Input-Output Operations

Chapter 3
INTRODUCTION

To perform any useful task, the microcomputer must interact with
the outside world. The input-output (I/O) devices or peripherals
provide the necessary data communications link between the
microprocessor and its environment. Typically, information is
accepted from the input devices, it is processed and the results of
the data processing are then sent to one or more output devices. In
a microcomputer system, the input-output operations are particu-
larly important since, in the majority of applications, the micro-
processor spends the greatest part of its time interacting with the
I/O devices.

The operation of the I/O devices is usually independent of that of
the microprocessor, and a procedure must be adopted to syn-
chronise program execution with their operation during data
transmission. There are three basic types of input-output according
to the method of controlling and synchronising data transfer:

(i) Program-controlled I/O
(ii)) Interrupt-controlled I/O
(iii) Direct-memory-access I/O.

The type of input-output used in a particular application will
depend on three main factors:
(i) The rate at which data must be transmitted.

(ii)) The maximum time delay which can be accepted between
the I/O device signalling its readiness to transmit or
receive data and the data transfer actually taking place.

50 Microprocessor Systems Handbook

(iii)) The feasibility of interleaving input-output and other
microprocessor operations.

In this chapter, input-output operations using each of the three
methods of controlling data transfer are described. The software
techniques used to synchronise data transmission with program
execution are explained, and the characteristics of each type of
input-output are discussed. The hardware interconnection of the
I/O devices and the microprocessor is described in the next
chapter.

PROGRAM-CONTROLLED I/O

As shown in Figure 3-1, two basic types of information are trans-
mitted between the microprocessor and the I/O device. These are
message data and control data. The control data is used to syn-
chronise the operation of the device with the execution of the
program before transmission of the message data takes place. The
input control data is called the device status word. The output
control data is called the device command word. With program-
controlled I/O, the input-output instructions are used to initiate
and control the transfer of all types of data.

MESSAGE DATA
INPUT DATA
OUTPYT DATA

ilo 0 MICROPROCESSOR
DEVICE CONTROL DATA
WORD

STATUS WORD

Figure 3-1. Information flow between IO device
and microprocessor

The status word is read into the microprocessor to determine the
current state of the device. Each bit of the status word will indicate
a particular device condition such as message data ready for trans-
mission, device busy, device unavailable, or transmission error.

The command word is sent out from the microprocessor to
control the operation of the device. Each bit of the command
word has a particular function such as stop motor, increment
feed, or change transmission rate.

Input-Output 51

The input-output instructions can be organised in one of the three
ways:

(i) A unique instruction is provided for each kind of I/O data
transfer using a single device address to define each I/O device.
Typically, the four instructions are:

1) Read data (input message data)

2) Write data (output message data)

3) Send command (output command word)
4) Accept status (input status word)

(ii) Two I/O instructions, one for input and one for output,
are provided for both message and control data transfer. Two
device addresses are used to differentiate between transmission of
message or control data for a particular I/O device. Typically, the
two instructions are:

1) Read data (input either message data or status word)
2) Write data (output either message data or command word)

(iii) No separate I/O instructions are provided. The memory
data transfer instructions are also used to communicate with the
I/O devices by assigning a block of unused memory addresses as
the device addresses. The approach is called memory-mapped I/O
and is common in microprocessor systems which have a unified
bus structure (see Chapter 4). Although the available memory
address area is made smaller, this approach can reduce both
program storage requirements and program execution times. The
equivalent I/O instructions are typically:

1) Load data (input message data or status word)
2) Store data (output message data or command word)

In most microprocessors both message and control data are sent
or received via the accumulator or some other working register.
Some systems have special-purpose registers to deal with the
control data or use the main processor status register for this
purpose. Device status testing is simplified in the latter case since
the conditional branch instructions can check directly the condi-
tion of the individual bits of the status register.

52 Microprocessor Systems Handbook

The control data is used to synchronise data transfer under
program control in the following way:

(i) A command word is written out to the I/O device to
request transfer of message data.

(ii) The status word is read in from the I/O device.

(iii) The appropriate status bits are checked to test if message
data transfer can take place.

(iv) If the device is not ready, steps (ii) and (iii) are repeated
until the I/O device is ready for data transfer.

(v) The message data is read (or written) from (or to) the I/O
device. This operation will reset the status of the I/O
device.

Step (i) is omitted in applications where the decision to initiate
data transfer originates from the I/O device itself. In this case, the
device indicates its desire for data transfer by setting the approp-
riate status bits.
+ MAINLINE
PROGRAM

* MAINLINE
PROGRAM
CONTINUVED
Figure 3-2a. Program controlled I/O (status loop)

In a simple program, the status check (steps (ii) and (iii)) is repeated
continuously until the device is ready as shown in Figure 3-2a. The
status check loop effectively halts the program execution and may
cause an unacceptable waste of useful processing time. More
sophisticated schemes, as shown in Figure 3-2b, where the status

- 83

Figure 3-2b. Program controlled I/O (interleaved
operation)

check operation is interleaved with other microprocessor opera-
tions, can use the processor time more efficiently. The problem is
particularly significant in a microprocessor system which commu-
nicates with several I/O devices, since periodic status checks must
be made on each of the devices. This device polling operation may
also introduce a considerable time delay between a device indicat-
ing readiness for data transfer, and the program sensing that
readiness and the data transfer actually taking place. In some
microprocessors, the time spent in checking device status is

MAIN-LINE PROGRAM 1/O SERVICE ROUTINE

Figure 3-2c. Program controlled I/0 (test line)

54 Microprocessor Systems Handbook

reduced by using a single test line. This line is common to all
devices and may be used for signalling when any device requires
attention. As shown in Figure 3-2c, the microprocessor can
periodically and rapidly check the status of this one line and thus
avoid polling the individual devices until one of the devices has
signalled that attention is required. The time delay before servicing
a device may still be considerable.

EXAMPLE OF PROGRAM-CONTROLLED 1/0

A teletype is used as the output device for a microprocessor-based
instrument. The results of data processing are first stored in a
memory buffer and then written out to the teleprinter under

t DATA PROCESSING

LOAD DATA INTO CHARACTER
BUFFER

ERROR N
EXIT CHECK DEVICE AVAILABLE

SET WRITE MODE

CHECK DEVICE BUSY

OUTPUT CHARACTER

CHECK FOR TRANSMISSION
ERROR

CHECK BUFFER EMPTY

CONTINUE

Figure 3-3. Program controlled output to teleprinter

Input-Output 55

program-control. A simplified flow-chart of the section of the
program dealing with data output is given in Figure 3-3. The
device status word and device command word for the teletype are
given below:

DEVICE STATUS WORD

L |-device busy

transmission error
device unavailable (power off)

DEVICE COMMAND WORD

[Lx_'ead mode
write mode

INTERRUPT-CONTROLLED 1/O

The major disadvantage of program-controlled I/O arises from the
necessity for periodically leaving the main data processing section
of the program to check whether any device is ready for data
transfer. The checking procedure, which must occur whether or
not any device is ready, can waste valuable processing time. The
problem is overcome in many microprocessors by introducing an
interrupt system which allows the 1/O devices to break into (or
interrupt) -the main program execution when, and only when, they
are ready for data transfer.

In the simplest type of interrupt system, only one I/O device is
connected to a single interrupt request line. The occurrence of a
signal on this line causes the microprocessor to automatically
initiate the following minimal sequence of operations:

(i) Complete execution of the current program instruction.
(ii) Store the current contents of the program counter.

(iii) Load the program counter with a predefined program
memory address.

(iv) Inhibit interrupts and resume normal program execution
according to the new contents of the program counter.

56 Microprocessor Systems Handbook

Thus recognition of an interrupt request signal causes a jump from
the main-line program to a predetermined location in program
memory (the interrupt trap address). In a simple system, with only
one 1/O device capable of generating interrupts, the device service
program which controls the actual data transfer is loaded from the
interrupt trap address. As shown in Figure 34, after completing
the device service program, the previously stored contents of the
program counter provide the return address to link back and
continue execution of the main-line program. Interrupts are
automatically inhibited before the start of execution of the device
service program to prevent multiple interruption by the same
interrupt request signal. In some microprocessors, the instruction
causing the jump back to the main-line program also re-enables
interrupts.

MAIN-LINE PROGRAM INTERRUPT SERVIGE PROGRAM

JUMP TO |
INTERRUPT |
ITRAP I

RETURN
ADDRESS

Figure 3-4. Interrupt controlled I/O

It is noted that the time delay before servicing a single I/O device
under interrupt control can be longer than that occurring under
program control, since the interrupt recognition, the hardware
enforced jump and the store sequence require several machine
cycles for completion.

Interrupts are inhibited by setting an interrupt mask bit within the

Input-Output 57

microprocessor. In most systems the mask bit is part of the main
processor status register and can also be set or reset by software.
The mask bit is frequently used to prevent the interruption of
certain sections of program which must be executed without a
break (e.g., a section of data processing which must be completed
before the next input-output operation can take place).

Many microprocessors use a slightly different interrupt system
which employs a form of indirect addressing to link with the
device service program. The interrupt trap address contains the
address of the first instruction of the service program rather than

INTERRUPT SERVICE PROGRAM

70 MAN-Line
PROGRAM

Figure 3-5. Interrupt controlled input from a
keyboard ’

~

58 Microprocessor Systems Handbook

the instruction itself. The interrupt hardware automatically loads
this address into the program counter before resuming normal
program execution as described before. Indirect addressing allows
the service program to be located at any arbitrary position in
program memory. If the interrupt trap address refers to a location
in read/write memory, the service program entry point can be
changed during execution of the main-line program and the
response of the microprocessor to an interrupt request varied
accordingly.

EXAMPLE OF INTERRUPT-CONTROLLED I/O

An interactive computer system is based on a visual-display-
terminal linked to a microcomputer. The main-line program
communicates with the operator by writing out, under program
control, information onto the display screen. At any time the
operator can modify the program flow and change the information
presented on the screen by entering control characters at the
keyboard. An interrupt request is generated whenever a key is
depressed. Data input takes place under interrupt-control. A
simplified flow-chart of the interrupt driven section of the pro-
gram is shown in Figure 3-5. The device status word and device
command word for the keyboard are given below:

DEVICE STATUS WORD

L I-interrupt status bit
haracter ready

DEVICE COMMAND WORD

l-enable interrupt logic

The similarity between the interrupt service sequence and the
execution of a jump to subroutine instruction should be noted.
Both cause the contents of the program counter to be saved and
then restored to allow the return to the main-line program.

When the service program uses or modifies the internal working

Input-Output 59

registers of the microprocessor (accumulators, index registers,
status register, etc.), the main-line program execution could be
upset since, unless the service program makes provision to save
and restore the contents of these registers, they would be altered
following the interrupt service. More sophisticated interrupt
systems use'the stack to automatically save the contents of the
important internal registers as well as the program counter in
response to an interrupt. Before the microprocessor resumes
main-line program execution, the contents of the registers are
automatically restored to their original values by the return jump
instruction. The more registers automatically stored in this way,
the longer will be the interrupt response time, i.e., the time
between initial recognition of an interrupt request and the execu-
tion of the first instruction in the service program.

A more rapid interrupt response time is provided by micro-
processors which have an architecture specially designed to
facilitate interrupt operation. Some have two sets of internal
registers. The main-line program is executed using one set whilst
the service program uses the other set so as to prevent inter-
ference. Other microprocessors use locations in data memory to
replace some of the usual internal registers. A single internal
register, the work space pointer register, defines the memory
locations to be used. The interrupt hardware stores and modifies
the contents of the pointer register before executing the service
program and thus defines a different workspace in data memory to
that used by the main-line program. The pointer register is
restored to its original value following completion of the service
program.

REAL-TIME OPERATION

In many applications, the input-output is required to take place at
a particular instant in time or periodically with a given time
interval. In these cases, the operation of the I/O device and the
execution of the program controlling data transfer must be syn-
chronised in real-time.

The synchronisation is achieved by connecting an external pulse
generator of known and constant frequency to the interrupt

60 Microprocessor Systems Handbook

request line. The program is interrupted periodically with a known
time between interrupts. The input-output operations can be
synchronised to “real-time” by counting the interrupt requests
and controlling program flow accordingly. Used in this way, the
external pulse generator, which usually consists of a high frequency
oscillator (typically about 1MHz) feeding a chain of frequency
dividers, is called a real-time clock. Programmable real-time clock
chips, which also allow software control of the clock interrupt
rate, are provided in some microprocessor systems.

INTERRUPT SERVICE PROGRAM

MAIN-UNE
~ CHECK RTC
ERROR INTERRUPT STATUS
Ehy
v
RESET mrmm* INCREMENT
COUNTER. + INTERRUPT
ENABLE RTC *
INTERRUPT
START RTC ‘ N CHECK IF COUNT
EQUALS 100
Y RESET INTERRUPT
— COUNT
ADC SERVICE ROUTINE

SET TO CHANNEL 2

Y START CONVERSION

\ CHECK IF SET

TO CHANNEL 4

SET TO CHANNEL 4

|y
__:i aissir INTERRUPT

40AD RETURN
ADDRESS

JUMP BACK
TO MAIN LINE
[EXIT]
Figure 3-6. Program synchronisation using a real-
time clock

Input-Output 61
EXAMPLE OF 1/0O USING A REAL-TIME CLOCK

An on-line data acquisition system is based on a microprocessor-
controlled multichannel analog-to-digital converter. A S50Hz
real-time clock is used to control the sampling rate of the system.
In one application, the analog signals on channel 2 and channel 4
are sampled, digitized and stored in memory at two-second time
intervals. The simplified flow-charts shown in Figure 3-6 illustrate
the program flow during data collection. The device status words
and device command words for the analog-to-digital converter
(ADC) and real-time clock (RTC) are given below:

ADC DEVICE STATUS WORD

conversion complete

DEVICE COMMAND WORD

\-*d

channel number
start conversion

RTC DEVICE STATUS WORD

interrupt status bit

DEVICE COMMAND WORD

enable interrupt logic
start clock

INTERRUPT SERVICING IN A MULTIPLE INTERRUPT
SYSTEM

The simple interrupt servicing procedure described above is only
appropriate in systems which have a single I/O device generating
interrupts. Many microprocessor systems have more than one
source and more than one type of interrupt. Three main types of
interrupt may be defined as:

62 Microprocessor Systems Handbook

(@) External interrupts generated from one or more I/O
devices.

(ii) Internal interrupts generated by the microprocessor
system itself to indicate the occurrence of particular
conditions or errors (e.g., power failure, system mal-
function, transmission error).

(iii) Simulated interrupts generated by software to assist in
program debugging or interrupt service testing.

The different sources of interrupt will have different servicing
requirements. Some will require immediate attention; others will
accept a delay whilst the task in hand is completed. The interrupt
service procedure must therefore:

(i) Differentiate between the various interrupt sources.

(ii) Determine the order in which interrupts are serviced
should more than one source of interrupt require attention
at the same time.

(iii) Save and restore the contents of the registers of the
microprocessor to assure program continuity during the
servicing of multiple interrupts.

Recognising the source of interrupt. Some microprocessors have

several interrupt request lines, each with its own unique interrupt
trap address. The recognition problem may be solved by assigning
only one source of interrupt to each line. This approach is
commonly used to differentiate between internal, external and
simulated interrupts.

In the majority of microprocessors several I/O devices must use
the same interrupt request line. In these systems, two methods of
recognising the source of interrupt are commonly used:

(i) Device polling. The interrupt causes a jump to the inter-
rupt service program via the interrupt trap address as described
earlier. The initial section of the service program checks the status
word of each I/O device in turn to determine which has caused the
interrupt. Figure 3-7 illustrates the program flow of a typical
service program for three I/O devices. The interrupt status bit,
which indicates whether an I/O device has generated an interrupt

Input-Output 63

request, is checked for each device in turn. The device status word

is read into the status register of the microprocessor and a jump is
made to the associated device service program if the bit is set.
Device recognition by device polling is performed in software.

INTERRUPT SERVICE PROGRAM

INTERRUPT

INTERRUPT STATUS
FOR /O DEVICE 1

CHECK

INTERRUPT STATUS
FOR 1/O DEVICE 2 d

DEVICE1 DEVICE 2 DEVICE3
SERVICE SERVICE SERVICE

Y
{ etc.
'

Figure 3-7. Device polling

(ii) 'Vectored interrupts. In the vectored interrupt micro-
processor system, the interrupt control logic within the processor
recognises the interrupting I/O device. Each I/O device is assigned
a unique device interrupt address (not to be confused with the
device address defined previously). On recognising an interrupt
request, the interrupt control logic requires the interrupting I/O
device to transmit its device interrupt address to the micro-
processor. This address is then used to generate a unique interrupt
trap address for the device. The trap addresses are usually located
sequentially in program memory and form the interrupt vector.

64 Microprocessor Systems Handbook

Each location in the vector contains the start address of a device
service program. The contents of the interrupt vector defined by
the particular interrupt trap address are loaded into the program
counter and program control is automatically transferred to the
correct device service program. The process is simplified in some
microprocessors by using the interrupt trap addresses as the device
interrupt addresses.

In some systems, instead of transmitting an address, the I/O device
is required to transmit a single byte instruction to the micro-
processor after the interrupt request has been acknowledged. The
interrupt control logic automatically loads the instruction code
into the instruction register and normal microprocessor operation
resumes by executing this instruction. Interrupt vectoring is
achieved by using a special-purpose single byte jump instruction
which derives the jump address from a part of the instruction code
itself. Using the device interrupt address to specify this bit field,
a unique jump address is defined for each I/O device. Device
recognition by interrupt vectoring is performed in hardware.

Interrupt priority schemes. With several sources of interrupt there
is always the possibility of one or more interrupt requests occurr-
ing during the servicing of an earlier interrupt request. In the
simpler interrupt systems, the interrupt mask bit is automatically
set when the first request is recognised. Subsequent interrupt
requests join a queue. They wait until the service of the first
interrupt has been completed before they can in turn be recog-
nised and serviced. The order in which the queued interrupts are
recognised is a critical factor in determining the time delay before
service. The order or priority is dictated either by software or by
hardware.

() Software priority. After recognising an interrupt request,
the service program polls the I/O devices in an order which deter-
mines the interrupt priority of each device. Thus the highest
priority devices, which are polled first, are serviced first. Figure
3-8 illustrates the program flow during interrupt servicing with
priority determined by software.

(ii)) Hardware priority. The interrupt control logic of the
microprocessor sends out an external signal to control the interrupt

Input-Output 65

INTERRUPT SERVICE PROGRAM

INTERRUPT ENTRY

SERVICE CHECK INTERRUPT STATUS BIT
DEVICE OF HIGHTEST PRIORITY /O DEVICE
SERVICE CHECK INTERRUPT STATUS BIT
DEVICE OF NEXT HIGHEST PRIORITY 1/O DEVICE
service _ Y CHECK INTERRUPT STATUS BIT
DEVICE OF LOWEST PRIORITY VO DEVICE

Figure 3-8. Software interrupt priority scheme

request logic in each of the I/O devices. The control signal, which
always reflects the state of the interrupt mask bit, passes through
each device in turn as shown in Figure 3-9 (the daisy-chain struc-
ture is discussed in Chapter 4). If the mask is set, the signal will
prevent all devices from generating interrupt requests. If the mask
is reset and the signal arrives at a device which has no interrupt
request pending, the signal is simply passed on to the next device.
When. the signal arrives at a device which is waiting for interrupt
service, the interrupt logic in the device prevents the signal from
passing on to the next device and generates an interrupt request
itself. The position of a device along the control line will determine
its interrupt priority. Thus, when more than one device awaits
interrupt service, the device which receives the control signal first
will be serviced first. Figure 3-10 illustrates the program flow
during interrupt service.

66 Microprocessor Systems Handbook

/O DEVICE 1
EXTERNAL CONTROL SIGNAL o
l - INTERRUPT
. C'?‘;‘J"Rot
INTERRUPT [~} 3N\ 2Py c
CengIéOL —1___/ RequesT une
MICROPROCESSOR

1/0 | DEVICE 2

1/O] DEVICE 3

INTERRUPT
LOGIC

\

Figure 3-9. Hardware interrupt priority scheme

MAIN LINE PROGRAM INTERRUPT SERVICE PROGRAM
-’ et &
.// 'r'——T
1 //.- sl
ATt e
- oot -
- e 4 '_"
et e DEVICE 3 —>
,L-’, et et INTERRUPT : '
DEVICE 177 ...*" DEVICE 1 ICE 2
AL DEVIC DEVICE 3
REQUEST ~ -
DEVICE 2
e \\ INTERRUPT
R ST REQUEST
RS S ey
Rl SRR S
! S

Figure 3-10. Program flow during hardware priority
interrupt servicing

Both of these simple interrupt priority schemes are slow to
respond to a high priority interrupt if it occurs during the servicing
of a low priority interrupt.

More sophisticated schemes for software control of interrupt
priority are used in microprocessors which have separate interrupt

Input-Output 67

mask bits for each of several interrupt request lines or for each of
the interrupting [/O devices. In the latter case, the mask bits aré
often included in the interrupt logic of the I/O device itself. By
setting and resetting the individual mask bits under program
control, a number of schemes are possible in, which interrupt
priorities are changed during program execution.

Many microprocessors have two interrupt request lines. One line
has a conventional software controlled mask bit whilst the other is
permanently enabled. This non-maskable interrupt request line has
the highest interrupt priority and is used in applications which
require immediate service at all times under all circumstances. An
example of this would be the orderly shut-down of the micro-
processor system following detection of a power failure. The
simulated interrupt also has no mask bit, but since it is generated
by a program instruction it has the lowest interrupt priority.

In some ‘vectored interrupt systems, the interrupt priorities are
automatically defined and controlled by the interrupt control
logic of the microprocessor. After an interrupt request has occurred
and the device interrupt address has been transmitted to the
microprocessor, the address is compared with a multi-bit interrupt
enabling mask. If the device interrupt address is equal to or less
than the mask, the interrupt request is recognised, the mask is

DEVICE 1 DEVICE 2 DEVICE 3
INTERRUPT INTERRUPT

SERVICE SERVICE SERVICE

PROGRAM PROGRAM PROGRAM

MAN-LINE
PROGRAM oentry entry entry
: /
1
¥
\ -

DEVICE DEVICE 1
INTERRUPT™ i INTERRUPT

DEVICE 2 o
\ INTERRUPT
REQUEST

exit exit

Figure 3-11. Program flow during vectored auto-
matic priority interrupt servicing

68 Microprocessor Systems Handbook

forced to a value that is one less than the device interrupt address,
and device servicing begins. If the device address is greater than the
enabling mask, the interrupt request is queued. Only interrupts
from a device with a lower device interrupt address to that of the
device currently being serviced are recognised. Thus the device
interrupt address determines the device interrupt priority; the
lower the address, the higher the priority. The enabling mask can
be initialised or modified under program control. Figure 3-11
illustrates the program flow during interrupt servicing. Here the
interrupts are nested to ensure rapid service of high priority
interrupts even if they occur during the servicing.of a low priority
interrupt.

MAINTAINING PROGRAM CONTINUITY DURING MULTIPLE
INTERRUPT SERVICE

In general, the problem of maintaining program continuity in a
multiple interrupt environment is similar to but more complex
than that described previously for the single interrupt case. In
particular, where nesting of interrupts occurs, provision must be
made to save (and subsequently restore) the contents of all impor-
tant microprocessor registers, including the return address held in
the program counter, for each of the different interrupt requests
which are currently being serviced. Each level of interrupt service
requires its own unique storage locations in which the information
can be saved. The save and restore operations are implemented in
one of three basic ways:

(1) Program-controlled save and restore. The information is
transferred to a unique area of memory under program control in
a non-interruptable section at the beginning of each interrupt
service program before the interrupt mask is reset to allow recog-
nition of further higher priority interrupts. The information is
similarly restored in a non-interruptable section at the conclusion
of each service program. In some microprocessors, the stack pointer
is automatically advanced when an interrupt request is recognised
and the programming can be simplified by using the stack as the
storage area.

(ii) Automatic stacking. The interrupt control logic auto-

Input-Output 69

matically stores the information onto the memory stack and
advances the stack pointer whenever an interrupt request is
recognised. On completing the interrupt service, a special-purpose
“return from interrupt” instruction restores the information and
decrements the stack pointer appropriately.

(iii)) Special-purpose architecture. The microprocessor is
provided with several sets of processor registers and a pointer
register to indicate which set is to be used during the current
program execution. The pointer register is automatically incre-
.mented on recognising an interrupt request and decremented on
completing the interrupt service. In some microprocessors, these
sets of registers are internal to the microprocessor chip. In others,
the microprocessor uses different workspaces in memory instead
of different sets of internal registers.

The speed of response to an interrupt request, once it is recognised,
is mainly determined by the time required to perform these save
operations. Those microprocessors which avoid the need for
information transfer provide the most rapid interrupt service
response.

An example of a microcomputer using multiple-priority interrupt-
controlled input-output is given in Chapter 9.

DIRECT-MEMORY-ACCESS I/O

Some I/O devices require data transfer at rates which are too rapid
to permit any type of input-output which is under control of the
microprocessor itself. In these cases, the information must be
transferred directly between the I/O device and the memory of the
microprocessor system without microprocessor intervention. The
technique is called direct-memory-access or DMA. The data
transfer is controlled by a dedicated high-speed logic circuit (the
direct-memory-access controller) which is capable of operating at
higher speeds than the microprocessor. During DMA data transfer,
the microprocessor must relinquish control of its memory and
allow the DMA controller to take over. There are several ways in
which the DMA controller can gain control of the memory;

(i) Processor halt. An external control line initiates an
orderly halt in the operation of the microprocessor following

70 Microprocessor Systems Handbook

completion of the current instruction. Since the memory control
signals of the microprocessor are disabled in the halt state, the
DMA controller can take over and initiate data transfer. After the
DMA input-output has been completed, the controller resets the
halt control line, the microprocessor resumes normal operation
and execution of the next instruction commences.

(ii) Cycle-steal. External control lines initiate a pause in
microprocessor operation by suspending instruction execution
within the instruction cycle. The processor clock is halted and the
memory control lines of the microprocessor are disabled. Tlre
DMA controller takes over and “steals” several machine cycles to
allow data transfer to take place. On completing the data transfer
the pause control lines are reset, the clock restarts, and the instruc-
ton cycle continues to complete the execution of the instruction.
The only result of “interrupting” the instruction execution is to
extend the apparent execution time.

Microprocessors which use dynamic memory (see Chapter 6) on
the processor chip have a limit to the number of machine cycles
which may be stolen in this way if no loss of internal status is to
occur. Input or output of a long block of data may require several
separate cycle-steal operations for completion.

(iii) Memory-sharing. The memory is only accessed by the
microprocessor at specific times during the basic machine cycle.
At other times it is available for use by other devices. By syn-
chronising the DMA controller operation with the processor clock,
DMA data transfers can be interleaved with the normal micro-
processor/memory data transfers within the basic machine cycle.
Interleaved DMA has no effect on the operating speed of the
microprocessor.

EXAMPLE OF DMA INPUT-OUTPUT

A microcomputer is linked to a large computer system via a high-
speed communication channel. Blocks of data are transferred from
the memory of the microcomputer to the communication channel
by direct-memory-access. The main-line program, which commu-
nicates with the DMA controller using program-controlled I/O,

Input-Output 71

specifies the data block and initiates the DMA operation. The
DMA controller then halts the microprocessor and organises the
data transmission from the memory to the channel. The simplified
flow charts in Figure 3-12 explain the sequence of operations
leading to the transfer of a block of data.

MAIN-LINE PROGRAM

LOAD DATA INTO
MEMORY BUFFER

CHECK CHANNEL
AVAILABLE

OUTPUT START
‘(ADDRESS OF BUFFER
TO DMA CONTROLLER

y QUTPUT BLOCK LENGTH
TO DMA CONTROLLER

I
|
t
'

OPERATION OF DMA CONTROLLER
(initiated by 'start transmission command)

* HALT MICROPROCESSOR

ENABLE DMA MEMORY CONTROL
LINES

ADDRESS AND READ MEMORY

!

‘| NE >cnscxcumn5m:wv
Y

SEND DATA TO CHANNEL
A i

y INCREMENT MEMORY ADDRESS

‘ N END OF BLOCK?
WSEND 'START TRANSMISSION’
COMMAND \
DISABLE D
MEMORY CON‘I'ROL LINES
WCONTINUE
* RESTART MICROPROCESSOR

Figure 3-12. DMA data transfer

SUMMARY

The input-output scheme of a microcomputer is of great impor-

tance in the overall system

design: a good scheme can give

significant savings in both hardware and software. For this reason,

72 Microprocessor Systems Handbook

a thorough understanding of I/O techniques is one of the corner-
stones of successful microcomputer design. Most of the material
covered in this chapter is applied in a more practical sense in
Chapter 8.

