# TABLE OF CONTENTS

**CHAPTER I—IN-AMP BASICS** ................................................................. 1-1  
INTRODUCTION .................................................................................... 1-1  
IN-AMPS vs. OP AMPS: WHAT ARE THE DIFFERENCES? ............... 1-1  
   Signal Amplification and Common-Mode Rejection .................. 1-1  
   Common-Mode Rejection: Op Amp vs. In-Amp ...................... 1-3  
DIFFERENCE AMPLIFIERS ................................................................. 1-5  
WHERE ARE IN-AMPS AND DIFFERENCE AMPS USED? .............. 1-5  
   Data Acquisition ........................................................................ 1-5  
   Medical Instrumentation .......................................................... 1-6  
   Monitor and Control Electronics .............................................. 1-6  
   Software-Programmable Applications ..................................... 1-6  
   Audio Applications ................................................................... 1-6  
   High Speed Signal Conditioning ............................................ 1-6  
   Video Applications ................................................................... 1-6  
   Power Control Applications ................................................... 1-6  
IN-AMPS: AN EXTERNAL VIEW ....................................................... 1-6  
WHAT OTHER PROPERTIES DEFINE A HIGH QUALITY IN-AMP? ... 1-7  
   High AC (and DC) Common-Mode Rejection ....................... 1-7  
   Low Offset Voltage and Offset Voltage Drift ....................... 1-7  
   A Matched, High Input Impedance ...................................... 1-8  
   Low Input Bias and Offset Current Errors ......................... 1-8  
   Low Noise .............................................................................. 1-8  
   Low Nonlinearity .................................................................... 1-8  
   Simple Gain Selection ........................................................... 1-8  
   Adequate Bandwidth ............................................................... 1-8  
   Differential to Single-Ended Conversion ............................ 1-9  
   Rail-to-Rail Input and Output Swing ..................................... 1-9  
   Power vs. Bandwidth, Slew Rate, and Noise ....................... 1-9  

**CHAPTER II—INSIDE AN INSTRUMENTATION AMPLIFIER** .......... 2-1  
   A Simple Op Amp Subtractor Provides an In-Amp Function ........ 2-1  
   Improving the Simple Subtractor with Input Buffering .......... 2-1  
   The 3-Op Amp In-Amp .............................................................. 2-2  
   3-Op Amp In-Amp Design Considerations ............................ 2-3  
   The Basic 2-Op Amp Instrumentation Amplifier .................. 2-4  
   2-Op Amp In-Amps—Common-Mode Design Considerations for Single-Supply Operation ....................... 2-5  

**CHAPTER III—MONOLITHIC INSTRUMENTATION AMPLIFIERS** .... 3-1  
ADVANTAGES OVER OP AMP IN-AMPS ........................................ 3-1  
   Which to Use—an In-Amp or a Diff Amp? ............................. 3-1  
MONOLITHIC IN-AMP DESIGN—THE INSIDE STORY .................... 3-2  
   High Performance In-Amps ................................................... 3-2  
   Low Cost In-Amps ................................................................. 3-5  
   Pin-Programmable, Precise Gain In-Amps ......................... 3-6  
   Auto-Zeroing Instrumentation Amplifiers ......................... 3-8  
   Fixed Gain (Low Drift) In-Amps ......................................... 3-16  
   Monolithic In-Amps Optimized for Single-Supply Operation .... 3-17  
   Low Power, Single-Supply In-Amps .................................... 3-19  
   Gain-Programmable In-Amps ............................................... 3-20  

**CHAPTER IV—MONOLITHIC DIFFERENCE AMPLIFIERS** ............... 4-1  
Difference (Subtractor) Amplifier Products .................................. 4-1  
   AD8205 Difference Amplifier .............................................. 4-3
CHAPTER V—APPLYING IN-AMPS EFFECTIVELY ............................................. 5-1
Dual-Supply Operation .................................................................................... 5-1
Single-Supply Operation ............................................................................... 5-1
The Need for True R-R Devices in Low Voltage, Single-Supply IA Circuits .... 5-1
Power Supply Bypassing, Decoupling, and Stability Issues ......................... 5-1
THE IMPORTANCE OF AN INPUT GROUND RETURN ..................................... 5-2
Providing Adequate Input and Output Swing (“Headroom”) When AC Coupling a
Single-Supply In-Amp .................................................................................. 5-3
Selecting and Matching RC Coupling Components ...................................... 5-3
Properly Driving an In-Amp’s Reference Input ............................................. 5-4
CABLE TERMINATION .................................................................................. 5-5
INPUT PROTECTION BASICS FOR ADI IN-AMPS ......................................... 5-5
Input Protection from ESD and DC Overload .............................................. 5-5
Adding External Protection Diodes .............................................................. 5-8
ESD and Transient Overload Protection....................................................... 5-9
DESIGN ISSUES AFFECTING DC ACCURACY ............................................. 5-9
Designing for the Lowest Possible Offset Voltage Drift .............................. 5-9
Designing for the Lowest Possible Gain Drift ............................................ 5-9
Practical Solutions ...................................................................................... 5-11
Option 1: Use a Better Quality Gain Resistor ........................................... 5-11
Option 2: Use a Fixed-Gain In-Amp ............................................................ 5-11
RFI AND RTO ERRORS .............................................................................. 5-11
Offset Error .................................................................................................. 5-12
Noise Errors ............................................................................................... 5-12
REDUCING RFI RECTIFICATION ERRORS IN IN-AMP CIRCUITS ............... 5-12
Designing Practical RFI Filters ................................................................. 5-12
Selecting RFI Input Filter Component Values Using a Cookbook Approach .... 5-14
Specific Design Examples .......................................................................... 5-15
An RFI Circuit for AD620 Series In-Amps .................................................. 5-15
An RFI Circuit for Micropower In-Amps ...................................................... 5-15
An RFI Filter for the AD623 In-Amp ............................................................ 5-16
AD8225 RFI Filter Circuit ........................................................................... 5-16
AN RFI FILTER FOR THE AD8555 SENSOR AMPLIFIER ......................... 5-17
In-Amps with On-Chip EMI/RFI Filtering .................................................... 5-17
Common-Mode Filters Using X2Y Capacitors ........................................... 5-19
Using Common-Mode RF Chokes for In-Amp RFI Filters ......................... 5-20
RFI TESTING .............................................................................................. 5-21
USING LOW-PASS FILTERING TO IMPROVE SIGNAL-TO-NOISE RATIO ... 5-21
EXTERNAL CMR AND SETTLING TIME ADJUSTMENTS ........................... 5-23
CHAPTER VI—IN-AMP AND DIFF AMP APPLICATIONS CIRCUITS .......... 6-1
A True Differential Output In-Amp Circuit .................................................. 6-1
DIFFERENCE AMPLIFIER MEASURES HIGH VOLTAGES ......................... 6-1
Precision Current Source ........................................................................... 6-3
Integrator for PID Loop ................................................................................ 6-3
Composite In-Amp Circuit Has Excellent High Frequency CMR ................. 6-3
STRAIN GAGE MEASUREMENT USING AN AC EXCITATION ................... 6-5
APPLICATIONS OF THE AD628 PRECISION GAIN BLOCK .................... 6-6
Why Use a Gain Block IC? ......................................................................... 6-6
Standard Differential Input ADC Buffer Circuit with Single-Pole LP Filter ... 6-6
Changing the Output Scale Factor ............................................................. 6-7
BIBLIOGRAPHY/FURTHER READING


ACKNOWLEDGMENTS

We gratefully acknowledge the support and assistance of the following: Moshe Gerstenhaber, Scott Wurcer, Stephen Lee, Bright Gao, Scott Pavlik, Henri Sino, Alasdair Alexander, Chau Tran, Andrew Tang, Tom Botker, Jim Bundock, Sam Weinstein, Chuck Whiting, Matt Duff, Eamon Nash, Walt Kester, Alain Guery, Chris Augusta, Claire Croke, Nicola O’Byrne, James Staley, Ben Doubts, Padraig Cooney, Leslie Vaughan, Edie Kramer, and Lynne Hulme of Analog Devices. Also to David Anthony of X2Y Technology and Steven Weir of Weir Design Engineering, for the detailed applications information on applying X2Y products for RFI suppression.

And finally, a special thank you to Analog Devices’ Communications Services team, including John Galgay, Alex Wong, Terry Gildred, Kirsten Dickerson, and Kelley Moretta.

All brand or product names mentioned are trademarks or registered trademarks of their respective owners.

Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.