の図1では、AD8436の入力抵抗は8kΩで、電圧電源を推奨しています。オプションの入力バッファはタップ付抵抗減衰器や電 圧センサーのような、インピーダンスが0Ωではないソースに対し て最小の負荷ですむ広帯域JFET入力アンプです。入力バッファは 150μA 消費しますが、省電力化が必要な箇所では電源ピンを外す と接続が開放されます。

オプションのマッチング 10kΩ 入力とフィードバック抵抗も回路 に備えてあります。抵抗の使用はアプリケーション情報の項目を 参考にしてください。入力バッファの 3dB 帯域幅は 10mV RMS 入 力では 2.7MHz で、1V RMS 入力では 1.5MHz です。アンプのゲイ ンと帯域幅は、限られたゲインや 100kHz までの応答増強を必要と するといった用途には十分な性能を持っています。入力バッファ の設定はアプリケーション情報の項目を参考にしてください。

高精度出力バッファ

高精度出力バッファは入力オフセット電圧誤差をキャンセルする ためにレーザートリムされたバイポーラ入力アンプです。入力バ ッファのように供給電流が非常に低く(一般的に <50μA)、バッ ファが必要でない場合は低電力化の目的で電源を切断することが できます。このバッファの電源供給ピンが切断されている場合は 非反転入力もコア出力(OUT)から切断されていることを確認し てください。バッファの入力電流が微少ですが、レーザートリム された 16kΩ抵抗が反転入力と直列で繋がれているので、自己バイ アスオフセット電圧をオフセットします。 アプリケーション情報の項目の回路を使用することによって、出 カバッファは設定によって単極か二極のローパスフィルタを選択 できます。変換された DC 出力に影響を与えずに残留出力リップル は低減します。応答が帯域幅の低周波数の端に近づくにつれて、 平均化コンデンサの値にしたがってリップルの振幅は上昇します。 図 26 では、平均化コンデンサとフィルタコンデンサの4 つの組み 合わせの影響を示しています。各周波数でフィルタコンデンサが リップルを削減しますが、DC 誤差は影響を受けません。コストは 上がりますが、より大きい値の平均化コンデンサも選択できます。 ローパスフィルタを使用する利点は、16kΩ 出力抵抗と接続した低 い値のフィルタコンデンサがリップルを削減すると小型平均化コ ンデンサとなり、コスト削減に繋がるところにあります。40Hz で までの周波数で動作するときに推奨されるコンデンサの値は、平 均値コンデンサは 10μF で、フィルタコンデンサは 3.3μF です。

ダイナミックレンジ

AD8436 は非常にすぐれたダイナミックレンジを有した RMS/DC コンバータです。極端な入力値では精度が異なりますが、スプリ アスノイズやドロップアウトがありません。図 24 は 0 電圧付近の RMS/DC コンバータの伝達関数の図表です。プロセッサやその他 の装置とは違い、ほとんどの場合は低入力値では残余誤差が無視 できます。

図 24. ゼロ付近の DC 遷移機能

アプリケーション情報

AD8436 の使い方

この項では電源供給とオプションの特徴、平均値コンデンサとフ ィルタコンデンサの機能と選択について説明します。平均化とフ ィルタのオプションはグラフで表示され全ての回路構成に対応し ています。

平均化コンデンサとしての考察-RMS 値精度

典型的な AD8436 のアプリケーションでは CAVG ピンに外部コン デンサ (CAVG) を一つ接続します (図 30)。平均値コンデンサ の機能は二乗値の合計から平均値を算出することです。平均値(ま たは積分値)は、絶対値回路の直後に繋がっており、ここでは二 乗を算出する前に入力電流の負の成分の極性を反転(整流化)し ます。平均値とは入力電圧の複数周期においての二乗の相加平均 のことを指します。RMS 値の誤差は、平均をとった周期の回数に 影響されており、結果として算出されるピークトゥピークのリッ プルも同様に影響されています。

変換プロセスの結果は DC 成分と入力の二倍の周波数のリップル 成分です。RMS 変換精度は CAVG の平均コンデンサ値にも依存す るので、選択する値は低周波数でも十分な RMS 値精度の期待でき る最低限の値を使用します。図 27 は RMS 値誤差と周波数の関係 を様々なコンデンサ値で表した図です。図 27 で、たとえば 40Hz では、 10μ Fのメタライズドポリエステルコンデンサを使用すると それによる変換誤差は、0.01%となります。コンデンサ値が大きく なると精度の向上はそれほどわずかになり、そのかわりセトリン グ時間がながくなります。

図 27 を使用するには、まずアプリケーションの最低動作周波数と 精度を決めてからコンデンサ値を図から求めます。例えば、動作 周波数が 100Hz で精度が-0.5%RMS の場合、コンデンサ値は 1 μ F です。

RMS 変換後のリップル除去フィルタ

AD8436 内でおこなわれる入力の整流化は CAVG のコンデンサ値 に依存し入力の 2 倍の周波数の残留リップルが発生します。高分 解能 ADC 等によるサンプリングのアプリケーションの際、リップ ル成分により LSB 側のビットが周期的に動いたり ON/OFF したり します。リップルを減少するには平均化コンデンサの値の増加、 または RMS 変換後のポスト・フィルタリングの適用が有効ですが、 変換後のリップル減少の方が、平均値が RMS 値に変換されている ので効率が良くなります。変換後のフィルタリングでは同等の減 少量を得るためのフィルタコンデンサ値の方が平均化コンデンサ 値に比べて小さな値で済みます。この方法は、OUT ピンにコンデ ンサを一つ接続するだけです(図 25)。コンデンサ値によるカッ トオフ周波数は 1/2πR-C の関係にあり、R は 16kΩ に固定されてい ます。

図 25. 単極ポスト・フィルタの簡略化したブロック図

図 26 で示すように、CAVG は RMS 値誤差を決定し CLPF はリッ プル減少の役割のみを持っています。図 26 によると CLPF が 0.33μ F と 3.3μ F のときに一定の RMS 値誤差を示しています。これにより リップルのみの誤差であることが分かります。

図 26. CAVG と CLPF においての RMS 誤差と周波数の関係 (CAVG と CLPF の効果を比較すると CLPF が RMS 誤差に影響を 与えないことが分かります)

図 27. CAVG のコンデンサ値別の、変換誤差と周波数の関係

AD8436

図 28 は CAVG と CLPF の 4 通りの組み合わせのリップル対周波数の関係を簡素に示したグラフです。

-タシート

図 28. 各種フィルタ設定の残留リップル電圧

図 29 は平均化コンデンサとポスト RMS フィルタコンデンサの遷 移時間とセトリング時間の効果を 50Hz のバースト信号を1秒周期 で 10 サイクル入力した結果の時間領域での反応です。この場合、 平均化コンデンサ値は 10µF でリップル値は 6mV RMS です。 0.068µF のポスト・フィルタ・コンデンサ (CLPF)を使用すると リップル値が 1mV RMS まで低下します。82µF の平均化コンデン サを使用するとリップル値が 1mV に低下しますが遷移時間を大幅 に延ばします。

図 29. 各種フィルタ設定による遷移時間に対する効果

コンデンサの選択

殆どのコンデンサの種類に対応していますが、RMS 変換精度は選 択したコンデンサの種類によって影響されます。コンデンサは、 全般的に低リーク電流ンコンデンサで最高のパフォーマンスを示 し、これには様々な種類があります。適した温度範囲ならメタラ イズドポリエステルコンデンサまたは類似したフィルムコンデン サが最適です。

デジタルマルチメーター内の RMS/DC 変換機能等の実用的なアプ リケーションや電力量計測回路にはタンタルコンデンサが最適で す。

基本的なコアの接続方法

多くのアプリケーションでは平均化用に外部コンデンサを一つ使 用します。電源ライン周波数以下では 10μ Fのコンデンサを使えば RMS 誤差も許容可能です。信号源インピーダンスは理想電圧源と して 0Ω インピーダンスをそうていしています。この信号場 2番ピ ンの 8kΩ 抵抗に加わり、電流信号に兼官されます。信号入力イン ピーダンスがもしゼロでない場合は、直列入力での電圧降下を考 慮してください。

AD8436 の実質ゼロの出力オフセット電圧を実現するには入力カ プリングコンデンサが必要です。最低動作周波数の望める最適の カプリングコンデンサ値を選択してください。目安として、時定 数が類似しているので入力コンデンサ値は平均化コンデンサ値と 同等または半分程度が適しています。10µFの平均化コンデンサを 使用する場合、4.7µF または 10µF タンタルコンデンサを使用する のが最適です(図 30)。

図 30. 基本的なアプリケーション回路

高クレストファクタアプリケーションでのコンデ ンサの使用

AD8436 は特徴的なクレストファクタ特性を持っています。 RMS/DC コンバータの必要条件を決めるときにクレストファクタ を見落としがちですが、スパイクや高いピークのある信号を扱う ときには非常に重要な項目です。クレストファクタの定義はピー ク電圧と RMS の比率です。一般的な波形のクレストファクタは図 5 を参照してください。

図 31. 追加クレストファクタパフォーマンスのための接続

クレストファクタ性能は、スイッチモード電源のスイッチングで 発生する過度電流等の、予想外の波形に対応するときに重要です。 そのようなアプリケーションの場合、平均 AC 値が低くても殆どの エネルギーがピークに集中しているため、これにより電子回路が 危害を与える危険性があります。

図 13 は 0.1µF の追加クレストファクタ・コンデンサと 10µF の平 均化コンデンサを使用したときのクレストファクタへの影響を示 しています。大きい値のコンデンサがパルス間の空白でエネルギ ーを平均化し、CCF コンデンサは鋭いパルス波で充電しエネルギ ーを蓄えます。

FET 入力バッファの使用

チップ上の FET 入力バッファは RMS コアの 8kΩ の電流/電圧変 換抵抗を駆動できる独立した FET 入力オペアンプです。3番ピン と4番ピンと5番ピンが I/O、6番ピンがオプションの入力バッフ ア用のゲイン接続で、16番ピンはバッファに電源を接続します(配 置と説明は図3と表4を参照してください)。負の電源レールは 内部で接続されているので、16番ピンを正の電源レールに接続す ることが唯一の電源接続です。FET 入力ステージなので入力イン ピーダンスは非常に高く、ソース側の負荷は軽くなっています。 入力のゲートがフローティング状態にならないようにするため、 10MΩ 程度の高抵抗を電源の中間値(ピン 11)からピン5に接続 する必要があります。

ユニティゲインでは、3番ピン(IBUFOUT)と4番ピン(IBUFIN-) を接続します。ゲイン2倍では、6番ピン(IBUFGN)とグラウン ドを接続します。2カ所の内蔵ゲインオプションの大小の信号応答 は図8と図9を参照してください。

グレードによりますが、入力バッファのオフセット電圧は 500µV 以下です。入力バッファのオフセット電圧が全体の誤差に影響を 出さないように3番ピンのバッファ出力(IBUFOUT)と2番ピン

(RMS)をコンデンサで繋げることを推奨します。コンデンサ値 は最低動作周波数で最小誤差となるものを選びます。図 32 は内部 の構造やピンの接続の図式です。

図 32. FET 入力バッファの接続

バッファオフセット電圧が出力に影響しないように FET バッファ の入力と出力にコンデンサをカプリングさせることを推奨します。 入力コンデンサ値を選択するときは、FET 入力インピーダンスは 非常に高いのですが、IGND に接続されている 10MΩ のセンタリン グ抵抗のことも考慮して選択します。最小の所望周波数を使用し たインピーダンス計算で、最小の所望減衰をもとにコンデンサ値 を求めるだけです。

10kΩ 抵抗が高い許容値で細かく選定されているので、外部抵抗を 4番ピン(IBUFIN-) に繋げる事で入力バッファゲインを数百まで 上げることができます。

帯域幅は、20dBごとにゲインが 10 分の1 に減少し、出力電圧範囲 が抑制されます。図 8 の小さい信号応答で挙動がうかがえます。 例えば、電力線周波数で小さい入力信号を検波する場合、外部 10Ω 抵抗を4番ピンからグラウンドに接続するとゲインが 101 となり 3dB帯域幅を約 30kHz にし、より電力線周波数を増幅するのに適 しています。

出力バッファの使用

AD8436 出力は DC 動作用に最適化した精密オペアンプです。図 33 は基本的なアンプと I/O ピンのブロック図です。アンプは非反復増 幅動作の使用を前提としています。反復入力に直列で接続されて いる 16kΩ抵抗は、非反復増幅アンプのバイアス電流をバランスす るためにとりつけています。

入力 FET バッファにおいて、アンプの正の電源は、消費電力に気 を使うアプリケーション用に、別途ピンが設けられています。一 般的な用途では、バッファはコアと同じ電源に接続します。図 34 は出力バッファへの信号接続を示しています。バイアス電流によ る入力オフセット電圧は、同じ値の直列抵抗によりバランスされ ているので、これによるオフセット電圧誤差は、ほぼゼロになり ます。

図 33. 出力バッファを簡略化したブロック図

図 34. 基本的な出力バッファオプション

上記で説明した単極出力フィルタの他にリップルを抑制する必要 のあるアプリケーションでは、二つの外部抵抗と二つの外部コン デンサを使用することで出力バッファを二極 Sallen-Key フィルタ として設定できます。100kHz より少し高帯域において、アンプ自 体が電力線リップル等の低周波に対して、アクティブフィルタと して機能する十分な帯域幅を持ちます。Vos が少しだけ高くなりま すが (80μV)、コスト削減と簡略化を考慮した場合、外部の 16kΩ フィードバック抵抗は接続を外すことができます。

図 35. 二極性 Sallen-Key ローパスフィルタとして設定した出力バッファアンプ DC 出力を反転するには出力バッファを図 36 のように設定します。

図 36. 反転出力設定

電流出力オプション

電流出力が必要な場合、9番ピンのOUTと電流出力を必要として いる負荷を接続します。最大の精度を得るには、内部のトリムさ れた抵抗をバイパスして調整できる外部較正素子で置き換えます。 この設定は AD8436 の結果と別の電圧を合算するときや極性反転 のときに便利です。

図 37. 電圧を反転させる電流出力の接続

単電源

図 38 は単電源の接続で、両電源動作の AC カップルしたときの回路と似ています。アナログ入力は電圧電源の中点でバイアスされていますが、AD8436 の出力が電流電源であるため出力はグラウンド基準となります。周囲ノイズを抑制するために 11番ピン(IGND) に外部バイパス接続が必要です。

推奨アプリケーション

図 39 は電力線周波数、あるいはそれ以上の低周波数アプリケーションの一般的な設定です。推奨の平均化、クレストファクタ、LPF コンデンサ値は 10µF、0.1µF、3.3µF です。更にローパスフィルタ が必要な場合は出力バッファの使用の項を参照してください。

図 39. 一般的なアプリケーション回路

AD8436 評価ボード

AD8426-EVALZ は AD8436 のパフォーマンスを評価するプラット フォームを提供します。電源と信号源が接続されたら使用できる ように基板が組んであります。図 45 は基板の写真です。信号接続 は表麺と裏面にあり、電力とグラウンドは内層にあります。図 40、 図 41、図 42、図 43、図 44 は基板の基本的なレイアウトや銅線の 配置パターン等をはじめとした、その他のデザインの詳細です。 これらの図はアプリケーションデザインをするときに便利です。

AD8436 評価ボードの使用にあたって

AD8436-EVALZ は、シンプルさを保ちつつ多くのオプションを備 えています。基板は 10μ Fの平均化コンデンサ(CAVG)でテスト されてから出荷されており、 3.3μ F ローパスフィルタコンデンサ (C8) と 0.1μ F(COPT) コンデンサでクレストファクタのパフォ ーマンスを最適化しています。ミニマム・コストのアプリケーシ ョンを評価するときは C8 と COPT の接続を外します。

5つのスイッチの機能を図6に示します。

表 6

スイッチ	機能
CORE_BUFFER	信号の入力先をコア直接または入力バッファ かを切り替えます。
INCOUP	コアとのカップリングを AC または DC から 選択します
SDCOUT	DCOUT BNC の出力をバッファまたはコア出 力から選択します
IBUF_VCC	入力バッファ電源の ON/OFF を切り替えます
OBUF_VCC	出力バッファ電源の ON/OFF を切り替えます

全ての I/O にはテスト・ポイントが備えられているのでモニタリン グが容易にできます。デフォルトの入力バッファゲインはユニテ ィゲインです。2x のゲインには、0603 タイプの 0Ω 抵抗を R5 に接 続します。高い IBUF ゲインには、RFBH (内部で OBUF_OUT か ら IBUFIN-に 10kΩ 抵抗が接続されています)から 0Ω 抵抗を外し て値の小さい抵抗を RFBL に接続します。100Ω 抵抗を接続すると 100x のゲインになります。

単電源での動作には R6 抵抗を外して、ノイズデカップリング用と同じ接点に 0.1µF コンデンサを接続します。

図 40. AD8436-EVALZ の組立

図 41. AD8436-EVALZ 一次面カッパー

図 42. AD8436-EVALZ 二次面カッパー

図 43. AD8436-EVALZ 電源プレーン

図 44. AD8436-EVALZ グラウンドプレーン

図 45. AD8436-EVALZの写真

図 46. 試験ボードの簡略化したブロック図

-タシート

外形寸法

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.

図 47. 20 リード、リードフレームチップスケールパッケージ[LFCSP_WQ] (CP-20-10) 寸法をインチで表示

オーダー・ガイド

型番 ¹	温度範囲	パッケージ仕様	パッケージ・
			オプション
AD8436ACPZ-R7	−40°C から+125°C	20-リード リードフレームチップスケール[LFCSP_WQ]	CP-20-10
AD8436ACPZ-RL	−40°C から+125°C	20-リード リードフレームチップスケール[LFCSP_WQ]	CP-20-10
AD8436ACPZ-WP	−40°C から+125°C	20-リード リードフレームチップスケール[LFCSP_WQ]	CP-20-10
AD8436JCPZ-R7	0°C から+70°C	20-リード リードフレームチップスケール[LFCSP_WQ]	CP-20-10
AD8436JCPZ-RL	0°C カゝら+70°C	20-リード リードフレームチップスケール[LFCSP_WQ]	CP-20-10
AD8436JCPZ-WP	0°C から+70°C	20-リード リードフレームチップスケール[LFCSP_WQ]	CP-20-10
AD8436-EVALZ		評価ボード	

¹Z=RoHS 準拠製品。