

Tu2C - 1

Future Trends in Cellular Infrastructure and Radio Technology for Sustainable Networks

K. Chuang, H. Yektaii, N. Outaleb, A. Raslan

Communications & Cloud Business Unit

Analog Devices, Inc.

June 13, 2023

Outline

- Motivation
- Future Trends in Cellular Infrastructure
- Future Trends in Power Amplifier Architecture
- Future Trends in Linearization System
- Summary

Outline

- Motivation
- Future Trends in Cellular Infrastructure
- Future Trends in Power Amplifier Architecture
- Future Trends in Linearization System
- Summary

How many basestation antennas are required to build out the City of San Diego?

How many basestation antennas are required to build out the City of San Diego?

2,188 Cell Phone Towers

>700,000 Antenna Feeds

Network Complexity

- Multi-band Radio, more Massive MIMO & co-location create complex RF challenges
- Energy Consumption & Sustainability a major challenge for mobile carriers

Backhaul of

& conferences

Network Sustainability

TELECOMS INDUSTRY ENERGY USAGE

1.6%

_

580m +16

+160%

of Total Global Co2 Emissions¹ tons of Co2 Emissions in 2021² in total energy consumption 2020-2030³

WHERE IS THE ENERGY BEING CONSUMED?

Innovations in RF Signal Processing & Energy Saving Algorithms at the network level required to drive down power consumption & minimize carbon footprint

- 1. BCG report Jun 2021
- 2. IEA press release Mar 2022; total global emissions 2021 = 36.3Bn tons
- 3. ABI/Interdigital Report Nov 2020
- 4. GSMA Intelligence A blueprint for Green Networks, Oct 2022

More MIMO, Extreme MIMO

More MIMOFor enhanced spectrum efficiency

Extreme M-MIMO

Required to overcome propagation challenges, increase layer count

More Channels, More Bandwidth, Better Efficiency, Hybrid Beamforming

Trends in Efficiency

Be more Energy Efficient but also Carbon Negative

Outline

- Motivation
- Future Trends in Cellular Infrastructure
- Future Trends in Power Amplifier Architecture
- Future Trends in Linearization System
- Summary

Radio Technology

AAU

- Advanced Digital Linearization System.
- Hardware Acceleration Engine.

AAU

AAU

MultiBand

Radio

Power Amplifier Architecture

Asymmetrical Inverted Doherty

Inherent bandwidth limitation.

Conventional LMBA

Broadband but lower efficiency ~40% at PBO.

Pseudo-Doherty LMBA

Behaves like a Doherty and offers much higher bandwidth.

Linearity degrades.

System Design Consideration

Efficiency to Peak at Larger Power Back Off

Asymmetrical Inverted Doherty

- Today's Workhorse for cellular transmitters.
- Linearizable ~10% fractional bandwidth.

Pseudo-Doherty LMBA

- Twice the bandwidth compared to Doherty.
- Delay between the paths is optimum for a limited range of RF frequencies.

SISO Pseudo-Doherty LMBA

PA Configuration	Input Offset Line Length [cm]	Frac. BW [%]	DE [%]	
SISO PD-LMBA	11.2	25	~55%	
SISO PD-LMBA	14.8	40	~55%	
MISO PD-LMBA	N/A	>50	~60%	

MISO Pseudo-Doherty LMBA

- The Path Forward for Sustainability.
- Adoption of splitting the main and auxiliary paths to compensate for phase variation.

MISO Pseudo-Doherty LMBA

Linearity Requirement

Direct-Form Memory Polynomials

- Most primitive and yet effective form of implementation.
- Phase-invariant non-linear transformation denoted by $NL: \mathbb{C} \to \mathbb{R}$.

$$v[t] = \sum_{k=1}^{K} \sum_{m=0}^{M} \alpha_{k,m} \cdot u[t + \tau_m] \cdot |u[t + \tau_m]|^{k-1},$$

- Hammerstein model combining Taylor series non-linear functions and linear filters, targeting diagonal terms.
- Often primary degrees $K \in [1, 2, 3, 4, 5]$ are sufficient to achieve good performance for low-power wireless transmitters.

Direct Synthesis of Volterra

- A more accurate generalization of Volterra series for medium to high power wireless transmitters.
- Example choice of NL operation.
 - $-NL: \mathbb{C} \to \mathbb{R}$, followed by $H: \mathbb{R} \to \mathbb{C}$ implementing the delay operation and applies non-linear transformation using LUT.
 - LUT-based generalized memory polynomial model.

$$v[t] = \sum_{m=0}^{M} u[t + \tau_m] \cdot \varphi(|u[t + \tau_m]|, K, \alpha_{m,k}) + \sum_{m=0}^{M} \sum_{q=0}^{Q} u[t + \tau_m] \cdot \varphi(|u[t + \tau_q]|, K, \alpha_{m,q,k}),$$

- Another example of NL operation.
 - NL: $\mathbb{C} \to \mathbb{C}$ producing high-order frequency-dependent non-linearities.
 - Dynamic deviation reduction terms, $u^2D_n\bar{u}$ and $\bar{u}D_nu^2$.

$$v[t] = \sum_{m=0}^{M} \sum_{q=0}^{Q} u^{2}[t] \cdot \bar{u}[t+\tau_{m}] \cdot \varphi(\left|u[t+\tau_{q}]\right|, K, \alpha_{m,q,k}) + \sum_{m=0}^{M} \sum_{q=0}^{Q} \bar{u}[t] \cdot u^{2}[t+\tau_{m}] \cdot \varphi(\left|u[t+\tau_{q}]\right|, K, \alpha_{m,q,k}).$$

Linear System of Identification

F: RF/Analog impairments

How do we approximate function F?

- $F \longrightarrow F(u)$
- Linear regression model as a weighted sum of $J \cdot I$ features $F(u) = \sum_{j=1}^{J} \sum_{i=1}^{I} \alpha_{j,i} \beta_{j,i}(u)$
- $-\alpha$ is the coefficient, and β denotes the basis function known as variable.
- Model coefficients are solved by minimizing

$$\sum_{n=1}^{N} \left| v_n - \sum_{k=1}^{K} \alpha_k \beta_k(u_n) \right|^2 + \lambda L(\alpha) \text{ or } \operatorname{argmin}_{\alpha} \left(\| \boldsymbol{v} - \boldsymbol{\beta} \boldsymbol{\alpha} \|_2^2 + \lambda L(\alpha) \right),$$

- Solution to be derived as
 - Closed form solution to quadratic cost function

$$\widetilde{\boldsymbol{\alpha}} = (\boldsymbol{\beta}^H \boldsymbol{\beta} + \lambda I)^{-1} \boldsymbol{\beta}^H \boldsymbol{v}$$

Iterative method of gradient descent update

$$\alpha_{i+1} = \alpha_i + \boldsymbol{\beta}^H e$$

Direct form polynomials, orthogonal polynomials, PWL functions, arbitrary bases.

All Supported by Today's Software Defined Radio!

Multi-Stage Network

- Each cascaded model comprises different linear regression models or Volterrabased models.
- Solve the non-linear problem using
 - Gradient descent
 - Back propagation

F: RF/Analog impairments

$$\operatorname{argmin}_{\alpha_k} \Big(F_k \Big(\alpha_k, \dots F_1 \Big(\alpha_1, \beta_1(u) \Big) \Big) + \lambda L(\alpha_k) \Big),$$

Non-Linear System of Identification

Near Optimal Behavioral Modeling versus Iterative Learning Control

Linearized Output Spectrum

Pout = 42dBm rms

Psat = 50dBm

PAPR = Psat - Pout = 8dB

ACLR = -53dBc vs -47dBc (prior art)

OBUE = -31.3dBm/MHz

Comparison Table

Including both Academia and Industry

	This Work	[1]	[2]	[3]	[4]	[5]	[6]	
Year of Publication	2023	2022	2022	2022	2023	2020	2020	
RF Center Frequency (MHz)	3500	3840	3500	2140	2300	3200	3300	
Signal Instantaneous Bandwidth (MHz)	200	280	200	100	100	120	80	
Signal PAPR (dB)	8	8		8.5	8.5	7	10	
Maximum Output Power (dBm)	50	47	50.2	45.3	40.5	45	43.7	
Average Output Power, Pout (dBm)	42	38.8	41.5	36.2	31.8	37.3	33.0	
Linearized Output PBO (dB)	8	8.2	8.7	9.1	8.7	7.7	10.7	
Output PBO – Signal PAPR (dB)	0	0.2		0.6	0.2	0.7	0.7	
Linearized Drain Efficiency (%)	57	45	55.1	54.5	34.2	53.3	48.2	
Worst-Case ACLR (dBc)	-53.0	-50.5	-51.0	-45.7	-48.2	-50.4	-45.2	

J. Pang et al., "Analysis and design of highly efficient wideband RF-input sequential load modulated balanced power amplifier," IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1741-1753, May 2020.

^{1.} K. Chuang et al., "Radio challenges, architectures, and design considerations for wireless infrastructure: creating the core technologies that connect people around the world," *IEEE Microw. Mag.*, vol. 23, no. 12, pp. 42-59, Dec. 2022.

2. MaxLinear, "MaxLinear teams with Qorvo to enable high-efficiency power amplifiers for massive MIMO radio solution," 2022. Accessed: May 1, 2023. [Online]. Available: https://investors.maxlinear.com/press-releases/detail/469/.

H. Zhou et al., "A generic theory for design of efficient three-stage Doherty power amplifiers," *IEEE Trans. Microw. Theory Techn.*, vol. 70, no. 2, pp. 1242-1253, Feb. 2022.

C. Chu et al., "High-efficiency class-iF-1 power amplifier with enhanced linearity," *IEEE Trans. Microw. Theory Techn.*, vol. 71, no. 5, pp. 1977-1989, May 2023.

^{5.} M. Li et al., "Bandwidth enhancement of Doherty power amplifier using modified load modulation network," IEEE Trans. Circuits Syst. 1, Reg. Papers, vol. 67, no. 6, pp. 1824-1834, Jun. 2020.

Linearized Output Spectrum

- A half dB power back off.
- Near optimal behavioral modeling of power amplifier at <u>55%</u> efficiency.

Outline

- Motivation
- Future Trends in Cellular Infrastructure
- Future Trends in Power Amplifier Architecture
- Future Trends in Linearization System
- Summary

Summary

- The next Wave of radio deployment is in Centimeter Waves, expecting hundreds of antenna feeds per Radio Unit.
- Continued Innovation is required in
 - Integrated Radio Transceiver SoC,
 - Advanced Linearization Systems,
 - Broadband PA Architectures.

 Require Network Energy Saving features in concert with mobile data traffic demand.

The Power to Deliver

Sustainability

Wireless networks must be carbon negative to thrive

Radio Technology

Enables energy-efficient air interface by minimizing power consumption of network.

Intelligence Everywhere

The catalyst that delivers the value of the network, more autonomy in every node

Co-Innovation & Collaboration

Combination of technologies required. Win-win outcomes.

