広い電源範囲、マイクロパワー
レールtoレールの計装アンプ

データシート

AD8420

特長
最大電源電流: 80 µA
最小CMRR: 100 dB
重い容量負荷を駆動：約700 pF
入力電圧範囲がグラウンド以下まで可能
外付け抵抗2本でゲイン設定
すべてのゲインで低ゲイン・ドリフトが実現可能
電源範囲が非常に広い
単電源動作: 2.7 V〜36 V
両電源動作: ±2.7 V〜±18 V
帯域幅(G = 100): 2.5 kHz
入力電圧ノイズ: 55 nV/√Hz
高DC精度
最大オフセット電圧: 125 µV
最大オフセット・ドリフト: 1 µV/°C
最大差動入力電圧: ±1 V
8 ピンMSOPパッケージを採用

アプリケーション
ブリッジ・アンプ
圧力計測
医療計測機器
携帯型データ・アクイジョン
マルチチャンネル・システム

概要
AD8420 は、レールtoレール出力と極めて柔軟なデザインを可能にする新しいアーキテクチャを採用した、低価格、マイクロパワー、広い電源範囲の計装アンプです。このアンプは、大きな同相モード信号が存在する中で小さい差動電圧を増幅するように最適化されています。

AD8420 では、優れた入力同相モード範囲を提供する間接電流帰還アーキテクチャを採用しています。AD8420 は従来型計装アンプとは異なり、両電源を必要とせずに、グラウンドより少し低い信号も容易に増幅することができます。AD8420 はレールtoレール出力を持ち、出力電圧振幅は入力同相モード電圧から完全に独立しています。

AD8420 は単電源動作、マイクロパワー消費電流、レールtoレール出力振幅であるため、バッテリ駆動アプリケーションに最適です。低い電源電圧で動作する場合、レールtoレール出力ステージによりダイナミックレンジを最大化します。AD8420 の両電源動作(±15 V)では低消費電力であるため、医療用や工業用の様々な計装アプリケーションに最適です。

AD8420 は 8 ピンのMSOPパッケージを採用しています。このデバイスの性能は−40°C〜+85°Cの温度範囲で規定され、−40°C〜+125°Cで動作します。
目次

データシート

AD8420

目次

特長.. 1
アプリケーション .. 1
ピン配置.. 1
概要.. 1
改訂履歴.. 2
仕様.. 3
絶対最大定格.. 7
熱抵抗.. 7
ESDの注意.. 7
ピン配置およびピン機能説明 .. 8
代表的な性能特性... 9
動作原理.. 19
アーキテクチャ.. 19
ゲインの設定.. 19

改訂履歴

3/12—Revision 0: Initial Version

改訂履歴

3/12—Revision 0: Initial Version
仕様
特に指定がない限り、+VS = +5 V、−VS = 0 V、VREF = 0 V、V+IN = 0 V、V−IN = 0 V、TA = 25°C、G = 1〜1000、RL = 20 kΩ、入力換算仕様。
特に指定がない限り、すべての表2既定値は、VS = 3 VからVS = ±5 Vまで有効。

表2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON-MODE REJECTION RATIO (CMRR)</td>
<td>VCM = 0 V to 2.7 V</td>
<td>100</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR DC to 60 Hz</td>
<td></td>
<td>100</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR at 1 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Noise</td>
<td>f = 1 kHz, VINP ≤ 100 mV</td>
<td>55</td>
<td>nV/√Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak to Peak</td>
<td>f = 0.1 Hz to 10 Hz, VOUT ≤ 100 mV</td>
<td>1.5</td>
<td>μV/√Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Noise</td>
<td>f = 1 kHz</td>
<td>80</td>
<td>fA/√Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak to Peak</td>
<td>f = 0.1 Hz to 10 Hz</td>
<td>3</td>
<td>pA/√Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLTAGE OFFSET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>VREF = 3 V to VREF = 5 V</td>
<td>125</td>
<td>μV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREF = ±5 V</td>
<td>150</td>
<td>μV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset RTI vs. Supply (PSR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUTS</td>
<td>Valid for REF and FB pair, as well as +IN and −IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current1</td>
<td>TA = +25°C</td>
<td>20</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = +85°C</td>
<td>24</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = −40°C</td>
<td>30</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td>TA = +25°C</td>
<td>1</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = +85°C</td>
<td>1</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = −40°C</td>
<td>1</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td>TA = +25°C</td>
<td>0.5</td>
<td>μA/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = +85°C</td>
<td>1</td>
<td>μA/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>Differential</td>
<td>1302</td>
<td>MΩ</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Common Mode</td>
<td>10002</td>
<td>2</td>
<td></td>
<td>MΩ</td>
<td>pF</td>
</tr>
<tr>
<td>Differential Input Operating Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Operating Voltage (+IN, −IN, REF, or FB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNAMIC RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Signal −3 dB Bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1</td>
<td></td>
<td>250</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 10</td>
<td></td>
<td>25</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 100</td>
<td></td>
<td>2.5</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1000</td>
<td></td>
<td>0.25</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settling Time 0.01%</td>
<td>VREF = ±5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1</td>
<td>−1 V to +1 V output step</td>
<td>3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 10</td>
<td>−4.5 V to +4.5 V output step</td>
<td>130</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 100</td>
<td>−4.5 V to +4.5 V output step</td>
<td>1</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td></td>
<td>1</td>
<td>V/μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAIN2</td>
<td>G = 1 + (R2/R1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Range</td>
<td></td>
<td>1</td>
<td>1000</td>
<td>V/V</td>
<td></td>
</tr>
<tr>
<td>Gain Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1</td>
<td>VOUT = 0.1 V to 1.1 V, VREF = 0.1 V</td>
<td>0.02</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 10 to 1000</td>
<td>VOUT = 0.2 V to 4.8 V</td>
<td>0.05</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain vs. Temperature</td>
<td>TA = −40°C to +85°C</td>
<td>10</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rev. 0
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Swing</td>
<td>VS = 5 V, RL = 10 kΩ to midsupply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VS = ±5 V, RL = 20 kΩ to ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = +25°C</td>
<td>−VS + 0.1</td>
<td></td>
<td></td>
<td>+VS − 0.15</td>
<td>V</td>
</tr>
<tr>
<td>TA = +85°C</td>
<td>−VS + 0.1</td>
<td></td>
<td></td>
<td>+VS − 0.2</td>
<td>V</td>
</tr>
<tr>
<td>TA = −40°C</td>
<td>−VS + 0.1</td>
<td></td>
<td></td>
<td>+VS − 0.15</td>
<td>V</td>
</tr>
<tr>
<td>Short-Circuit Current</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td>Single-supply operation (^1)</td>
<td>2.7</td>
<td></td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>VS = 5 V</td>
<td>55</td>
<td>70</td>
<td>80</td>
<td>νA</td>
</tr>
<tr>
<td></td>
<td>TA = +25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA = −40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified</td>
<td>−40</td>
<td></td>
<td></td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Operational (^4)</td>
<td>−40</td>
<td></td>
<td></td>
<td>+125</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. 入力ステージでは PNP トランジスタを使っているため、デバイスから常に入力バイアス電流が流れています。
2. G > 1 の場合、FB ピンのバイアス電流による誤差などのこれらの仕様の他に、外付け抵抗 R1 と外付け抵抗 R2 による誤差を考慮する必要があります。
3. VS, IN, VREF = 0 V に対して表示する最小電源電圧。
4. 85°C〜125°C での動作については、代表的な性能特性のセクションを参照してください。
特に指定がない限り、+Vs = +15 V, −Vs = −15 V, VREF = 0 V, TA = 25°C, G = 1～1000, RL = 20 kΩ, 入力換算仕様。

表 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON-MODE REJECTION RATIO (CMRR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR DC to 60 Hz</td>
<td>Vcm = −10 V to +10 V</td>
<td>100</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>CMRR at 1 kHz</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Density</td>
<td>f = 1 kHz, Vdiff ≤ 100 mV</td>
<td>55</td>
<td></td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>Peak to Peak</td>
<td>f = 0.1 Hz to 10 Hz, Vdiff ≤ 100 mV</td>
<td>1.5</td>
<td></td>
<td></td>
<td>µV p-p</td>
</tr>
<tr>
<td>Current Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Density</td>
<td>f = 1 kHz</td>
<td>80</td>
<td></td>
<td></td>
<td>fA/√Hz</td>
</tr>
<tr>
<td>Peak to Peak</td>
<td>f = 0.1 Hz to 10 Hz</td>
<td>3</td>
<td></td>
<td></td>
<td>pA p-p</td>
</tr>
<tr>
<td>VOLTAGE OFFSET</td>
<td>Offset</td>
<td>Vref = ±15 V</td>
<td>250</td>
<td></td>
<td>µV</td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td>TA = −40°C to +85°C</td>
<td>1</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>Offset RTI vs. Supply (PSR)</td>
<td>Vref = ±15 V</td>
<td>100</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>INPUTS</td>
<td>Valid for REF and FB pair, as well as +IN and −IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = +25°C</td>
<td>20</td>
<td>27</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>TA = +85°C</td>
<td>24</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = −40°C</td>
<td>30</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>TA = +25°C</td>
<td>1</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>TA = +85°C</td>
<td>1</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = −40°C</td>
<td>1</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>Differential</td>
<td>G = 1</td>
<td>130</td>
<td>3</td>
<td>MΩ</td>
</tr>
<tr>
<td>Common Mode</td>
<td>G = 1000</td>
<td></td>
<td>1000</td>
<td>3</td>
<td>MΩ</td>
</tr>
<tr>
<td>Differential Input Operating Voltage</td>
<td>TA = −40°C to +85°C</td>
<td>−1</td>
<td>1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Operating Voltage (+IN, −IN, REF, or FB)</td>
<td>TA = +25°C</td>
<td>−Vs − 0.15</td>
<td>+Vs − 2.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>TA = +85°C</td>
<td>−Vs − 0.05</td>
<td>+Vs − 1.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = −40°C</td>
<td>−Vs − 0.2</td>
<td>+Vs − 2.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNAMIC RESPONSE</td>
<td>Small Signal −3 dB Bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1</td>
<td></td>
<td>250</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>G = 10</td>
<td></td>
<td>25</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>G = 100</td>
<td></td>
<td>2.5</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>G = 1000</td>
<td></td>
<td>0.25</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Settling Time 0.01%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1</td>
<td>−1 V to +1 V output step</td>
<td>3</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>G = 10</td>
<td>−5 V to +5 V output step</td>
<td>130</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>G = 100</td>
<td>−5 V to +5 V output step</td>
<td>1</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td></td>
<td>1</td>
<td></td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>GAIN</td>
<td>G = 1 + (R2/R1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Range</td>
<td></td>
<td>1</td>
<td>1000</td>
<td>V/V</td>
<td></td>
</tr>
<tr>
<td>Gain Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1</td>
<td>Vout = ±1 V</td>
<td>0.02</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>G = 10 to 1000</td>
<td>Vout = ±10 V</td>
<td>0.05</td>
<td>0.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Gain vs. Temperature</td>
<td>TA = −40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Output Swing</td>
<td>RL = 20 kΩ to Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = +25°C</td>
<td>−Vs + 0.13</td>
<td>+Vs − 0.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = +85°C</td>
<td>−Vs + 0.15</td>
<td>+Vs − 0.23</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA = −40°C</td>
<td>−Vs + 0.11</td>
<td>+Vs − 0.16</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Circuit Current</td>
<td></td>
<td>10</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Test Conditions/Comments</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td>Dual-supply operation</td>
<td>±2.7</td>
<td>±18</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$V_x = \pm 15 \text{ V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_x = +25^\circ \text{C}$</td>
<td>70</td>
<td>85</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$T_x = +85^\circ \text{C}$</td>
<td></td>
<td></td>
<td>120</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$T_x = -40^\circ \text{C}$</td>
<td></td>
<td></td>
<td>90</td>
<td>µA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified</td>
<td></td>
<td>−40</td>
<td>+85</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Operational5</td>
<td></td>
<td>−40</td>
<td>+125</td>
<td>+125</td>
<td>°C</td>
</tr>
</tbody>
</table>

1 オフセット電圧対電源については、代表的な性能特性のセクションを参照してください。
2 入力ステージでは PNP ドラッグスタを用いているため、デバイスは常に入力バイアス電流が流出しています。
3 $G > 1$ の場合、FB ピンのバイアス電流による誤差などのこれらの仕様の他に、外付け抵抗 R1 と外付け抵抗 R2 による誤差を考慮する必要があります。
4 V_{in}、V_{out}、$V_{ref} = 0 \text{ V}$に対する最小正電源電圧。V_{in}、V_{out}、$V_{ref} = V_{x}$では、最小電源電圧は $\pm 1.35 \text{ V}$。
5 $85^\circ \text{C} \sim 125^\circ \text{C}$での動作については、代表的な性能特性のセクションを参照してください。
絶対最大定格

表4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±18 V</td>
</tr>
<tr>
<td>Output Short-Circuit Current</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Maximum Voltage at −IN or +IN</td>
<td>−V<sub>S</sub> + 40 V</td>
</tr>
<tr>
<td>Minimum Voltage at −IN or +IN</td>
<td>−V<sub>S</sub> − 0.5 V</td>
</tr>
<tr>
<td>Maximum Voltage at REF or FB</td>
<td>+V<sub>S</sub> + 0.5 V</td>
</tr>
<tr>
<td>Minimum Voltage at REF or FB</td>
<td>−V<sub>S</sub> − 0.5 V</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
</tbody>
</table>

θ_{JA}は、自然空冷のデバイスで規定。

表5.

<table>
<thead>
<tr>
<th>Package</th>
<th>θ<sub>JA</sub></th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Lead MSOP, 4-Layer JEDEC Board</td>
<td>135</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ESDの注意

ESD（静電放電）の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵していますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。
表6.ピン機能の説明

<table>
<thead>
<tr>
<th>ピン番号</th>
<th>記号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>このピンは内部で接続されていません。CMRRの周波数特性とリーク性能を得るためには、このピンを負電源へ接続してください。</td>
</tr>
<tr>
<td>2</td>
<td>+IN</td>
<td>正入力。</td>
</tr>
<tr>
<td>3</td>
<td>−IN</td>
<td>負側入力。</td>
</tr>
<tr>
<td>4</td>
<td>−VS</td>
<td>負電源。</td>
</tr>
<tr>
<td>5</td>
<td>+VS</td>
<td>正電源。</td>
</tr>
<tr>
<td>6</td>
<td>REF</td>
<td>リファレンス入力。</td>
</tr>
<tr>
<td>7</td>
<td>FB</td>
<td>帰還入力。</td>
</tr>
<tr>
<td>8</td>
<td>VOUT</td>
<td>出力。</td>
</tr>
</tbody>
</table>
代表的な性能特性
特に指定がない限り、T = 25°C、+Vs = 5 V、RL = 20 kΩ。

図3.入力オフセット電圧の分布
図6.CMRR の分布
図4.入力バイアス電流の分布
図7.REF、FBバイアス電流の分布
図5.入力オフセット電流の分布
図8.REF、FBオフセット電流の分布
図 9. 入力過電圧性能、G = 1

図 10. 入力過電圧性能
G = 1、Vₛ = ±15 V

図 11. 入力過電圧性能
G = 100

図 12. 入力過電圧性能、G = 100、Vₛ = ±15 V

図 13. 出力電圧対入力同相モード電圧
G = 1、Vₛ = ±15 V

図 14. 出力電圧対入力同相モード電圧
G = 1、Vₛ = 5 V
図15. 出力電圧対入力同相モード電圧
G = 1, V_S = 5 V, V_REF = 2.5 V

図16. 出力電圧対入力同相モード電圧
G = 1, V_S = 2.7 V

図17. 出力電圧対入力同相モード電圧
G = 100, V_S = ±15 V

図18. 出力電圧対入力同相モード電圧
G = 100, V_S = 5 V

図19. 出力電圧対入力同相モード電圧
G = 100, V_S = 5 V, V_REF = 2.5 V

図20. 出力電圧対入力同相モード電圧
G = 100, V_S = 2.7 V
図21.同相モード電圧対入力バイアス電流

図22.差動入力電圧対入力バイアス電流、$V_S = \pm 15\, \text{V}

図23.PSRRの周波数特性、5 V電源

図24.正のPSRRの周波数特性、RTI、$V_S = \pm 15\, \text{V}$

図25.負のPSRRの周波数特性、RTI、$V_S = \pm 15\, \text{V}$

図26.ゲインの周波数特性
図27. ゲインの周波数特性、2.7V単電源

図28. CMRRの周波数特性
RTI、$V_S = \pm 15V$

図29. CMRRの周波数特性
RTI、1kΩソース不平衡、$V_S = \pm 15V$

図30. 差動入力電圧対CMRR

図31. 電源電流の温度特性、$V_S = +5V$

図32. 入力バイアス電流と入力オフセット電流の温度特性
図33.FB、REFバイアス電流とFB、REFオフセット電流の温度特性

図34.ゲイン誤差の温度特性、G = 1、V_{IN} = ±1V、V_{S} = ±15V

図35.ゲイン誤差の温度特性、G = 1、V_{IN} = ±0.1V、V_{S} = ±15V

図36.オフセット・ドリフト

図37.CMRRの温度特性、G = 1、V_{S} = ±15V

図38.電源電圧対出力電圧振幅、R_L = 20 kΩ
図39. 負荷抵抗対出力電圧振幅、$V_S = 5\, \text{V}$

図40. 負荷抵抗対出力電圧振幅、$V_S = 5\, \text{V}$

図41. 負荷抵抗対出力電圧振幅、$V_S = \pm 15\, \text{V}$

図42. 出力電流対出力電圧振幅、$V_S = \pm 15$

図43. 電圧ノイズ・スペクトル密度の周波数特性、RTI

図44. 0.1 Hz〜10 Hz での RTI 電圧ノイズ、$G = 1$
図45.電流ノイズ・スペクトル密度の周波数特性
図46.0.1 Hz〜10 Hzでの電流ノイズ
図47.大信号周波数応答
図48.大信号パルス応答とセッティング・タイム、G = 1
図49.大信号パルス応答とセッティング・タイム、G = 10
図50.大信号パルス応答とセッティング・タイム、G = 100
図51. 小信号パルス応答
$G = 1, R_L = 20 \, \Omega, C_L = 100 \, \text{pF}$

図52. 小信号パルス応答
$G = 10, R_L = 20 \, \Omega, C_L = 100 \, \text{pF}$

図53. 小信号パルス応答
$G = 100, R_L = 20 \, \Omega, C_L = 100 \, \text{pF}$

図54. 小信号パルス応答
$G = 1000, R_L = 20 \, \Omega, C_L = 100 \, \text{pF}$

図55. 様々な容量負荷での小信号応答
$G = 1, R_L = \infty$

図56. 電源電圧対電源電流

<table>
<thead>
<tr>
<th>SUPPLY VOLTAGE (V)</th>
<th>SUPPLY CURRENT (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>30</td>
<td>85</td>
</tr>
<tr>
<td>35</td>
<td>90</td>
</tr>
</tbody>
</table>

図57. NO LOAD
NO: 220pF, 470pF, 780pF
図 57. 電源電圧対オフセット電圧
動作原理

アーキテクチャ
AD8420 は、電圧を電流へ変換する一致した 2 個の相互コンダクタンス・アンプと電流を電圧へ変換する 1 個の積分器アンプから構成される間接電流帰還回路を採用しています。

AD8420 の場合、入力+IN と−IN の間に正の差動電圧が加えられるまですべての初期電圧と電流はゼロであると見なします。相互コンダクタンス・アンプ gm1 はこの入力電圧を電流 I1 へ変換します。gm2 はこの入力電圧と電流がゼロであるため、I2 はゼロで I3 = I1 となります。

I3 は積分されて出力になり、出力電圧 VOUT が増加します。この電流は増加し続け、この増加は入力 gm1 間と同じ差動入力電圧が入力 gm2 間に複製されて、I1 に等しい電流が入力されるまで続けます。これにより、出力が安定した電流を維持するように電流 I3 がゼロに減少します。図 58 に示す構成のゲインは、R2 と R1 により設定されます。

従来型の計装アンプでは、入力相モード電圧により有効出力振幅が制限されます（一般に「六角形プロット」で図示）。AD8420 は入力差動信号を電流へ変換するため、この制約はありません。片方の電源レールに近い同相モード電圧を持つ信号を増幅する際には、このことが特に重要です。

強固さと使いやすさを向上させるため、AD8420 は入力に過電圧保護機能を内蔵しています。この保護方式を使うと、デバイスに損傷を与えずに広い差動入力電圧が可能になります。

ゲインの設定
AD8420 の伝達関数は次式で表されます。

\[V_{OUT} = G(V_{+IN} - V_{-IN}) + V_{REF} \]

ここで,

\[G = 1 + \frac{R_2}{R_1} \]

R2 と R1 の比でゲインを設定する際、抵抗の絶対値は設計者が決

定します。値が大きいほど消費電力と出力負荷が小さくなり、値が小さいほど FB 入力バイアス電流とオフセット電流誤差が制限されます。最適な出力振幅と歪み性能のためには、R1 + R2 >> R1 \geq 20 \Omega としてください。

大きな値の帰還抵抗を可能にすると同時に FB 入力バイアス電流差を制限する方法は、REF 端子と直列に R1 || R2 の値の抵抗を接続することで図 59 参照。ゲインが高くなると、この抵抗は単純に R1 と同じ値になります。
ゲイン精度
大部分の計装アンプと同様、1 本の抵抗ではなく、2 本のゲイン設定抵抗の相対的な一致により AD8420 のゲイン精度が決定されます。例えば、2 本の抵抗が正確に同じ絶対誤差を持つ場合、ゲインに誤差は生じません。逆に、高いゲインでは、2 本の1%抵抗により最大約 2%のゲイン誤差が発生します。ゲイン設定抵抗に温度係数の不一致があると、計装アンプ回路のゲインドリフトが大きくなります。これらの外付け抵抗はどの内蔵抵抗とも一致する必要がないため、優れた TCトラッキングを持つ抵抗により優れたゲインドリフトを実現することができます。
入力での差動電圧が差動入力限界に近づくと、ダイオードが導通を開始して、入力から見た電圧が制限されます。これは、大きな差動入力でゲイン誤差が大きくなったように見えます。AD8420 の性能は −40°C ～+85°C で ±1 V 差動に対して規定されていますが、これより高い温度では、ダイオード順方向電圧の低下により差動入力が小さい電圧に制限されます。図 60 に動作温度範囲での 1% 誤差のカーブを示します。このカーブは入力限界での温度の影響を示しています。

入力保護
AD8420 入力へ流入する电流は内部で制限されます。これにより、内部アンプから見た差動電圧を制限するダイオードにテーランオンする際に大きな電流が流れません。設定したゲインの大きさによらず、デバイスは損傷して大きな差動入力電圧を処理することができます。このため、AD8420 入力が正電源レールを超える電圧から保護されます。負電流をを超える電圧が予想される場合は、外部保護機能を使う必要があります。

すべての AD8420 端子は絶対最大定格のセクションで規定される電圧範囲内に維持してください。AD8420 の全端子が ESD に対応しています。

電源レールを超える入力電圧
負電源レールを超える保護を必要とするアプリケーションに対する 1 つのオプションは、各入力に直列に外付け抵抗を接続して過負荷時に電流を制限する方法です。この場合、AD8420 へ流入する電流を 6 mA に制限するように抵抗値を決めてください。

(RIron−VIron)/6 mA

AD8420 入力を−VS 40 V以内に制限する必要がありますが、保護抵抗の I × R 電圧降下により正側の保護がほぼ次の値だけ強化されます。

(40 V +負電源) + 300 µA × RProtect

もう 1 つの保護方法は、AD8420 入力にダイオードを接続して電圧を制限し、さらに入力に直接に抵抗を接続してこれをダイオードの電圧を制限する方法です。通電動作で入力バイアス電流を最小に維持するため、BAV199 やような低リーク・ダイオード・クランプを使用してください。また、AD8420 には PTVSxS1UR のような TVS ダイオードを使用することもできます。

大きな差動入力電圧
また AD8420 は、デバイスの損傷から大きく差動入力電圧を処理することもできます。過電圧性能については、図 9、図 10、図 11、図 12 を参照してください。AD8420 の差動電圧は内部でダイオードによる±1 V に制限されます。この制限値を超えると、ダイオードが導通を開始して電流が流れます(図22 参照)。この電流は内部で AD8420 にとって安全な値に制限されます。この入力電流をシステム内で許容できない場合は、次の値の抵抗を各入力に直列に接続してください。

RProtect ≥ 1/2 (VIron−1 V/I_MAX)
レイアウト
全周波数での同相モード除去比
レイアウトが正しくないと、同相モード信号が差動信号に変換され計装アンプに到達することがあります。このような変換は、正と負の入力ピンへのパスの周波数応答が異なる場合に発生します。最適な周波数対 CMRR 性能を得るためには、各パスの入力ソース・インピーダンスと容量が一致している必要があります。これには、ピン 1 と−VS の接続が含まれます。これにより各入力と隣接ピンとの間の寄生容量とリークが一様になります。入力パスへソース抵抗(例えば入力保護)を追加することは、計装アンプ入力の近くに接続して、プリント回路ボード(PCB)パターンの寄生容量との相互作用を小さくする必要があります。入力パスへソース抵抗を追加する場合は、計装アンプ入力の近くに接続して、プリント回路ボード(PCB)パターンの寄生容量との相互作用を小さくする必要があります。入力パスへソース抵抗を追加する場合は、計装アンプ入力の近くに接続して、プリント回路ボード(PCB)パターンの寄生容量との相互作用を小さくする必要があります。

電源
計装アンプの电源には安定した DC 電圧を使用してください。電源ピンのノイズは性能に悪影響を与えます。PSRR 性能カーブの詳細については、図 24 と図 25 を参照してください。

図 62. 電源デカップリング、REF、ローカル・グラウンド基準の出力

リファレンス電圧
AD8420 の出力電圧は、REFピンの電位を基準にして発生されます。REFを適当な近くのグラウンドに接続するように注意してください。入力の差動電圧がREFピンとFBピンの間で再生されるため、FB電圧が入力範囲を超えないようにVREFを設定することが重要です。

REFピンの駆動
従来型計装アンプ・アーキテクチャでは、リファレンスピンを低インピーダンス・ソースで駆動する必要がありました。これらのアーキテクチャでは、リファレンスピンのインピーダンスにより CMRRとゲイン精度が低下します。AD8420 アーキテクチャでは、リファレンスピンの抵抗は CMRRに影響を与えません。

図 63. リファレンス抵抗によるゲインの計算

リファレンスピンの抵抗は AD8420 のゲインに影響を与えますが、この抵抗が一定の場合、ゲイン設定抵抗を調整して補償することができます。例えば、AD8420 を分圧器から駆動することができます(図 64)。

図 64. 抵抗分圧器を使用したリファレンス電圧の設定
入力バイアス電流のリターン・パス

AD8420の入力バイアス電流には、グラウンドへのリターン・パスが必要です。熱電対のように信号源へのリターン電流パスがない場合には、図65に示すように設ける必要があります。

無線周波数干渉(RFI)

すべての計装アンプは、高周波の帯域外信号を整流することがあります。整流後、これらの信号は出力にDCオフセット誤差として現れます。高周波信号は、図66に示すように計装アンプの入力に接続されたローパスRC回路で除去することができます。このフィルタは、次式の関係を使って入力信号の帯域幅を制限します。

\[
\text{FilterFrequency}_{\text{DIFF}} = \frac{1}{2\pi R(2C_D + C_C)}
\]

\[
\text{FilterFrequency}_{\text{CM}} = \frac{1}{2\pi R C_C}
\]

ここで、\(C_D \geq 10 C_C\)。

\(C_D\)は差動信号に有効で、\(C_C\)は同相モード信号に有効です。\(R\)と\(C_C\)の値は、信号帯域幅が狭くなりますが帯域外RFIを小さくするように選択します。正入力の\(R\timesC_D\)と負入力の\(R\timesC_C\)の不一致は、AD8420のCMRR性能を低下させます。\(C_C\)の値より少なくとも1桁大きい\(C_D\)の値を使うと、不一致の影響が小さくなるので、性能が改善されます。
出力のバッファリング

AD8420 は 20 kΩ以上の負荷を駆動するようにデザインされていますが、小さい出力電圧振幅では 10 mAまでの重い負荷を駆動することができます（図 42参照）。出力電流をこれより大きくする場合は、高精度オペアンプで AD8420 出力をバッファしてください。図 67 に、単電源で ADA4692-2 を使用する推奨構成を示します。この低消費電力オペアンプは 5 V 単電源で 1 V ～ 4 V の出力振幅が可能であると同時に、30 mA以上の電流をソースまたはシンクすることができます。この構成を使用する場合、AD8420 から見た負荷は約 R1 + R2 になります。

AD4692-2 はデュアル・オペアンプであるため、もう1つのオペアンプはアクティブ・フィルタ・ステージまたは同じ PCB 上の別の AD8420 の出力バッファとして使うことができます。図 68 に、この2つのオペアンプの別の推奨方法を示します。この回路では、ポテンショメータのウィパーからの電圧を ADA4692-2 でバッファして、出力の可変レベル・シフトを可能にしています。ポテンショメータの上と下の抵抗により、レベル・シフトの合計範囲は狭くなりますが精度は向上します。もしポテンショメータを AD8420 の REFピンに直接接続すると、可変抵抗からゲイン誤差が発生します。選択するポテンショメータに応じて、ポテンショメータをハードウェアまたはソフトウェアから調整することができます。アナログ・デバイスが製造するデジタル・ポテンショメータの一覧については、http://www.analog.com/jp/digipots/をご覧ください。
アプリケーション情報

AD8420 の心電図（ECG）での応用

一般に ECG シグナル・コンディショニング回路ではハイパス・フィルタを使用して電極オフセットと偽動作を除去しています。システムの入力インピーダンスと CMRR の低下を防止するため、このフィルタ機能は一般に計装アンプの後ろに接続されます。このために計装アンプに与えることができるゲインが制限されます。

3 個のオペアンプを使用する計装アンプでは、ゲインは最初のステージで適用されます。このため、電極オフセットが増幅されるので、後でハイパス・フィルタにより除去する必要があります。

AD8420 アーキテクチャでは、REF ピンと FB ピンの相互コンダクタンス・アンプを不均衡にすることにより、入力ステージでオフセットを処理することができます。定常状態では、入力のオフセットが出力まで増幅されないため、高い周波数の信号ほど増幅されて通過します。この方法で AD8420 を使用すると、オフセット許容誤差はデバイスの差動入力範囲 (+1 V) にほぼ一致します。

図 69 に、信号をゲイン 100 で増幅すると同時に、DC と高周波を除去する、ECG のフロントエンドを示します。この回路では AD8420 と低消費電力、低価格、デュアル、高精度の CMOS オペアンプ AD8657 を組み合わせています。
従来型ブリッジ回路

図 70 に、従来型抵抗ブリッジからの信号を増幅する AD8420 を示します。この回路は両電源モードまたは単電源モードで動作します。一般に、計装アンプの電源として使用する同じ電圧でブリッジが駆動されます。ブリッジの下部を計装アンプの負電源に接続すると、入力同相モード電圧が電源電圧の中心値に設定されます。REF ピンの電圧はアプリケーションに合わせて変化させることができます。例えば、REF ピンを入力範囲(VREF ± VS)を持つ A/D コンバータ (ADC) の VREF ピンに接続します。AD8420 の有効出力振幅は(-VS + 100 mV)～(+VS - 150 mV)であるため、設定可能な最大ゲインはこの出力範囲を入力範囲で除算した値になります。

4 mA〜20 mAの単電源レシーパ

AD8420 は 80 µA の最大電源電流、グラウンドより低くなることが可能な入力範囲、低ドリフト特性を持つため、4 mA〜20 mA のループで使用する非常に優れた選択肢となっています。図 71 に、4 mA〜20 mA のトランスジューサの信号を AD8420 へインターフェースさせる方法を示します。4 mA〜20 mA トランスジューサからの信号はシングルエンドであるため、シンプルなシャント抵抗をグラウンドへ接続して電流を電圧へ変換することができるが、リターン・パス (トランスジューサへの y)のライン抵抗により電流依存のオフセット誤差が加わるため、電流は差動で検出する必要があります。この例では、5 Ωのシャント抵抗により、AD8420 入力で非常に小さい同相モード値を持つ 20 mV (4 mA 入力)〜100 mV (20 mA 入力)の差動電圧が発生します。図に示すゲイン抵抗では、AD8420 は入力電圧を 40 倍に増幅して 4.0 V にします。
外形寸法

外形寸法は、JEDEC基準に対応しています。

図72.8 8ピン・ミニ・スモール・アウトライン・パッケージ[MSOP] (RM-8)
寸法: mm

オーダー・ガイド

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
<th>Branding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD8420ARMZ</td>
<td>-40°C to +85°C</td>
<td>8-Lead Mini Small Outline Package [MSOP], Tube</td>
<td>RM-8</td>
<td>Y3Y</td>
</tr>
<tr>
<td>AD8420ARMZ-R7</td>
<td>-40°C to +85°C</td>
<td>8-Lead Mini Small Outline Package [MSOP], 7-Inch Tape and Reel</td>
<td>RM-8</td>
<td>Y3Y</td>
</tr>
<tr>
<td>AD8420ARMZ-RL</td>
<td>-40°C to +85°C</td>
<td>8-Lead Mini Small Outline Package [MSOP], 13-Inch Tape and Reel</td>
<td>RM-8</td>
<td>Y3Y</td>
</tr>
</tbody>
</table>

1 Z - RoHS準拠製品。