Chapter II
RF/IF Components and Specifications for Receivers
RF/IF Components and Specifications for Receivers

- Fixed Gain and Variable Gain Amplifiers
- IQ Demodulators
- Analog-to-Digital Converters
Fixed Gain and Variable Gain Amplifiers
Low Noise Amplifiers (LNA) amplify very small signals and add very little noise to the signal chain. Gain = 12-18 dB typically

Noise Figure = 1-3 dB typically
- A lower noise figure reduces overall system gain and power

LNA must sometimes amplify a weak signal in the presence of a large blocker. So LNA must also have high IP3.

Some LNAs have a bypass circuit which is engaged when the input signal is large

LNAs are typically internally matched and specified for a narrow band of operation

LNAs are often integrated with a receive mixer in portable applications
AD8353 and AD8354 RF Gain Blocks
Silicon Bipolar 50 ohm input & output Gain Blocks

KEY SPECIFICATIONS

- Frequency Range: 1MHz to 2.7GHz
- P1dB: 9dBm / 5dBm
- OIP3: 23dBm / 19dBm
- NF: 5dB / 4dB
- Isupply: 41mA / 23mA
- Package: 3mm x 2mm 8-CSP

FEATURES

- Fully characterized over frequency range
- Fully characterized over temp -40 to +85 °C
- Output power stable over temperature <1dB
- Excellent gain stability over temp: < 1dB
AD8352 – Lowest Distortion Differential Amplifier

Highest Performance Differential ADC Driver on the Market

KEY SPECIFICATIONS

- Wide 3dB Bandwidth: 2GHz
- Low Distortion
 - 10 MHz, -86dBc HD2 -82dBc HD3
 - 70 MHz, -84dBc HD2 -82dBc HD3
 - 190MHz, -81dBc HD2 -87dBc HD3
- High Linearity: Output IP3 +41dBm @ 150MHz
- Low Input Noise: 2.6nV/√Hz (Gain 10dB)

FEATURES

- Single Resistor sets Gain 3dB to 21dB
- Single Resistor & Capacitor distortion adjustment
- Small 3x3 mm 16-lead LFCSP
AD8352 – Superior Distortion specs

Lower Distortion @ Higher Frequencies

The lowest, the best

Closest competition
Receive VGAs
RF Components – Variable Gain Amplifiers

- In Receivers, VGAs adjust gain as received signal strength varies and present a constant signal level to the ADC.
- In Transmitters, VGAs adjust for gain variations in the signal chain and set the output power to the desired level.
- Analog vs. Digital Control, Serial Control vs. Parallel Control – choice often depends on control interface that is available in the system.
- The AGC detector may be in DSP (after an ADC) or hardware or both.
 - a hardware AGC detector has a much faster response time.
 - A receiver with DSP-based AGC can be “blinded” by a strong signal while the system is responding.
AD8368 – RF/IF 800MHz Analog VGA

- **Features**
 - Single ended 50Ω input / output
 - Analog Variable Gain Range: -11 to 22.5dB
 - Linear-in-dB Scaling: ~35dB/V
 - Integrated RMS AGC Detector
 - Single +5V supply
 - Small 4 x 4 mm 24-lead LFCSP

- **Specifications**
 - Wide 3dB Bandwidth: 800MHz
 - High Linearity Output IP3: +34dBm
 - High Output Compression P1dB: +16dBm
 - Low Noise Figure: 8dB max gain
AD8370 Fine Resolution DGA

KEY SPECIFICATIONS
- Bandwidth 750MHz
- Differential Input and Output Impedances:
 - $Z_{in} = 200\ \Omega$, $Z_{out} = 100\ \Omega$
- $P_{1dB} 17\text{dBm (70Mhz)}$
- $OIP3 35\text{ dBm (70MHz)}$ (1K load)
- $OIP3 31\text{dBm (70 MHz)}$ (100 ohm load)
- Noise Figure 7dB (max gain)
- Package 16-TSSOP

FEATURES
- Serial 8-bit digital interface
- Wide gain control range
- Linear-in-dB Operation using Look Up Table
- Power-down feature
AD8370 Fine Resolution DGA: Gain Range

- Two Operating Modes, High Gain and Low Gain, set by MSB Code
- Fine step size at the higher gain settings allows precise signal leveling
- Step size less than 1dB over -11 to 34dB gain range
Gain Control can be made Linear-in-dB using simple look up table
Receive Amplifiers – Fixed Gain and Variable Gain

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Control Type</th>
<th>Frequency Range (MHz)</th>
<th>Gain (dB)</th>
<th>Output IP3 (dBm)</th>
<th>Noise Figure (dB)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD8367</td>
<td>Analog Variable</td>
<td>dc to 500</td>
<td>-2.5 to +42.5</td>
<td>27.5 (70MHz)</td>
<td>6.2</td>
<td>Single ended input/output</td>
</tr>
<tr>
<td>AD8368</td>
<td>Analog Variable</td>
<td>LF to 800</td>
<td>-11 to +22</td>
<td>34</td>
<td>8</td>
<td>Single ended input/output</td>
</tr>
<tr>
<td>AD8369</td>
<td>Digital Variable</td>
<td>LF to 600</td>
<td>-5 to +40</td>
<td>19.5 (70MHz)</td>
<td>7</td>
<td>Differential input/output</td>
</tr>
<tr>
<td>AD8370</td>
<td>Digital Variable</td>
<td>LF to 700</td>
<td>-11 to +17 +6 to +34</td>
<td>31 (70MHz)</td>
<td>7.4</td>
<td>Differential input/output</td>
</tr>
<tr>
<td>AD8350</td>
<td>Fixed Gain</td>
<td>LF-700</td>
<td>20</td>
<td>28</td>
<td>6.8</td>
<td>Differential ADC Driver</td>
</tr>
<tr>
<td>AD8351</td>
<td>Fixed Gain</td>
<td>LF-1000</td>
<td>26</td>
<td>33</td>
<td>9.5</td>
<td>Differential ADC Driver</td>
</tr>
<tr>
<td>AD8352</td>
<td>Fixed Gain</td>
<td>LF - 2000</td>
<td>24</td>
<td>41</td>
<td>15.5</td>
<td>Differential ADC Driver</td>
</tr>
<tr>
<td>AD8353</td>
<td>Fixed Gain</td>
<td>1 to 2700</td>
<td>20</td>
<td>23.6</td>
<td>5.3</td>
<td>Tx or Rx Gain Block</td>
</tr>
<tr>
<td>AD8354</td>
<td>Fixed Gain</td>
<td>1 to 2700</td>
<td>20</td>
<td>19</td>
<td>4.2</td>
<td>Tx or Rx Gain Block</td>
</tr>
</tbody>
</table>
IQ Demodulators
Reverse Function to IQ Modulator – IQ demodulation, extracts digital bits or symbols from a modulated carrier

Local Oscillator (from PLL) at the same frequency as the center frequency of the carrier is split into “Quadrature” components of equal amplitude but 90 degrees out of phase

Modulated signal is split and multiplied with Quadrature LO components (demodulation) to yield original IQ data/symbols

For QPSK, digital data can be extracted using I and Q comparators

For QAM, an ADC must be used to extract digital data

Some IQ Demodulators have variable gain amplifiers at input and/or output
RF Components – IQ Demodulators

- Critical IQ Demodulator Specifications
 - Noise Figure – determines achievable sensitivity of receiver
 - Input IP3 – determines maximum acceptable input signal and/or blocker
 - I and Q output bandwidth – determines maximum receivable bandwidth and symbol rate
 - LO to RF leakage – generates output dc offsets which add to I and Q outputs
 - Required LO Drive level – Lower LO input power results in less leakage
 - IIP3 – low IIP3 can cause blockers to intermodulate and produce distortion at the carrier frequency, reducing receiver sensitivity
 - IP2 – low IP2 will cause RF Input to intermodulate with itself and produce unwanted dc offsets at output
LO to RF Leakage Causes Self-Mixing and DC Offset Voltages at I and Q Outputs

- Big Problem in Direct Conversion Receivers
Solution – Monitor and Null out DC Offsets at Baseband
AD8348 I/Q Demodulator

KEY SPECIFICATIONS
- Frequency Range 50MHz to 1000MHz
- Accuracy
 - Phase accuracy 0.5°
 - Amplitude balance 0.25 dB
- Demodulation bandwidth 75 MHz
- IIP3 +28 dBm @ min gain
- IIP3 –8 dBm @ max gain
- Amplitude balance 0.25 dB
- Noise figure 11 dB @ max gain
- Package 28-lead TSSOP

FEATURES
- Integrated I/Q demodulator with IF VGA amplifier
- Linear-in-dB AGC range 44 dB
- Power-Down Mode
- Integrated DC offset-nulling
RF Components – ADCs

- Baseband ADCs (usually sold as duals) sample QAM outputs from an IQ demodulator.
 - Higher order modulation schemes → higher resolution ADCs
 - Higher ADC resolution → lower noise → increased sensitivity
 - Higher symbol rates → higher ADC sampling rates

- IF Sampling ADCs capture signal at Intermediate Frequency and mix it down into the first Nyquist band.
 - Require high input (analog) bandwidth
 - Typically more expensive than baseband ADCs
 - Eliminate down conversion analog circuitry (PLL, Mixer)