SUBJECT INDEX

ANALOG DEVICES' PARTS INDEX

STANDARD DEVICE PARTS INDEX
OP AMP APPLICATIONS
INDEX

SUBJECT INDEX

A
Aavid Thermal Technologies, Inc. general catalog, 7.108
Absorption, shielding, 7.116
ACCEL Technologies, Inc., 7.164
Accelerometer, 4.62
sensor, 4.3
Active feedback amplifier, constant current source, circuit, 6.179
Active inductor, design, 5.65
Actuator, sensor, 4.4
AD210:
key specifications and circuit, 2.45
three-port isolator, 2.44-46
AD210 Precision, Wide Bandwidth 3-Port Isolation Amplifier, 2.51
AD215 120kHz Bandwidth, Low Distortion, Isolation Amplifier, 2.51
AD215:
key specifications and block diagram, 2.47
low distortion two-port high speed isolation amplifier, 2.47
AD260 and AD261 High Speed Logic Isolators, 2.51
AD260/AD261:
digital isolator, key specifications, 2.50
digital isolator family, 2.49-50
one-channel schematic, 2.49
transformer output voltage, 2.50
AD275 Dual Bipolar/JFET, Audio Operational Amplifier, 3.53
AD503, two-chip hybrid IC op amp, schematic, H.60
AD506, two-chip hybrid IC op amp, schematic, H.60
AD506L: Economical Low-Drift FET-Input, H.69
AD508J, K, L IC Chopperless Low Drift Operational Amplifier Preliminary Data Sheet, H.68
AD509: Fast Op Amp 2µs to 0.01%, H.70
AD515, hybrid IC electrometer amplifier, H.63
AD526:
key specifications and schematic, 2.34
programmable precision non-inverting op amp gain stage, 2.34
AD526 Programmable Gain Instrumentation Amplifier, 2.41
AD526 Software Programmable Gain Amplifier, 2.41
AD545, hybrid IC electrometer amplifier, H.63
AD549:
electrometer, 1.58
JFET input electrometer grade op amp, with TO-99 package, 4.43
monolithic IC electrometer op amp, H.64
schematic, H.64
AD549K, JFET input electrometer grade op amp, 4.42
AD549KH, TO-99 package, 4.47
AD588, precision zener diode reference, 4.34
AD590, TO52 package, temperature transducer, 4.86
AD590 Two-Terminal IC Temperature Transducer, 4.92
AD592, TO92 package, temperature transducer, 4.86-87
AD594, single-chip in-amp, thermocouple cold-junction compensator, 4.77-78
AD595, single-chip in-amp, thermocouple cold-junction compensator, 4.77-78
AD600/602:
dual X-AMP, diagram, 6.154
gain as function of control voltage, plots, 6.155
AD620:
CMR as function of frequency, 2.19
gain-bandwidth pattern, 2.21
generalized external voltage protection, circuit, 7.88
in-amp, 4.33
bridge applications, 4.14
thin-film resistors, 7.87-89
monolithic IC in-amp, 2.12-15
preamp, 2.46
PSR as function of frequency, 2.19
schematic, 7.87
single-supply in-amp, 2.22-23
three op amp in-amp, schematic, 2.12-15
AD620 Low Cost, Low Power Instrumentation Amplifier, 2.29
AD620/AD822, single-supply composite in-amp, performance summary, 2.15
AD620B:
bridge amplifier DC error budget, 2.21
specifications, 2.21, 2.23
AD621:
pin-programmable-gain in-amp, 2.17
specifications, 2.23
AD622, specifications, 2.23
AD623:
in-amp
in bridge applications, 4.14
single-supply, 6.186

Index 1
OP AMP APPLICATIONS

architecture and key specifications, 2.16
AD623 Single Supply, Rail-to-Rail Low Cost Instrumentation Amplifier, 2.29
AD624C, monolithic in-amp, 2.17
AD625, circuit, 2.39
AD626, differential amplifier, 2.23
AD627:
in-amp, in bridge applications, 4.14
key specifications, 2.11
single supply in-amp, architecture, 2.10
two op amp in-amp, circuit, 2.10
AD627 Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier, 2.29
AD629:
CMR, 2.6
high common-mode input voltage difference amplifier, 2.5
high voltage in-amp IC, 7.81-82
AD704:
quad op amp, H.54
super-beta input bipolar op amp, 1.35
AD705:
single op amp, H.54
super-beta input bipolar op amp, 1.35
AD706:
dual op amp, H.54
super-beta input bipolar op amp, 1.35
AD707, precision amplifier, 4.22
AD708:
dual op amp, H.57
dual precision op amp, in bridge circuit, 4.16
AD741, precision monolithic IC op amp, H.50-51
AD741J, K, L, S Lowest Cost High Accuracy IC Op Amp Data Sheet, H.67
AD743:
FET input op amp, for high speed photodiode preamps, 4.59
low noise BiFET op amp, 4.64-66
low noise JFET IC op amp, H.65
AD744, FET input op amp, for high speed photodiode preamps, 4.59
AD745:
FET input op amp, for high speed photodiode preamps, 4.59
low noise BiFET op amp, 4.63-66
low noise JFET IC op amp, H.65
AD768 16-Bit, 30 MSPS D/A Converter, 3.53
AD768, 16-bit BiCMOS DAC, 3.50
AD780, with SAR ADC, 3.44
AD795:
FET input op amp, for high speed photodiode preamps, 4.59
low bias current FET input op amp, 7.82-83
photodiode preamplifier
noise analysis, 4.52-53
noise gain, 4.51
single-supply op amp, in SOIC package, 4.46
SOIC package, 4.56
AD795JR:
JFET input electrometer grade op amp, 4.42-43
SOIC package, 4.44
op amp, low input current, 4.66
photodiode preamp, performance summary, 4.56
photodiode preamplifier offset error model, 4.48
summary, 4.49
AD795K, preamp with output filter and offset null option, 4.55
AD797:
controlled decompensation, 6.58
family of distortion curves, 6.59
low noise op amp, 3.45
recommended connections, circuits, 6.58
THD versus frequency, plots, 6.59
AD797/ADG412 PGA, performance summary, 2.36
AD810, video op amp, disable mode, 6.124
AD811:
current feedback amplifier, 6.50
current feedback video op amp, 7.148
AD812, dual current feedback amplifier, 6.110
AD813:
triple amplifier, 6.110
triple current feedback op amp,
programmable gain video amplifier, circuit, 6.126
video op amp, disable mode, 6.124
AD815 High Output Current Differential Driver data sheet, 7.108
AD817:
internal capacitive load compensation, circuit, 6.88
unity gain inverter, 6.89
video op amp drive, 7.106
wideband in-amp, circuit, 6.184
AD818, op amp, in simple video line receiver, circuit, 6.115
AD820:
FET input op amp
guard techniques, 4.46
for high speed photodiode preamps, 4.59
single low-power op amp, H.65
single op amp, N-channel JFET input, 6.167
AD820B, JFET input electrometer grade op amp, 4.42

Index 2
AD820BN, DIP package, 4.45
AD822:
 dual low-power op amp, H.65
 dual op amp, N-channel JFET input, 6.167
 JFET-input dual rail-to-rail output op amp, 2.14
AD823:
 dual 16MHz op amp, N-channel JFET input, 1.40
 FET input op amp, for high speed photodiode preamps, 4.59
 photodiode preamp
dark current compensation, 4.60
equivalent circuit, 4.61
 schematic diagram, 1.41
AD825:
 high speed FET input op amp, 5.128-129, 5.131
 op amp integrator, circuit and plot, 6.180
AD828, dual op amp, 6.181
AD829:
 input voltage noise, 6.169
 input voltage noise spectral density, plot, 6.166
 wideband video amplifier, bipolar differential input, 1.34-35
AD830:
 active feedback amplifier, 6.179-181
 grounded capacitor integrator, circuit and plot, 6.180
AD830/AD8129/AD8130, active feedback amplifier, circuit, 6.117
AD843:
 FET input op amp, for high speed photodiode preamps, 4.59
 high-speed FET input op amp, 6.190
AD845:
 BiFET 16MHz op amp, circuit, 1.111
 FET input op amp, 6.73
 for high speed photodiode preamps, 4.59
AD846, current feedback op amp, diagram, 1.25
AD847, Bode plot, 5.111
AD847 family, folded cascaded simplified circuit, 1.110
AD1853, stereo DAC, 3.52
AD1853 Stereo, 24-Bit, 192 kHz, Multibit Sigma-Delta DAC, 3.53
AD76XX, single supply SAR ADC, 3.27
AD77XX family:
 ADC with on-chip PGA, 2.32, 2.40
 characteristics, 3.24
equivalent input circuit, 3.25
 high resolution ADCs, 4.80-81
 sigma-delta ADC
driving unbuffered, 3.25
 high resolution, 3.24-25
AD789X, single supply SAR ADC, 3.27
AD813X:
differential ADC driver, functional diagram and equivalent circuit, 3.37
differential op amp, 3.51
AD855X, chopper-stabilized op amp series, 1.32
AD860X, CMOS op amp family, 1.47
AD922X:
dual op amp, 3.37
 SFDR, transformer coupling, 3.36
AD976X:
 TxDAC, 3.48-49
 high speed output, model, 3.48
AD977X:
 TxDAC, 3.48-49
 high speed output, model, 3.48
AD7528, 8-bit dual MDAC, 5.128-129, 5.131
AD7730:
 24-bit sigma-delta ADC, 4.36
 sigma-delta high resolution measurement ADC, 4.23-24
 on-chip PGA, circuit, 2.40
AD7730 Bridge Transducer ADC, 4.25, 4.37
AD7776, 10-bit ADC, 2.26
AD7846, 16-bit converter, 2.36-37
AD7890-10, 12-bit 8-channel ADC, circuit, 3.27
AD8001:
current feedback op amp, bandwidth
 flatness versus feedback resistor value, plots, 6.99
 high speed current-feedback op amp, 7.161-162
 pulse response
 coaxial cable driver, 6.102, 6.104
direct driving uncontrolled loads, 6.105
 resistance versus load capacitance, plots, 6.86
 RF and Rg values, for DIP and SOIC packages, table, 6.99
AD8002, cross-coupled driver, frequency response, plots, 6.113
AD8004, current feedback op amp, sensitivity to inverting input capacitance, plots, 6.100
AD8010, video distribution amplifier, circuit, 6.107
AD8011 300 MHz, 1 mA Current Feedback Amplifier Data Sheet, 1.127
AD8011:
 CFB op amp, noise calculations, 6.151
 current feedback op amp
 frequency response, 1.115
 key specifications, 1.116
 noise figure, input conditions, 6.151
output noise analysis, 6.151
AD8013:
 2:1 video multiplexer, circuit, 6.125
 3:1 video multiplexer switches, circuit, 6.125
triple amplifier, 6.110
triple current feedback op amp, 6.124
video op amp, disable mode, 6.124
AD8016:
 20-lead PSOP3 package, 7.104-105
 diagram, 7.105
IC
 BATWING package, 7.104
 PSOP3 package, 7.104-105
AD8016 Low Power, High Output Current, xDSL
 Line Driver data sheet, 7.108
AD8016ARP, 20-lead PSOP3 package, 7.104
AD8017 Dual High Output Current, High Speed Amplifier data sheet, 7.108
AD8017AR:
 op amp
 8-pin SOIC packaging, 7.101
 maximum power dissipation, data sheet
 statement, 7.101
 thermal rating curves, 7.103
AD8018:
 xDSL upstream data line driver
circuit, 6.159
 key specifications, 6.160
AD8036:
 clamping amplifier, 6.171-172
 input versus output clamping, plot, 6.121
AD8036/AD8037, clamp amplifier, equivalent
circuit, 6.120
AD8036/AD8037 Applications, 6.187
AD8037:
 clamp amplifier, 6.122
 clamping amplifier, 6.171-173
 amplitude modulator, 6.174-175
circuit, 6.174
 as piecewise linear amplifier, 6.177-178
 inverting amplifier, gain of unity, 6.172
AD8039, settling time, plot, 1.71
AD8047, voltage feedback op amp, video line
driver, 6.106
AD8048:
 voltage feedback op amp
 in lowpass filter, 1.120
 video line driver, circuit, 6.106
AD8055, op amp, 3.49-50
AD8055/AD8056 Low Cost, 300 MHz Voltage
 Feedback Amplifiers, 3.53
AD8057:
 non-inverting input, 3.34
 op amp, thermal ratings, 7.106-107
AD8057/AD8058:
distortion versus output signal level,

 3.24
 high speed low distortion op amp, 3.22-24
 key specifications, 3.23
 distortion versus frequency plot, 3.23
AD8057/AD8058 Low Cost, High Performance
 Voltage Feedback, 325 MHz Amplifiers,
 3.41
AD8058:
 dual op amp, 3.37
 op amp, thermal ratings, 7.106-107
AD8074:
 triple buffer, 6.82
 triple video buffer, 6.98
 video op amp, disable mode, 6.124
AD8075:
 triple video buffer
 bandwidth, 1.75
 gain and gain flatness, plots, 6.98
 video op amp, disable mode, 6.124
AD8116, 16x16 buffered video crosspoint
 switch, diagram, 6.129
AD8129, SOIC packaging, 6.118
AD8130:
 common-mode rejection versus frequency,
 plots, 6.118
 high impedance input, 6.119
 in video cable-tap amplifier, circuit,
 6.119
AD8131 Low-Cost, High-Speed Differential
 Driver, 3.41
AD8132 Low-Cost, High-Speed Differential
 Amplifier, 3.41
AD8138:
 differential driver amplifier, circuits,
 6.114
 op amp, in driver circuit, 3.39
 SINAD and ENOB, 3.39
AD8138 Low Distortion Differential
 Amplifier, 3.41
AD8170, 2:1 video multiplexer, 6.128
AD8170/AD8174/AD8180/AD8182, bipolar
 video
 multiplexer, block diagram, 6.127
AD8183/AD8185, triple 2:1 video multiplexer,
 block diagram, 6.127
AD8323:
 CATV digitally controlled variable gain
 amplifier
 diagram, 6.157
 key specifications, 6.158
AD8350, spot noise figure and gain versus
 frequency, plots, 6.152
AD8531/AD8532/AD8534 CMOS rail-to-rail op
 amp, schematic, 1.46
AD8551:
 chopper-stabilized amplifier, 7.38
 chopper-stabilized op amp, 4.76
AD8551/AD8552/AD8554, chopper-stabilized amplifier, 4.22
AD8551/AD8552/AD8554 Zero-Drift, Single-Supply, Rail-to-Rail Input/Output
Operational Amplifiers Data Sheet, 1.102
AD8571/AD8572/AD8574, characteristics, 1.100
AD8571/AD8572/AD8574 Zero-Drift, Single-Supply, Rail-to-Rail Input/Output
Operational Amplifiers Data Sheet, 1.102
AD8601, single rail-to-rail CMOS op amp, 1.47
AD8602:
 CMOS op amp, with DigiTrim, 1.47
dual rail-to-rail CMOS op amp, 1.47
AD8604, quad rail-to-rail CMOS op amp, 1.47
AD8610, precision JFET op amp, 2.27
AD9002, 8-bit flash converter, with clamp amplifier, circuit, 6.122
AD9042:
 12-bit 41MSPS ADC, 3.28
 input structure, 3.28
AD9203 10-Bit, 40 MSPS, 3 V, 74mW A/D Converter, 3.41
AD9203:
 10-bit 40MSPS ADC, 3.37-38
 driver circuit, 3.39
 SINAD and ENOB, 3.39
AD9220:
 12-bit 10MSPS ADC, 3.16
 SINAD/ENOB plot, 3.16
AD9225:
 12-bit 25MSPS ADC, 3.12
 12-bit 25MSPS CMOS ADC, 3.31, 3.34-35
 DC coupled single-ended level shifter and driver, 3.34
 input transients, 3.35
 waveforms, 3.35
AD9620, closed-loop unity-gain monolithic buffer, 6.81
AD9630, closed-loop unity-gain monolithic buffer, 6.81
AD9632:
 op amp, noise calculations, 3.13
 wideband low distortion op amp, 3.12
AD9772A 14-Bit, 160 MSPS TxDAC with 2x Interpolation Filter, 3.53
AD22100 Voltage Output Temperature Sensor with Signal Conditioning, 4.91
AD22103 3.3V Supply, Voltage Output Temperature Sensor with Signal Conditioning, 4.91
AD22103, ratiometric voltage output temperature sensor, 4.89-90
ADA830/AD8130, active feedback amplifier, 6.179
ADC:
 analog bandwidth, definition, 3.16
applications, and op amp specifications, 3.22-24
buffered differential input, advantages, 3.29
schematic, 3.29
buffered input, 3.28
CMOS
 hold-to-sample mode transition, 3.31
 input switching transients, 3.31
 sample-to-hold mode transition, 3.31
 settling time, 3.32
SHA, 3.30
 switched capacitor input, 3.30
CMOS latched buffer, 7.49
differential amplifiers, 3.37
differential input
 drivers, 3.35
 performance advantages, 3.35
transformer coupling, 3.36
direct-coupled single-ended single-supply driver, 3.34
evaluation board, 3.32
fast Fourier transform analysis, 3.17
gain and ENOB versus frequency, plot, 3.16
harmonic distortion, 3.17-18
high performance, driving, 3.21-41
high-impedance differential input, high transmission accuracy, 7.40
ideal N-bit quantization noise, 3.10
input-referred noise, 3.11
compared with op amp output noise, 3.12-13
input/output quantization, 3.7
 inputs, driving, 3.21-41
intermodulation products, 3.19
logic noise, buffering, 7.48-49
missing codes, 3.10
non-monotonicity, 3.10
overvoltage, 3.40
 protection circuits, 3.40
performance measurement, 3.14
quantization noise, 3.10-11
SFDR, 3.19
 performance, 3.36
sigma-delta, high resolution, driving, 3.24-25
single-ended drive circuit, 3.31
single-ended switched capacitor, input drive circuit, 3.32
single-supply, scaled output, specifications, 3.7-20
SNR, performance, 3.36
THD+N, 3.17-18
THD, 3.17-18
transfer functions, 3.8
two tone IMD, 3.19
voltage range, 3.2
worst harmonic, 3.17-18
ADC/DAC:
capacitive loads, instability, 3.44
decoupling, 3.43
reference input, driving, 3.43-45
voltage reference considerations, 3.43
ADG409, CMOS switch, 2.38
ADG438, fault-protected multiplexer, 7.81
ADG439F, fault-protected multiplexer, 7.81
ADG465, CMOS channel protector, 7.80
ADG466:
CMOS channel protector, 7.80
in-amp channel-protector, circuit, 7.89
ADG467, CMOS channel protector, 7.80
ADG508, fault-protected multiplexer, 7.81
ADG509F, fault-protected multiplexer, 7.81
ADG511, single supply switch, 2.39
ADI, birth, H.35
ADI model 44 FET op amp, H.38
schematic, H.38
ADI model 45 FET op amp, H.38
ADI model 48 FET op amp, H.38
schematic, H.38
ADI model 50 FET op amp, H.39-40
ADI model 121 wideband DC op amp, schematic,
H.36-37
ADI Modular Products, H.42
ADI Staff, H.42
ADI Thermal Coastline IC 8-pin SOIC package,
thermal rating curve, 7.104
ADI Thermal Coastline IC package, 7.103
ADI Website, 3.5
ADM660, charge-pump IC, 7.61
ADM3311E RS-232 Port Transceiver data sheet,
7.100
ADM33XX-E, RS-232/RS-485 driver/receiver,
7.98
ADP330X, anyCAP LDO regulator, 7.56, 7.58
ADP3331, adjustable LDO regulator, 7.58-59
ADP3603:
voltage inverter, 7.62
voltage regulated output device, 7.60
ADP3604:
voltage inverter, 7.62
voltage regulated output device, 7.60
ADP3605:
regulated supply inverter, circuit, 7.62
voltage regulated output device, 7.60
ADP3607, voltage regulated output device,
7.60
ADSpice model, 7.140-141, 7.145
frequency shaping stages, 7.143
op amp
current feedback, 7.147-148
noise performance, 7.145-147
op amp macromodels, 7.141
portions, 7.141
Index 6
support, 7.152
voltage feedback, input and gain/pole
stages, circuit, 7.142
ADV7120/ADV7121/ADV7122, triple video
DAC,
6.130
Aging, 1.58
Air discharge, 7.91
Air-gap discharge, ESD testing, 7.96
Alexander power amplifier topology, 6.196
Alexander, Mark, 6.207, 7.163
Aliased harmonics, 3.17
"All inverting" balanced line receiver,
6.37-38
diagram, 6.37
Allen, P.E., 5.133
Allpass filter, 5.12-13
second-order response, 5.13
transfer function, 5.12
"Almost" rail-to-rail output stages, 1.45
Alternate balanced line receiver, 6.37
Aluminum electrolytic capacitor:
OS-CON, 7.65
switching, 7.65
AMP03:
CMR, 2.4
lower gain in-amp, 7.82
precision four-resistor differential amplifier, 2.4, 7.39
small-signal bandwidth, 2.4
AMP04, in-amp, 2.39
Amplification frequency response, RIAA
equalizer, 6.17
Amplifier:
applications, 6.163-118
audio, 6.1-78
audio line stage, 6.28
biasing, noiseless, 6.3
biological, H.9
bridge, 4.13
buffer, 6.79-82, 6.79-92
open-loop hybrid, circuits, 6.79
cable-tap, 6.119
communications, 6.139-162
distortion, 6.139
noise, 6.139
specifications, 6.139-143
composite, 6.189-207
difference, 2.3-6
balanced, push-pull feedback, 2.6
CMR, 2.4
differential, development, H.9-12
differential, defined gain, precision DC,
H.9
feedback, H.2
FET, 6.41
FET-input, voltage noise, 6.19
forcing high noise gain, 6.84
high gain, general purpose, H.14
high speed clamping, 6.120-123
input versus output clamping, plot, 6.121
instrumentation, 2.1-30
 see also In-amp
isolation, 2.43-51
linear-in-dB gain, 6.154
load capacitance, 6.83
long-tailed pair, H.10
loopthrough, 6.119
low distortion, third order intercept
 point, plots, 6.142
noise components, 6.148
noise figure, 6.144
noise resistance, 6.5
offset error, 4.22
output, cable, EMI/RFI protection, 7.129
output voltage phase-reversal, 7.83-84
overcompensation, 6.83
paralleled, quiet load driving, 6.168-169
programmable gain, 2.31-42
 with arbitrary attenuation step size,
 6.182-183
signal, applications, 6.1-207
specialty, 2.1-51
subtractor, 2.3-6
 circuit diagram, 2.3
 CMR, 2.3
 CMR, 2.4
 THD+N, 6.3
variable gain, in automatic gain control,
 6.153
video, 6.93-138
 voltage controlled, 6.154-156
Amplitude, filter, curves, 5.28-38
Analog bandwidth, 3.14, 3.16-17
Analog circuit:
 breadboarding, 7.139-164
 prototyping, 7.139-164
 simulation programs, 7.139-164
Analog computing:
 developments, H.13-16
 first op amp application, H.13
 Analog Devices Inc., birth, H.35
 Analog Dialogue magazine, H.42
 began, H.37
 Analog filter, 5.1-134
 Analog ground, 7.32-33
Analog-to-digital converter, see ADC
ANSI Standard 268-15 (Revision 1987,
Anti-alias filter:
 design, 5.113
 specifications, 5.113
Artillery Director, H.13
Artzt, Maurice, H.5, H.7, H.17, H.26
Audio amplifier, 6.79-92
Audio balanced transmission system, diagram,
 6.29
Audio buffer, 6.48-64
 heat sinks, 6.49
 high current, basic considerations, 6.48-49
 power supply characteristics, 6.49
 standalone, unity-gain, circuit, 6.48
 THD+N performance, 6.50
Audio DAC, active lowpass filter, 3.52
Audio driver:
 amplifier, test circuit, 6.52
 capacitive loading, 6.52
 THD+N versus frequency, plots, 6.54-55
Audio line driver, 6.48-64
 design, and noise susceptibility, 6.31
Audio line level stages, 6.28-47
 line amplifiers, 6.28
 line drivers, 6.28
 line receivers, 6.28
Audio line receiver, 6.30-47
 common-mode noise susceptibility, 6.30
 differential amplifier, diagram, 6.30
 noise susceptibility, 6.30
 simple line receiver, 6.33-34
 source-load interactions in balanced
 systems, 6.30-32
 CM noise, diagram, 6.31
Audio preamplifier, 6.1-27
Audio Precision System 1, test setup, 6.42
Audio system, differential or balanced
 transmission, block diagram, 6.28-29
Audio transformer, output balance, 6.74
Audion, H.1
Automatic gain control system, diagram,
 6.153

B
B4001 and B4003 common mode chokes, 7.137
Back-termination resistor, 6.137
Bainter notch filter:
 design, 5.76
 design equations, 5.95
 transformation, 5.123
Bainter, J.R., 5.134
Balanced line receiver, 6.36
 "all inverting," 6.37-38
 diagram, 6.37
 alternate, 6.37
 buffered input, 6.40-41
 CM error versus frequency, plots,
 6.38, 6.42-43
 diagram, 6.40
 performance, 6.38-40, 6.41-43
 THD+N, 6.39
Balanced transformer driver, THD+N versus
 frequency, plots, 6.76
Band reject filter, distortion, 5.109
OP AMP APPLICATIONS

Bandgap, 3.43
Bandpass filter, 5.2, 5.9-10
distortion, 5.109
peaking versus quality factor, plot, 5.10
phase response, 5.15-16
response, 5.122
second-order response, 5.13
transfer function, 5.9
transformation, 5.122
"1-Bandpass" notch filter, design, 5.79
Bandreject filter, 5.2, 5.10-11
response, 5.124
second-order response, 5.13
transformation, 5.123
Bandwidth:
full-power, 1.68-69
summary, 1.69
Bandwidth flatness, 1.75
op amp, 1.75
Bardeen, J., H.41
Bardeen, John, H.29
Barrow, J., 6.77
Barrow, Jeff, 7.50
Basic single-ended mixed feedback
transformer driver, circuit, 6.72
Basic transformer coupled line driver:
circuit, 6.69
THD+N versus frequency, plots, 6.70
Baudisch, Werner, 6.77
Baxendall, P., 6.27
Beam force sensor, using strain gage bridge,
diagram, 4.30
Bell Telephone Laboratories, H.1, H.15,
H.19, H.29
M9 gun director, H.13
Bench, Steve, H.27
Bernardi, Scott, H.68
Bessel filter, 5.3, 5.17-18, 5.21-23, 5.25
in CD reconstruction, 5.125-127
design table, 5.45
poles, 5.21
response curves, 5.34
Best straight line, integral linearity
error, 3.9
Beyschlag Resistor Products, 7.23
Bias current, 4.22
canceling effects, external to op amp,
1.60
very low, measurement, circuit, 1.60
Bias current compensated bipolar input
stage:
diagram, 1.36
offset current, 1.37
Bias current compensation, using super-beta
transistors, 1.35
Biasing, H.12
BiFET, amplifier, output voltage phase-
reversal, 7.83-84
Binary gain PGA, 2.31
performance summary, 2.37
using DAC, circuit, 2.36
Biological amplifier, H.9
Bipolar input, op amp, 1.34-35
Bipolar junction transistor, see also BJT
Bipolar (NPN-based) op amp, 1.50
Bipolar (NPN)/CMOS (BiCOMS) op amp, 1.50
Bipolar op amp, voltage noise, 1.77
Bipolar transistor gain-boosted input
composite op amp, circuit, 6.197
Bipolar transistor input stage, diagram,
1.34
Bipolar video multiplexer, block diagrams,
6.127
Bipolar/JFET (BiFET) op amp, 1.50
Biquadratic filter:
design, 5.73
design equations, 5.91-92
Birt, David, 2.6, 2.29, 6.36, 6.47
Bishop, P.O., H.12, H.24
BJT:
input device, rectification, 7.123
RFI rectification, 7.123-125
see also Bipolar junction transistor
Black, Harold, H.15
Black, Harold S., H.3-4, H.6
Black, H.S., H.6
Black's feedback amplifier, H.4
Blattner, D.G., H.25
Bleaney, B.I., 7.23, 7.50
Blinchikoff, H.J., 5.133
Blumlein, A.D., H.9, H.23
Boctor notch filter:
design, 5.77-78
highpass, design equations, 5.97-98
lowpass, design equations, 5.96
Boctor, S.A., 5.134
Bode plot, 1.13-14, 1.73, 1.106, 1.114,
1.118, 1.120, 4.57, 5.111, 6.203
equations, 4.50
log-log scale, 4.53
noise gain, 4.50
Bode, Hendrick, H.5, H.6-7, H.15, 1.20
Bogatin, Eric, 7.137, 7.138
Website, 7.138
Boghosian, W.H., H.25
Boghosian, William, H.13
Boltzmann's constant, 1.76, 1.84, 1.105,
4.52, 4.84, 6.144
Bootstrapping, 7.82
Bore, G., 6.10
Borlase, Walter, 1.20, 2.29, 6.47
Bourdon tube, 4.32
Bowers, Derek, H.54, H.59, H.71, 6.91, 6.207,
7.163
Boyle, 7.163
INDEX

Boyle model, 7.141, 7.145
Bradley-McCoy circuit, H.18
Bradley, F., 6.27
Bradley, Frank, H.18
Bradley, Frank R., H.26
Brant, James, 1.1
Brattain, Walter, H.29
Brattain, W.H., H.41
Breadboarding:
op amp functions, 7.139-164
and parasitics, 7.150-151
techniques, 7.153-162
versus simulation, 7.148-149
Bridge:
AC excitation, offset voltage
minimization, 4.23
all-element varying, 4.11
circuit, 4.33
amplifier
in-amp, circuit, 4.14
single op amp, circuit, 4.13
circuit, 4.7
configurations, 4.11
output voltage, 4.9
design considerations, 4.12
linearization, using op amps, 4.16
measurement, offset voltage, 4.22
nonlinearity, 4.10, 4.14-15
null, 4.9
operation, 4.8
output
amplifying and linearizing, 4.13-17
linearization, 4.14
remote
3-wire sensors, 4.19
4-wire current-driven, 4.21
4-wire sensors, 4.20
6-wire sensors, 4.20
buffer, 4.21
driving, 4.18-21
problems, 4.18
using Kelvin sensing, 4.20
wiring resistance errors, diagram, 4.18
sensitivity, 4.10
and CMR, 6.32
gain, 4.15
sensor resistances, listing, 4.7
signal conditioning circuit, 4.33-36
single-element varying, 4.10
linearization, 4.15-16
output amplification, 4.13
two-element varying, 4.10-11
current-driven, linearization, 4.17
voltage-driven, 4.16-17
varying, diagram, 4.11
voltage output, 4.12
Brokaw cell, sensor, 4.85
Brokaw, Adrian P., H.70, 4.91-92
Brokaw, P., 6.77
Brokaw, Paul, 4.91, 6.77, 6.207, 7.50, 7.73,
7.138
Brown, Thomas, H.31
Bruner, Eberhard, 6.187
Bryant, James, 1.23, 1.31, 1.53, 2.1, 2.31,
2.43, 4.1, 4.69, 7.1, 7.25, 7.75, 7.99,
7.109, 7.137, 7.139
Bryne, Mike, 7.100
Buchanan, James E., 7.22
Budak, A., 5.133
Buderi, Robert, H.25
BUF03, open-loop IC buffer, circuit diagram,
6.80
BUF04:
closed-loop unity-gain monolithic buffer,
6.81-82
unity-gain buffer amplifier, 6.22
Buffer:
amplifier, 6.79-82, 6.79-92
audio, THD+N performance, 6.50
closed-loop unity-gain monolithic,
diagrams, 6.81
dual amplifier, 6.50-51
circuit, 6.51
THD+N versus frequency, plots, 6.51
negative resistance, 6.185
circuits, 6.185
open-loop, disadvantages, 6.81
single-supply RGB video, 6.130-131
standalone, unity-gain, circuit, 6.48
unity-gain stable voltage/current
feedback op amp, 6.82
Buffered input balanced line receiver, 6.40-
41
CM error versus frequency, plots, 6.42-43
diagram, 6.40
performance, 6.41-43
Buffering, DAC, with op amps, 3.47
Buried zener, 3.43
Burkhardt, Andrew, 7.137
Burr-Brown Applications Staff, H.41
Burr-Brown Research Corporation, H.31, H.35,
H.63
Burr, Robert Page, H.31
Burton, L.T., 5.134
Burwen, Dick, H.36-37, H.42, H.43, H.69
Butler, Jim, H.62
Butterworth filter, 5.3, 5.17, 5.19, 5.23,
5.25
design table, 5.39, 5.114
response curves, 5.28, 5.113
transformation, 5.119
Buxton, Joe, 6.91, 7.75, 7.99, 7.137, 7.139,
7.163
C
CA3130, H.61

Index 9
CA3140, H.61
Cable:
 coaxial
 bandwidth flatness, 6.103
 losses, 6.101
 resistive load, 6.101
 shielding, 7.121
 driving, behavior, 6.101
 electrical length, 7.118-119
 and EMI/RFI, 7.118-121
 grounding, 7.119
 hybrid grounding, shields, 7.120
 shielded, impedance-balanced drive, 7.121
 twisted pair, ground loops, 7.119
Cable modem, 6.157
Cable-tap amplifier, 6.119
Caddock firm, resistors, 6.34
Cadigan, John, H.37
Capacitance, parallel plates, 7.46
Capacitive coupling, equivalent circuit model, 7.47
Capacitive load:
 active (in-the-loop), circuit, 6.87
 audio driver, 6.52
 driving, 6.79-92, 6.82-92, 6.83-90
 forced high-loop noise gain, 6.83
 and frequency response, 6.86
 internal compensation, disadvantages, 6.89
 open-loop series resistance, 6.85
 overcompensation, 6.83
 "passive" compensation, 6.85
Capacitive noise, 7.47
Capacitor, 7.64-67
 ceramic, 7.7, 7.65, 7.66
 classes, 7.64-65
 comparison chart, 5.104
 critical component assembly, 7.6-8
 decoupling, 7.19
 dielectric, 7.64-65
 dielectric absorption, 7.2-4
 open-circuit voltage, 7.3
 dissipation factor, 7.4-5
 electrolytic, 7.7-8, 7.65
 equivalent circuit, 5.103, 7.66
 film, 7.65, 7.65-66
 filter problem, 5.101-105
 high-K ceramics, 7.4
 materials, 7.4-5
 mica, 7.7
 multi-layer ceramic, 7.57
 non-ideal equivalent circuit, parasitic elements, 7.2
 parasitics, 7.4-5, 7.66
 polycarbonate, 7.4, 7.7
 polyester, 7.7
 polypropylene, 7.7
 polystyrene, 7.7
selection criteria, 7.7
 Teflon, 7.7
 temperature coefficient, 7.5-6, 7.6
 tolerance, 7.5-6
 type, 7.2
 voltage coefficient, 7.6
Capsule Listing of Analog Devices Op Amps, H.42
Card-entry filter, 7.69
Cardio frequency response, RIAA equalizer, 6.17
Cascade NPN differential pair topology, in op amp, H.32
Cauer filter, 5.23-24
Cauer, W., 5.133
CD reconstruction filter, 5.125-127
 performance, 5.127
 transformation, diagrams, 5.126
Ceramic capacitor, 7.66
Ceramic dielectric, 5.102, 5.104
Channel protector, advantages, 7.80
Charge amplifier:
 basic circuit, 4.62
 basic configurations, 4.63
Charge transducer, types, 4.62-63
Charge-pump voltage converter, 7.59-60
 characteristics, 7.60
 unregulated inverter and doubler, 7.61
 voltage doubler, 7.59-60
 voltage inverter, 7.59-60
Charged Device Model, for ESD, 7.95
Chebyshev filter, 5.7, 5.17-18, 5.19-23, 5.54, 5.57
 bandwidths, 5.21
 design tables, 5.40-44
 inverse, 5.25
 lowpass, 5.51
 poles, 5.20
 response curves, 5.29-33
 stopband, maximally flat delay, 5.25
 transformation, 5.119-120
Checkovich, Peter, 6.137, 6.187
Chemical sensor, 4.39
Chesnut, Bill, 4.5
Chesnut, Bill, 7.73
Chip Center's "Signal Integrity" page, 7.138
Choosing and Using N-Channel Dual J-FETs, 6.207
Chopper stabilized amplifier, 1.98-100
 noise, 1.101
Christie, S.H., 4.8
Chrominance, 6.96
Circuit:
 digital, noise, 7.31
 peaking, 5.59
 performance, summary, 4.56
Clamping, input versus output, 6.121
Clamping diode leakage, 7.77-78
Clarke, Bob, 6.161
Classic Cameo, H.72, 2.30
Clelland, Ian, 7.73
Closed loop bandwidth, 4.51
 voltage feedback op amp, 1.107
Closed loop error, calculation, 1.64-65
Closed loop gain:
 calculation, 1.65
 nonlinearity, calculation, 1.67
 uncertainty, 1.65
Close, JoAnn, H.62, H.64, H.70, H.71, 6.187
CM, see also common mode
CM over-voltage protection, using high CM
 in-amp, 7.81-82
CMOS DAC Application Guide, 5.134
CMOS device, video use, disadvantages, 6.127
CMOS latched buffer, 7.49
CMOS switch, in multiplexer, 3.26
CMR:
 bridge, 4.13
 in-amp, 2.2, 2.18
 resistor, worst case, 6.34
 subtractor amplifier, 2.4
CMRR:
 measurement, 1.90
 op amp, 1.89-92
 test circuit, 1.90
 no precision resistors, 1.90
Coaxial cable:
 bandwidth flatness, 6.103
 driver, pulse response, 6.102
 losses, 6.101
 resistive load, 6.101
CODECs, 6.4
Cohen, Avner, 7.99
Cold-junction compensation, thermocouples,
 4.70-76
Colloms, M., 6.27
Color:
 intensity, 6.96
 saturation, 6.96
 subcarrier, amplitude, 6.96
Common mode, see also CM
Common mode choke, 7.114
Common mode over-voltage protection, using
 CMOS channel protectors, 7.80-82
Common mode rejection:
 calculation, 6.31
 see CMR
Common mode signal, 2.2
Common mode voltage:
 op amp, 7.75-77
 and signal voltage, rule, 2.13
Common-mode feedback, H.9
Common-mode rejection, H.9
Communication network, available power gain,
 circuit, 6.145
Communications amplifier, 6.139-162

1 dB compression point and intercept
 points, plots, 6.141
 distortion, 6.140-143
 dynamic range specifications, 6.139
 intermodulation distortion, 6.140
 multitone power ratio, 6.143
 noise, 6.144-152
 noise figure, 6.144
 SFDR, 6.143
Compatibility of Analog Signals for
 Electronic Industrial Process
 Instruments, 4.5
Complementary bipolar (CB) op amp, 1.50
Complementary bipolar/CMOS (CBCMOS) op
 amp, 1.50
Complementary bipolar/JFET (CBFET) op amp, 1.50
Complementary common-emitter/common-source
 output stages, diagrams, 1.45
Complementary MOSFET (CMOS) op amp, 1.50
Composite amplifier, 6.189-207
 bipolar transistor gain-boosted input,
 circuit, 6.197
 DC performance limitations, 6.203
 definition, 6.189
 gain-boosted input, 6.197-205
 gain/phase versus frequency, plots, 6.198
 high voltage boosted rail-rail, 6.195
 JFET transistor gain-boosted, 6.201-203
 gain/phase versus frequency, plots, 6.202
 low noise gain-boosted input, 6.200
 circuit, 6.200
 low noise JFET gain-boosted input, 6.204-205
 gain/phase versus frequency, plots, 6.205
 low voltage single-supply to high output
 voltage interface, 6.191-192
 circuit, 6.191
 multiple op amp, 6.190-192
 "nostalgia" vacuum tube input/output,
 6.206
 circuit, 6.206
 slew rate, 6.199
 time domain response, 6.203
 two op amp, 6.190
 low noise/low drift, circuit, 6.190
 voltage-boosted output, 6.193-196
 rail-rail output driver, 6.193-195
Composite current boosted driver, 6.62-64
 circuits, 6.62-64
 Composite gain response, multiple-slope
 response, 6.202
 Computer Labs, H.39-40
Conant, James, 2.51
Conductivity, infinite ground, 7.29
Conductor, resistance, 7.26-27
Connelly, J.A., 7.99
Consumer equipment line driver, 6.55-56
circuit, 6.56
THD+N performance, 6.56
Contact discharge, 7.91
ESD testing, 7.96
Controlled decompensation, 6.58
Counts, Lew, H.43, H.62, H.69, H.70, H.71,
2.29, 6.47, 6.187, 7.99, 7.137
Cross-coupled differential driver, 6.67-68,
6.111-113
circuit, 6.67
Cross-coupled in-amp:
circuit, 6.186
for increased CMR, 6.186
Crosspoint switches and integrated video
multiplexers, 6.127-129
Crosstalk, 7.112
multiplexer, 3.26
Culmer, Daniel D., H.61, H.69
Current boosted buffered line driver, 6.60-61
circuit, 6.60
THD+N versus frequency, plots, 6.61
Current feedback:
in macromodel, 7.141
using vacuum tubes, 1.26-28
Current feedback op amp, 1.24-25, 1.113-117
basics, 1.24-25
closed-loop bandwidth, 1.74
crosspoint discharge, 7.91
comparison with voltage feedback op amp,
1.124-125
in current-to-voltage converter, 1.122
frequency response, 1.74
plots, 1.74
input capacitance sensitivity, 1.123
input impedance, diagram, 1.62
low inverting input impedance, 1.123
model, 7.147-148
open-loop transimpedance gain, 1.24
Current noise gain:
op amp, 1.118-119
definition, diagram, 1.119
Current output temperature sensor, 4.86-88
Current-to-voltage converter:
high speed, inverting input capacitance
effects, 1.120-124
using current feedback op amp, 1.122
Cutoff frequency, 5.2
filter, 5.3
buffering, by differential op amp, 3.51
control word
and frequency response, 5.129
and gain variation, 5.130
and quality response, 5.130
differential to single-ended conversion,
3.48-50
filtered output, 3.2
input/output quantization, 3.7
non-monotonicity, 3.9
output, buffering, 3.47-54
performance measurement, 3.14
quantization noise, 3.10-11
specifications, 3.7-20
transfer functions, 3.8
transformer, 3.49
DAC programmed PGA, 2.36-37
Damping ratio, filter, 5.7
Daniels, R.W., 5.133
Dark current, 4.41, 4.59
Darlington buffer, H.38
Darlington connection, 7.55
Darlington, Sydney, H.13
Data acquisition, multiplexer, fast
settling op amp, 3.27
Data converter:
applications, 3.8
characteristics, 3.3
datasheets, 3.4
dynamic performance
quantifying and measuring, 3.14
specifications, 3.14
integral linearity, 3.9
parameters, Websites, 3.4
performance, 3.3
requirements, 3.3-4
sampling and reconstruction, 3.8
test setup, performance measurement, 3.14
transient currents, 3.4
trends, 3.3-5
Data Sheet for Model K2-W Operational
Amplifier, H.27
Davis, William, H.51, H.67
DC-coupled active feedback RIAA moving
magnet preamp, circuit, 6.18
De Forest, Lee, H.1, H.6
De-compensated op amp, 1.107
Deadbug prototyping, 7.153-155
"bird's nest" construction, 7.154
Decade gains, PGA, 2.31
Decoupling, 3.43
capacitor, 7.19
op amp, techniques, 1.92
and power supplies, 1.92
Delay constant, microstrip, 7.133
Delyiannis, T., 5.133
Demrow, Robert, 2.29, 2.30, 6.47, 6.207
Derating curves, 7.103

Index 12
Development of an Extensive SPICE Macromodel for "Current-Feedback" Amplifiers, 7.163

Dielectric:
- absorption, 7.2-4
- material characteristic, 7.4
- PCB, 7.45
- sample-hold errors, 7.3
- hysteresis, 7.2-3
- types, 7.6

Difference amplifier, 2.3-6
Differential circuit, 7.28
Differential current-to-differential voltage conversion, 3.51
Differential DC coupled output, 3.49-50

Differential driver:
- cross-coupled, 6.111-113
- advantages, 6.111-113
- circuit, 6.111
- fully integrated, 6.114
- inverter-follower circuit, 6.109

Differential gain, color video, 6.96
Differential input ground isolating amplifier, circuit, 7.39
Differential line driver, 6.65-68
- cross-coupled, 6.67-68
- circuit, 6.67
- "inverter-follower"
- circuit, 6.65
- THD+N versus frequency, plots, 6.66

Differential line driver/receiver, 6.108-119

Differential line receiver:
- 4-resistor, 6.115-116
- circuit, 6.115-116
- active feedback, 6.117-119
- CM rejection, 6.117
- balanced feedback, 6.36

Differential non-linearity, 3.9
- see also DNL

Differential pair biasing, H.10
Differential phase, color video, 6.96
Differential transformer coupling, 3.49
Differential-mode filter, 7.114

Digital audio filter, 5.125-127
Digital ground, 7.32-33
Digital isolation techniques, 2.48-50
- application, 2.50
- using LED/photodiode optocouplers, 2.48
- using LED/phototransistor optocouplers, 2.48

Digital signal processor, see DSP
Digital-to-analog converter, see DAC
Digitally programmable state variable filter, 5.128-131
- circuit diagram, 5.129

Digitizing RGB signals, using ADC and 4:1 multiplexer, diagram, 6.128-129
DigiTrim, 1.47

Advantages, 1.49
Dinsmore, Kristen, H.70
Diode:
- clamping, reverse bias current characteristics, 7.77
- clamps, 2.24
- p-n junction, rectifiers, 7.123

Discrete multitone signal, in frequency domain, plot, 6.159
Discrete transistor, for op amp, H.30
Displacement transducer, 4.30
Dissipation factor, 7.5

Distortion curves, for AD797, 6.59
DNL, excess in ADCs, missing codes, 3.10
Dobkin, Bob, H.66
Doebelin, Ernest O., 4.37
Doeling, W., 7.22, 7.50
Dos Santos, Francisco, H.65
Dostal, J., 1.93
Dostal, Jiri, 4.67

Doubler charge-pump voltage converter, 7.61
DPAD1, dual low leakage diode, 7.83

Drift, 1.58
Driver, audio line stage, 6.28
Driving capacitive load, 6.82-92
Dropout voltage, 7.52
Dual 16MHz Rail-Rail FET, H.70
Dual amplifier bandpass filter:
- design, 5.74
- design equations, 5.93
- Dual amplifier buffer, 6.50-51
- circuit, 6.51
- THD+N versus frequency, plots, 6.51
Dual FET, 3 to ±18V, H.70
Dual RGB source video multiplexer, 6.128
Dual-supply low frequency rail bypass/distribution filter, circuit, 7.70
Dobkin, Bob, H.70
Dummer, G.W.A., 7.23, 7.50
Duncan Munro’s SPICE vacuum tube models, 6.207
Duncan, B., 6.27

E
Early effects, 4.84
Edson, J.O., 1.29
EEPROM trimming, advantages, 1.49
Effective number of bits, see ENOB
Effective series inductance, 7.5
Effective series resistance, 7.5

Effective voltage gain, transformer, 6.6
EIAJ ED-44701 Test Method C-111, 7.99
Electret microphone preamp interface, 6.4
- circuit, 6.4
Electrical Gun Director Demonstrated, H.25
Electrolytic capacitor, 5.102, 5.104, 7.7-8
- advantages, 7.65
- equivalent series resistance, 7.67

Index 13
finite ESR, 7.67
general purpose aluminum, 7.65
OS-CON, 7.65
switching, 7.65
impedance curves, 7.67
leakage errors, 3.45
tantalum, 7.65
Electromagnetic compatibility, definition, 7.109
Electrometer, 1.58
Electrometer IC op amp, H.63-64
Electrostatic discharge:
damage, 7.92
failure mechanisms, 7.92
models and testing, 7.95-98
see also ESD
sources, 7.91
voltage amounts generated, 7.90
Elliptical filter, 5.23-24
definition, 5.24
lowpass, 5.54
Embedding traces, in printed circuit board, 7.135-136
EMI/RFI:
and amplifier outputs, 7.129
cables, 7.118-121
and circuitry, 7.109-138
coupling paths, 7.110-112
noise coupling mechanisms, 7.110-111
reducing common-impedance noise, 7.110-111
summary, 7.111
impedance mismatch, 7.116
maximum radiation, opening, 7.117-118
mechanisms, 7.110-112
noise filters, for op amp circuits, 7.126
noise sources, 7.110
printed circuit board design, 7.130-136
reduction
passive components, 7.114-115
shielding, 7.115-121
system susceptibility, 7.115
susceptibility, 7.109
reduction, 7.115
Emission, spurious, 7.109
Emitter degeneration, 1.108
End point, integral linearity error, 3.9
ENOB, 3.14, 3.15-16
calculation, 3.15
Equiripple error:
filter, 5.22
design tables, 5.46-47
linear phase, response curves, 5.35-36
Equivalent noise bandwidth, 1.82-83
calculation, 4.61
Equivalent series inductance, 7.2
Erdi, G., 6.27
Erdi, George, H.49, H.53, H.55-56, H.58,
Eric Bogatin Website, 7.138
Erisman, Brian, 7.73
ESD:
prevention, summary, 7.98
see also electrostatic discharge
test circuits and values, 7.97
test methods, comparison, 7.96-97
test waveforms, 7.97
ESD Association Draft Standard DS5.3, 7.99
ESD Association Standard S5.2, 7.99
ESD Prevention Manual, 7.99
ESD-sensitive device:
handling techniques, 7.93-94
packaging and labeling, 7.92
Evaluation board, for prototyping, 7.160-162
Evolution from Operational Amplifier to Data Amplifier, 2.30
Excess noise, resistors, 7.13-14
Exponential amplifier, X-AMP, 6.154
External current, 7.29
External series resistors, 2.24

F
Fagen, M.D., H.24
Fair-Rite ferrites, PSpice models, 7.68
Fair-Rite Linear Ferrites Catalog, 7.73
Faraday shield, 6.73-74, 7.18, 7.46-47, 7.49, 7.112
floating, 7.48
impracticality, 7.48
operational model, 7.47
Farnsley, Larry, H.53
Fast FET Op Amp, H.69
Fast Fourier transform, 3.2, 3.14
Fast Op Amp, High Performance, Low Power, Low Cost, H.71
FDNR filter:
in CD reconstruction, 5.125-127
design, 5.66, 5.117
op amp limitations, 5.107
Feedback transformer coupled line driver, 6.71-76
Ferrite:
beads, 7.68
characteristics, 7.68
filter
inductor, 7.68-69
local high frequency
bypass/decoupling, 7.71
functions, 7.68
impedance, 7.68
FET, RFI rectification, 7.124-125
The FET Constant-Current Source/Limiter, 6.207
FET input op amp, 1.38-39
filter distortion, 5.107
low-noise, in high-output moving coil microphone preamp, 6.22
lower current noise, 1.38
rectification, 7.123
FET-Input AD545, H.69
FET-Input ICs Can Slew at 50V/µs, H.69
FET-Input Op Amp Has Lowest Combined V and I Noise, H.70
Fieldbuses: Look Before You Leap, 4.5
5751, H.22
Film capacitor, 7.65-66
linear temperature coefficient, 5.102
Filter:
60Hz notch, 5.131-132
schematic, 5.132
"1-bandpass" notch, 5.79
active topology, using integrator design, 6.180
all-pole, comparison, 5.23
allpass, 5.12-13, 5.57-58
second-order response, 5.13
transfer function, 5.12
amplitude curves, 5.28-38
analog, 5.1-134
anti-aliasing, 3.2
positioning, 3.13
applications, 5.1
Bainter notch, 5.76
design equations, 5.95
transformation, 5.123
bandpass, 5.2, 5.5, 5.9-10
peaking versus quality factor, plot, 5.10
phase response, 5.15
response, 5.122
second-order response, 5.13
transfer function, 5.9
transformation, 5.122
bandreject, 5.2, 5.10-11
response, 5.124
second-order response, 5.13
transformation, 5.123
bandwidth, 5.9
Bessel, 5.3, 5.17-18, 5.21-23, 5.25
in CD reconstruction, 5.125-127
design table, 5.45
poles, 5.21
response curves, 5.34
biquadratic, 5.73
design equations, 5.91-92
Boctor notch, 5.77-78
highpass, design equations, 5.97-98
lowpass, design equations, 5.96
buffers, 5.59
Butterworth, 5.3, 5.17, 5.19, 5.23, 5.25
design table, 5.39
transformation, 5.119
Cauer, 5.23-24
CD reconstruction, 5.125-127
Chebyshev, 5.7, 5.17-18, 5.19-23, 5.54, 5.57
bandwidths, 5.21
design tables, 5.40-44
inverse, 5.25
lowpass, 5.51
poles, 5.20
response curves, 5.29-33
stopband, maximally flat delay, 5.25
transformation, 5.119-120
circuit quality factor, 5.59
cutoff frequency, 5.2, 5.3, 5.7-14
damping ratio, 5.7
definition, 5.1
denormalization, 5.26
design, 5.59-100, 5.113-132
active inductor, 5.65
frequency dependent negative resistor (FDNR), 5.66-67
general impedance converter, 5.64
integrator, 5.63
passive LC section, 5.61-63
problems, 5.101-112
single pole RC, 5.60
digitally programmable state variable, 5.128-131
circuit diagram, 5.129
dual amplifier bandpass, 5.74
design equations, 5.93
effect of nonlinear phase, 5.16
elliptical, 5.23-24
definition, 5.24
lowpass, 5.54
equiripple error
design tables, 5.46-47
linear phase, response curves, 5.35-36
equivalent series resistance, 7.65
FDNR
in CD reconstruction, 5.125-127
design, 5.117
first order allpass, 5.80
design equations, 5.99
frequency dependent response, 5.5
frequency transformation, 5.51-58
algorithm, 5.53-54
Gaussian, 5.22
design tables, 5.48-49
response curves, 5.37-38
group delay curves, 5.28-38
harmonics, 5.14
highpass, 5.2, 5.5, 5.8
from Sallen-Key, transformation, 5.120
peaking versus quality factor, plot, 5.8
OP AMP APPLICATIONS

phase response, 5.14-16
response, 5.121
second-order response, 5.13
ideal, 5.2
impulse response curves, 5.28-38
in-amp
commum-mode/differential-mode RC
EMI/RFI, 7.127
family, circuit, 7.128
inductor, 7.68-72
key parameters, 5.3
limitations of op amps, 5.106-107
linear phase with equiripple error, 5.22
local high frequency bypass/decoupling, 7.71
lowpass, 5.2
from Sallen-Key, transformation, 5.119
peaking versus quality factor, plot, 5.7
phase response, 5.14-16
response, 5.26-49, 5.121
second-order response, 5.13
to allpass, frequency transformation, 5.57-58
to bandpass, frequency transformation, 5.52-55
to bandreject, frequency transformation, 5.55-57
to highpass, frequency transformation, 5.51-52
to notch, frequency transformation, 5.55-57
lowpass prototype, 5.8
minimizing EMI, 7.114
minimum passband attenuation, 5.3
multiple feedback, 5.70-71
bandpass, design equations, 5.87
design, 5.116
highpass, design equations, 5.86
lowpass, design equations, 5.85
transformation, 5.121
notch, 5.2, 5.10-11
second-order response, 5.13
standard, lowpass, and highpass, plot, 5.11
order, 5.3, 5.113
passband, 5.2
passband gain, 5.8
passband ripple, 5.3
PC card entry, 7.69
performance, and op amp accuracy, 5.117
phase response, 5.14-16
power supply, 7.64
prototype response curves, 5.26-49
quality factor, 5.7
rail bypass/distribution, 7.70
realizations, 5.59-100
RLC circuit, 5.6
S-plane, 5.5-6
Sallen-Key, 5.67-69
bandpass, design equations, 5.84
design, 5.115-117
highpass, design equations, 5.83
lowpass, design equations, 5.82
to lowpass, 5.119
transformation, 5.119-120
second order allpass, 5.80
design equations, 5.100
single pole, design equations, 5.81
standard responses, 5.19-50
state variable, 5.72-73
design, 5.116
design equations, 5.88-90
step response, 5.18
curves, 5.28-38
stopband, 5.2
frequency, 5.3
switched capacitor structure, 5.115
time domain response, 5.17-18
impulse response, 5.17-18
transfer function, 5.5-16
transformations, 5.119-124
transitional, 5.22
twin T notch, 5.75
design equations, 5.94
schematic, 5.132
voltage standing wave ratio, 5.24
First Monolithic FET Op Amp with 1µV/ C Drift, H.69
First order allpass filter:
design, 5.80
design equations, 5.99
Fitchen, F.C., 6.10
Flash converter, with clamp amp input
protection, 6.122-123
Flat pulse generator, 1.71
Fleming diode, H.1
Fleming, J.A., H.6
Fleming, Tarlton, 7.22
Flexible voltage follower protection
circuit, 7.78-79
Flicker noise, 1.79, 7.146
Flow:
defining, 4.32
measurement, 4.27-37
The Flow and Level Handbook, 4.37
Force, measurement, 4.27-37
44, FET op amp, H.38
45, FET op amp, H.38
48, FET op amp, H.38
Fourier analysis, 5.14
Fourier transform, 5.17
Fraden, Jacob, 4.37
Franco, S., 5.133
Franco, Sergio, 1.20, 1.93, 1.127
Frantz, Rich, H.69

Index 16
INDEX

Frederiksen, Thomas, H.49, H.67
Frederiksen, Thomas M., 1.93
Freeman, Wes, 7.75, 7.99
Frequency dependent negative resistance
 filter, design, 5.66, 5.117
Frequency domain, 5.1
Frequency response, op amp, 1.69-74
Frequency shaping stage, macro model gain
 stage, 7.143
Frequency transformation, filters, 5.51-58
Friend, J.J., 5.133
Frost, Seymour, H.17, H.26
Fullagar, Dave, H.48, H.49, H.67, H.69

G
Gain error, in-amp specification, 2.17
Gain sense, in PGA, 2.38
Gain-bandwidth product:
 op amp, 1.72-73
 voltage feedback op amp, plot, 1.73
Gain-boosted input composite amplifier,
 6.197-205
Galvanic isolation, driver, by transformer,
 6.29
GAP/R, H.20-21
 op amp firm, H.31-32, H.34-35
GAP/R K2-P, H.20-21
GAP/R model P2 varactor bridge op amp, H.33-
 34
GAP/R model P45 solid-state op amp, H.32
GAP/R model P65 solid-state op amp,
 schematic, H.31
GAP/R model PP65 potted module solid-state
 op amp, H.33
Garcia, A., 2.29, 6.10, 6.47, 6.77
Garcia, Adolfo, 7.99, 7.137, 7.164
Gaussian filter, 5.22
 design tables, 5.48-49
 response curves, 5.37-38
Gaussian noise, 3.11
Geffe, P.R., 5.133
General capacitor information resource, 7.22
General impedance converter, design, 5.64
Gerke, Daryl, 7.137
Germanium semiconductor, H.29
Germanc, Antonio, 7.163
Gerstenhaber, Moshe, H.57, 6.187, 6.207
Gianino, Mike, 6.187
Gilbert, Barrie, 6.161
Ginzton, Edward L., H.5, H.7, H.17, H.26, 1.29
Goldberg, E.A., H.26
Goldberg, Edwin A., H.17
Goldberg, Harold, H.11, H.23
Goodenough, Frank, H.66, H.71, 7.73
Gosser, Roy, 1.127
Gosser, Royal A., 1.29, 6.91
Graeme, Jerald G., 4.67
Grant, Doug, H.68, 7.22, 7.23, 7.50

Graphics display system, video formats,
 6.96-97
Graphics resolution, versus pixel rates,
 non-interlaced refresh rate, table, 6.97
Gray, Paul R., 1.93
Gregg, Christopher, 7.137
Ground:
 analog, 7.31-33
 concepts, 7.32
 currents, in precision amplifier,
 circuit, 7.38
 digital, 7.31-33
 isolation techniques, 7.38-40
 star, 7.31
Ground loop, 7.29-31
 diagram, 7.30
Ground noise, 7.29-31
Ground plane, 7.33-34, 7.131-132
 breaks, 7.37
 key points, 7.34
Ground reference, op amp, 1.32
Grounded-input histogram, effect of ADC
 input-referred noise, 3.11
Grounding:
 with "inverter-follower"
 differential line driver, 6.66
Group delay, filter, curves, 5.28-38
Grown junction silicon transistor, H.29
Grundfest, Harry, H.12, H.24
Guarding:
 inverting mode, 7.41
 MINIDIP (N) package, 7.43-44
 non-inverting mode, 7.42
 PCBs, 7.41
 SOIC surface mount "R" package, 7.44
Guinta, Steve, H.43

H
HA2500, H.66
Hageman, E.C., H.25
Hageman, Steve, 7.73
Handbook of Chemistry and Physics, 4.91
Hard limiter, ADC, 3.19
Hardware, 7.1-164
Harmonic distortion, 1.88, 3.14, 3.17-18
 ADC, location, 3.17
Harrington, Brian, 6.187
Harris Semiconductor, H.66
Harris, E.J., H.12, H.24
Hayes, John, 7.163
Heat sink, 7.103-107
 definition, 7.103
Henderson, K.W., 5.133
Hendricks, Paul, 6.187
Henning, H.H., 1.29
Henry Ott Website, 7.138
Higgins, H.C., H.24
High impedance sensor, 4.39-67, 4.62-63
High speed clamping amplifier, 6.120-123

Henderson, K.W., 5.133
Hendricks, Paul, 6.187
Henning, H.H., 1.29
Henry Ott Website, 7.138
Higgins, H.C., H.24
High impedance sensor, 4.39-67, 4.62-63
High speed clamping amplifier, 6.120-123

Index 17
High speed current-to-voltage converter, inverting input capacitance effects, 1.120-124
High speed op amp:
- DC characteristics, 1.125-126
- noise summary, 1.125
- offset error summary, 1.126
High voltage boosted output driver, 6.195-196
High voltage boosted rail-rail composite op amp, circuit, 6.195
High-Performance Dual FET Op Amps, H.69
High-Performance Electrometer Op Amp in Plastic 8-Pin DIP, H.70
High-speed video multiplexing, 6.124-126
Highest-Performing Low-Cost BiFET Op Amps, H.69
Highpass filter, 5.2, 5.8
distortion, 5.109
from Sallen-Key, transformation, 5.120
peaking versus quality factor, plot, 5.8
response, 5.14-16, 5.121
second-order response, 5.13
transfer function, 5.8
Hilton, Barry, 1.29
Hindi, David, 7.163
Hoerni, Jean, H.30
Hoerni, Jean A., H.41
Hofer, Bruce, 6.47, 6.77
Hogan, Steve, 6.10
Hohman, Bruce, H.71
Hold-to-sample mode transition, 3.31
Holst, Per, H.13
Holst, Per A., H.24
Horizontal sync, 6.94
Horn, Geoffrey, H.6
HOS-050 high speed FET hybrid op amp, schematic, H.39-40
HOS-100, open-loop bipolar hybrid amplifier, 6.79
Howland circuit, 6.164
Howland type current source, 2.27
HP5082-4204 PIN Photodiode, characteristics, 4.59
Huelsman, L.P., 5.133
Human Body Model, for ESD, 7.95, 7.97
Humidity monitor, 4.39
Hunt, W., 5.134
Husky, Harry, H.22, H.27
Hybrid ground, cables, 7.120
Hybrid op amp, H.30
Hydrophone, 4.62, 4.65
piezo-ceramic cylinder, 4.65
IC 8-pin SOIC package, thermal rating curve, 7.104
IC, linear, electrostatic discharge, damage, 7.93
IC op amp, H.30
ICL8007, monolithic P-channel FET input op amp, H.61
IEC 1000-4-2, ESD test method, 7.95, 7.97
IEC standards, for ESC testing, 7.95
IEC testing, coupling methods, 7.96
IEC, "Publication 98 (1964), Amendment no. 4," 6.27
IEEE EMC Website, 7.138
IEEE Standard for Performance Measurements of A/D and D/A Converters for PCM Television circuits, 6.137
Impedance range, transformer, 6.6
Impedance scaling factor, 5.114
Improvements in or Relating to Arrangements for Amplifying Electrical Oscillations, H.6
Impulse function, filter, definition, 5.17
Impulse response, filter, curves, 5.28-38
In-amp, 2.1-30
with 290MHz gain-bandwidth, 6.181
advantages, 2.8
applications, 2.25-30
A/D interface, 2.26
bridge amplifier, 2.25
driven current source, 2.26-27
remote load driver, 2.28
bridge amplification, 4.14
CMR, 2.2, 2.18
common-mode signal, 2.2
collection, 2.1, 2.7-16
AD623 in-amp, 2.16
AD627 single-supply two op amp in-amp, 2.10-11
precision single-supply composite in-amp, 2.13-15
three op amp in-amp, 2.11-13
two op amp in-amps, 2.7-9
cross-coupled, for increased CMR, 6.186
DC error, 2.17-20
bridge amplifier error budget
analysis, 2.22
gain, 2.17
noise specifications, 2.17
referred to input, 2.20
definitions, 2.2
gain, 2.2
generic, circuit diagram, 2.2
high CM voltage, CM over-voltage
protection, 7.81-82
input, and RFI rectification, 7.127-129
input bias currents, 2.18
input offset voltage, 2.18
input overvoltage, 2.24
noise model, 2.20
noise sources, 2.20-23
input voltage, 2.20-21

Index 18
offset voltage model, 2.18
output offset voltage, 2.18
output voltage, 2.2
over-voltage protection, 7.87-90
performance, tables, 2.22-23
precision
data, 2.23
remote load driver, circuit, 2.28
precision bridge amplifier, circuit, 2.25
precision signal conditioning element, 2.25
precision single-supply composite, 2.13-15
RFI rectification, sensitivity tests, 7.122-123
single-supply
data, 2.23
over-voltage protection, 7.89
three op amp, circuit, 2.11-12
total noise, calculation, 2.21
total output noise, calculation, 2.21
versus op amp, 2.1
wideband, 6.184
In-circuit over-voltage:
protection, 7.91-95
op amp, 7.75-77
Individual resistor tolerance, in line
receiver, 6.33
Inductance, 7.2, 7.16-21
equivalent series, 7.2
mutual, 7.16-18
signal trace routing, 7.17
stray, 7.16
Inductive coupling, 7.17
reduction via signal routing, 7.18
signal cabling, 7.18
Inductor:
filter problem, 5.101-105
parasitic effects, 7.19-20
Q or quality factor, 7.20
tuned circuits, 7.20
Infinite ground conductivity, 7.29
Input bias current, 1.58-61, 4.48
calculating total output offset error, 1.61
canceling effects (external to op amp), 1.60
in-amp, 2.18
op amp
diagram, 1.58
measurement, circuit, 1.59
Input bias current cancellation, H.53
Input capacitance, compensation, in current-
to-voltage converter using VFB op amp, 1.121
Input capacitance modulation:
filter distortion, 5.107-112
compensation, plot, 5.108
plot, 5.108
Input current noise, 6.150
summary, 1.77
Input impedance, 1.62
current feedback op amp, diagram, 1.62
Input offset current, calculation, 1.59-60
Input offset voltage, 1.53-58
adjustments, 1.56-57
drift and aging effects, 1.58
in-amp, 2.18
op amp
diagram and specifications, 1.53
measurement
diagram, 1.54
using in-amp, circuit, 1.55
Input overvoltage, 1.43
Input pin isolation, 4.47
Input voltage noise, 4.53-56, 6.150
Johnson noise, 4.54
Instrumentation amplifier, see In-amp
Insulation resistance, 7.2
Integral linearity error, 3.9
Integrated circuit:
 invention, H.29
planar process, invention, H.29
Integrated video multiplexers and
crosspoint switches, 6.127-129
Integrator:
design, 5.63
digitally variable, circuit diagram, 5.130
Intensity, color, 6.96
Interconnection stability, resistors, 7.10
Interference, as unwanted information, 2.43
Intermodulation distortion:
communications amplifier, 6.140
plot, 6.141
third order intercept point, 6.141
plots, 6.142
Intersil, H.61
Inverter-follower differential driver, 6.65-66, 6.109-110
THD+N versus frequency, plots, 6.66
Inverting input, summing point, 1.7
Inverting op amp:
external offset trim methods, circuit, 1.57
protection, 7.82-83
Isolation amplifier, 2.43-51
applications, 2.43-44
carrier-operated, 2.46
input circuit, 2.44
linearity and isolation voltage, 2.44
Isolation barrier, 2.43
J
Jenkins, Andrew, 6.207
Jensen JT-11P-1, transformer, 6.44-45
OP AMP APPLICATIONS

Jensen JT-OLI-2 isolation device, 6.69
Jensen Transformers, 6.44, 6.69
Jensen, Deane, 6.47, 6.77
JFET, rectification sensitivity, versus BJT, 7.125
JFET input op amp:
 headroom needs, 1.39
 output phase-reversal, 7.83-84, 7.90
 PNP or N-channel stages, with CM inputs, diagrams, 1.40
 showing offset and drift trims, diagram, 1.39
Jofeh, Lionel, H.11, H.23
Johnson noise, 1.76, 1.78, 1.84, 1.86, 3.7, 4.52-53, 6.149, 6.165, 7.82
 broadband, 4.53
 resistor, 4.54, 7.13
 spectral density, 4.53
Johnston, Denis L., H.11, H.24
Jones, Morgan, H.27
JT-11-DM, 6.69
JT-11P-1 Line Input Transformer Data Sheet, 6.47
JT-OLI-2, 6.69
Julie, Loebe, H.16-17
Jung, Walter G., 1.20, 1.93, 6.10, 6.207, 6.22
K
K2-W op amp, H.20-21
Kaufman, M., 1.93, 6.27
Kautz, W.H., 5.133
Kelvin connections, for RTD, 4.80
Kelvin feedback, 7.27-28
Kelvin sensing, 4.20-21, 4.31, 4.34
 ratiometric reference, diagram, 4.24
Kester, W.A., 6.137
Kester, Walt, H.43, 1.1, 1.20, 1.23, 1.31, 1.51, 1.53, 1.93, 1.95, 1.102, 1.103, 1.127, 2.1, 2.31, 2.43, 3.5, 3.20, 3.41, 3.46, 3.53, 4.1, 4.5, 4.7, 4.25, 4.27, 4.37, 4.39, 4.67, 4.69, 4.91, 6.1, 6.79, 6.91, 6.93, 6.137, 6.139, 6.163, 6.189, 7.1, 7.51, 7.73, 7.75, 7.101, 7.108, 7.109, 7.137, 7.139
Kirkhoff's laws, 5.5, 7.16, 7.28
Kitchin, Chuck, 2.29, 4.1, 4.39, 7.99, 7.137
Kline, Barry, 6.207
Korn, G., 6.27
Korn, Granino, H.18-19, H.22, H.26, H.27
Korn, T., 6.27
Korn, Theresa, H.18-19, H.26, H.27
Krebbiel, John, 2.41
Kress, Dave, H.66, H.69, H.71
Kurz, Dov, 7.99
L
Lapham, Jerome F., H.70
Lapham, Jody, H.65
Laplace transform, 5.1, 5.17
 in RIAA response, PSpice circuit analysis, 6.20, 6.23
Leakage, 7.2
 circuit board static effect, 7.40
 surface, eliminating, 7.41
Least significant bit, see LSB
Leclercq, Paul De Raymond, H.27
Lee, P., H.51, H.67
Lee, Seri, 7.108
LF155, H.61, H.63
LF156, H.61, H.63
LF157, H.61, H.63
LH0033, open-loop FET input hybrid amplifier, 6.79
LH101, monolithic IC op amp, hybrid topology, H.49
Lightning Empiricist, periodical, H.21
Line driver:
 audio, 6.48-64
 composite current boosted, 6.62-64
 circuits, 6.62-64
 current boosted buffered, 6.60-61
 circuit, 6.60
 THD+N versus frequency, plots, 6.61
differential, 6.65-68
fixed-gain video transmission, 6.82
 high efficiency, 6.163-164
 mixed feedback, 6.71
 paralleled output, 6.57
 single-ended, 6.55-64
 mixed feedback transformer, circuit, 6.72
transformer coupled, 6.69-76
 basic, 6.69-70
 circuit, 6.69
 feedback, 6.71-76

Index 20
video, high efficiency, circuit, 6.163
wide dynamic range ultra low distortion, 6.58-59
xDSL upstream, 6.158-160
Line input transformer, audio signals, CM isolation, 6.44-45
Line receiver:
balanced, 6.36
buffered input, 6.40-41
CM error versus frequency, plots, 6.42-43
diagram, 6.40
performance, 6.41-43
CM error versus frequency, plot, 6.38
TD+N, 6.39
buffered balanced, advantages, 6.47
CM rejection versus frequency, plot, 6.34
differential, balanced feedback, 6.36
summary, 6.47
transformer-input, 6.44-46
advantages, 6.47
circuit, 6.44
CMR errors, plot, 6.45
Linear Design Seminar (1995), 2.41, 2.51
Linear IC pioneer, H.72
Linear IC regulation, 7.52
Linear phase with equiripple error, response curves, 5.35-36
Linear post regulator, supply switching, 7.63
Linear regulator, op amp power supply, 7.51
Linear Technology Corporation, H.53
Linear voltage regulator, basics, 7.52-54
Link trimming, 1.48
advantages, 1.49
Lipschitz, S., 6.27
LM101:
monolithic IC op amp
design objectives, H.46
schematic, H.47
second generation, H.46-48	
two-stage topology, H.46
LM101A, monolithic IC op amp, greater stability, H.49
LM102, voltage follower, H.51
LM107, monolithic IC op amp, H.49
LM108, H.55
super-beta input monolithic IC op amp,
H.52
schematic, H.52
LM108A, super-beta input monolithic IC op amp, H.52
LM110, voltage follower, H.51
LM112, super-beta input monolithic IC op amp, H.52
LM118, H.66
LM148, quad IC op amp, H.49
LM281, H.66
LM317, adjustable voltage regulator, 7.54-55
LM318, H.66
LM324, quad op amp, industry standard, H.49
LM358, dual op amp, H.49
Load cell, 4.27
amplifier circuit, with Kelvin sensing, 4.34
single-supply amplifier, diagram, 4.35
using strain gages, diagram, 4.31
Long-tailed pair, H.10, 1.104
Longrie, Gary, H.7, H.27
Loop gain, with frequency, filter, 5.109
Loops, ground network, 7.30
Loopthrough amplifier, 6.119
Lorber, Matt, H.35
Losmandy, Bela, H.22, H.27
Lovell, C.A., H.13, H.25
Low DropOut regulator, 7.52
architectures, 7.55-59
pole splitting, 7.56
see also LDO
Low noise charge amplifier, circuit configurations, 4.63-64
Low noise PGA, using AD797 and ADG412, circuit, 2.35
Low-Cost HOS-050C Is Internally Compensated,
Sets to 0.1% in 80ns, 0.01% in 200ns, H.43
Low-noise JFET gain-boosted input composite amplifier, 6.204-205
Low-Noise, Low-Drift Precision Op Amps for Instrumentation, H.70
Lowpass filter, 3.32, 3.45, 5.2, 5.26-49
from Sallen-Key, transformation, 5.119
peaking versus quality factor, plot, 5.7
phase response, 5.14-16
prototype, 5.8
response, 5.121
second-order response, 5.13
to allpass, frequency transformation, 5.57-58
to bandpass, frequency transformation, 5.52-55
to bandreject, frequency transformation, 5.55-57
to highpass, frequency transformation, 5.51-52
to notch, frequency transformation, 5.55-57
using AD8048 voltage feedback op amp, 1.120
LPKF Laser & Electronics, 7.164
LSB, resolution of data converter, 3.7
LT1008, super-beta op amp, H.53
LT1012, super-beta op amp, H.53
Luminance, 6.95
Lundahl LL1517 transformer, 6.73-76
OP AMP APPLICATIONS

THD+N versus frequency, plots, 6.71
Lundahl LL1582 transformer, 6.72-74
 without Faraday shield, 6.73
Lundahl LL2811 transformer, 6.72
THD+N versus frequency, plots, 6.73
Lundahl, Per, 6.77-78
Lyne, Niall, 7.99

M
M9 gun director, H.13
 designers, H.15
 Medal of Merit for designers, H.15
 with SCR584 radar system, H.15
M9 op amp, schematic, H.19
 µA702, first monolithic IC op amp, H.45
The µA702 Wideband Amplifier, H.67
 µA709:
 monolithic IC op amp, H.45-46
 schematic, H.45, H.47
 µA725, H.53, H.55-59
 monolithic IC op amp, schematic, H.55
 µA740, H.61
 µA741:
 monolithic IC op amp, H.48-49
 schematic, H.48
 similarity to AD741, H.50
 µA748, externally compensated monolithic IC op amp, H.49
McCoy, R., 6.27
McCoy, Rawley, H.18, H.26
McFee, Richard, H.12, H.24
Machine Model, for ESD, 7.95
MacKenzie, Scott, 4.5
Macromodel:
 advantages and disadvantages, 7.140
 current feedback, 7.141, 7.147-148
 gain stage, frequency shaping, 7.143
 input stage, rail-rail, 7.145
 op amp, ADSpice model, 7.141
 output stage, 7.144-145
 general-purpose, circuit, 7.144
 transient response, 7.145
 voltage feedback, 7.141
Magnetic phono cartridges, topology, 6.16
Maidique, Modesto, H.68, H.69
Maidique, Modesto "Mitch," H.54, H.60
Main amplifier, 1.98-100
Malter, Bob, H.31, H.34
Marcin, Joe, 4.91
Mark Montrose Website, 7.138
Mark, M., 7.22
Mark, W., 7.50
Marsh, R., 6.27
Marsh, Richard, 7.22
Marwin, Bob, H.71
MAT02 Low Noise, Matched Dual Monolithic Transistor Data Sheet, 6.207
 MAT03 Low Noise, Matched Dual PNP Transistor Data Sheet, 6.207
 Matrix board, prototyping system, 7.153
Matthews, B.H.C., H.9, H.23
May, Dale, H.69
MC1458, dual IC op amp, H.49
MC1556, super-beta op amp, H.51
MC1558, dual IC op amp, H.49
MC4741, quad IC op amp, H.49
MD3257, H.36
Melliar-Smith, C. Mark, H.41
Melsa, James L., 1.93, 1.127, 4.67
Mesa process, for IC development, H.30
MESC series RFI suppression chokes, 7.73
Metal foil strain gage, 4.29
Metal migration, op amp, 7.76
Meyer, Robert G., 1.93
Mezger, G. Robert, H.11, H.23
Mica capacitor, 5.103-104
Micro-Gee PR0ducts, Inc., H.22
MicroConverter Technology Backgrounder, 4.5
Micromodel:
 advantages and disadvantages, 7.140
 versus macromodel, 7.140-141
Microphone preamp:
 audio, 6.1-10
 electret interface, 6.4
 circuit, 6.4
 single-ended, single-supply high-impedance, 6.2-3
 transformer-coupled, THD+N, 6.7
 transformer-coupled low-impedance, 6.5-7
 circuit, 6.5
 very low noise transformer-coupled, 6.8-9
 circuit, 6.8
 THD+N, 6.9
Microphonic, in capacitors, 5.103
Microstrain, 4.27
Microstrip, 7.131-133
 delay constant, 7.133
 rules, 7.133
 transmission line, 7.36
 MIL-PRF-55182G, 2.29
 MIL-STD-883 Method 3015, 7.99
 MIL-STD-883B Method 3015.7 test method, 7.96-97
Millaway, Steve, H.63, H.69
Miller circuit, 1.26
Miller Integrator, 1.109
Miller-compensated low drift system, H.17
Miller, Stewart, H.5, H.17
Miller, Stewart E., H.26, 1.29
Milne, Bob, H.7, H.27
Mindell, David, H.5, H.15
Mindell, David A., H.6, H.25-26
Mini-Mount, prototyping system, 7.155
MINIDIP (N) package, 7.43-44

Index 22
INDEX

Minimum passband attenuation, filter, 5.3
Missing codes, excess DNL in ADCs, 3.10
Mixed feedback driver, 6.71
 balanced transformer, circuit, 6.75
 THD+N versus frequency, plots, 6.74
Mixed-Signal and DSP Design Techniques (2000), 2.51
MMDT2222A Dual NPN Small Signal Surface Mount Transistor Data Sheet, 6.207
MMDT2907A Dual PNP Small Signal Surface Mount Transistor Data Sheet, 6.207
Mode conversion, and CMR noise, 6.32
Model 3xx series varactor noise, 6.32
Model 3xx series varactor bridge op amps, H.35
Model 44 Fast Settling High Accuracy Op Amp Data Sheet, H.42
Model 45 Fast Settling FET Operational Amplifier Data Sheet, H.42
Model 48 Fast Settling Differential FET Op Amp Data Sheet, H.42
Model 50: Wideband, Fast Settling Op Amp, H.43
Model 50 Fast Settling 100mA Output Differential FET Op Amp Data Sheet, H.42
Model 310, 311 Ultra Low Bias Current Varactor Bridge Operational Amplifiers Data Sheet, H.42
Modular op amp, H.30
Moghim, Reza, H.71
Monolithic IC electrometer amplifier, H.63-64
Monolithic IC op amp, birth, H.45-51
Montrose, Mark, 7.137
 Website, 7.138
Morrison, Ralph, 7.50, 7.137
MOSFET, 1.39, 6.170
 in over-voltage protection, 7.80
Motchenbacher, C.D., 6.10, 7.99
Motor control isolation amplifier, 2.46
Motorola Semiconductor, H.49, H.51
Moving coil, in magnetic phono cartridges, 6.16
MPS6521, H.38
MPTR, plots, 6.143
Mu-metal, 7.16-18
 magnetic fields, 7.18
Multitone intermodulation distortion, 3.14
Multiple feedback filter:
 bandpass
 design, 5.87
 diagram, 5.110
 design, 5.70-71, 5.116
 distortion, 5.109
 highpass, design equations, 5.86
 lowpass, design equations, 5.85
 op amp limitations, 5.107
 transformation, 5.121
Multiplexed data, op amp considerations, 3.26-27
Multiplexer:
 expansion, 6.129
 fault-protected, 7.81
 key specifications, 3.26
Multiporting, definition, 3.26
Multitone power ratio, 6.143
Muncy, N., 6.47
Murphy, Mark, 6.187, 6.207
Murphy, Troy, 7.163
Mutual inductance, 7.16-18
 magnetic fields, 7.18
N
 Nagel, L.W., 7.163
National Semiconductor Corporation, H.46, H.49, H.61, H.66
Negative feedback theory, filter, 5.106
Negative resistance buffer, 6.185
circuits, 6.185
Nelson, David A., 1.29
Neper frequency, 5.5-6
New Modular Op Amps, H.42
Newton, A.R., 7.163
Nexus Research Laboratories, H.33-35
Nobel Prize:
 for IC, H.29-30
 for transistor, H.29
Noble, Roger R. (Tim), H.33
Noise:
 in audio line receiver, 6.30
calculation, op amps, 6.150
capacitance-coupled, reduction, 7.112
common-impedance
circuitry changes, 7.112
reducing, 7.110-111
 solutions, summary, 7.111, 7.111
communications, 6.144-152
 components, 6.148
 coupling, mechanisms, 7.110-111
 inductance, near-field interference, 7.112-113
 magnetically-coupled
 reduction, 7.113
 methods, 7.113
model, 1.84
 op amp circuit, calculation, 6.148
 pole/zero cell impedance reduction, 7.146
 popcorn, 1.80
referred to input, 1.84
 RMS, 1.80-83, 6.148
 RMS to peak-to-peak ratios, 1.83
source versus output, table, 6.149
sources
 referred to output
 second-order system, summary, 1.87
 summary, 1.85
sources versus impedances, 1.78
total output, calculations, 1.83-87

Index 23
OP AMP APPLICATIONS

voltage, 6.149
Noise factor:
 definition, 6.145
 resistive, reactive, and unterminated conditions, definition, 6.146-147
Noise figure:
 available power, 6.144
 communications amplifier, 6.144
 comparison at impedance level, 6.147
 definition, 6.145
 input termination, effect, 6.147
 op amp, calculation, 6.146
Noise gain, 1.86
 increase, follower or inverter stability, diagrams, 6.84
 op amp, calculation, 1.118-119
 second-order system, plot, 1.87
 signal gain
 manipulating, 1.63
 op amp, manipulation, 1.63
 voltage feedback op amp, Bode plot, 1.73
Noise index, wide bandwidth, 6.165-166
Noise model, 7.145-147
Noise reduction:
 linear post regulator for supply switching, 7.63
 power supply, 7.64
 switching, capacitors, 7.64-67
 using output filtering, 4.55
Noise voltage, mode conversion, 6.32
Non-inverting input current noise, 4.54
Non-inverting op amp external offset trim methods, circuit, 1.57
Non-monotonicity, DAC, 3.9
Nonlinear phase, effect on filter, 5.16
Nonlinearity:
 definition, 2.17
 error, resistors, 7.10
"Nostalgia" vacuum tube input/output composite op amp, 6.206
cascode stage, 6.206
circuit, 6.206
Notch filter, 5.2, 5.10-11
 60Hz, 5.131-132
 schematic, 5.132
 second-order response, 5.13
 width versus frequency, plot, 5.11
Nova Devices, H.54
Noyce, Robert, H.29-30
Noyce, Robert N., H.41
NTSC:
 color subcarrier frequency, 6.95
 composite color video line, diagram, 6.94-95
 video amplifier, headroom, 6.133
 video distortion, 6.116
Null:
 bridge, 4.9
 measurement, 4.9
 nulling amplifier, 1.98-100
Nyquist bandwidth, 3.2, 3.10
Nyquist shift, H.11
Nyquist, Harry, H.5-7
Nyquist's criterion, H.5
O
Och, Henry, H.13
Off-channel isolation, multiplexer, 3.26
Offenberg, Arne, 6.78
Offner, Franklin, H.9, H.11, H.23-24
Offset adjustment:
 external methods, 1.56-57
 internal method, 1.56
 pins, 1.56
Offset error:
 bridge, 4.22
 from CMRR, calculation, 1.89
Offset voltage trim processes, 1.47-49
Ohmite Victoreen MAXI-MOX Resistors, 4.67, 7.22
Ohm's law, 5.5, 7.27
OMEGA Temperature Measurement Handbook, 4.91
On-resistance, multiplexer, 3.26
1/f noise, 1.79
101:
 monolithic IC op amp, second generation, H.46-48
 pole splitting compensation, H.48
 two-stage voltage amplifier topology, H.48
121, wideband DC op amp, H.36-37
180, low drift chopper-less op amp, H.36
183, low drift chopper-less op amp, H.36
Op amp:
 accuracy, and filter performance, 5.117
 as ADC driver, 3.21
 requirements, 3.21
ADSpice model, open-loop gain versus frequency, 7.142
 basics, 1.1-128
 bias current, 1.4
BiCMOS, 1.96
BIFET, 1.96, 1.103
 output voltage phase-reversal, 7.83-84
 bipolar, 1.96
 bias current compensation, 1.35
 uncompensated bias current, 1.35
 versus chopper stabilized, 1.101
 voltage noise, 1.77
 bipolar transistor, H.35
 breakdown, over-voltage, 7.76
 capacitive loading, stability, 6.84
 categories, H.36
CB, 1.103

Index 24
INDEX

channel protector, 7.80
advantages, 7.80
chopper stabilized, 1.54, 1.98-100
basic circuit, 1.98
diagram, 1.99
intermodulation, spectra, 1.99
lowest offset and drift performance, 1.98
noise, 1.101
voltage noise spectral density, spectra, 1.100
chopper-stabilized, H.17-18, H.36
advantages, H.18
limitations, H.18
circuit noise, calculation, 6.148
closed loop feedback, 1.5
closed loop gain, 1.4
CM over-voltage protection circuit, 7.76
CMOS, 1.96
CMRR, power supply rejection ratio (PSRR), 89-92
common mode dynamic range, 1.15-17
input dynamic range, 1.16-17
output dynamic range, 1.15-16
single-supply system, 1.16
common mode over-voltage protection, using CMOS channel protectors, 7.80-82
common mode rejection, 1.4
comparisons between voltage feedback and current feedback, 1.124-125
complementary bipolar, 1.96
composite, high voltage boosted rail-rail, circuit, 6.195
current feedback, 1.1, 1.23, 1.113-117
closed-loop bandwidth, 1.115
current-on-demand, 1.114, 1.116
in current-to-voltage converter, 1.122
diagram, 1.23
error current, 1.114
important features, 1.117
input capacitance sensitivity, 1.123
low inverting input impedance, 1.123
model and Bode plot, 1.114
no slew-rate limitation, 1.114
noise calculation, 6.150
performance summary, 1.117
simplified diagram, 1.113
simplified two-stage, diagram, 1.116
solid state, Bell Labs, diagram, 1.28
summary of characteristics, 1.117
current feedback model, 7.147-148
data conversion, 3.1
applications, 3.2
characteristics, 3.3-4
DC coupling, 3.33-34
decompensated, 1.72
decoupling, techniques, 1.92
design points, 7.105-106
developments, H.13-16
device/topology distortions, 6.52-55
differential amplifier, 1.9
differential input, 1.4
diode leakage, protection network, 7.78
distortion, 1.88
drift problem, H.17
dual triode front end, H.20
dual-supply, 1.17-18
dynamic range, definitions, 1.88
dynamics, and filter performance, 5.118
electrometer IC, H.63-64
evaluation boards, 7.160-162
dedicated, 7.161-162
external feedback elements, 1.3
feedback capacitance effects, 1.118-120
noise gain stability analysis, 1.118
FET technology, H.35
FET-input, RFI susceptibility, 7.122-123
FET-output, phase-reversal, summary, 7.85
as filter, 1.119-120
frequency response, 1.68-75
on filter quality, 5.110-111
settling time, 1.69-72
slew rate and full-power bandwidth, 1.68-69
fully differential design, schematic, H.22
gain setting and level shifting, 3.33-34
circuits, 3.33
general circuit, feedback, 1.5
general introduction, H.3-8
general-purpose, DC-coupled, high gain, inverting feedback amplifier, H.2
ground reference, 1.32
harmonic distortion, 1.88
heat sink, 7.103
using TO99 metal can type, 7.103
high gain, H.2
high speed, 1.103-127
amplifier bandwidth versus supply current, plots, 1.103
DC characteristics, 1.125-126
noise summary, 1.125
offset error summary, 1.126
high speed FET, family, H.37-40
high speed IC, H.66
historical background, H.1-2
history, H.1-72
hybrid, H.29-44, H.30
designs, H.31-40
IC, H.30, H.45-72, H.62
monolithic, birth, H.45-51
ideal, attributes, 1.3-5
in-circuit over-voltage, protection, 7.75-77
in-circuit voltage, 7.75

Index 25
input common mode limits, 7.75-77
input differential protection, 7.86-87
input and output voltage dynamic ranges, 1.18
input overvoltage, 1.43
input and RFI rectification, 7.126-127
input stages, 1.34-43
 bias current compensated bipolar, 1.36-37
 bias current compensated super-beta bipolar, 1.38
 bipolar, 1.34-35
 FET, 1.38-39
 overvoltage considerations, 1.43
 rail-rail, 1.40-43
integrated circuit, H.45-72
inverter, 1.8
inverting
 external offset trim methods, circuit, 1.57
 and noninverting, guard techniques, 4.45
 protection, 7.82-83
 summer, 1.9
inverting mode operation, H.2
JFET
 output phase-reversal, 7.90
 output voltage phase-reversal, 7.83-84
JFET IC, H.65
 Karl Swartzel, H.14-15
 limitations in filters, 5.106-107
 load immunity, 1.18
 long-term stability, 1.58
 low noise, filtering, noise performance, 3.45
 low noise JFET IC, H.65
 low source impedance, 1.4
 low-drift, high gain, H.20-21
 low-leakage input clamping, 7.78
macromodel
 accuracy checking, 7.149
 current feedback, input and gain stages, 7.147
metal migration, 7.76
model 3xx series varactor bridge, H.35
modern IC packages, scale, H.59
modular, H.30
designs, H.31-40
multiplexed data acquisition, applications, 3.26-27
multistage, 1.26
naming, H.16
 by Ragazinni, 1.3
noise, 1.76-87
 components, 6.148
 frequency characteristic, diagram, 1.79
 popcorn noise, 1.80
RMS noise, 1.80-83
 total noise calculations, 1.83-87
noise figure, 1.79
noise gain and signal gain, manipulation, 1.63
noise model, 1.84
 first-order circuit, 3.12
 RTI and RTO noise, 3.12
 second-order system, 1.85-86
non-IC solid state, H.1
non-ideal
 circuit, 1.10
 error multiplier, 1.11
 gain stability, 1.12
 loop gain, 1.12-13
 frequency dependence, 1.13-15
 plots, 1.13
 noise gain, 1.11-12
 signal gain, 1.11
 static errors from finite amplifier
 gain, 1.10-15
 voltage feedback, 1.14
non-inverting, external offset trim methods, circuit, 1.57
non-inverting input, H.19-20
normal signals, 7.75
offset voltage, 1.4
open-loop gain, 1.4
out-of-circuit voltage, 7.75
output noise, calculation, 3.12-13
output stages, 1.44-49
 offset voltage trim processes, 1.47-49
 surge protection, 1.46
output voltage phase-reversal, 7.83-84
over-voltage protection, clamping diode
 leakage, 7.77-78
overall loop feedback, H.3
packaging, H.59
passive components, 7.1-24
performance, JFET versus bipolar, 4.65-66
power supply
 conditioning techniques, summary, 7.72
 and decoupling, 1.92
 and power dissipation, 1.92
 regulation, 7.51
 systems, 7.51-74
precision, 1.18, 1.95-102
characteristics, 1.96
 DC error budget analysis, 1.96-97
 open-loop gain, 1.95
 resolution error, 1.96-97
 selection, 1.95
 single-supply, performance characteristics, compared to
 OP177F, 1.97
precision bipolar IC, H.55-59
precision JFET IC, H.60-66
process technologies, 1.50
protection, 7.75-100
quiescent current, and biasing, 6.195
reverse junction breakdown, 7.86
RFI rectification, sensitivity tests, 7.122-123
sampled data system, diagram, 3.1
selection criteria, for data converters, 3.4
selection drivers, table, 1.19
settling time, 3.27
signal conditioning, 3.1
single-ended to differential conversion, circuit, 3.37
single-supply, 1.17-18, 1.31-33
design issues, summary, 1.33
gain accuracy, 1.31
guarding, 7.44
input stage, characteristics, 1.32-33
solid state
schematic, H.31
varactor bridge, H.33-34
solid-state modular, H.29-44
and source impedances, plots, 1.78
specifications, 1.53-93
for ADC applications, 3.22-24
SS bipolar, output phase-reversal, 7.90
standard feedback circuits, 1.6-10
differential stage, 1.9-10
inverting stage, 1.8-9
non-inverting stage, 1.6-7
standard value resistors, and filter performance, 5.118
structures, 1.31-51
subtractor, 1.9
summing amplifier, 1.9
summing point, 1.8
super-beta IC, H.51-54
super-beta input stage transistors, bias current compensation, circuit, 1.38
supply voltage limitations, 1.18
THD+N, 1.88
THD, 1.88
thermal considerations, 7.101-108
thermal management, 7.101-108
thermal rating curves, 7.103
thermal relationships, chart, 7.102
thermal resistance, 7.101
topologies, 1.23-29
total dynamic range, 1.18
total offset voltage, model, 1.61
traditional output stages, diagrams, 1.44
two signal inputs, H.17
two-chip hybrid IC, bias current specification, H.61
two-tube design, H.16
unity gain inverter, 1.9
use, with data converters, 3.31-54
vacuum tube, H.9-28
chopper stabilized, H.17-19
declining years, H.22
evolution, H.17-22
varactor bridge design, H.63
versus in-amp, 2.1
video driver, power dissipation, graph, 7.106
virtual ground, 1.8
voltage and current output, 1.18
voltage feedback, 1.1, 1.23, 1.104-112
all NPN process, circuit, 1.105
bandwidth and slew rate calculations, 1.108
closed-loop relationship, 1.106-107
complementary bipolar design, 1.109-111
in current-to-voltage converter, and input capacitance, 1.121
device families, 6.106
diagram, 1.23
folded cascode, 1.110
full-power bandwidth, 1.107-108
high speed, table, 1.112
long-tailed pair, 1.104
model and Bode plot, 1.106
noise calculation, 6.150
"Quad-Core" stage, diagram, 1.111
slew rate, 1.107
two gain stages, diagram, 1.109
two stage, model, 1.109
unity gain-bandwidth frequency, 1.106
voltage follower, 1.6
XFCB, 1.104
Op amp integrator, versus grounded capacitor integrator, plots, 6.180
Op amp noise, 1.76-87
input voltage, circuit, 1.76
Op Amp Settles to 0.01% in 300 ns, H.42
Op Amps Combine Superb DC Precision and Fast Settling, H.70, 1.29
OP07:
monolithic IC op amp schematic, H.57
single-supply and micro-packaged compatibles, H.59
ultralow offset voltage bipolar op amp, 4.42
OP27:
bias compensated op amp, 1.36-37
bipolar op amp, 4.65
low noise op amp, 7.86
monolithic IC op amp, schematic, H.59
multiple stage, pole-zero compensated amplifier, 6.166
OP37, monolithic IC op amp, schematic, H.59
OP42, FET input op amp, for high speed photodiode preamps, 4.59
OP90:
OP AMP APPLICATIONS

Bode plot, 5.111
DC precision amplifier, 5.110
OP97:
 composite op amp, gain versus frequency, plots, 6.194
 super-beta bipolar op amp, 1.35, 1.38, 4.42
OP97/297/497, super-beta input monolithic IC op amp, schematic, H.53
OP113, low-drift low-noise amplifier, 2.37
OP177:
 CMR, plot, 1.89
 gain nonlinearity, plots, 1.67
 input voltage noise, plot, 1.81
 power supply rejection, 1.91
 precision bipolar op amp, 1.101, 4.22, 4.33
OP177F, precision op amp, DC error budget analysis, table, 1.97
OP213:
 dual precision op amp, in bridge circuit, 4.16
 peak-to-peak noise, spectrum, 1.81
OP275, 2.6
 bipolar/JFET input op amp, 3.52, 6.53-54, 6.65
 THD+N versus frequency, plots, 6.53-54
 inverter, 6.38-39
 microphone preamplifier, 6.7
OP284, true rail-rail input op amp, schematic, 1.43
OP297:
 dual op amp, H.54
 high performance super-beta bipolar op amp, 1.35, 1.38
OP497:
 high performance super-beta bipolar op amp, 1.35, 1.38
 quad op amp, H.54
OP727, dual op amp, H.59
OP747, quad op amp, H.59
OP777:
 precision bipolar op amp, 4.76
 precision op amp buffer, 7.80
 single op amp, H.59
OP777/OP727/OP747 Precision Micropower Single-Supply Operational Amplifiers Data Sheet, 1.102
OP1177:
 precision amplifier, 4.22
 single op amp, H.59
OP1177/OP2177/OP4177 Precision Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet, 1.102
OP2177:
 dual op amp, H.59
 dual precision op amp, in bridge circuit, 4.16
OP4177, quad op amp, H.59
OPA111, monolithic IC electrometer amplifier, H.63
Opamp Labs Inc., H.27
Open-loop gain, 1.64
measurement, circuit, 1.66
nonlinearity, 1.64-67
 calculation, 1.67
Operational amplifier, named by Ragazzini, H.16
Optimum turns ratio, transformer, calculation, 6.6
Optional noise reduction post filter, 2.46
Optocoupler, 2.48
Optoelectronics Data Book, 4.67
Optoisolator, 2.43, 2.48
Order, filter, 5.3
OS-CON Aluminum Electrolytic Capacitor Technical Book, 7.73
Oscon capacitor, 6.73
Ott, Henry, 6.47, 7.137
Website, 7.138
Ott, Henry W., 7.23, 7.50, 7.73
Out-of-band SFDR, 6.143
Output compliance voltage, 3.48
Output impedance, in FDNR filter, 5.107
Output offset voltage, in-amp, 2.18
Output stage surge protection, 1.46
Output voltage phase-reversal, 7.83-84
 fixes, 7.85-87
 test procedure, 7.84
Overvoltage, 3.40
 in-circuit points, summary, 7.90
 in-circuit protection, 7.90-95
 protection for in-amp input, 2.24

P
PADS Software, 7.164
PAL, color subcarrier frequency, 6.95
"Palimpsest," H.21
Pallas-Areny, Ramon, 4.25, 4.37, 4.67, 4.91
Palmer, Wyn, H.66, 1.29
Paralleled amplifiers:
 quiet load driving, 6.168-169
 circuits, 6.168
Paralleled output line driver, 6.57
 dual op amp, circuit, 6.57
 THD+N versus frequency, plots, 6.57
Parasitic capacitance, 7.10-11
Parasitic inductance, 7.10-11
Parasitic leakage, reduction, 4.45
Parasitic pole, 6.84
Parasitic thermocouple, 4.22, 7.11
Parasitic thermocouple effects, 1.100
Parasitics, 5.103, 7.150-151
 and pin sockets, 7.158
 resistor, 7.10-11
Parkinson, David, H.13
INDEX

Parks, Steve, H.71
Parnum, D.H., H.11-12, H.24
Pass device, 7.54
 inverting mode, 7.54
Passband filter, 5.2
Passband ripple, filter, 5.3
Passive capacitance, 5.103
Passive component:
 analysis, 7.21
 and EMI, 7.114-115
 filter problems, 5.101-105
Passive filter:
 design, 5.115
 normalized, 5.114
Passive LC section, design, 5.60-63
Passively equalized RIAA preamp:
 optimization, 6.25
 topology, 6.24-26
 circuit, 6.24
Patterson, Omar, H.20
 Patterson, Omar L., H.27
Paynter, Henry, H.27, H.34, H.41
PCB:
 design issues, 7.25-50
 dielectric absorption, 7.45
 dynamic effects, 7.44-45
 effects, 7.25
 grounding, 7.25
 guarding, 7.41
 using SOIC surface mount "R" package, 7.44
 microstrip transmission line, 7.36
 MINIDIP op amp guard layout, 7.43-44
 resistance, calculation, 7.26
 see also Printed circuit board
 signal transmission, optimization
 techniques, 7.39-40
 skin effect, 7.35
 ground plane, 7.35
 SOIC op amp guard layout, 7.43-44
 static effects, 7.40-42
 stray capacitance, 7.44
 surface coating, 7.41
 surface leakage, 7.41
 trace resistance, 7.27
Peak spectral spur, 3.19
Pearlman, Alan, H.31, H.33
Pease, Bob, H.26, H.34, H.41, H.43, H.72, H.164
 Pease, Robert A., H.41, 7.22, 7.164
 Pederson, D.O., 7.163
 Pentode, H.10
 Pfister, C., H.25
PGA, 2.31-42
 alternate configuration, 2.33
 applications, 2.31, 2.34-41
 DAC programmed, 2.36-37
 in data acquisition systems, 2.32
 design issues, 2.32-33
 differential input, 2.38-40
 location in circuit, 2.32
 low noise, 2.35-36
 poor design, circuit, 2.33
 single supply instrumentation, circuit, 2.39
 pH monitor, 4.39
 pH probe buffer amplifier, 4.66
 Phase characteristic, composite amplifier, 6.202
 "Phase funnies," 6.203
 Phase response:
 change with frequency, 5.16
 filter, 5.14-16
 notch filter, 5.15
 versus frequency, 5.15
 Phase specifications, 6.96
 Philbrick Solid-State Operational Ampliers, H.41
 Philbrick, George, H.31, H.33-34, H.43
 Phonograph, audio preamplifier, 6.11-27
 Photoconductive photodiode, 4.40
 Photocurrent, 4.39
 Photodiode 1991 Catalog, 4.67
 Photodiode:
 circuit noise performance, summary, 4.55
 circuit tradeoffs, 4.56
 current, in picoamperes, 4.43
 current generation, 4.39
 current noise density, 4.52
 current-to-voltage converter, 4.41
 dark current, 4.59
 equivalent circuit, 4.40
 equivalent noise bandwidth, 4.61
 high speed
 I/V converter, compensation, 4.57-58
 preamp design, 4.59-60
 preamp noise analysis, 4.61-62
 high speed preamp, FET input op amp, selection, 4.59
 with JFET op amp, 4.42
 operating modes, 4.40
 parasitic currents, 4.43
 photoconductive, 4.40, 4.59
 photosensitivity, 4.41
 photovoltaic, 4.40
 preamplifier, 4.39
 critical leakage paths, 4.44
 design, 4.39-48
 noise, 4.51-53
 sensitivity, 4.39
 sensor, 4.3
 SNR, 4.42
 voltage noise density, 4.52
 wideband, I/V converter, op amp

Index 29
OP AMP APPLICATIONS

- selection, 4.58-59
- Photovoltaic photodiode, 4.40
- Pi-network, 7.114
- Piecewise linear amplifier:
 - with AD8037 clamped amplifier, 6.177-178
 - circuit, 6.177
- Piezoelectric sensor, 4.3, 4.39, 4.62
 - output conditioning, 4.30
- Piezoelectric transducer, 4.27, 4.30
 - circuit, 4.64
 - pressure, use, 4.32
 - reduced supply voltage, lower bias current, 4.64
- Piezoresistive effect, in semiconductor strain gage, 4.29
- Pin-programmable-gain in-amp, 2.17
- Pinchoff voltage, H.65
- Pippenger, Dale, H.69
- Pitot tube, 4.32
- Pixel, definition, 6.97
- Planar IC process, invention, H.29-30
- Plastic film capacitor, 5.103
- Plate electrode, H.1
- Plug-in breadboard system, 7.153
- PM1008, super-beta op amp, H.53
- PM1012, super-beta op amp, H.53
- Polycarbonate capacitor, 5.102, 5.104
- Polyester capacitor, 5.102, 5.104
- Polypropylene dielectric, 5.102, 5.104
- Polystyrene dielectric, 5.102, 5.104
- Pontis, George, 6.77
- Popcorn noise, 1.80
- Posthumus, K., H.3
- Potentiometer, 7.8-10
 - digitally addressable (RDAC), 7.14
 - Power Consideration Discussions, 7.108
 - Power dissipation, power supplies, 1.92
 - Power line decoupling, resonant circuit, 7.19
- Power supply:
 - conditioning techniques, summary, 7.72
 - and decoupling, 1.92
 - noise reduction and filtering, 7.64
 - tools, 7.64
 - op amp, 7.51-74
 - power dissipation, 1.92
 - regulation, 7.51
- Power supply rejection, see PSR
- Power-down sequencing circuit, multiple
 - supply applications, 6.170-171
- Practical Analog Design Techniques, Chapters 1, 2, and 4, 6.137
- Practical Design Techniques for Sensor Signal Conditioning, 2.29, 2.41, 2.51
- Preamplifier:
 - AC design, bandwidth, and stability, 4.50-51
 - audio, 6.1-27
 - microphone, 6.1-10
 - electret interface, 6.4
 - single-ended, single-supply high-impedance, 6.2-3
 - circuit, 6.2
 - noise model, 4.53
 - offset voltage, drift analysis, 4.48-49
 - RIAA phone, 6.11-26
 - signal frequency response, 6.1
 - Precision bipolar IC op amps, H.55-59
 - Precision bipolar op amp, noise, 1.101
 - Precision Bipolar Op Amp Has Lowest Offset, Drift, H.68
 - Precision bridge amplifier, using in-amp, circuit, 2.25
 - Precision in-amp:
 - data, 2.23
 - remote load driver, circuit, 2.28
 - Precision JFET IC op amp, H.60-66
 - Precision Low Noise Low Input Bias Current Operational Amplifiers OP1177/OP2177 Data Sheet, H.69
 - Precision Micropower Single-Supply Op Amps Have 100-µV max Offset, H.69
 - Precision Monolithics Incorporated, H.53-54, H.55-56, H.61
 - Precision Op Amp, H.68
 - Precision Resistor Co., Inc., 4.67, 7.22
 - Precision single-supply composite in-amp, 2.13-15
 - gain expression, calculation, 2.14
 - rail-to-rail output, circuit, 2.14
 - Precision voltage controlled current source, in-amp, 2.26-27
- Pressure:
 - measurement, 4.27-37
 - differential, 4.32
- Pressure transducer:
 - liquid and gas pressure measurement, 4.32
 - piezoelectric, use, 4.32
- The Pressure, Strain, and Force Handbook, 4.37
- Printed circuit board:
 - controlled impedance traces, 7.131-132
 - design, and EMI/RFI, 7.130-136
 - embedding traces, 7.135-136
 - microstrip transmission lines, 7.131-132
 - parasitics, 7.150
 - see also PCB
 - symmetric stripline transmission lines, 7.134-135
 - transmission line termination, 7.136
- Programmable gain amplifier, 2.31-42
 - with arbitrary attenuation step size, 6.182-183
 - circuit, 6.182
 - see also PGA
 - using AD813 current feedback video op

Index 30
Programmable pulse generator:
 using clamping amplifier, 6.171-172
 circuit, 6.171
Prototyping:
 analog, key points, 7.153
 deadbug, 7.153-155
 digital systems, 7.153
 DIP packages, 7.159
 milled PCB, 7.157-158
 and multilayer PCBs, 7.159
 op amp functions, 7.139-164
 solder-mount, 7.155-156
 techniques, 7.153-162
Pseudo differential circuit, 6.66
Pseudorandom chopping frequency, 1.99
PSpice diode, 7.77
PSpice Simulation software, 7.164
PSRR:
 op amp, 1.89-92
 specification, 1.91
 test setup, 1.91
Q
Quad JFET, Single-Supply Op Amp, H.70
Quad Op Amp, H.68
Quad-core op amp stage, 1.111-112
Quality factor:
 definition, 7.20
 inductors, 7.20
Quantization:
 error signal, 3.10
 noise, in data converters, 3.10-11
 size of LSB, table, 3.7

R
Radio receiver, automatic gain control, 6.153
Ragazzini, John, H.16, H.26, 1.20
Rail bypass/distribution filter, 7.70
Rail-rail input op amp, 1.40-43
 bipolar transistor
 diagram, 1.41
 offsets, 1.41-42
RAMDACs, 6.97
Randall, Robert H., H.26, 1.20
Rappaport, Andy, 7.22
Raster scan, definition, 6.97
Ratiometric drive, bridge, 4.12
Ratiometric reference, 4.23
 Kelvin sensing, diagram, 4.24
Ratiometric voltage output temperature
 sensor, 4.89-90
RCA, H.61
RCD Components, Inc., 7.22
RDAC, digitally addressable potentiometer, 7.14
REAC, H.17
Reeves Instrument Corporation, H.17-18
Reference terminal, non-inverting input, 1.7
Referred-to-input, see RTI
Referred-to-output, see RTO
Reflectance, shielding, 7.116-117
Regulated output charge-pump voltage converter, 7.62
Regulated voltage, calculation, 7.54
Regulator:
 linear, op amp power supply, 7.51
 switching, op amp power supply, 7.51
Reichenbacher, P., 7.22, 7.50
Reine, Steve, 7.163
Resistance:
 conductor, 7.26-27
 measurement, 4.8
 bridge, 4.8
 temperature detector, 4.70, 4.78-81
 configuration, 4.80
 as passive sensor, 4.78
 temperature and Seebeck coefficients, plot, 4.78
 voltage drop in lead wires, 4.79
Resistor, 7.8-10
 absolute temperature characteristic, 7.9
 aging, 7.13
 carbon composition, 7.9
 comparison chart, 5.105
 in difference amplifier, 2.3
 excess noise, 7.13-14
 failure mechanisms, 7.13
 filter problem, 5.101-105
 high input/output ratio, and CMR, 6.32
 interconnection stability, 7.10
 Johnson noise, 1.76
 mismatching, 7.8
 noise index, 7.14
 nonlinearity errors, 7.9
 parasitics, 7.10-11
 selection criteria, 7.15
 in subtractor amplifier, 2.3
 temperature retrace, 7.10
 thermal EMF, 7.11
 thermal turbulence, 7.13
 thermocouples, in construction, 7.12
Received signal strength indicator, 6.153
Receiver, audio line stage, 6.28
Recognition of Harold Black, H.25
Recognition of M9 Designers C.A. Lovell, D.B. Parkinson, and J.J. Kuhn, H.25
Rectification, calculations, 7.123-125
Rectifier:
 full-wave, using clamping amplifier, 6.172-173
 single-supply half and full-wave, 6.167
 two-element vacuum tube-based, H.1
Reference terminal, non-inverting input, 1.7
RCA, H.61
Index 31
thermoelectric effect, 7.11-13
types, noise minimization, 7.14
voltage sensitivity, 7.13
wirewound, parasitics, 7.10-11
Resistor Johnson noise, 4.52-53
Response curves, filters, 5.26-49
RFI rectification:
 input devices, sensitivity, 7.123
 input-stage sensitivity, 7.122
 reduction, in op amp and in-amp circuits, 7.126
 relation to interfering signal, 7.125
RFI Rectification Test Configuration, 7.122
RFI/EMI, see EMI/RFI
RGB, color signals, control system, diagram, 6.96
RIAA:
 basics, 6.11-13
 idealized frequency response, table, 6.13
 preamp, ideal, 6.12
 time constants, ascending frequency, 6.12
RIAA equalizer:
 active feedback, circuit, 6.17
 capacitors, tolerances, 6.15
 equalization curve, 6.11
 equalization networks, 6.14-16
 manufacturing tolerance, 6.14-15
 network comparison, 6.14
 resistors, 6.15-16
 selection tolerance, 6.14
 topologies, 6.16-26
 topology-related parasitics, 6.15
RIAA preamp:
 moving coil, DC-coupled active feedback,
 error versus frequency, 6.23
 moving magnet
 AC-coupled active feedback, circuit, 6.21
 DC-coupled active feedback
 circuit, 6.18
 error versus frequency, 6.19
 passively equalized, error versus frequency, 6.26
 phono, 6.11-26
 topology
 actively equalized, 17-23
 passively equalized, 6.24-26
RIAA, Standard Recording and Reproducing Characteristic, Bulletin E1, 6.27
Rich, Alan, 6.77, 7.50, 7.137
Richter, Walther, H.11, H.23
Ringing, 6.89, 7.19, 7.150
macromodel, 7.145
Riskin, Jeff, 2.29, 6.47
RMS noise, 1.80-83
calculation, 1.81
Robege, J.K., 1.93
Roedel, Jerry, H.27
Ross, Ian M., H.41
Rostky, George, H.26
RS-232 device, ESD testing, 7.97
RS-485 device, ESD testing, 7.97
RTD, see also Resistance temperature detector
RTI noise, op amp, 3.12
RTO noise, op amp, 3.12
Rudin, Marv, H.53
Russell, Frederick A., H.26, 1.20
Russell, Rod, H.61
Russell, Ronald, H.49, H.67
Russell, Ronald W., H.69
S
 S-plane, filter, 5.5-6
 S/N+D, see SINAD
Sallen-Key bandpass filter, design equations, 5.84
Sallen-Key filter:
 configuration, 1.119
 design, 5.67-69, 5.115-117
 distortion, 5.107-109
 op amp limitations, 5.106
 to lowpass, 5.119
 transformation, 5.119-120
Sallen-Key highpass filter, design equations, 5.83
Sallen-Key lowpass filter, design equations, 5.82
Sallen, R.P., 5.133
Sample-and-hold, see SHA
Sample-to-hold mode transition, 3.31
Saturation, color, 6.96
Sawtooth waveform, 3.10
Schade, Otto Jr., H.69
Scharf, Brad, H.65
Scharf, Brad W., H.70
Schmitt, O.H., H.23
Schmitt, Otto, H.10-11
Schottky diode, 1.70-71, 2.24, 3.40, 6.122, 7.76-77, 7.85
Schottky noise, 1.77
Schultz, Donald G., 1.93, 1.127, 4.67
Schwartz, Tom, H.68
Schweber, Bill, H.68
Scouten, Charlie, H.43
SD-020-12-001, photodiode, 4.41
SECAM, color subcarrier frequency, 6.95
Second order allpass filter:
 design, 5.80
 design equations, 5.100
Second-order filter, responses, 5.13
Second-order system, 4.57-58
Seebeck coefficient:
 of RTD, plot, 4.78
 thermocouple, versus temperature, 4.72
 Type S thermocouple, 4.78
Index 32
SEL resistors, H.31
Selection guide for digital potentiometers, 7.22
Selection Handbook and Catalog Guide to Operational Amplifiers, H.42
Semiconductor strain gage, 4.29-32
piezoresistive effect, 4.29
Semiconductor temperature sensor, 4.70, 4.84-90
BJT-based, relationships, 4.84
cold junction compensation, 4.75
Sensor:
active, 4.1-2
applications, 4.4
characteristics, 4.2
classification, 4.1-2
high impedance, 4.39-67
output, 4.2-3
passive, 4.1
resistive elements, 4.7
self-generating, 4.1
signal conditioning, 4.1-91
temperature, 4.69-92
Brokaw cell, 4.85
current output, 4.86-88
characteristics, 4.87
driving resistive load, 4.87
Kelvin-scaled, 4.87
ratiometric voltage output, 4.89-90
semiconductor, 4.84-90
voltage output, 4.86-88
uses, 4.1
Settling time:
definition, 1.69
diagram, 1.69
measurement, using "false summing mode," 1.70
thermal effects, 1.70
702, first monolithic IC op amp, H.45
709, monolithic IC op amp, H.45-46
741, monolithic IC op amp, H.48-49
SFDR, 3.14, 3.19
definition and plot, 3.19
multi-tone, 3.19
out-of-band, versus upstream line power, plots, 6.160
plots, 6.143
SHA:
CMOS, switched capacitor input, circuit, 3.30
hold mode, 3.30
track mode, 3.30
Shannon, Claude, H.15
Sheingold, Dan, H.7, H.21, H.27, H.35, H.37, H.42, H.43, H.71, 1.20, 1.93, 4.25, 4.37, 4.67, 4.91
Shielding:
and cables, 7.118-121
effectiveness, calculation, 7.117
EMI/RFI, reduction, 7.115-121
impedance mismatch, 7.116
principles, 7.116-118
review, 7.115-121
Shockley, W., H.29, H.41
Shot noise, 1.77
spectral density, 1.77
voltage, 6.149
Sigma-delta ADC, high resolution, driving, 3.24-25
Signal amplifier, applications, 6.1-207
Signal bandwidth, 4.51
Signal cabling, mutual inductance and coupling, 7.18
Signal conditioning, sensors, 4.1-91
Signal gain, 6.84
Signal leads, voltage drop, 7.27-28
Signal return currents, 7.27-45
Signal-to-noise ratio, see SNR
Signal-to-noise-and-distortion ratio, see SINAD
Silicon bandgap voltage reference, Brokaw cell, 4.85
Silicon Detector Corporation, 4.67
Silicon Detector photodiode, 4.41
Silicon transistor, invention, H.29
Siliconix PAD/JPAD/SSTPAD series Low Leakage Pico-Amp Diodes, 7.99
Simons, Elliott, 6.187
Simple line receiver:
audio, 6.33-34
diagram, 6.33
function implementation, 6.35
load balance, 6.35
topology, diagram, 6.36
Simulation:
analog circuit, 7.139-140
caveats, 7.149
and CMRR, 7.149
effectiveness, 7.151-152
op amp functions, 7.139-164
versus breadboarding, 7.148-149
SINAD, 3.14, 3.15-16
definition, 3.15
and ENOB, 3.15
and THD+N, 3.15
Single pole filter, design equations, 5.81
Single pole RC, design, 5.60
Single-chip thermocouple signal conditioner, 4.77-78
Single-ended current-to-voltage conversion, 3.50-51
Single-ended line driver, 6.55-64
consumer equipment, 6.55-56
Single-ended, single-supply high-impedance microphone preamp, 6.2-3
Single-supply AC-coupled composite video...
Index 34

line driver, 6.134-135
 circuit, 6.134
Single-supply AC-coupled differential
 driver, circuit, 6.136
Single-supply AC-coupled single-ended-to
differential driver, 6.136
Single-supply data acquisition system,
circuit, 2.26
Single-Supply FET, H.70
Single-supply in-amp, data, 2.23
Single-supply instrumentation PGA, circuit,
 2.39
Single-supply RGB buffer, circuit, 6.130
Single-supply video:
 AC-coupled, headroom considerations,
 6.133
 applications, 6.130-136
 line driver, low distortion, zero-volt
 output, 6.132
 sync stripper, circuit, 6.131
Skin effect, 7.34-35
Slattery, W., 5.134
Slew limiting, 1.68
Slew rate, 1.68-69
 summary, 1.69
SM3087, H.31
Small, James S., H.13, H.24
Smart sensor, 4.4
Smith, Lewis, 1.93, 4.67
Smith, Lewis R., H.35, H.42
Smoke detector, 4.39
SNR, 3.14, 3.15-16
 calculation, 3.10
 definition, 3.15
Soakage, 7.2-3
Socket, disadvantages, 7.158
Sockolov, Steve, 7.22
Soderquist, Donn, H.68, 1.51
SOIC, surface mount package, 4.45-46
Solder, low thermal EMF, 4.49
Solder-Mount, prototyping system, 7.155-156
Solid state current feedback op amp, Bell
 Labs, diagram, 1.28
Solomon, James, H.49, H.67
Solomon, James E., H.72
Solomon, Jim, H.51
Southern and F-Dyne film capacitors, 7.22
Specialty amplifier, 2.1-51
Specification MIL-PRF-123B, Capacitors,
 Fixed, Ceramic Dielectric..., 7.22
Specification MIL-PRF-19978G, Capacitors,
 Fixed, Plastic..., 7.22
SPICE:
 analog circuit simulation program, 7.139-
 140
 and breadboarding, 7.148-149
 model authors, 7.152
 noise generator, diagram, 7.146
 simulation, useful points, 7.152
 support, 7.152
 SPICE evaluation, in-amp with 290MHz gain-
 bandwidth, 6.181
 Spurious free dynamic range, 6.143
 see also SFDR
SS bipolar op amp, output phase-reversal,
 7.90
SSM2141:
 active line receiver circuit, 6.42
 audio line receiver, 2.5-6
 difference amplifier, 2.4-5
 line receiver, 6.108
 low distortion, high CMR audio line
 receiver, 6.35
SSM2142:
 balanced line driver, 6.108
 cross-coupled differential line driver,
 6.67-68
 THD+N versus frequency, plots, 6.68
SSM2143:
 active line receiver circuit, 6.42
 audio line receiver, 2.5
 difference amplifier, 2.4-5
 line receiver, 6.108
 low distortion, high CMR audio line
 receiver, 6.35
SS725, precision bipolar op amp, H.53,
 H.55-56
Standard IPC-2141, "Controlled Impedance
 Circuit Boards and High Speed Logic
 Design," 7.137
Staniforth, Alan, 7.137
Star ground, 7.31
Stata, Ray, H.35, H.37, H.42, 1.20-21
State variable filter:
 design, 5.72-73, 5.116
 equations, 5.88-90
 op amp limitations, 5.106
Step response:
 filter, 5.18
 curves, 5.28-38
Stephens, M., 6.10
Stopband filter, 5.2-3
Storch, L., 5.133
Stout, D., 1.93, 6.27
Strain, measurement, 4.27-37
Strain gage, 4.8, 4.27
 bonded, 4.28
 advantages, 4.28
 bridge, in beam force sensor, diagram,
 4.30
 comparison of metal and semiconductor,
 4.30
 foil-type, 4.29
 low-impedance device, 4.31
 semiconductor, 4.29-32
 sensor, 4.3
sensor amplifier, circuit, 4.33
 unbounded, 4.27
 operating principles, 4.28
 uses, 4.30
 wire sensing elements, 4.29
Stray capacitance, 7.46-49
 PCB, 7.45
Strip inductance, 7.16
Stripline:
 symmetric
 for PCB transmission, 7.134-135
 propagation delay, 7.135
Subtractor amplifier, 2.3-6
Sullivan, Doug, H.69
Sullivan, Douglas, H.60
Summing Amplifier, H.14
Summing point, 1.8
Super-beta bipolar input bias current
 compensated op amp, circuit, 1.38
Super-beta bipolar transistor technique,
 H.51
Surface microstrip, 7.131-132
Suttler, Goodloe, 4.92
Swartzel M9 design, H.17
Swartzel op amp, diagram, H.14
Swartzel, Karl, op amp, H.14-15
Swartzel, Karl D. Jr., 1.20
Swartzel, K.D. Jr., H.25
Switch, buffered video crosspoint, 6.129
Switching regulator, 7.64
 op amp power supply, 7.51
Switching time, multiplexer, 3.26
Sync inserter, with AD8037 clamping
 amplifier, 6.176-177
System offset minimization, 4.22-24

T
T-Tech, Inc., 7.164
T10 prototype gun director, H.13
Tadewald, T., 7.22, 7.50
Tantalum and Ceramic Surface Mount
 Capacitor Catalog, 7.22
Tantalum electrolytic capacitor, 7.7-8, 7.65
 for EMI/RFI protection, 4.88
Tantalum Electrolytic and Ceramic Capacitor
 Families, 7.73
TDN: Temperature Drift Nonlinearity--A New
 Dual-FET Specification, 6.207
Teal, Gordon, H.29
Teflon dielectric, 5.102, 5.104
Teflon standoff, 4.47-48
Teledyne Corporation, H.34
Television:
 monochrome, standard, 6.94
 picture frame, fields, 6.93
 standard broadcast interface format, 6.93
Telegen, B.D.H., H.3, H.6
Temperature coefficient, capacitor, 7.6
 control loop, diagram, 4.4
Temperature differential, calculation, 7.102
Temperature retrace, resistors, 7.10
Temperature sensor, 4.69-92
 current output, 4.86-88
 ratiometric voltage output, 4.89-90
 semiconductor, cold junction
 compensation, 4.75
 voltage output, 4.86-88
Temperature transducer, types, 4.69
Terman, F.E., H.7
Terman, Frederick, H.5
Terman, Frederick E., 1.20, 1.29
Texas Instruments, H.29, H.31, H.61-62
Thandi, Gurgit, 7.73
THD+N, 3.14, 3.17-18
 definition, 1.88, 3.17-18
 and SINAD, 3.15
THD, 3.14, 3.17-18
 definition, 1.88, 3.17
Thenevin equivalent, 4.89
Thermal EMF, resistors, 7.11
Thermal management, op amps, 7.101-108
Thermal noise, resistors, 7.13
Thermal relationships, chart, 7.102
Thermal resistance, 7.101
 junction to ambient air, measurement,
 7.102
Thermal voltage, 1.105
Thermalloy 2227, 6.49
Thermistor, 4.81-83
 definition, 4.81
 fixed shunt resistors, 4.82-83
 high sensitivity, 4.82
 linearization, 4.82-83
 resistance characteristics, plot, 4.81
Thermocouple:
 basic operating principles, 4.73
 characteristics, 4.70
 cold junction reference system, 4.74
 EMF, effects, 7.12
 metals, 4.71
 output voltage definition, 4.74-75
 output voltage versus temperature, 4.71
 parasitic, 4.22, 7.11
 principles, cold-junction compensation,
 4.70-76
 Seebeck coefficient, 4.72
 sensor, 4.2, 4.3
 single-chip, signal conditioner, 4.77-78
 termination, circuit, 4.75
 thermoelectric EMF, 4.73
Type J, 4.71-72
Type K, 4.71-72, 4.76
 amplifier and cold junction
 compensator, 4.76
Type S, 4.71-72
OP AMP APPLICATIONS

voltage generation, 4.74
Thermoelectric effect, resistors, 7.11-13
Thermoelectric EMF:
and dissimilar metals, 4.74
thermocouple, 4.73
Thermoelectric voltage:
generation, 4.49
as input offset voltage source, 4.49
Thin film resistor, for precision amplifiers, 1.48
Thomas, L.C., 5.133
Three op amp in-amp:
circuit, 2.11-12
single supply, restrictions, 2.13
Tim Williams Website, 7.138
Time domain response:
filter, 5.17-18
impulse response, 5.17-18
Timko, Mike, 4.91-92
TL06x, H.62
TL07x, H.62
TL08x, H.62
TMP35:
SO-8 packaged voltage output temperature sensor, 4.88
voltage output sensor, 4.76
TMP36, TO-92 packaged voltage output temperature sensor, 4.88
TN56, H.36
TO-99, for ICs, 6.49
TO-99 package, diagram, 4.47
Todd, C., 6.10
Toennies, J.F., H.10, H.23
Toomey, P., 5.134
Total harmonic distortion, 1.88
see also THD
Total harmonic distortion plus noise, see THD+N
Total noise, in-amp, calculation, 2.21
Total output error, calculation, 1.61
Total output noise:
calculations, 1.83-87
in-amp, calculation, 2.21
Tow, J., 5.133
Townsend, Jeff, H.65
TQ56, H.36
Tran, Chau, 6.187
Transconductance, 1.104
Transducer, 4.2
output voltage range, 2.31
temperature, types, 4.69
Transformer:
analog accuracy, 2.44
in audio line coupling, 6.28-29
coupling, 3.36
driver, galvanic isolation, 6.29
effective voltage gain, 6.6
impedance ranges, 6.6
as isolation amplifier, 2.43
non-premium core, higher distortion, 6.71
optimum turns ratio, calculation, 6.6
Transformer Application Notes (various), Jensen Transformers, 6.77
Transformer-coupled line driver, 6.69-76
basic, 6.69-70
feedback, 6.71-76
Transformer-coupled microphone preamp, 6.5-7
THD+N, 6.7
Transformer-input line receiver, 6.44-46
circuit, 6.44
CMR errors, plot, 6.45
Transient voltage suppressor, 2.24, 7.98
Transimpedance, 5.109
Transimpedance op amp, 1.24, 1.114
Transistor:
germanium, limitations, H.29
invention, H.29
packaged dual types, 6.194
Transitional filter, 5.22
Transmission line, 7.36
behavior, summary, 6.101
driver, experiments, 6.102-105
microstrip, 7.36
termination, rule, 7.136
TransZorb, 7.98
availability, 7.100
clamp, 7.88
Trefleaven, D., 5.134
Triboelectric effect, 7.91
Trietley, Harry L., 4.37
Tucker, D.G., H.6
Twin T notch filter:
design, 5.75
design equations, 5.94
schematic, 5.132
Two op amp in-amp:
circuit, 2.7
CMR, 2.7, 2.8
disadvantages, 2.8-9
single-supply, restrictions, 2.8-9
Two Precision Dual Op Amp Families, H.68
Two-tone IMD, see also Two-tone intermodulation distortion
Two-tone intermodulation distortion, 3.14, 3.19
210, chopper op amp, H.36
211, chopper op amp, H.36
220, chopper op amp, H.36
232, chopper op amp, H.36
233, chopper op amp, H.36
260, chopper op amp, H.36
Type 5MC Metallized Polycarbonate Capacitor, 7.73
Type EXCEL leaded ferrite bead EMI filter, and Type EXC L leadless ferrite bead, 7.73
Index 36
Type HFQ Aluminum Electrolytic Capacitor and Type V Stacked Polyester Film Capacitor, 7.73

Understanding Common Mode Noise, 7.137
Unregulated inverter charge-pump voltage converter, 7.61

Vacuum tube:
current feedback, 1.26-28
feedback circuit
CFB gain-bandwidth relationship, plots, 1.27
current feedback, 1.27
Terman designed, 1.26
Valley-Wallman MIT Radiation Laboratory textbook, H.5
Valley, George E. Jr., H.7, H.26
Van Valkenberg, M.E., 5.133
Varactor bridge solid state op amp, H.33-35
block diagram, H.34
Variable gain amplifier:
in automatic gain control, 6.153
digitally controlled, for CATV upstream data line drivers, 6.157-158
Vector Electronic Company, 7.164
Vectorboard, prototyping system, 7.153
Venturi effect, 4.32
Verhagen, C.M., H.12, H.24
Vertical sync, 6.94
Very low noise transformer-coupled microphone preamp, 6.8-9
circuit, 6.8
THD+N, 6.9
Video:
amplifier, 6.93-138
bandwidth, 6.98-100
color signal, matrix unit, 6.95
composite color signal, 6.95
differential driving/receiving, approaches, 6.109
distribution amplifier, 6.107
formats, 6.96-97
high-speed multiplexing, 6.124-126
line driver, 6.106-107
NTSC composite color line, diagram, 6.94
signal
analog television lines, 6.94
processing method, 6.108
and specifications, 6.93-95
transmission, 6.101
single-supply applications, 6.130-136
RGB buffer, 6.130-131
standard broadcast format, 6.93
Video amplifier, 6.93-138
Video line driver, single-supply AC-coupled composite, 6.134-135
Video multiplexer:
dual RGB source, 6.128
with three 2:1 multiplexers, diagram, 6.128
Video Op Amp, 1.51
Virtual ground, 1.8
Vishay chip resistors and type VTF networks, 6.137
Vishay VTF series part 1005, 6.115
Vishay-Ohmite firm, resistors, 6.34
Vishay/Dale Resistors, 7.23
Vishay/Dale RNX Resistors, 4.67
Vladimirescu, A., 7.163
Vladimirescu, Andrei, 7.163
Voigt, Paul, H.3
Voigt, Paul G.A.H., H.6
Voltage, regulated, calculation, 7.54
Voltage controlled amplifier, 6.154-156
circuit, 6.154
Voltage converter:
charge-pump, 7.59-60
regulated output charge-pump, 7.62
Voltage doubler, 7.59-60
Voltage drop, signal leads, 7.27-28
Voltage feedback, in macromodel, 7.141
Voltage feedback op amp, 1.104-112
comparison with current feedback op amp, 1.124-125
frequency response, 1.72-74
gain-bandwidth product, 1.72-74
plots, 1.72
gain-bandwidth product, 1.72-74
input impedance, diagram, 1.62
Voltage inverter, 7.59-60
Voltage noise, 6.149
Voltage output temperature sensor, 4.86-88
Voltage regulator:
adjustable, 7.54
adjustable voltage LDO, 7.58-59
fixed voltage LDO, 7.57-58
functional diagram, 7.53
LDO regulator controller, 7.59
linear
adjustable regulator ICs, 7.55
basics, 7.52-54
negative leg series style, 7.52-53
positive leg series style, 7.52-53
three terminal, diagram, 7.53
noise reduction, 7.58
pass device, 7.54
Voltage sensing, feedback, 7.27
Voltage standing wave ratio, filter, 5.24
Voltage-boosted rail-rail output driver, 6.193-195
circuit, 6.193
OP AMP APPLICATIONS

W
Wadell, Brian C., 7.138
Wagner, Richard, H.68, 1.51
Wainwright Instruments, 7.155
Wainwright Instruments GmbH, 7.164
Wainwright Instruments Inc., 7.164
Wallman, Henry, H.7, H.26
Watkins, Tim, 7.163
Waveform:
 duty cycle, in AC-coupled single-supply op amp, 6.133
 positive swing portion, 7.84
Webster, John G., 4.25, 4.37, 4.67, 4.91
Weeks, J.R., H.25
Wesco film capacitors, 7.22
Western Electric Company, H.3-4
West, Julian M., 1.20
Wheatstone bridge, circuit, 4.8
Whitlock, B., 6.47
Whitney, Dave, H.66, H.70, 6.91, 6.137
Wide bandwidth noise generator, circuit, 6.165
Wide dynamic range ultra low distortion driver, 6.58-59
Wideband in-amp, 6.184
Widlar, R.J., H.67
Widlar, Robert J., H.67
Williams, A.B., 5.133
Williamsen, M., 5.134
Williams, Jim, H.67, 7.164
Williams, Tim, 7.137
Wilson, Garth, H.53
Wire inductance, 7.16

Wire sensing elements, in strain gage, 4.29
Wire-wrap, prototyping system, 7.153
Wong, James, 4.91, 7.22, 7.137
Worst harmonic, 3.14, 3.17-18
Wurcer, S., 2.29, 6.47, 6.77
Wynne, John, 6.187

X
X-AMP, 6.183
 continuous interpolation, current-controlled stages, circuit, 6.155
 exponential amplifier, 6.154
xDSL upstream data line driver, 6.158-160
XFCB 1.5, op amp fabrication process, 1.104
XFCB 2, op amp fabrication process, 1.104
XFET, 3.43

Z
ZDT651 SM-8 Dual NPN Medium Power Transistors Data Sheet, 6.207
ZDT751 SM-8 Dual PNP Medium Power Transistors Data Sheet, 6.207
Zener diode, H.56, 1.48, 7.79, 7.88, 7.98
 breakdown voltage, 7.79
Zener zap trimming, 1.36, 1.48
 advantages, 1.49
Zener zapping, H.56, H.61
Zhang, K., 7.163
Zicko, Peter, H.42
Zis, Jerry, H.54, H.71
Zumbahlen, H., 5.1, 5.134
Zverev, A.I., 5.133

Index 38
ANALOG DEVICES' PARTS INDEX

<table>
<thead>
<tr>
<th>Analog Devices' Parts</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD60X X-AMP series</td>
<td>6.183</td>
</tr>
<tr>
<td>AD82X family</td>
<td>6.3</td>
</tr>
<tr>
<td>AD108, H.52</td>
<td></td>
</tr>
<tr>
<td>AD108A, H.52</td>
<td></td>
</tr>
<tr>
<td>AD210, 2.44-46, 2.46</td>
<td></td>
</tr>
<tr>
<td>AD215, 2.47</td>
<td></td>
</tr>
<tr>
<td>AD260, 2.49-50</td>
<td></td>
</tr>
<tr>
<td>AD261, 2.49-50</td>
<td></td>
</tr>
<tr>
<td>AD301AL, H.50</td>
<td></td>
</tr>
<tr>
<td>AD503, H.60-66, H.63</td>
<td></td>
</tr>
<tr>
<td>AD504, H.54</td>
<td></td>
</tr>
<tr>
<td>AD506L, H.61</td>
<td></td>
</tr>
<tr>
<td>AD508, H.54</td>
<td></td>
</tr>
<tr>
<td>AD508K, H.54</td>
<td></td>
</tr>
<tr>
<td>AD509, H.66</td>
<td></td>
</tr>
<tr>
<td>AD513, H.61</td>
<td></td>
</tr>
<tr>
<td>AD515, H.63</td>
<td></td>
</tr>
<tr>
<td>AD515L, H.63</td>
<td></td>
</tr>
<tr>
<td>AD516, H.61</td>
<td></td>
</tr>
<tr>
<td>AD517, H.54</td>
<td></td>
</tr>
<tr>
<td>AD517L, H.54</td>
<td></td>
</tr>
<tr>
<td>AD518, H.66</td>
<td></td>
</tr>
<tr>
<td>AD524, 2.24</td>
<td></td>
</tr>
<tr>
<td>AD524C, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD526, 2.34-35</td>
<td></td>
</tr>
<tr>
<td>AD542, H.62</td>
<td></td>
</tr>
<tr>
<td>AD542L, H.62</td>
<td></td>
</tr>
<tr>
<td>AD544, H.62</td>
<td></td>
</tr>
<tr>
<td>AD545, H.63</td>
<td></td>
</tr>
<tr>
<td>AD545L, H.63</td>
<td></td>
</tr>
<tr>
<td>AD546, H.64</td>
<td></td>
</tr>
<tr>
<td>AD547, H.62</td>
<td></td>
</tr>
<tr>
<td>AD547L, H.62</td>
<td></td>
</tr>
<tr>
<td>AD548, H.62</td>
<td></td>
</tr>
<tr>
<td>AD548K, H.62</td>
<td></td>
</tr>
<tr>
<td>AD549, H.64, 1.58, 1.78, 4.43, 4.47</td>
<td></td>
</tr>
<tr>
<td>AD549K, 4.42</td>
<td></td>
</tr>
<tr>
<td>AD549KHN, H.64</td>
<td></td>
</tr>
<tr>
<td>AD549L, H.64</td>
<td></td>
</tr>
<tr>
<td>AD588, 4.34-35</td>
<td></td>
</tr>
<tr>
<td>AD589, 4.33, 6.197, 6.200</td>
<td></td>
</tr>
<tr>
<td>AD590, 4.86, 4.92</td>
<td></td>
</tr>
<tr>
<td>AD592, 4.86-87</td>
<td></td>
</tr>
<tr>
<td>AD592CN, 4.87</td>
<td></td>
</tr>
<tr>
<td>AD594, 4.77-78</td>
<td></td>
</tr>
<tr>
<td>AD595, 4.77-78</td>
<td></td>
</tr>
<tr>
<td>AD600, 6.154-156</td>
<td></td>
</tr>
<tr>
<td>AD602, 6.154, 6.156</td>
<td></td>
</tr>
<tr>
<td>AD603, 6.154, 6.156</td>
<td></td>
</tr>
<tr>
<td>AD604, 6.154, 6.156</td>
<td></td>
</tr>
<tr>
<td>AD605, 6.154, 6.156</td>
<td></td>
</tr>
<tr>
<td>AD620, 2.12-15, 2.17, 2.19, 2.21-22, 2.24, 2.26-28, 2.30, 2.46, 4.14, 4.33, 7.87-89, 7.87-90, 7.128</td>
<td></td>
</tr>
<tr>
<td>AD620B, 4.34</td>
<td></td>
</tr>
<tr>
<td>AD621, 2.17, 2.22, 4.35, 7.128</td>
<td></td>
</tr>
<tr>
<td>AD621B, 2.23, 4.34</td>
<td></td>
</tr>
<tr>
<td>AD622, 2.23, 7.128</td>
<td></td>
</tr>
<tr>
<td>AD623, 2.16, 2.26, 2.39, 4.14, 6.186, 7.39, 7.90, 7.128</td>
<td></td>
</tr>
<tr>
<td>AD623B, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD624C, 2.17, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD625, 2.38-39</td>
<td></td>
</tr>
<tr>
<td>AD625C, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD626, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD626B, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD627, 2.10-11, 2.39, 4.14, 7.90, 7.128</td>
<td></td>
</tr>
<tr>
<td>AD627B, 2.23</td>
<td></td>
</tr>
<tr>
<td>AD629, 7.39, 7.81-82</td>
<td></td>
</tr>
<tr>
<td>AD642, H.62</td>
<td></td>
</tr>
<tr>
<td>AD644, H.62</td>
<td></td>
</tr>
<tr>
<td>AD648, H.62</td>
<td></td>
</tr>
<tr>
<td>AD648KN, H.62</td>
<td></td>
</tr>
<tr>
<td>AD688, 1.66</td>
<td></td>
</tr>
<tr>
<td>AD704, H.54, 1.35</td>
<td></td>
</tr>
<tr>
<td>AD705, H.54, 1.35, 6.190</td>
<td></td>
</tr>
<tr>
<td>AD706, H.54, 1.35</td>
<td></td>
</tr>
<tr>
<td>AD707, H.57, 3.12, 3.25, 4.22</td>
<td></td>
</tr>
<tr>
<td>AD708, H.57, 4.16</td>
<td></td>
</tr>
<tr>
<td>AD711, H.62, 6.35, 6.191-192, 6.197, 6.199</td>
<td></td>
</tr>
<tr>
<td>AD711K, H.62</td>
<td></td>
</tr>
<tr>
<td>AD712, H.62, 1.103, 5.126, 6.35</td>
<td></td>
</tr>
<tr>
<td>AD712KN, H.62</td>
<td></td>
</tr>
<tr>
<td>AD713, H.62</td>
<td></td>
</tr>
<tr>
<td>AD741, H.50-51</td>
<td></td>
</tr>
<tr>
<td>AD741J, H.50</td>
<td></td>
</tr>
<tr>
<td>AD741L, H.50</td>
<td></td>
</tr>
<tr>
<td>AD743, H.65, 1.77, 1.79, 4.59, 4.64-66</td>
<td></td>
</tr>
<tr>
<td>AD743K, 1.54</td>
<td></td>
</tr>
<tr>
<td>AD744, H.66, 4.59, 6.35, 6.62-63</td>
<td></td>
</tr>
<tr>
<td>AD744JN, 6.62</td>
<td></td>
</tr>
<tr>
<td>AD745, H.65, 1.77, 1.79, 4.59, 4.63-66, 6.22, 6.24-25, 6.25</td>
<td></td>
</tr>
<tr>
<td>AD746, 6.35</td>
<td></td>
</tr>
<tr>
<td>AD768, 3.50</td>
<td></td>
</tr>
<tr>
<td>AD780, 3.34, 3.44, 6.122-123</td>
<td></td>
</tr>
<tr>
<td>AD795, H.64, 1.78-79, 4.43, 4.46, 4.51-52, 4.56, 4.59, 7.82-83</td>
<td></td>
</tr>
<tr>
<td>AD795JR, 4.42-43, 4.48-49, 4.54, 4.56, 4.66</td>
<td></td>
</tr>
<tr>
<td>AD795K, 4.55</td>
<td></td>
</tr>
<tr>
<td>AD797, 2.35-36, 3.12, 3.25, 6.8-9, 6.23, 6.48, 6.58-59, 7.86, 7.122</td>
<td></td>
</tr>
<tr>
<td>AD797JN, 6.8</td>
<td></td>
</tr>
<tr>
<td>AD810, 6.48, 6.124</td>
<td></td>
</tr>
<tr>
<td>AD811, H.66, 1.103, 6.48-49, 6.50, 6.51, 6.60-64, 6.69, 6.82, 6.85, 6.106, 6.113, 6.171-172, 7.148</td>
<td></td>
</tr>
<tr>
<td>OP AMP APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>AD812, 6.48, 6.51, 6.60-61, 6.63-64, 6.106, 6.109-110, 6.113</td>
<td></td>
</tr>
<tr>
<td>AD813, 6.106, 6.110, 6.124, 6.126</td>
<td></td>
</tr>
<tr>
<td>AD815, 6.48, 6.63-64</td>
<td></td>
</tr>
<tr>
<td>AD817, 1.103, 6.48, 6.51, 6.54, 6.82, 6.88-89, 6.163, 6.166, 6.182, 6.184, 6.199-200, 6.204, 7.106, 7.144</td>
<td></td>
</tr>
<tr>
<td>AD818, 6.48, 6.54, 6.106, 6.115-116, 6.116</td>
<td></td>
</tr>
<tr>
<td>AD820, H.60-66, H.65, 1.41, 1.97, 4.45-46, 4.59, 6.3, 6.4, 6.24, 6.26, 6.167, 6.199, 7.78</td>
<td></td>
</tr>
<tr>
<td>AD820B, H.65, 4.42</td>
<td></td>
</tr>
<tr>
<td>AD820BN, 4.44, 4.45</td>
<td></td>
</tr>
<tr>
<td>AD822, H.60-66, H.65, 1.41, 1.97, 2.14, 6.2-4, 6.167</td>
<td></td>
</tr>
<tr>
<td>AD823, H.60-66, H.65, 1.40-41, 4.59, 4.60-61, 6.2-3, 6.42, 6.63-64</td>
<td></td>
</tr>
<tr>
<td>AD824, H.60-66, H.65, 1.41, 1.97</td>
<td></td>
</tr>
<tr>
<td>AD825, 5.128-129, 5.131, 6.41-43, 6.55, 6.63-64, 6.179, 6.199</td>
<td></td>
</tr>
<tr>
<td>AD826, 6.48, 6.51, 6.82, 6.89, 6.177-178</td>
<td></td>
</tr>
<tr>
<td>AD827, 6.89, 7.122</td>
<td></td>
</tr>
<tr>
<td>AD828, 6.106, 6.116, 6.181</td>
<td></td>
</tr>
<tr>
<td>AD829, H.66, 1.34-35, 6.48, 6.83, 6.165-166, 6.168-169</td>
<td></td>
</tr>
<tr>
<td>AD830, 6.117, 6.119, 6.179-181</td>
<td></td>
</tr>
<tr>
<td>AD840, H.66</td>
<td></td>
</tr>
<tr>
<td>AD843, 4.59, 6.190</td>
<td></td>
</tr>
<tr>
<td>AD844, 6.168</td>
<td></td>
</tr>
<tr>
<td>AD845, 4.59, 6.18, 6.19, 6.21, 6.25, 6.41-43, 6.48, 6.54, 6.60-61, 6.69, 6.72-73, 6.75-76, 6.87, 7.122</td>
<td></td>
</tr>
<tr>
<td>AD845, 1.111</td>
<td></td>
</tr>
<tr>
<td>AD846, H.66, 1.25, 1.28, 6.168</td>
<td></td>
</tr>
<tr>
<td>AD847, 1.110</td>
<td></td>
</tr>
<tr>
<td>AD847, H.66, 1.103, 5.110, 6.48, 6.89, 7.150</td>
<td></td>
</tr>
<tr>
<td>AD974, 3.27</td>
<td></td>
</tr>
<tr>
<td>AD976, 3.27</td>
<td></td>
</tr>
<tr>
<td>AD977, 3.27</td>
<td></td>
</tr>
<tr>
<td>AD8013, 6.110</td>
<td></td>
</tr>
<tr>
<td>AD76XX, 3.27</td>
<td></td>
</tr>
<tr>
<td>AD77XX, 2.32, 2.40, 3.24-25, 4.80-81</td>
<td></td>
</tr>
<tr>
<td>AD789X, 3.27</td>
<td></td>
</tr>
<tr>
<td>AD813X, 3.37, 3.51, 6.114</td>
<td></td>
</tr>
<tr>
<td>AD855X, 3.2</td>
<td></td>
</tr>
<tr>
<td>AD860X, 1.47</td>
<td></td>
</tr>
<tr>
<td>AD922X, 3.34, 3.36-37</td>
<td></td>
</tr>
<tr>
<td>AD976X, 3.48-49, 3.48-50</td>
<td></td>
</tr>
<tr>
<td>AD977X, 3.48-49, 3.48-50</td>
<td></td>
</tr>
<tr>
<td>AD1580, 6.197, 6.200</td>
<td></td>
</tr>
<tr>
<td>AD1853, 3.52</td>
<td></td>
</tr>
<tr>
<td>AD3554, H.40</td>
<td></td>
</tr>
<tr>
<td>AD7416, 4.87</td>
<td></td>
</tr>
<tr>
<td>AD7417, 4.87</td>
<td></td>
</tr>
<tr>
<td>AD7418, 4.87</td>
<td></td>
</tr>
<tr>
<td>AD7528, 5.128-129, 5.131</td>
<td></td>
</tr>
<tr>
<td>AD7730, 2.40, 4.23-24, 4.36</td>
<td></td>
</tr>
<tr>
<td>AD7776, 2.26</td>
<td></td>
</tr>
<tr>
<td>AD7816, 4.87</td>
<td></td>
</tr>
<tr>
<td>AD7817, 4.87</td>
<td></td>
</tr>
<tr>
<td>AD8001, H.66, 1.103, 1.117, 6.82, 6.86-87, 6.99-100, 6.102, 6.105, 6.106, 7.161-162</td>
<td></td>
</tr>
<tr>
<td>AD8002, 1.117, 6.106, 6.111-113</td>
<td></td>
</tr>
<tr>
<td>AD8004, 1.117, 6.100</td>
<td></td>
</tr>
<tr>
<td>AD8005, 1.117</td>
<td></td>
</tr>
<tr>
<td>AD8009, 1.103, 1.117</td>
<td></td>
</tr>
<tr>
<td>AD8010, 6.107</td>
<td></td>
</tr>
<tr>
<td>AD8011, 1.103, 1.115-117, 6.151</td>
<td></td>
</tr>
<tr>
<td>AD8012, 1.117, 6.106</td>
<td></td>
</tr>
<tr>
<td>AD8013, 1.117, 6.124</td>
<td></td>
</tr>
<tr>
<td>AD8014, 1.117</td>
<td></td>
</tr>
<tr>
<td>AD8015, 6.82</td>
<td></td>
</tr>
<tr>
<td>AD8016, 7.104-106</td>
<td></td>
</tr>
<tr>
<td>AD8016ARP, 7.104</td>
<td></td>
</tr>
<tr>
<td>AD8017, 7.106</td>
<td></td>
</tr>
<tr>
<td>AD8017AR, 7.101</td>
<td></td>
</tr>
<tr>
<td>AD8018, 6.159-160</td>
<td></td>
</tr>
<tr>
<td>AD8021, 6.83</td>
<td></td>
</tr>
<tr>
<td>AD8023, 1.117</td>
<td></td>
</tr>
<tr>
<td>AD8031, 1.112, 6.82, 6.132</td>
<td></td>
</tr>
<tr>
<td>AD8032, 1.112, 6.82</td>
<td></td>
</tr>
<tr>
<td>AD8036, 6.120-122, 6.171-172</td>
<td></td>
</tr>
<tr>
<td>AD8037, 6.120-123, 6.171-174, 6.176-178</td>
<td></td>
</tr>
<tr>
<td>AD8039, 1.71, 1.112</td>
<td></td>
</tr>
<tr>
<td>AD8041, 1.112, 3.34, 6.82, 6.130-131, 6.134-135</td>
<td></td>
</tr>
<tr>
<td>AD8042, 1.112, 6.82, 6.130, 6.136</td>
<td></td>
</tr>
<tr>
<td>AD8044, 1.112, 6.130-131</td>
<td></td>
</tr>
<tr>
<td>AD8047, 1.112, 6.106</td>
<td></td>
</tr>
<tr>
<td>AD8048, 1.112, 1.120, 6.106</td>
<td></td>
</tr>
<tr>
<td>AD8055, 3.49-50, 6.106, 6.116</td>
<td></td>
</tr>
<tr>
<td>AD8056, 6.106, 6.116</td>
<td></td>
</tr>
<tr>
<td>AD8057, 3.22-24, 3.34, 6.106, 7.106</td>
<td></td>
</tr>
<tr>
<td>AD8058, 3.22-24, 3.37, 6.106, 7.106</td>
<td></td>
</tr>
<tr>
<td>AD8061, 6.106</td>
<td></td>
</tr>
<tr>
<td>AD8062, 6.106</td>
<td></td>
</tr>
<tr>
<td>AD8063, 6.106</td>
<td></td>
</tr>
<tr>
<td>AD8065, 6.55, 6.61</td>
<td></td>
</tr>
<tr>
<td>AD8072, 1.117</td>
<td></td>
</tr>
<tr>
<td>AD8073, 1.117</td>
<td></td>
</tr>
<tr>
<td>AD8074, 1.112, 6.82, 6.98, 6.124</td>
<td></td>
</tr>
<tr>
<td>AD8075, 1.75, 1.112, 6.82, 6.98, 6.124</td>
<td></td>
</tr>
<tr>
<td>AD8079A/B, 6.82</td>
<td></td>
</tr>
<tr>
<td>AD8110, 6.129</td>
<td></td>
</tr>
<tr>
<td>AD8111, 6.129</td>
<td></td>
</tr>
<tr>
<td>AD8113, 6.129</td>
<td></td>
</tr>
<tr>
<td>AD8114, 6.129</td>
<td></td>
</tr>
<tr>
<td>AD8115, 6.129</td>
<td></td>
</tr>
<tr>
<td>AD8116, 6.129</td>
<td></td>
</tr>
<tr>
<td>AD8129, 6.117-118</td>
<td></td>
</tr>
</tbody>
</table>

Index 40
OP AMP APPLICATIONS

OP177, H.57, 1.66-67, 1.81, 1.89, 1.91, 1.95, 1.101, 3.12, 3.25, 4.22, 4.33-35, 6.199, 7.12	OP196, 1.97
OP177A, H.57	OP213, 1.32, 1.81, 1.97, 4.16, 4.35, 6.2-3
OP177F, 1.54, 1.58, 1.96-97	OP249, H.62, 1.103, 6.35, 7.122, 7.145
OP184, 1.42, 1.97	OP270, 6.2, 6.19
OP191, 1.42, 1.97	OP275, 3.52, 6.2, 6.7, 6.21, 6.35, 6.38-39, 6.48, 6.53-54, 6.56-57, 6.65, 6.72
OP196, 1.97	OP279, 1.42
OP200, 7.122	OP284, 1.42, 1.97
OP213, 1.32, 1.81, 1.97, 4.16, 4.35, 6.2-3	OP291, 1.42, 1.97
OP249, H.62, 1.103, 6.35, 7.122, 7.145	OP293, 1.97
OP270, 6.2, 6.19	OP296, 1.97
OP279, 1.42	OP413, 1.32, 1.97
OP284, 1.42, 1.97	OP470, 6.2
OP291, 1.42, 1.97	OP482, 1.103
OP293, 1.97	OP484, 1.42, 1.97
OP296, 1.97	OP491, 1.42, 1.97
OP297, H.53-54, 1.35, 1.38	OP496, 1.97
OP413, 1.32, 1.97	OP497, H.53-54, 1.35, 1.38
OP470, 6.2	OP727, H.59, 1.95
OP482, 1.103	OP747, H.59, 1.95
OP484, 1.42, 1.97	OP777, H.59, 1.95, 1.97, 4.76, 7.80
OP491, 1.42, 1.97	OP1177, H.59, 1.95, 4.22
OP496, 1.97	OP2177, H.59, 1.95, 4.16
OP497, H.53-54, 1.35, 1.38	OP4177, H.59, 1.95
OP727, H.59, 1.95	REF195, 4.35
OP747, H.59, 1.95	SSM2135, 6.2-3, 6.4
OP777, H.59, 1.95, 1.97, 4.76, 7.80	SSM2141, 6.35-36, 6.38-39, 6.42, 6.108
OP1177, H.59, 1.95, 4.22	SSM2142, 6.67-68, 6.108
OP2177, H.59, 1.95, 4.16	SSM2143, 6.35-36, 6.41-42, 6.44-45, 6.108
OP4177, H.59, 1.95	TMP35, 4.76, 4.88
REF195, 4.35	TMP36, 4.88
SSM2135, 6.2-3, 6.4	X-AMP, 6.154-156
SSM2141, 6.35-36, 6.38-39, 6.42, 6.108	
STANDARD DEVICE PARTS LIST

6CS7 dual triode, H.11
6J6 dual triode long-tailed pair, H.12
6J7G pentode, H.11
6L6, H.19
6SJ7, H.19
6SL7 dual triode, H.16-17, H.19
12AU7, H.22
12AX7 dual triode, H.20-21
12AX7, 6.206
12SH7 pentode, H.12
1N748A, H.38
1N914, glass diode, 7.77-78
1N3600, H.39
1N4148, diode, 6.194
glass diode, 7.78
low capacitance diode, 7.87
1N4448, diode, 6.69
1N5235, 6.195
1N5240B, zener diode, 7.78-79
1N5711, Schottky type diode, 7.77
1N5712, Schottky diode, 6.122
2N760, H.31
2N930, H.31
2N1132, H.31
2N2219A, 4.34
2N2222, H.39
2N2222A, H.38
2N2907, H.31-32, H.39
2N2975, H.36-37
2N3250, H.38
2N3904, H.39
emitter follower, 6.132
2N3904, 6.132, 6.204, 6.206
2N3906, H.39
PNP transistor, 6.177
2N3906, 6.177, 6.206, 7.78
2N3954, N-channel JFET dual op amp, 6.201
2N3958, 6.201
2N4117, general purpose JFET diode, 7.78
2N4121, H.38
2N4258, H.39
2N5210, 6.199
2N5457, JFET diode, 7.77
2N5457, 7.77-78
2N5459, 6.204
2N5911, H.38-39
2N5911, 6.79
2SK389 Dual FET, Silicon Monolithic N-Channel Junction Type Data Sheet, 6.207
2SK389, 6.204
2SL7, 6.206
2SL7GTB, 6.206
6SN7GTB, 6.206
709, 1.104, 6.201
741, 1.78, 1.103-104, 6.201
743, 1.78
744, 1.78
795, 1.78
7915, 7.54
7915, 7.54
Aavid 5801, 4.64, 6.49
AMP 5-330808-6, 7.159
CD4001, 6.171
CD4011, 6.170-171
DPAD1, 7.83
FD333, H.36
HP5082-4204 PIN Photodiode, 4.59
J401, 6.201
JT-16A (Jensen), 6.8
LF356, 6.199
LH0033, 6.79
LM101, 1.104
LM301A, 6.199
LM309, 7.54
LM317, 7.54-55
LM337, 7.54-55
Micrel MIC4427, 4.24
Mini-Circuits T16-6T, 3.36
MPSA42, 6.206
MPSA92, 6.206
P4250, H.38
PAD1, low leakage diode, 7.83
PN2222A, 6.194-196, 6.200
PN2907A, 6.194-196
PN4117, JFET diode, 7.77
SD-020-12-001, 4.41
SM-8, 6.194
SOT-363, 6.194
TO-99, metal can packaging, 7.42
TO92, 6.194
ZDT651, 6.196
ZTX652, ZDX653 NPN Silicon Planar Medium Power Transistors Data Sheet, 6.207
ZDT751, 6.195-196
ZTX752, ZDX753 PNP Silicon Planar Medium Power Transistors Data Sheet, 6.207
ZTX653, 6.195-196
ZTX753, 6.195-196