レーダー・アプリケーションの概要
第二次世界大戦中から開始され、今日では防衛・民生（航空管制や気象観測）・自動車など多様なアプリケーションで使用されています。その動作原理は、特定の波形で変調した電磁信号を送信することにあります。信号は対象物から反射され、この反射信号をレーダーの受信機が検出し、これを解析して距離、方向、角度などの必要な情報を抽出します。

主な課題とシステム設計上の留意事項
距離
レーダー・システムの主要な目的は、最大距離での対象物を可能な限り迅速に確認することです。このため、長距離に対応できる高パワーや高効率が求められます。

分解能
レーダー・システムのもう一つの目的は、最高の分解能で密集した物体の中から真の対象物を見つけ出すことです。高い分解能を実現するためには、広い変調帯域が必要です。

信頼性
信頼性は、あらゆる産業アプリケーションにとって重要で、信頼性を向上するには多くの手法があります。アンプの段数を低減すると、複雑さが軽減し、信頼性が向上します。先進的な半導体製造工程に

よって高効率のアンプを作成し、冷却の必要性を低減することによって信頼性を向上することができます。これらの手法を用いることによって、サイズや重量も低減できます。

なぜアナログ・デバイスなのか
► 包括的なポートフォリオにより、広範な商用および防衛用レーダー・システムの完全なRFビット・ソリューションを実現します。
► お客様が最高の性能を実現するとともにサイズ、重量、電力、システム・コスト、開発時間を低減できるように支援します。
► 50年以上にわたる性能、信頼性、持続性の取り組みにより、ふさわしいサプライヤーとして認識されています。

レーダー・シグナルチェーン
標準的なレーダー・シグナル・チェーン（スーパーヘテロダイナミック・アーキテクチャ）
スーパーヘテロダイナミック・アーキテクチャの標準的なレーダー・シグナル・チェーンを下図に示します。受信した信号周波数をまずIF段、次にベースバンド周波数に変換するデュアル・ミキング段の構成になっています。
次世代のレーダー・シグナル・チェーン（ダイレクトRFおよび高IFサンプリング）

ダイレクト・コンバージョン無線は、何度も周波数変換を行うスーパーヘテロダイナム・レシーバと異なり、1回だけ周波数を変換します。周波数変換が1回であることにより、次のような利点が得られます。

- レシーバの複雑さが軽減、必要な段数が少なくなり、これにより性能が向上し、消費電力を低減
- イメージ除去の問題や不要なミキシングを解消

以下に示すのは、次世代I/Qレーダー・シグナル・チェーンの例です。ダイレクトRFシニセスと高IFサンプリングによって2次IF段が不要になります。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AD9129/AD9739</td>
<td>AD9914/AD9915</td>
<td>AD9652/AD9656/AD9250</td>
<td>AD9525/HMC1031/ HMC1032/HMC1033/ HMC1034/HMC1035</td>
<td>ADCLK944/HMC744</td>
<td>ADL5565/ADL5566/ ADL5610/ADL5611</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC772/HMC460/ HMC516</td>
<td>HMC359/ HMC797A New! HMC1114</td>
<td>HMC830/HMC831/ HMC832/HMC833/ AD9305</td>
<td>ADL5353/HMC1056/ HMC773A New</td>
<td>HMC443</td>
<td>HMC642A/HMC877</td>
</tr>
</tbody>
</table>

RF Agile Transceivers

<table>
<thead>
<tr>
<th>1. DACs</th>
<th>2. ADCs</th>
<th>3. Clock</th>
<th>4. Digital Gain Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD9367/AD9364</td>
<td>AD9625/AD9680</td>
<td>HMC7044</td>
<td>ADA4961</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC661/HMC1061</td>
<td>ADL5367/HMC558A</td>
<td>ADL5363/ADL5380</td>
<td>ADL6010/HMC1094/HMC1013</td>
<td>HMC232X/RMC966A/ AD861304</td>
</tr>
</tbody>
</table>
24GHz FMCWレーダー
アナログ・デバイセズは、24GHzレーダー用のシグナル・チェーンで使用するあらゆるチップセットを提供しています。これらの自動車向け先進運転支援システム（ADAS）や産業用アプリケーションに使用できます。高性能の高集積チップセットにより、全消費電力を大幅に低減し、感度を2倍以上、検出距離を最大1.5倍に高めたレーダー設計が可能です。これにより、設計が容易な小型センサーで堅牢で安定した性能を実現できます。
下表に24GHzのチップセットを示します。
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Key Features & Benefits</th>
<th>ECCN Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Amplifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMC559</td>
<td>GaAs pHEMT MMIC power amplifier, dc to 20 GHz</td>
<td>P1dB output power: 28 dBm, gain: 14 dB, output IP3: 36 dBm, supply voltage: 10 V @ 400 mA, 50 Ω matched input/output</td>
<td>EAR99</td>
</tr>
<tr>
<td>HMC797ALPSE</td>
<td>GaAs pHEMT MMIC 1 W power amplifier, dc to 22 GHz</td>
<td>High P1dB output power: 28 dBm, high P_{sat} output power: 29.5 dBm, high gain: 13.5 dB, high output IP3: 39 dBm, supply voltage: 10 V @ 400 mA, 50 Ω matched input/output</td>
<td>EAR99</td>
</tr>
<tr>
<td>Clock Generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD9525</td>
<td>Low jitter clock generator with eight LVPECL outputs</td>
<td>Integrated ultralow noise synthesizer, 8 differential 3.6 GHz LVPECL outputs and 1 LVPECL SYNC output or 2 CMOS SYNC outputs, 2 differential reference inputs and 1 single-ended reference input</td>
<td>EAR99</td>
</tr>
<tr>
<td>HMC1034</td>
<td>Clock generator with fractional-N PLL and integrated VCO, 125 MHz to 3000 MHz</td>
<td>Frequency range: 125 MHz to 3000 MHz, 78 fs rms jitter generation (typical), –165 dBc/Hz phase noise floor, maximum phase detector rate 100 MHz, figure of merit (FOM) –227 dBc/Hz, 24-bit step size, resolution 3 Hz typical</td>
<td>EAR99</td>
</tr>
<tr>
<td>DDSs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD9914</td>
<td>3.5 GSps direct digital synthesizer with 12-bit DAC</td>
<td>3.5 GSps internal clock speed, integrated 12-bit DAC, frequency tuning resolution to 190 pHz, 16-bit phase tuning resolution, 12-bit amplitude scaling, programmable modulus, automatic linear and nonlinear frequency sweeping capability, 32-bit parallel datapath interface, eight frequency-phase offset profiles, phase noise: –128 dBc/Hz (1 kHz offset @ 1396 MHz), wideband SRF < –50 dBc, serial or parallel I/O control</td>
<td>3A001.a.13.b</td>
</tr>
<tr>
<td>PLLs with VCOs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF5355</td>
<td>Microwave wideband synthesizer with integrated VCO</td>
<td>RF output frequency range: 54 MHz to 13,600 MHz, fractional-N synthesizer and integer-N synthesizer, high resolution 38-bit modulus, phase frequency detector (PFD) operation to 125 MHz, reference frequency operation to 600 MHz</td>
<td>5A991.b</td>
</tr>
<tr>
<td>HMC830</td>
<td>Fractional-N PLL with integrated VCO, 25 MHz to 3000 MHz</td>
<td>RF bandwidth: 25 MHz to 3000 MHz, maximum phase detector rate 100 MHz, ultralow phase noise –110 dBc/Hz in band typ, figure of merit (FOM) –227 dBc/Hz</td>
<td>5A991.b</td>
</tr>
<tr>
<td>Multiplier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMC443</td>
<td>SMT GaAs HBT MMIC ×4 active frequency multiplier, 9.8 GHz to 11.2 GHz output</td>
<td>Output power: 4 dBm, subharmonic suppression: >25 dBc, SS phase noise: –142 dBc/Hz, single supply: 5 V @ 52 mA</td>
<td>EAR99</td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGL6010</td>
<td>Fast responding, 45 dB range, 0.5 GHz to 43.5 GHz envelope detector</td>
<td>Schottky diode detector with linearization, broadband 50 Ω input impedance, accurate response from 0.5 GHz to 43.5 GHz with minimal slope variation</td>
<td>5A991.b</td>
</tr>
<tr>
<td>HMC1013</td>
<td>Successive detection log video amplifier (SDLVA), 0.5 GHz to 18.5 GHz</td>
<td>High logging range: 67 dB (-62 dBm to +5 dBm), output frequency flatness: ±2 dB, log linearity: ±2 dB, fast rise/fall times: 5 ns/15 ns, single positive supply: 3.3 V</td>
<td>EAR99</td>
</tr>
<tr>
<td>ADCs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD9652</td>
<td>16-bit, 310 MSPS, 3.3 V/1.8 V dual analog-to-digital converter (ADC)</td>
<td>High dynamic range, SNR = 75.0 dBFS at 70 MHz (A_{in} = –1 dBFS), SFDR = 87 dBc at 70 MHz (A_{in} = –1 dBFS), noise spectral density (NSD) = –156.7 dBFS/Hz input noise at –1 dBFS at 70 MHz, NSD = –157.6 dBFS/Hz for small signal at –7dBFS at 70 MHz</td>
<td>3A001.a.5.a.5</td>
</tr>
<tr>
<td>AD9625</td>
<td>12-bit, 2.6 GSps/2.5 GSps/2.0 GSps, 1.3 V/2.5 V analog-to-digital converter</td>
<td>12-bit 2.5 GSps ADC, no missing codes, SFDR = 79 dBc, A_{in} up to 1 GHz at –1 dBFS, 2.5 GSps, SFDR = 77 dBc, A_{in} up to 1.6 GHz at –1 dBFS, 2.5 GSps, SFDR = 57 dBFS, A_{in} up to 1 GHz at –1 dBFS, 2.5 GSps, noise spectral density = –149.5 dBFS/Hz at 2.5 GSps, differential analog input: 1.2 V p-p</td>
<td>3A001.a.5.a.3</td>
</tr>
<tr>
<td>Track-and-Hold Amplifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMC661</td>
<td>Ultrawideband 4 GSps track-and-hold amplifier dc to 18 GHz</td>
<td>18 GHz input bandwidth (1 V p-p full scale), 4 GSps maximum sampling rate, 68 dB SFDR (4 GHz/0.5 V p-p input, CLK = 1 GSps), 57 dB SFDR (4 GHz/1 V p-p input, CLK = 1 GSps), direct-coupled I/O, ultraclean output waveforms, minimal glitching, >60 dB hold mode feedthrough rejection, 1.05 mV rms hold mode output noise, single/dual rank evaluation boards are available</td>
<td>EAR99</td>
</tr>
<tr>
<td>HMC1061</td>
<td>DC to 18 GHz, ultrawideband, dual rank 4 GSps track-and-hold amplifier</td>
<td>18 GHz input bandwidth (1 V p-p full scale), 4 GSps maximum sampling rate, 67 dB SFDR (4 GHz/0.5 V p-p input, CLK = 1 GSps), 56 dB SFDR (4 GHz/1 V p-p input, CLK = 1 GSps), direct-coupled I/O, ultraclean output waveforms, minimal glitching, >65 dB hold mode feedthrough rejection, 1.5 mV rms hold mode output noise</td>
<td>EAR99</td>
</tr>
</tbody>
</table>
Low Noise Amplifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Key Features & Benefits</th>
<th>ECCN Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC460</td>
<td>GaAs pHEMT MMIC low noise amplifier, dc to 20 GHz</td>
<td>Noise figure: 2.5 dB @ 10 GHz, gain: 14 dB @ 10 GHz, P1dB output power: 16.5 dBm @ 10 GHz, supply voltage: 8 V @ 60 mA, 50 Ω matched input/output</td>
<td>EAR99</td>
</tr>
<tr>
<td>HMC516LC5</td>
<td>Smt phemt low noise amplifier, 9 GHz to 18 GHz</td>
<td>Noise figure: 2 dB, gain: 20 dB, OIP3: 25 dBm, single supply: 3 V @ 65 mA, 50 Ω matched input/output</td>
<td>EAR99</td>
</tr>
</tbody>
</table>

Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Key Features & Benefits</th>
<th>ECCN Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC232A</td>
<td>GaAs MMIC SPDT non-reflective switch, dc to 12 GHz</td>
<td>Isolation: 57 dB @ 3 GHz, 50 dB @ 6 GHz, input P1dB: 30 dBm, insertion loss: 1.5 dB typical @ 6 GHz, nonreflective design</td>
<td>EAR99</td>
</tr>
<tr>
<td>HMC986A</td>
<td>GaAs MMIC reflective spdt switch, 0.1 GHz to 50 GHz</td>
<td>Wideband performance: 0.1 to 50 GHz, low insertion loss: 1.9 dB at 40 GHz, high isolation: 31 dB at 40 GHz, fast switching speed: 10 ns</td>
<td>EAR99</td>
</tr>
</tbody>
</table>

Circuits From the Lab® Reference Circuits for Radar

- **AD-FMCOMMS6-EBZ** — https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms6-ebz
- **AD-FMCOMMS5-EBZ** — https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms5-ebz
- More reference circuits are available at www.analog.com/jp/circuits

Technical Articles

Design Tools

- **ADIsimRF**: RF signal chain calculator tool — https://form.analog.com/Form_Pages/RFComms/ADISimRF.aspx
- **ADIsimPLL**: PLL circuit-design and evaluation tool — https://form.analog.com/Form_Pages/RFComms/ADISimPLL.aspx

Application Notes

オンライン・サポート・コミュニティ
アナログ・デバイセズのオンライン・サポート・コミュニティで当社の技術者にご相談ください。難しい設計上の問題についてのお問合せ、FAQの参照、チャットでの交流などご利用いただけます。
ez.analog.com