21

Memory Addressing

Chapter 2

INTRODUCTION

In a microcomputer system, the microprocessor serves to manipu-
late the binary information which is stored in memory. The ease
and speed with which the microprocessor can gain access to any
particular word stored in the memory will determine the speed at
which a particular program can be executed, and also the size of
the program. It follows that the structure and execution time of
the various instructions, which require interaction with memory,
have great bearing on the overall size and efficiency of the com-
plete microcomputer system, and are therefore of vital importance.
A microprocessor with a powerful “instruction set” yields a
design which will use the minimum number of memory elements,
and therefore cost less.” In practice, the memory is a much larger
portion of a complete system than the microprocessor itself, and
in even the smallest systems there are usually two memory
elements (one for program and one for data) to one micropro-
cessor, and it is not unusual to find 30 or more memory packages
supporting one microprocessor. Clearly, the microprocessor
system designer needs to study the instruction set very carefully to
ensure that it gives the smallest program for the particular applica-
tion under consideration. However, there is no single criterion
which covers all jobs, and each situation must be assessed on its
own merits.

Instructions which work with information storcd in memory are
usually known as “memory reference instructions,” and they fall
into two broad categories; those which address data, and those
which address the program memory. A data reference instruction

22 Microprocessor Systems Handbook

might be “Store contents of accumulator at location ABCD,” and
a jump instruction is one type of instruction which causes inter-
action with the program memory. Generally speaking, once a
program has been loaded into a microcomputer system it does not
modify itself: this means that it is not normal to write information
into the program memory during program run time and therefore
most program memory reference instructions are of the type
“Read contents of program memory location ABCD.” There are
two reasons for this restriction on the program memory: firstly, it
is poor programming practice to have a program which modifies
itself because it makes system crashes more likely, and secondly,
program memory is often the “read only’ type in which write
operations are impossible.

ARITHMETIC AND LOGICAL OPERATIONS

There is a wide range of arithmetic and logical instructions that
can be found in microprocessors. Some processors have only an
elementary set such as add, subtract and shift; others include
instructions such as exclusive-OR, AND, compare, etc. In general,
most microprocessors carry out binary arithmetic using two’s
complement number representation, and one remarkable feature
of nearly all units is that they include facilities for operations on
BCD numbers as well as on binary numbers. This is something
that many of the larger computers do not have.

The minimum set of arithmetic and logical instructions would
probably be:

(1) Add

(2) Subtract

(3) Shift left through carry-link flag
(4) Shift right through carry-link flag
(5) Clear carry-link flag

(6) Clear accumulator

(7) Complement accumulator

(8) Complement carry.

Using this basic set of instructions it would be possible to build
up other more sophisticated operations such as AND, OR,
exclusive-OR, etc. Note in particular that instructions 1 and 2

23

Memory Addressing

Soyf yupp/Ceavd ySnoayy Sulv104 Aq p 1nq Bupyuswasydwo) ‘r-z aunsuy

Wb yMSs .m.eeeaeoao_@u uel ums
Wbl ys _mo_eeoeeo‘,@u TR

W6u s :mee-eoeo..h.@‘v e Yws

o s 8 (- ETTTTTTT [y s

wetrdey ¥ [0e0a've0'0] [o] yais

Guyy
Joe|nWINIIY Wuy/Kaaed

7710

A.Eé D
NE.@)
ME.@)
A.E'E D
[ToToToTsToTo™o] [o]

24 Microprocessor Systems Handbook

above require two operands, with one most probably held in the
accumulator and the other held in memory, whereas the remainder
of the instructions operate on information already held within
the microprocessor. This means that the instruction cycle for
items 3 to 8 will be the simple procedure:

(a) Send out p.c. contents and fetch instruction
(b) Increment p.c.
(c) Execute the instruction.

But the instruction cycle for items 1 and 2 will be more complex.
If the instruction is “Add the contents of the address specified by
the index register to the accumulator,” then the instruction cycle
would be:

(a) Send out p.c. contents and fetch instruction

(b) Increment p.c.

(c) Send out index register contents as an address and fetch data
to microprocessor

(d) Add accumulator and the data just fetched.

A memory reference instruction is implied by the add instruction
because one of the operands is held in memory. In this particular
case the appropriate address is specified by the index register, but
there are many ways of specifying a particular data address and
these will be the subject of much of this chapter.

The carry-link flag can in many cases be considered as a 1-bit
extension of the accumulator register. By rotating the accumulator
through the carry-link flag and using those instructions which set,
clear and complement the carry-link flag, it is possible to gain
access to and modify any single bit within the accumulator.
Clearly this can be quite a slow process when, for example, it is
required to complement bit 4 in an 8-bit accumulator. Such a
program would involve 4 shifts left, complement carry-link, and
4 shifts right — a total of 9 instructions which is quite wasteful
in program memory storage space (see Figure 2-1). A much neater
operation would be to exclusive-OR the contents of the accumu-
lator with 00010000. This would achieve the same result and
probably use only 2 bytes of program storage. The more sophis-
ticated arithmetic and logical instructions can therefore save quite
a lot of program storage space. Instructions in this category
include:

Memory Addressing 25

Increment

Decrement

AND

OR

Exclusive-OR

Compare

Logical and Arithmetic shifts.

(A logical shift is one in which the bit shifted in is determined
by the state of the carry flag, whereas for an arithmetic shift,
the bit shifted in is determined by the number convention in
use — usually two’s complement.)

The ability to operate with numbersin BCD format is an important
feature because microprocessors are usually quite close to the
man-machine interface, and it is often faster and more convenient
to work with BCD numbers throughout than do conversions to
and from binary. There are several levels of “BCD ability,” ranging
from simple instructions which convert the result of a BCD
addition back into BCD right up to processors which can operate
throughout in either a BCD or two’s complement binary mode.
For example, consider the case where 28 is added to 39, both
numbers being represented in 8-bit BCD format. The result after a
straightforward binary addition is shown below:

0010:1000
0011:1001

01180001

In order to restore the number to its true BCD result, the micro-
processor has to execute a special instruction which converts the
number in the accumulator back into BCD format - this instruc-
tion is usually called ‘“‘decimal adjust accumulator.” The decimal
adjust accumulator instruction (usual mnemonic DAA) uses the
information that a carry took place from the low order BCD
character to the high order character to restore the least significant
digit to its correct value of 0111. So for each BCD addition using
the process described above the programmer has to write two
instructions:

(1) Add
(2) Decimal adjust accumulator.

26 Microprocessor Systems Handbook

Carry flag Upper Half carry Lower Number Carry flag
before DAA half-byte before DAA half-byte added to Acc. after DAA

0 Oto9 0 O0to9 00 0
0 Oto8 0 AtoF 06]
0 Oto9 1 0to3 06 0
0 AtoF 0 O0to9 60 1
0 9toF 0 AtoF 66 1
0 AtoF 1 Oto3 66 1
1 0to2 0 Oto9 60 1
1 0to2] AtoF 66 1
1 Oto3 1 Oto3 66 1

Figure 2-2, DAA (decimal adjust accumulator)
algorithm for an 8-bit microprocessor

Machines with separate binary and BCD addition instructions do
not require the decimal adjust accumulator instruction and this
gives a saving in program size. Figure 2-2 gives the full algorithm
which the DAA instruction uses: it should be noted that it relies
on the carry and half-carry flags for its operation. These are
explained below.

ARITHMETIC FLAGS

The accumulator of a microprocessor usually has a number of
flags (or flip-flops) associated with it. These flags signify that
certain events have taken place and the operation of some instruc-
tions depends upon the state of these flags. The flags are often
referred to as “‘status flags” and the binary word made up of their
various states is called the *“status word.” The set of flags may be
considered to be an additional register within the MPU called the
“status register.”

The status flags vary from processor to processor. The most
fundamental flags are:

(a) Carry-link flag
(b) Half-carry flag (this is necessary for the DAA instruction).

The carry-link flag is set if an arithmetic operation yields a carry.

Memory Addressing 27

Alternatively it may be used with shift operations as described
above. The half-carry flag is set if a carry propagates from the 4
least significant bits to the 4 most significant bits in the course of
an arithmetic operation. Its main function is to aid the operation
of the “decimal adjust accumulator” instruction, but it can be
used for other purposes.

Other flags can include a parity flag, a sign flag, a zero flag relating
to the number in the accumulator, and also an overflow flag
denoting an overflow as the result of an arithmetic operation. It is
important to recognise the difference between an overflow and a
carry. The carry flag is set when an arithmetic operation results in
a carry; the overflow flag is only set when an arithmetic operation
yields a true arithmetic overflow. For example, +5 minus +3 in
two’s complement gives a carry-out of the high order end.
However, the result +2 is still within the number range of the
machine so the overflow is not set. Conversely, minus 100 plus
minus 64 on an 8-bit machine gives a carry-out plus an overflow
because the result is a positive 8-bit number even though the result
should be negative in true arithmetic terms.

Machines with an interrupt system also have an interrupt mask
flag which is usually included as part of the status register. This
particular flag is related to input-output operations and is not
directly affected by arithmetic operations (see Chapter 3).

MEMORY REFERENCE INSTRUCTIONS — CLASSICAL
APPROACH

DIRECT, INDIRECT AND IMMEDIATE ADDRESSING

A memory reference instruction is one which refers to memory in
order to obtain an operand. The instruction “Add contents of
memory address ABCD to accumulator” is an example of a
memory reference instruction. In an 8-bit microprocessor this
instruction would probably have the structure as follows:

28 Microprocessor Systems Handbook

Operand ‘ Add 10111001
]]

High Address Byte (AP 10101011
l Address L

Low Address Byte CD 11001101
i 1

The type of instruction given here, where the address of the
relevant data is contained explicity within the instruction, is
known as direct addressing. This mode of addressing has severe
limitations because, every time a data address is used, it has to
be included in the instruction. For example, if it is required to
find the average of four numbers stored in addresses ABCA, ABCB,
ABCC and ABCD (hexadecimal notation), then the program using
direct addressing would be:

Clear Accumulator
Add [ABCA]

Add [ABCD]

Add [ABCC]

Add [ABCD]
Shift Right

Shift Right

This program would leave the average value in the accumulator.

In Chapter 1 it was shown how it is possible to reduce the amount
of program storage space by utilising the fact that the numbers
are stored in consecutive locations. The index register was used
to “point” to each data item and the instruction simply specified
that the relevant data address was to be found in the index
register. This type of instruction, where the actual data address is
not explicit in the instruction but is held in some other location,
is known as indirect addressing. In its most general form the
pointer location can be any memory address and it can point to
any other location.

In the averaging example used above, it would be possible to use
memory location ABCE as the address pointer by using the

Memory Addressing 29

instruction “Add @ [ABCE].” The @ sign denotes that indirect
addressing is to be used. If it is assumed that when the program
begins memory location ABCE holds the value ABCA, then the
program using indirect addressing will be:

Clear Accumulator

Add @ [ABCE]

Increment [ABCE]

Add @ [ABCE]

Increment [ABCE]

Add @ [ABCE]

Increment [ABCE]

Add @ [ABCE]

Shift Right

Shift Right
Instead of using the index register to point to the consecutive
memory addresses, the program has used memory location ABCE
to store the pointer. As it stands, the program would in fact use
more program memory space with indirect addressing than it
would with direct addressing. However, as will be shown later,
use may be made of the fact that the instruction sequence “Add
@ [ABCE]” followed by “Increment [ABCE]” occurs three
times.
The binary op-code for the instruction “Add @ [ABCE]” would
not be the same as that for “Add [ABCE]”’; it would most likely
differ by 1 bit. The two instruction codes might be as shown
below:

Direct/Indirect Op. Code bit

J

1011@601 1011\©001
l |
10101011 10101011
] |
11001110 11001110
I]

Add [ABCE] Add @ [ABCE]

As indicated below, the instruction cycle for direct addressing is

30 Microprocessor Systems Handbook

shorter than that for indirect addressing: this will mean that the
cycle time for direct addressing is less than that for indirect
addressing. The instruction cycle for direct addressing is:

Send out p.c. contents and fetch op-code

Increment p.c.

Send out p.c. contents and fetch high order address bytes
Increment p.c.

Send out p.c. contents and fetch low order address bytes
Increment p.c.

Send out data address, fetch data and execute instruction.

The instruction cycle for indirect addressing is:

Send out p.c. contents and fetch op-code

Increment p.c.

Send out p.c. contents and fetch high order pointer address
bytes

Increment p.c.

Send out p.c. contents and fetch low order pointer address
bytes

Increment p.c.

Send out pointer address and fetch data address

Send out data address, fetch data and execute instruction.

Apart from direct and indirect addressing, there is one other
fundamental addressing mode known as immediate addressing.
In immediate addressing the operand is contained within the
instruction itself; a typical immediate addressing instruction
might be “Add the constant ABCE (hexadecimal notation) to
the accumulator.” The binary instruction format would be

10101001 Op-Code
I

10101011 AB
|

11001110 CE
]

and a typical mnemonic would be “Add # ABCE.” The symbol

Memory Addressing 31

denotes immediate addressing. Since the relevant data is con-
tained in the instruction itself, immediate addressing does not
need to reference the data memory. Immediate addressing is useful
where it is required to introduce constants into a program. Setting
up address ABCE to contain ABCA for the start of the indirect
addressing program above would probably be done using immediate
addressing as follows:

Clear accumulator
Add # ABCA
Store [ABCE]

The value ABCA isadded to the accumulator and then the contents
of the accumulator are stored at address ABCE. In the above
example the “store” instruction provides another example of
direct addressing; it is of course possible to have store instructions
which use indirect addressing.

REFINEMENTS TO MEMORY ADDRESSING MODES

Direct and indirect addressing can be further enhanced by including
additional features such as autoincrement, autodecrement and
indexed addressing. These refinements are additional to the basic
addressing modes so that it is possible to have, for example, an
indirect, autoincrement addressing mode. In the average program
using indirect addressing, the sequence of instructions

Add @ [ABCE]
Increment [ABCE]

occurred several times. Some processors can combine these two
instructions into one so that a single instruction adds the contents
of the address specified by the address stored at location ABCE,
and also automatically increments the contents of location ABCE.
The automatic incrementing feature is known as autoincrement
and a similar facility for decrementing is known as autodecrement.
Automatic incrementing and decrementing are particularly useful
where the program works with large quantities of data which are
stored in consecutive memory locations. This occurs in matrix
operations. Another refinement which is particularly useful in
complicated programs is indexed addressing. With indexed

32 Microprocessor Systems Handbook

addressing the correct data address is calculated by adding an
offset value to a specified address. Usually, the offset is stored in
the index register and the specified address can be obtained by
direct or indirect addressing. For example, if the index register
contains 0005 and the instruction is “Add [0A0O0] indexed,” then
the correct data address would be obtained by adding 0A00 to
0005 to give the correct address at 0AOQS. It is possible to have an
indexed autoincrement indirect addressing mode, where the
correct address is obtained by adding the index register to the
indirectly specified address and then the index register is auto-
matically incremented: sometimes the indirect address is incre-
mented rather than the index register.

RELATIVE ADDRESSING

Relative addressing is very similar to indexed addressing in that the
correct address is calculated by adding an offset to some base
address. The instruction contains the offset value and the program
counter usually provides the base address. This relationship with
the program counter means that relative addressing is often used
in connection with jump instructions. Relative addressing is also
important when writing programs which may be subsequently
moved to another portion of the program memory.

CLASSICAL STRUCTURE OF THE OP-CODE FOR MEMORY
REFERENCE INSTRUCTIONS

Very often the binary op-code for memory reference instructions
is built up according to a neat logical pattern. This makes it much
easier to write assembler programs. (An assembler is a computer
program, which reads a program written in mnemonics and
converts it into a program written in binary or hexadecimal
characters.)

Figure 2-3 shows a possible structure for the op-code of an 8-bit
microprocessor. This op-code would of course occur together
with the appropriate address bytes.

Memory Addressing 33

| .| III—I

e) et
l I 00 Immediate
4 bits to specify ! 01 Direct
operation, e.g., 10 Indirect
Add = 1000
Subtract = 0001 00 Straight addressing
etc. 01 Autoincrement

10 Autodecrement

e.g., Add indirect
autoincrement = 10000110
(I]
High Byte
Low Byte

Figure 2-3 Possible op-code structure

MEMORY REFERENCE INSTRUCTIONS FOR
MICROPROCESSORS

Microprocessors try to meet two criteria which often conflict; the
need for a powerful instruction set and the requirement for
instructions which use the minimum amount of program storage.
In order to meet these goals various methods are used to reduce
the number of bytes in a particular instruction. Usually this entails
reducing the addressing capability of the memory reference
instructions whilst retaining the essential character of the classical
instruction. Some of the more common approaches are given
below. It should be remembered that reducing the number of
bytes in an instruction also reduces the cycle time of an instruction
and therefore speeds up the program.

REGISTER ADDRESSING

The 3-byte indirect addressing instruction of the form

34 Microprocessor Systems Handbook

Op-Code

High Address Byte

Low Address Byte

contains the ability to use any memory location as a pointer to the
appropriate data address. In practice, this complete flexibility is
usually not required and it is adequate to have only one or two
“address pointers.” By doing this it is possible to reduce the
instruction from a three-byte instruction to a single-byte instruc-
tion where the actual address pointer is specified within the
op-code. Most microprocessors have at least one register within
the MPU which can be used as an address pointer and this is
usually the index register. The example in Chapter 1 shows how
it is possible to achieve a form of indirect addressing using the
index register. Some MPU’s have only one index register whereas
others have several within the processor.

Register addressing is used as a standard approach for computers
much larger than microprocessors because of the tremendous
saving in program storage and the resultant improvement in
instruction cycle time.

PAGING

Register addressing gives a considerable improvement for indirect
addressing operations, but it is not applicable to direct addressing.
One way of speeding up direct addressing operations is to use
paging. With paging, the high address byte is stored within the
microprocessor in some register and only the low address byte
is specified by the direct addressing instruction. This approach
‘makes use of the fact that most of the addresses which the micro-
processor is working with at any one time are fairly close to each
other, and therefore will have the same high order address byte.
The splitting up of the memory address into a high order byte and
a low order byte is akin to the division of a book into a series of
pages, and hence the term paging.

Memory Addressing 35

The efficient use of paging normally requires at least one extra
register in the MPU to specify the page number and also some
additional instructions which make it possible to change page
numbers whenever necessary. It also entails taking extra care when
programming to make sure that page boundaries are not crossed
inadvertently. An alternative to having an extra register for storing
the page number is to restrict direct addressing to a single page,
say page 0, so that when a direct addressing instruction is received
by the MPU, it knows that the high order bits are all logical zero.
This method also saves having extra instructions for changing page
numbers.

Paging is a very powerful tool and has been applied in many
different ways. For example, it can be used in conjunction with
the program counter to reduce the number of bytes in a jump
instruction. Broadly speaking, paging finds greatest application in
4- and 8-bit microprocessors and where the number of available
pins on a microprocessor is severely restricted.

ON-CHIP REGISTER ADDRESSING

Some microprocessors have several additional general purpose
registers within the MPU as shown in Figure 2-4. Usually special
instructions are provided so that these registers can be directly
addressed with a single-byte instruction. The term “inherent”
addressing has been applied to this type of operation because the

I STATUS FLAGS I
o

'| ACCUMULATOR]

| INDEX REGISTER 1

[cenEraL PuRPOSE REGISTER | Output >
|_STACK POINTER REGISTER |

Address >
| ProcrAM counter |

Figure 2-4. Microprocessor with multiple internal
registers

36 Microprocessor Systems Handbook

data address is inherent in the single-byte op-code. These general
purpose registers may be used for data storage or as address
pointers in the same way as the index register is used.

BUILDING UP SOPHISTICATED MEMORY REFERENCE
INSTRUCTIONS

Usually a microprocessor does not have all the addressing modes
mentioned above, and in assessing a microprocessor it is worth-
while checking how many bytes of program are required to
implement all the classical memory reference instructions. For
example, quite a few microprocessors do not have any direct
addressing facilities and a direct addressing instruction might
have to be built up as follows:

Load the index register with the required address (3 bytes)
Add contents of address specified by index register to accumu-
lator (1 byte).

Indirect addressing with autoincrement can be very difficult if
there are no facilities for incrementing the on-chip registers. In
this case, incrementing would have to be done using the accumu-
lator so that the contents of the accumulator would have to be
temporarily stored whilst the accumulator is used. In such a case
the two instructions

Add contents of memory location specified by index register to
accumulator (1 byte)
Increment index register (1 byte)

might have to be written

Add contents of location specified by index

register to accumulator (1 byte)
Exchange contents of accumulator and index

register (1 byte)
Increment accumulator (1 byte)
Exchange contents of accumulator and index

register (1 byte)

Total 4 bytes.

Memory Addressing 37

Immediate Direct Relative Indirect
Indexed Autoincrement Autodecrement
Indexed Indexed
Autoincrement Autodecrement

Figure 2-5. Fundamental addressing modes

It is unlikely that a microprocessor has ever been designed with
such a restrictive set of instructions, but the above example does
serve to illustrate the problems that can easily arise. Figure 2-5
gives a table of the various classical addressing modes for easy
reference. '

JUMP AND CONDITIONAL JUMP INSTRUCTIONS

Jump instructions are ones which can cause the program counter
to be loaded with a new value instead of allowing it to continue
through the program. This is an important point because the
manner and the type of instructions which can change the
program counter vary widely. The second, and equally important
feature of jump instructions, is that “conditional jump” instruc-
tions give the program the ability to make decisions. An example
of this might be “Jump to specified address if accumulator is
zero, otherwise continue with normal program flow.” Such an
instruction would test the contents of the accumulator to see if
it is zero. If it is, the program counter would be loaded with the
address specified in the instruction; if the accumulator was not
zero, the program counter contents would remain untouched and
the program would continue in a straight numerical sequence. To
illustrate this, consider the example in this chapter which finds the
‘average of four numbers stored in locations ABCA, ABCB, ABCC,
and ABCD. Assume that the microprocessor which is to be used
has the internal register structure shown in Figure 2-4. Note in
particular that a general purpose register (GPR) has been added to

38 Microprocessor Systems Handbook

the fundamental architecture used so far. This general purpose
register will be used for counting the number of times the program
executes the add instruction. The averaging program now becomes:

Instruction No. Program
memory store
(1) Load immediate index register with ABCA 3 bytes
(2) Load immediate GPR with 0004 3 bytes
(3) Clear accumulator 1 byte
(4) Add contents of location specified by index
register 1 byte
(5) Increment index register 1 byte
(6) Decrement GPR 1 byte
(7) If GPR # zero jump back to add instruction 3 bytes
(8) Shift right 1 byte
(9) Shift right 1 byte

Total 15 bytes.

Figure 2-6 shows the corresponding program flow chart.

The conditional jump instruction “If GPR does not equal zero,
jump back to add instruction” provides the program with the
ability to make the elementary decision on whether to go around
the loop once more, or whether to finish the addition. In practice
the conditional jump contains an address to which the jump
should take place rather than the indefinite statement “Jump to
add instruction.” The final program pattern in program memory
would be as shown in Figure 2-7, where the jump instruction now
specifies a jump to program memory location 0007. If the general
purpose register is not equal to zero, the program counter will be
loaded with the value 0007 and its current contents 000D will be
lost.

If the general-purpose register had not been included, it would
have been much more difficult to write the program, because the
results of the addition and the contents of the loop counter
would have had to be continually exchanged and moved around
to utilise the accumulator, and any advantage in using the addition

Memory Addressing 39

LOAD INDEX REGISTER
WITH ABCA

Y

LOAD GPR. WITH
0004

Y

[ciear accumuator |
Y

ADD DATA STORED AT
ADDESS SPECIFIED BY
INDEX REGISTER TO
ACCUMULATOR

|ncrement nDEX REGISTER |

| DECREMENT Ger. |

e

YES

SHIFT ACCUMULATOR
RIGHT TWICE

Figure 2-6. Program flow-chart for averaging
example

loop approach would have been lost. For this reason all micro-
processors include at least one general-purpose register for loop
counting and other functions. Another point to note from the
above example is that great use is made of the indirect addressing
approach using the index register. The ability to dynamically
create a new address from existing information within the program
is essential for most applications.

The address to which the program jump takes place does not have
to be explicit in the program as it was.above. The particular type
of jump used above was a version of a conditional immediate
addressing instruction: “If condition is satisfied, load program
counter with data which is contained in this instruction.” In just
the same way it is possible to use direct and indirect addressing to
specify the value with which the program counter must be loaded.

40 Microprocessor Systems Handbook

Insuruction No. Program Program memory

memory contents address (hex.)
‘ Load IR immediate 0000
1 A B 0001
C A 0002
Load GPR immediate 0003
2 0o 0 0004
0 4 0005
3 Clear accumulator 0006
4 Add @ IR 0007
5 Increment IR 0008
6 Decrement GPR 0009
1f GPR # 0 Jump 000A
7 00 000B
0 7 000C
8 Shift right 000D
9 Shift right 000E

Figure 2-7. Program memory contents for averaging program

For example, the instruction “If condition is satisfied load
program counter,with the contents of address specified by the
index register” is an indirect addressing jump instruction. These
types of jumps add great power to the instruction set, and further-
more can reduce the number of bytes in an instruction. A jump
instruction with immediate or direct addressing requires three
bytes of memory, whereas an instruction with indirect addressing
using the index register can be accommodated in a single program
byte.

In some processors the program counter, the index register, the
general-purpose register(s) and the accumulator are all regarded as
general - purpose registers for some operations. Therefore the
instruction “Load immediate ABCD to register A” could have
quite different effects depending on what function register A is
used for. For example, if the registers are lettered as follows,

A — Accumulator

B — Index register

C — General purpose register
D — Program counter

Memory Addressing 41

then “Load immediate ABCD to register A’ will load the accumu-
lator with value ABCD, but “Load immediate ABCD to register
D” would cause a program jump to the program location ABCD.
This approach can give the suprising impression that at first
glance some microprocessors appear to have no specific jump
instructions. ‘

CONDITIONAL JUMP INSTRUCTIONS

The unconditional jump causes a jump to another section of
program without having to test for any particular condition
existing. By comparison the conditional jump (sometimes called a
conditional branch instruction) requires that a .-condition be
satisfied before the jump can take place, and it is this condition
that gives the power of decision.

Conditional jumps usually base their decisions on the condition of
the various arithmetic flags. The following is a list of some of the
conditions that are available:

Carry-link flag set Carry-link flag not set

Half-carry flag set Half-carry flag not set
Accumulator zero Accumulator not zero
Overflow flag set Overflow flag not set
Parity flag set Parity flag not set

Accumulator positive = Accumulator negative.

It is normal for the binary op-code of a conditional jump instruc-
tion to have an ordered structure such as that shown below.

IOp—Code
1010{0001
I O T |
__] LCarry-link condition
Conditional jump Overflow condition

Op-code (say 1010) Accumulator zero condition
. True-complement

For example, “Jump to ABCD if carry-link set,” would be:

42 Microprocessor Systems Handbook

lOlOlOOOI

101011011

110011101

The true-complement-bit gives the instruction the power to negate
the condition so that the instruction “Jump to 0007 if accumulator
not zero,” would become:

101011100

OOOOIOOOO

0000'01 11

The “1” in the true-complement-bit signifies that the complement
of the condition should be satisfied, which in this case is a zero
condition in the accumulator. Another common feature is the
power to AND conditions together. For example, the instruction
“Jump to ABBA if accumulator is zero AND carry-link is set”
would become:

101010101

1010]1011

101111010

REDUCING THE NUMBER OF BYTES IN A JUMP
INSTRUCTION

In previous sections various methods were discussed for reducing
the number of bytes in memory reference instructions. The
methods of indirect register addressing and paging are applicable

Memory Addressing 43

to jump instructions. Several forms of paging can be used with
jump instructions: the most simple form is where the high order
program counter address bytes remain unchanged by the jump
instruction, and only the low order bytes are loaded from the
jump instruction. This means that it is only possible to jump
within a program page but this is often adequate. An alternative
approach is to add some number to the program counter. This
number can either be specified in the jump instruction (.e.,
immediate addressing) or in a register. The term “relative address-
ing” (see section RELATIVE ADDRESSING) is used to describe
this operation since the jump is by some displacement relative to
the program counter.

In microprocessors using 8-bit instruction bytes, and a 16-bit
address, relative addressing makes it possible to reduce a jump
instruction from three bytes to two bytes.

One particular type of instruction which can achieve a conditional
jump with only a single instruction byte is the skip instruction
which has the form “If condition XYZ is satisified then skip the
next n instructions.” This makes it possible for the program to
jump over the n instructions without executing them. The skip
instruction has not been used much in microprocessors to date
although some of the early devices used it to reduce the amount
of program bytes in loop-counting applications.

SUBROUTINES

The instruction “Jump to subroutine” is much the same as a
normal jump instruction. However, when a subroutine jump
takes place, the program counter contents are not lost, but are
temporarily stored in some special location where they can be
recovered for later use. Subroutine jumps can be conditional or
unconditional. A subroutine is used where a section of program
such as multiplication is repeated several times during the course
of the overall task. To write the same program each time it is
needed is very wasteful in program storage space. The subroutine
jump provides a method of holding the subroutine (e.g., multiply)
in program memory only once. Each time the program is required,
the main program jumps to the subroutine, and once the sub-task

44 Microprocessor Systems Handbook

MAIN
PROGRAM

AXxB

|

(AxB) xC

Figure 2-8a.

MAIN ROUTINE NESTED TO 2 LEVELS

SUBROUTINE NESTING TO 3 LEVELS

Figure 2-8b.

Figure 2-8. Illustrations of program flow using
subroutines

is completed, control is returned to the program at the point it
left off. Figure 2-8a shows schematically how a subroutine would
be used in the case of a program to multiply three numbers
together. Often it is required to “nest” subroutines so that one
subroutine can call another subroutine. For example, an integ-
ration subroutine might call a division subroutine, and this

Memory Addressing 45

situation of nested subroutines is schematically shown in Figure
2-8b. The problem in these circumstances is how to store the
program counter contents, so that each time a return from sub-
routine is made the program counter is reloaded with the correct
value.

In order to overcome this difficulty the concept of a subroutine
“stack” is usually used. Each time a jump to subroutine is made,
the current program counter contents are loaded onto a stack in
the same way as one would stack plates. The value loaded onto the
stack is always placed at the top of the stack. When a return from
subroutine is made, the value stored at the top of the stack is
loaded back into the program counter. These two operations are
usually called “Push” for loading onto'the stack, and *‘Pop” for
taking values from off the stack. A “Jump to subroutine’ instruc-
tion would have the following basic instruction cycle:

_ Send out p.c. contents and fetch instruction
Increment p.c.
Load p.c. contents onto stack
Load p.c. with address of subroutine specified in instruction.

Stacks can be implemented in two basic ways. One is to use a
shift-register (sometimes called ‘Pushdown stack’) where a
“Push” corresponds to shifting the register one direction and a
“Pop” corresponds to shifting in the opposite direction. The other
method is to use a random access memory plus a stack pointer.
The stack pointer is a register within the MPU which is specifically
reserved for the purpose of keeping track of the next memory
location available on the stack. A “Jump to subroutine” instruction
with a microprocessor which uses a stack pointer has the instruc-
tion cycle:

Send out p.c. contents and fetch instruction

Increment p.c.

Load p.c. contents at memory location specified by stack
pointer register

Increment stack pointer

Load p.c. with start address of subroutine.

The corresponding ‘“Return from subroutinc” would have the
following instruction cycle:

46 Microprocessor Systems Handbook

Send out p.c. contents and fetch instruction
Decrement stack pointer
Load p.c. from address specified by stack pointer.

The shift register type of stack has been chiefly used where the
stack is an integral part of the microprocessor chip, but it has the
severe limitation that the number of stages in the ‘“shift register”
are limited, and therefore the number of levels to which sub-
routines can be nested are limited. With the stack-pointer
approach, the stack can be any size the system designer chooses
since the stack is usually exterior to the processor and can be part
of the same memory as the data storage memory.

Push and Pop instructions can be quite powerful in their own
right, particularly if instructions provide for Pushing and Popping
other registers, apart from the program counter, onto the stack.
Furthermore, in some cases it is desirable to store not only the p.c.
contents on the stack when a jump to subroutine occurs, but also
the contents of all the other registers. This is particularly true in
the case of real-time interrupts (see Chapter 3) and re-entrant sub-
routines. A re-entrant subroutine is one which can be interrupted
by one program and then called by another program. Once the
second call has been completed, the interrupted subroutine is
restarted where it left off. Since a subroutine usually changes the
contents of the various registers, it is necessary to save all register
contents before starting another run of the same subroutine. The
Push and Pop instructions for various registers give this ability.

In addition to the stack architectures described above, several
other methods have been used to save the program counter
contents when jumping to a subroutine. One approach is to use
multiple program counters and simply switch from one program
counter to another when a subroutine call is made: this method
gives a very fast change over. Another method is to exchange the
program counter contents with the contents of a general-purpose
register. Where limited subroutine nesting is required this tech-
nique is adequate, but subroutine nesting to several levels usually
has to be done by means of software and this slows down the

overall program flow.

Memory Addressing ‘ 47
MULTIPLE ADDRESS MACHINES

To date the text has concentrated on machines where each
addressing instruction specified one data address: where two
operands are required, as in an add instruction, the second

operand is provided by the accumulator. More general instructions
would be of the type:

(i) Add contents of address A to contents of address B and
place results at address C

or

(ii)) Add contents of address A to contents of address B and
place results at address B.

Type (i) is for a 3-address machine and is only found in very large
computers. Type (ii) is for a 2-address machine. Instructions like
this are much more powerful than those for single-address machines
discussed so far, but in order to specify more than one address
more bits are needed in the instruction, and so the amount of
program storage for each instruction increases. Of course the
addresses do not have to be directly addressed and, in fact,
indirect addressing via registers is often preferable. This gives a
significant reduction in instruction size and complexity. A
machine operating in the 2-address mode might typically have
8 general-purpose registers. An add instruction could take the
form:

Add contents of address specified by register 1 to contents of
address specified by register 2 and place result at address
specified by register 2 and increment register 1.

Such an instruction uses indirect addressing via registers for both
addresses with autoincrement applied to register 1.

Multiple-address machines are of particular advantage in applica-
tions that process large amounts of data: the advantage is less
pronounced where the emphasis is on real-time data handling.

SUMMARY

This chapter has attempted to describe the types of instruction

48 Microprocessor Systems Handbook

usually used with microprocessors. Because microprocessors are
small machines with a restricted number of pin connections,
certain economies have to be made and various techniques are
employed so as to obtain maximum computing power within
these constraints. Inevitably different microprocessors use different
instructions and architectures to achieve their goal. A micro-
processor intended for “number crunching” applications such as
intelligent calculators, would place emphasis on sophisticated
addressing modes, whereas a device intended for, say, domestic
control purposes, like an automatic washing machine, would be
more concerned with obtaining a low-cost product with easy
input-output facilities. The microprocessor designer chooses the
best compromise compatible with his terms of reference, and

consequently, no two microprocessors have identical instruction
sets.

