Index

A
AC CMR vs. frequency, table, 5-20
AC input coupling, 5-2
AD620:
 closed-loop gain vs. frequency, 3-4
 CMR vs. frequency, 3-4
 for EKG monitor transducer, 6-23
 gain nonlinearity, 3-5
 for Hall effect magnetic transducer, 6-23
 industry standard, 3-2, 3-3
 input circuit, 5-6
 for load cell transducer, 6-23
 low power in-amp, 6-20
 monolithic in-amp, 5-10
 for photodiode sensor transducer, 6-23
 pin configuration, 3-3
 for RTD transducer, 6-23
 simplified schematic, 3-4
 small signal pulse response, 3-5
 for thermistor transducer, 6-23
 for thermocouple transducer, 6-23
AD620 series:
 input circuit diagram, 5-6
 RFI circuit, 5-15
AD621:
 closed-loop gain vs. frequency, 3-7
 CMR vs. frequency, 3-7
 for EKG monitor transducer, 6-23
 gain nonlinearity, 3-7
 greater accuracy than AD620, 3-6
 for Hall effect magnetic transducer, 6-23
 for load cell transducer, 6-23
 monolithic in-amp, 5-11
 for photodiode sensor transducer, 6-23
 for RTD transducer, 6-23
 simplified schematic, 3-6
 small signal pulse response, 3-7
 for thermistor transducer, 6-23
 for thermocouple transducer, 6-23
AD622:
 for Hall effect magnetic transducer, 6-23
 low cost:
 closed-loop gain vs. frequency, 3-5, 3-6
 CMR vs. frequency, 3-5
 gain nonlinearity, 3-5
 for photodiode sensor transducer, 6-23
AD623:
 3-op amp circuit basis, 3-17
 closed-loop gain vs. frequency, 3-18
 CMR vs. frequency, 3-18
 composite:
 circuits, 6-4, 5
 CMR, 6-4
 driving ADC, circuit, 6-5
 for EKG monitor transducer, 6-23
 gain nonlinearity, 3-18
 for Hall effect magnetic transducer, 6-23
 input architecture, 5-6
 input circuit, 5-6
 for photodiode sensor transducer, 6-23
 rail-to-rail, 5-1
 RFI filter, 5-16
 RFI suppression circuit, 5-16
 for RTD transducer, 6-23
 simplified schematic, 3-17
 single-supply data circuit, 6-20
 small signal pulse response, 3-18
 for thermistor transducer, 6-23
 for thermocouple transducer, 6-23
AD626:
 for current sense (shunt) transducer, 6-23
 differential amplifier:
 single- or dual-supply, 4-7, 4-8
 CMR ratio, 4-8
 gains, 4-8
 signal pulse response, 4-8
 simplified schematic, 4-8
 for level sensor transducer, 6-23
AD627:
 classic bridge circuit, 6-19
 closed-loop gain vs. frequency, 3-20
 CMR vs. frequency, 2-6, 3-19
 feedback loops, 3-19
 gain, equation, 3-19
 gain nonlinearity, 3-20
 for Hall effect magnetic transducer, 6-23
 input circuit, 5-6
 low power, 6-25, 6-26
 monolithic 2-op amp in-amp, 2-5, 2-6
 for photodiode sensor transducer, 6-23
 RFI suppression circuit, 5-15
 for RTD transducer, 6-23
 simplified schematic, 3-19
 small signal pulse response, 3-20
 for thermistor transducer, 6-23
 for thermocouple transducer, 6-23
AD628:
 bandwidth gain block, 6-11
 block diagram, 1-5
 for current sense (shunt) transducer, 6-23
 differential amplifier, 6-13
 differential scaling amplifier, 6-6, 6-7
 high common-mode voltage difference amplifier, 4-6, 4-7
 circuit connections, 4-6
 CMRR vs. frequency, 4-7
 gain adjustment, 4-6, 4-7
 large signal frequency response, 4-7
simplified schematic, 4-6
small signal frequency response, 4-7
for level sensor transducer, 6-23
low gain, circuit, 6-7
precision gain block:
circuit, 6-6
gain of –10, circuit, 6-10
gain of +1, circuit, 6-11
gain of +10, circuit, 6-9
gain of +11, circuit, 6-10
high CMR, 6-6
no external components, 6-9
AD629:
for current sense (shunt) transducer, 6-23
difference amplifier, 1-5, 1-8, 6-16
high common-mode range, 6-12
high common-mode voltage, 6-17
high voltage measurement, 6-2
circuit, 6-2
for level sensor transducer, 6-23
monolithic difference amplifier, 2-1
for thermistor transducer, 6-23
unity-gain difference amplifier, 4-8
CMR vs. frequency, 4-9
connection diagram, 4-9
AD822, unity-gain inverter, 6-20
AD8130:
high frequency differential receiver/amplifier:
block diagram, 4-9
CMR vs. frequency, 4-9, 4-10
frequency response vs. supply voltage, 4-10
summing circuit:
frequency response, 6-16
performance photo, 6-16
AD8200 family, current sensing difference amplifier, 4-2
AD8202:
for current sense (shunt) transducer, 6-23
current sensing difference amplifier:
connection diagram, 4-2
simplified schematic, 4-2
two-stage system architecture, 4-3
high-side current measurement, 6-18
AD8203:
current sensing difference amplifier:
gain of 14, 4-2
two-stage system architecture, 4-3
AD8205:
for current sense (shunt) transducer, 6-23
current sensing difference amplifier, gain of 50, 4-2
difference amplifier:
single-supply, 4-3, 4-4
CMRR, 4-3
simplified schematic, 4-3
AD8206, difference amplifier, gain and power consumption, 4-4
AD8210:
current shunt amplifier, high common-mode input, 4-1
difference amplifier:
CMRR vs. frequency and temperature, 4-5
current shunt monitor IC, block diagram, 4-4
motor control application, 6-19
AD8220:
CMRR vs. frequency, 3-8
connection diagram, 3-8
for EKG monitor transducer, 6-23
FET input, gain-programmable, 3-8
JFET in-amp, input circuit, 5-7
JFET input circuit, 5-7
for photodiode sensor transducer, 6-23
AD8221:
bridge circuit, 1-1
characteristics, 3-2 to 3-3
closed-loop gain vs. frequency, 3-3
CMRR, A-1
CMR vs. frequency, 3-3, A-3
CMRR specification, 3-3
dynamic response, A-2
for EKG monitor transducer, 6-23
filter circuits, 5-13, 5-16, 5-19
gain, A-2
gain bandwidth, 3-2
gain equation, A-5
for Hall effect magnetic transducer, 6-23
input, A-2
input circuit, 5-5
input current, A-1
for load cell transducer, 6-23
low noise device, 5-5
noise, A-1
output, A-2
for photodiode sensor transducer, 6-23
pinout, 3-3
power supply, A-2
reference input, A-2
for RTD transducer, 6-23
simplified schematic, 3-2
specifications, A-1
table, A-1 to A-2
in strain gage, high CMRR, 6-5
temperature range, A-2
for thermistor transducer, 6-23
for thermocouple transducer, 6-23
voltage offset, A-1
AD8222:
dual in-amp:
connection diagram, 3-3
differential output performance, 3-3
for EKG monitor transducer, 6-23
for Hall effect magnetic transducer, 6-23
input circuit, 5-5
for load cell transducer, 6-23
for photodiode sensor transducer, 6-23
for thermocouple transducer, 6-23
true differential output in-amp, 6-1
AD8225:
 for EKG monitor transducer, 6-23
 input circuit, 5-5
 for level sensor transducer, 6-23
 for load cell transducer, 6-23
 monolithic, 3-16, 5-11
 CMR vs. frequency, 3-16
 gain nonlinearity, 3-16
 simplified schematic, 3-16
 RFI filter circuit, 5-16
 for RTD transducer, 6-23
 for thermistor transducer, 6-23

AD8230:
 auto-zeroing, 3-8 to 3-12
 CMR, 3-12
 connection diagram, 3-8
 gain setting, 3-12
 gain vs. frequency, 3-12
 internal workings, 3-9 to 3-12
 signal sampling rate, 3-9
 for Hall effect magnetic transducer, 6-23
 input circuit, 5-6
 for load cell transducer, 6-23
 for RTD transducer, 6-23
 for thermocouple transducer, 6-23
 zero-drift, input circuitry, 5-6

AD8250:
 gain-programmable, 3-20
 data acquisition, 3-20
 medical applications, 3-20
 schematic, 3-20
 for Hall effect magnetic transducer, 6-23
 input circuit, 5-7
 for RTD transducer, 6-23

AD8251:
 gain-programmable, 3-20
 data acquisition, 3-20
 medical applications, 3-20
 schematic, 3-20
 for Hall effect magnetic transducer, 6-23
 for RTD transducer, 6-23

AD8553:
 auto-zeroing:
 connection diagram, 3-13
 current-mode, 3-12, 3-13
 schematic, 3-13
 chopper, 3-13
 for EKG monitor transducer, 6-23
 for level sensor transducer, 6-23
 precision current source:
 circuit, 6-3
 integrator, 6-3
 low frequency differential output, 6-3
 zero-drift, input circuit, 5-7

AD8555:
 auto-zeroing/chopper, 3-13
 closed-loop gain vs. frequency, 3-15

CMRR vs. frequency, 3-15
schematic, 3-14
for load cell transducer, 6-23
for photodiode sensor transducer, 6-23
for RTD transducer, 6-23
RFI filter circuit, 5-17
sensor amplifier, 5-17
zero-drift:
 input circuit, 5-8
 sensor applications, 5-8
 zero-drift, sensor signal amplifier, 3-13 to 3-15
 connection diagram, 3-13

AD8556:
 for load cell transducer, 6-23
 on-chip EMI/RFI filter:
 block diagram, 5-17
 common-mode RFI/EMI, test circuit, 5-18
 dc input offset values, 5-18
 dc offset shift, 5-18
 differential-mode EMI/RFI, test circuit, 5-18
 for RTD transducer, 6-23
 input circuit, 5-8
 sensor applications, 5-8
 zero-drift sensor signal amplifier, 3-13
 block diagram, 3-15
 EMI/RFI filters, 3-15

ADC:
 high level interface, 6-13, 6-14
 interface circuit:
 single-supply, 6-13-6-14
 common-mode input, 6-14
 SNR, 6-14
 matching in-amp circuits, 7-1 to 7-8
 recommended for use with in-amps, tables, 7-2 to 7-6
 requirements, calculation, 7-1
 system resolution vs. converter resolution and
 preamp gain, table, 7-1

ADuC812, 12-bit ADC, embedded microcontroller, 6-26

AMP03:
 differential amplifier, 7-8
 monolithic unity-gain difference amplifier:
 closed-loop gain vs. frequency, 4-5
 CMRR vs. frequency, 4-5
 functional block diagram, 4-5
 high CMRR vs. frequency and temperature, 4-5
 small signal pulse response, 4-6

Auto-zeroing in-amp, 3-8 to 3-15

B
 Bandwidth, 1-8, 1-9
 Bessel filter, values, 5-22
 Bipolar bridge, low dropout, driver, 6-20
 Bridge:
 applications, 6-19, 6-20
 using ac excitation, 6-5
 Bridge circuit, 5-13
 Butterworth filter, values, 5-22
Cable, shielded, 6-24
Cable termination, 5-5
CCD imaging, 7-7
imaging equipment, 1-6
Chebychev filter, values, 5-22
Chopper in-amp, 3-13
Circuit:
 bridge:
 3-op amp CMR, 1-4
 3-op amp in-amp, CMR, 1-4
 bridge preamp, 1-1
Classic bridge circuit, 6-19
CMR, 1-1 to 1-5, 1-7, A-3
 AC, A-3
 in-amp, A-3
 common-mode voltage, 1-2
dc values, 1-3
 in-amp, 1-7, A-3
 op amp vs. in-amp, 1-3, 1-4
 signal amplification, 1-1 to 1-3
 trimming, 5-23
CMRR, A-3
 circuit, degradation, 2-1
 definition, 1-2
 equation, 1-2
 in-amp, A-3
 increase proportional to gain, 2-3
CMV, 1-2
Common-mode filter:
 conventional, 5-19
 with X2Y capacitor, 5-19
Common-mode gain, 1-2
Common-mode rejection, see CMR
Common-mode rejection ratio, see CMRR
Common-mode RF choke, for in-amp RFI filter, 5-20
Common-mode voltage, 1-1, 1-2
 in op amp circuit, 1-3
Composite in-amp:
 circuit, 6-4
 CMR, 6-4
 CMR at gain of 2, 6-4
 CMR at gain of 100, 6-4
Composite in-amp circuit:
 high frequency CMR, 6-3 to 6-5
 at various gains, circuits, 6-4
Controlling, 1-6
 in-amp, 1-6
Conversion, differential to single-ended, 1-9
Current sense transducer, characteristics, table, 6-23
Current sensor interface, 6-24, 6-25
Current transmitter, circuit, 6-12
D
Data acquisition, 1-5
DC return path, diagrams, 5-2
Decoupling, 5-1
Difference amp:
 high voltage measurement, 6-1 to 6-5
 monolithic, 4-1 to 4-10
 table, 4-1
Difference amplifier, 6-16
 applications circuit, 6-1 to 6-26
 block diagram, 1-5
 circuit, 1-5
 IC, 1-5
 nonlinearity vs. voltage, 6-17
 selection table, B-1
 use, 1-5, 1-6
Differential input circuit:
 single-pole low-pass filter, 6-6
 2-pole low-pass filter, 6-8
Differential output, circuit, 6-1
Differential signal voltage, 1-1
Digi-Key part # PS1H102GND, 5-14
Diode, leakage, 5-9
E
ECG:
 monitor transducer, characteristics, table, 6-23
 schematic, 6-22
EKG, see ECG
Electrostatic discharge, see ESD
Error, calculations, 5-12
ESD:
 input protection, 5-5
 overload protection, 5-7
External CMR, performance, 5-23
External gain resistor, thermal gradient, error source, 5-11
External protection diodes, 5-8
F
Fast Schottky barrier rectifier, 5-9
Filter:
 common-mode, using X2Y capacitors, 5-19
 common-mode bandwidth, 5-14
 component values, corner frequencies, tables, 6-9
 differential:
 bandwidths, 5-13, 5-14
 basic circuit, 5-13
 low-pass, to improve SNR, 5-21, 5-22
 RFI, 5-13, 5-16 to 5-18
 2-pole low-pass, frequency response, 6-8
Float sensor transducer, characteristics, table, 6-23
G
Gain, 1-8
 buffered subtractor circuit, 2-2
Gain drift, minimizing, 5-9
Gain error, A-5, A-6
 input signal level differences, 5-10
Gain range, A-5
Gain resistor:
 error source, 5-11
 required value, table, 3-18
Gain vs. temperature, A-6
Hall effect magnetic transducer, characteristics, table, 6-23
High frequency differential receiver/amplifier, 4-9, 4-10
High-side current sense, 6-19
High speed data acquisition, 7-7
High speed signal conditioning, 1-6
High voltage:
 measurement:
 methods, circuits, 6-1
 new system:
 circuit, 6-2
 cross plot, 6-2
 nonlinearity error, 6-2
 performance, 6-2
High voltage monitor, circuit, 6-16

Impedance, high input, 1-8
In-amp:
 2-op amp, 2-4 to 2-6
 3-op amp, 2-2 to 2-4
 CMR trim circuit, 5-23
 feedback resistors, design, 5-10
 3-op amp bridge circuit, CMR, 1-4
 ac-coupled circuit, 5-2
 ac input coupling, recommended component values, table, 5-4
 advantages, 1-7
 application, 5-1 to 5-23
 applications circuit, 6-1 to 6-26
 auto-zeroing, 3-8 to 3-15
 basics, 1-1 to 1-9
 bipolar input stages, higher CMR, 2-3
 buffers ADC, dc correction, 7-7
 characteristics, 1-7 to 1-9
 circuit:
 CMR, 6-4
 matched to ADCs, 7-1 to 7-8
 CMR, 1-7
 composite, circuit, 6-4
 dc accuracy, design issues, 5-9, 5-10
 definition, 1-1
 differential output circuit, 6-1
 differential vs. common-mode input signals, circuit, 1-6
 dual-supply operation, 5-1
 external protection diodes, 5-9
 external resistor, 1-7
 fixed gain, dc performance, 5-11
 functional block diagram, 1-6
 high performance, 3-2 to 3-5
 high quality, definition, 1-7 to 1-9
 high speed, high performance circuit, 7-8
 input characteristics, 1-2
 input ground return, 5-2, 5-3
 input protection basics, 5-5 to 5-9
 internal characteristics, 2-1 to 2-6
 low noise, 1-8
 low power, single-supply, 3-19, 3-20
 low power, output buffering, 6-25
 micropower, RFI circuit, 5-15
 monolithic, 3-1 to 3-20
 advantages, 3-1
 design, 3-2 to 3-8
 for single-supply operation, 3-17, 3-18
 monolithic difference, 4-1 to 4-10
 multiplexed, 7-7
 operating gains, table, 2-4
 output, 1-7
 buffer, for low impedance, 5-3
 power supply bypassing, diagram, 5-1
 rail-to-rail output swing, diagram, 5-1
 reference input:
 CMR error, 5-4
 driving, 5-4
 RFI rejection measurement, circuit, 5-21
 selection table, B-1, B-2
 series protection resistor values, table, 5-8
 single-supply:
 input and output swing, 5-1
 key specifications, A-6
 single-supply operation, 5-1
 specifications, A-1 to A-6
 stability, 5-1
 summary, table, 3-1
 transducer interface application, 6-21
 uses, 1-5, 1-6
 vs. op amp, 3-1
 differences, 1-1 to 1-4
 Wheatstone bridge, 6-19
In-amp circuit, input buffers, CMR, 1-4
Input and output voltage swing, A-6
Input bias, 1-8, A-4
Input noise, 5-12
International rectifier SD101 series, 5-9

J-type thermocouple, 6-26
Johnson Dielectrics, X2Y capacitor, 5-19
Johnson noise, 5-5

Level sensor transducer, characteristics, table, 6-23
Linearity, best straight line method, A-6
Load cell transducer, characteristics, table, 6-23
Low-pass filter:
 4-pole:
 recommended component values, table, 5-22
 values, 5-22

Medical ECG monitor circuit, 6-22
Medical instrumentation, 1-6
Micropower in-amp, RFI circuit, 5-15
Monitoring, 1-6
Monolithic difference in-amp, 4-1 to 4-10
applications, 4-1
N
Noise, 1-9
 ground, 6-12, 6-13
 low, 1-8
Noise error, 5-12
Nonlinearity, A-6
 low, 1-8
Nyquist criteria, 7-8

O
Offset current, A-4
Offset current error, 1-8
Offset error, 5-12
Op amp:
 CMR, 1-3
 in-amp difference amplifier circuit, block diagram, 2-1
 subtractor, as in-amp, 2-1
 vs. in-amp, 1-1 to 1-5
OP27, transfer function, 6-13
OP177, integrator, 6-16
Operating voltage range, A-4
Output buffer, for low power in-amp, 6-25
Output swing, 1-9
Overload:
 steady state, 5-5
 transient, 5-5

P
Photodiode sensor transducer, characteristics, table, 6-23
PID loop, integrator, 6-3
Power, 1-9
Power controlling, 1-6
Power supply bypassing, 5-1
Power supply decoupling, 5-1
Power vs. bandwidth, 1-9
Precision 48 V bus monitor:
 circuit, 6-17
 output vs. input linearity, 6-18
 remote voltage measurement, circuit, 6-17
 temperature drift, 6-18
Precision voltage-to-current converter, 6-24, 6-25
Proportional integral differential, see: PID
Pulse Engineering, common-mode choke, 5-20

Q
Quiescent supply current, A-4, A-5

R
Rail-to-rail input, 1-9
RC coupling component, selecting and matching, 5-3, 5-4
Receiver circuit, 6-26
Referred to input, see RTI
Referred to output, see RTO
Remote load sensing, circuit, 6-24
Resistance temperature detector transducer,
 characteristics, table, 6-23

Resistor values:
 for in-amps, table, 5-8
 for various gains, table, 4-7

RFI:
 circuit, diagram, 5-13
 input filter component values, selection, 5-14
 rectification error, reducing, 5-12 to 5-20
RFI attenuation, X2Y vs. conventional common-mode filter, 5-19
RFI filter, 5-16 to 5-18
 bandwidths, 5-13
 design, 5-12 to 5-20
 for in-amp, 5-17
RFI rectification:
 error prevention, filter circuit, 5-13
 error reduction, in-amp circuit, 5-12
RFI suppression, using common-mode RF choke, 5-20
RFI testing, 5-21
RTI, in-amp, A-4
RTI error, 5-11, 5-12
RTO, in-amp, A-4
RTO error, 5-11, 5-12

S
Schottky diode, 5-8, 5-9
Settling time, 5-23
 in-amp, A-5
Signal-to-noise ratio, see SNR
Signal voltage, in op amp circuit, 1-3
Silicon diode, 5-8
Single-supply bridge configuration transducer,
 characteristics, table, 6-23
Single-supply receiver, circuit, 6-26
Slew rate, in-amp, 1-9
Software programming, in-amp, 1-6
Specifications, in-amp, A-3
SSM2019, audio preamplifier, 6-26
SSM2141, differential line receiver, 6-26
SSM2143, differential line receiver, 6-26
Strain gage, measurement, with AC excitation, 6-5
Strain gage bridge transducer, characteristics, table, 6-23
Subtractor amp, 4-1 to 4-10
Subtractor circuit:
 buffered, diagram, 2-2
 input buffering, diagram, 2-1
Summing amplifier:
 circuit, 6-15
 high input impedance, 6-15
 high speed noninverting, 6-15 to 6-17
Switch:
 high-side, 6-19
 low-side, 6-18
Thermal EMF, 5-10
Thermal gradient, error source, 5-11
Thermal sensor transducer, characteristics, table, 6-23
Thermistor transducer, characteristics, table, 6-23
Thermocouple amplifier, single-supply in-amp, 6-26
Thermocouple effect, 5-10
Thermocouple transducer, characteristics, table, 6-23
3-op amp in-amp, 2-2, 2-3
 circuit, 2-2
 CMR trim circuit, 5-23
 design considerations, 2-3, 2-4
 feedback resistors, gain error, circuit, 5-10
 reduced CMV range, circuit, 2-3
Total error, A-4
Total noise, 5-12
Total offset error, A-4
Transducer, characteristics, table, 6-23
Transfer function, nonlinearity, A-6
Transformer-coupled input, dc return path, diagram, 5-2
Transient, overload protection, 5-9
2-op amp in-amp:
 architecture, 2-5
 circuit, 2-4
 common-mode design, 2-5, 2-6
 limitations:
 high CMR, 2-6
 output swing, 2-5
 transfer function, 2-4
Video applications, 1-6
Voltage:
 common mode, 1-1
 differential signal, 1-1
 offset, 1-7
Voltage drift, lowest offset, design, 5-9, 5-10
Voltage offset, A-3, A-4
Voltage offset, A-3, A-4
Voltage-to-current converter, 6-25
Weight measurement transducer, characteristics, table, 6-23
X2Y capacitor, 5-19
 electrostatic model, 5-19
Zener diode, 6-17
Zero-drift in-amp, 7-5, 7-6