INDEX

SUBJECT INDEX

ANALOG DEVICES PARTS INDEX
SUBJECT INDEX

A
Accelerometer:
 amplifier,
 diagrams, 9.76
 requirements, 9.70
 monolithic, 9.77
 sensor, 9.77
 advantages, 9.79
 block diagram, 9.79
 operation, 9.78
Accelerometer amplifier, 9.76
Acquisition time, hold to track transition SHA, 8.59
Active differential integrator,
 switched-capacitor equivalent, 10.43
Active and Passive Electrical Wave Filter Catalog (TTE, Inc.), 4.31
AD7528 Dual 8-Bit CMOS DAC Application Note, 10.45
ADC:
 3-bit,
 transfer function
 differential non-linearity, 5.9
 missing code, 5.9
 unipolar, transfer
 characteristics, 5.4
 8-bit,
 block diagram, 6.15
 flash converter, 6.15
 10-bit,
 SFDR, vs. frequency, 4.17
 SNR, vs. frequency, 4.17
 12-bit,
 block diagram, 6.16
 demultiplexing, 6.17
 FFT outputs, 4.12
 monolithic, SFDR value, 4.24
 multipass subranging, 5.49
 nonsampling, 6.8
 sampling
 effective bit performance, 4.13
 S(N+D), 4.13
 SFDR, vs. frequency, 4.17
 SFDR value, 4.25
 SHA addition, performance, 4.25
 SNR, vs. frequency, 4.17
 timing diagram, 6.17
14-bit,
 multipass recirculating, 5.49
 SFDR, 4.16
 vs. frequency, 4.17
 SNR, 4.16
 vs. frequency, 4.17
22-bit,
 quad sigma-delta
 diagram, 7.15
 key features, 7.16
3-bit, unipolar, transfer
 characteristics, 5.63
AC characteristics, 6.2
AC errors, 5.16-23
AC specifications,
 ENOB, 5.16
 full-power bandwidth (FPBW), 5.16
 harmonic distortion, 5.16
 intermodulation distortion, 5.16
 quantization noise, 5.16
 sampling clock jitter, 5.16
 SFDR, 5.16
 accuracy, reference voltage, 8.8
 analog and digital ground, 11.47
 analog multiplexer,
 with PGA and SAR, 7.3
 SHA, dynamic input
 processing, 7.5
 antialiasing filter, 4.5-8
 bandpass, 6.10
 effects on system dynamic
 range, 4.6
 aperture jitter, 5.20
 built-in PGA, serial interface gain
 control, 2.31
CMOS, input voltage, 6.6
code transition noise and DNL, 5.10
comparator, 2.39, 5.43-44
 as component, 2.39
 comparison with DAC, 5.1
in data acquisition system, 7.2
data acquisition system,
settling time, 7.9-10
decoupling, 6.31-40
definition, 5.1
digital filtering and decimation,
for better SNR and ENOB, 5.66
distortion,
analysis, 4.17
components, 5.22
and SFDR, 4.18
drive amplifier,
AC and DC performance, 6.3
distortion and noise
performance, 6.3
selection, 6.2

DSP interface,
parallel, 6.18-19
serial, 6.20
dynamic testing, 4.11
effective aperture delay
time, 5.21-22
ENOB, 4.11
gain vs. frequency, 5.19
improvement using SHA, 5.21
indicating dynamic
performance, 5.19
loss at higher frequencies, 5.20
excess DNL, missing codes, 5.8
external filter, 6.13-14
fanout, 6.36
flash converter,
block diagram, 6.15
performance considerations, 6.4
timing diagram, 6.15
flash or parallel, 5.44-46
full-power bandwidth,
definition, 4.14
determination, 4.14
effective noise floor, 4.15
ground plane, 6.31-40, 6.35
grounding and decoupling, 6.35
hard distortion, 5.23
high speed sampling, fast SHA,
low distortion, 8.63
hold-mode SFDR,
measurement, 4.27-28
input,
3-terminal regulator as
supply, 6.7
analog, 5.4
clamping, 6.6
and protection circuits, 6.5-8
driving, 6.2-5
Gaussian wideband noise
addition, 4.10
latch-up protection, 6.6
multiplexing, buffer, 8.42
noise, 6.8-9
overvoltage recovery time, 6.5
Schottky diodes, 6.7-8
temporary overvoltage, 6.6
with integral SHA, advantage, 8.44
integrating, 5.50-51
interfacing, 6.1-44
diagram, 6.2
requirements, 6.1
internal stray capacitance, 6.18
output buffer, 6.18
isolation, 2.38
latch, 6.36
jitter, 6.29
large signal bandwidth,
defined, 5.17-18
layout, 6.31-40
logic, 5.42
pitfalls, 5.43
sources of error, 5.42
missing code, defining, 5.10
monolithic,
FFT output, 4.28
sampling, 4.12
S(N+D), 4.12
track-and-hold, 4.27
multipass (recirculating),
diagram, 5.49
multipass subranging,
diagram, 5.49
multiplexed system,
considerations, 7.10
noise, reduction, anti-aliasing
filter, 6.10
non-sampling, in simul:aneously
sampled system, 7.17
nonlinearity, 5.22
output,
battery signal, 6.18
capturing data, 6.14-17
conversion complete
signal, 6.18-19
DSP processing, 6.18
interfacing, applications, 6.18-20
parallel, 6.14, 6.18
serial, 6.14, 6.18
interfacing, 6.19-20
parallel or flash, 5.44-46
passive filter, 6.13
perfect N-bit, SNR, 5.16
phase jitter, 5.20
power supply, 6.31-40
grounding and decoupling, 6.36-37
separate, 6.36
precision sampling,
DC input
histogram, 6.9
noise, 6.9
quantization noise, 4.11
reference voltage, 6.11-14
resolution,
dynamic range, 4.8-18
selection, 4.9
SFDR, 4.9
sampling,
advantage, 8.44
integrated SHA, 5.21, 5.73
performance considerations, 6.4
simultaneous, 7.16-18
wideband, 6.8
sampling clock, 6.29
decoupled power supply, 6.30
generation, 6.29-31
grounding and decoupling, 6.36-37
isolated circuits, 6.30
jitter, effect on SNR and ENOB, 6.29
low phase noise, 6.30
sampling rate, 4.5-8
minimum required vs. frequency, 4.22
no aliasing, 4.21-22
SAR, serial-output, 6.20
selection, sampled data systems, 4.1
SFDR value, optimizing design, 4.25-26
SHA,
advantages, 5.72-73
driving flash converter, 4.30
performance, 5.72-73
with and without, performance, 4.30
sigma-delta, 5.61-71
driving, 8.18
input
multiplexing, 7.13-16
noise, 8.15
multiplexed inputs, 7.13-16
diagram, 7.13
filter
frequency response, 7.14
settling, 7.13
key features, 7.14
serial-output, 6.20
switched capacitor, dynamic load, 8.14
switched-capacitor filter, 10.43
transient errors, 8.14
sigma-delta,
See also Sigma-delta ADC
signal-processing,
characteristics, 4.13
ENOBs, 4.14
FFT, 4.15
input bandwidth, 4.13-14
peak harmonic component, 4.14
peak spurious, 4.14
SFDR, 4.14
SHA, 4.13
SNR, 4.14
soft distortion, 5.22-23
structures, 5.41-73
 comparators, 5.43-44
flash or parallel, 5.44-46
integrating, 5.50-51
sample and hold (SHAs), 5.72-73
sigma-delta, 5.61-71
subranging, 5.46-49
successive approximation, 5.60-61
tracking, 5.58-59
voltage-to-frequency converter/counter, 5.51-58
subranging,
characteristics, 5.46-49
pipeline delay, 6.16
successive-approximation, 5.60-61
dynamic transient load, 8.17
large bypass capacitor, 8.16
THD, 4.11
third order intercept point, 5.23
timing jitter, 6.30
tracking, 5.58-59
transient settling time, 6.4
types, 5.42
undersampling, 4.19-30
voltage references,
 internal vs. external, 6.11
 low noise, considerations, 6.13
peak-to-peak noise, 6.12
precision, diagram, 6.12
voltage-to-frequency converter/
counter, 5.51-58
wideband, Nyquist
sampling, 4.20-21
wideband low-noise buffer, 6.14
Aging, in offset voltage, 1.30
Aliasing:
 analog signal, 4.3
 frequency domain effects, 4.5
 intermediate frequency signal,
 4.23-24
 Nyquist bandwidth, 4.3-4
time domain effects, 4.4
Allen, P.E., 10.45
Amplifier:
 1dB compression point, 3.41-42
 accelerometer, 9.76
 active feedback, 2.14-20
 as in amp, 2.16-17
 characteristics, 2.14-15
 closed loop connection, 2.16
 CMR, 2.20
 CMRR, 2.16-17, 2.19-20
 frequency response, 2.20
 input impedance, 2.16
 loop-through configuration,
 2.18-19
topology, 2.15
 transconductance, 2.14
 video difference amplifier,
 specifications, 2.19
 video performance, 2.16, 2.18
 voltage feedback, 2.15
automatic gain control, 3.45-46,
 3.45-55
 outputs, 3.46
BiFET, in transducer, 9.71
charge, with piezoelectric
 transducer, 9.7
current feedback, 3.47-49
drive, noise, 6.10
exponential, 3.51
 amplifier gain, 3.54
 bias current, 3.52
 current-controlled
 transconductance, 3.52
gain as function of control
 voltage, 3.52
input interpolation, 3.52
key features, 3.54-55
output noise spectral
density, 3.54
total input-referred noise, 3.54
instrumentation: See In amp
isolation, 2.32-39
two-port, 2.34
three-port, 2.34-35
circuit, 2.35
 features, 2.35
input circuit, 2.34
medical patient protection, 2.32
no direct connections, 2.32
 protection for transducer, 2.32
techniques, 2.33
uses, 2.32
using voltage-frequency
 converter, 2.37
large signal bandwidth,
defined, 5.17
log video, 3.4-5
logarithmic, 3.2-22
 low dynamic range
 output, 3.2-22
logarithmic, See also Log amp
low noise, and filter, 8.13
operational: See Op amp
photodiode,
 selection, 9.65-68
 flow chart, 9.67
programmable gain: See PGA
sample and hold: See SHA
sampling, diagram, 4.29
special purpose, 2.1-47
variable-gain, 3.1
voltage-controlled, 3.1, 3.47-55
 frequency response at high
 gains, 3.50
 frequency and transient
 response, 3.48
 gain linear in volts, 3.51
 high bandwidth, 3.50
 high dynamic range, 3.50
 for linear signal compression, 3.2
 square-law gain control, 3.50
Amplifier Applications Guide (1992),
 1.76, 2.48, 3.61, 4.33, 5.74
Analog-digital conversion, before
 isolation, 2.38
Analog circuit, prototyping, 6.43-44,
11.74-75
Analog delay:
cascaded SHAs, 8.67
SHA, 8.49-50
Analog ground, definition, 11.46
Analog multiplexer:
crosstalk, 7.3, 7.5
diagram, 7.3
off-channel isolation, 7.3
on-resistance, 7.3-4
modulation, 7.3
with PGA and SAR ADC, 7.3
switching time, 7.3
Analog signal:
aliasing, 4.3
characteristics, 5.2
discrete time sampling, 4.2-5
filtering, 4.4
sampling and quantizing, 4.2
Analog signal processing:
circuits, 3.1-61
filter,
classes, 10.1
design principles, 10.1-9
function, 10.1
Analog switch:
anatomy, 8.27-37
application, 8.39-43
multiplexing output, buffer to
ADC, 8.43
on-resistance, minimizing,
temperature effect, 8.42
unity gain inverter, 8.40
voltage increment
minimizing, 41
non-inverting solution,
8.43
capacitance, retained charge,
8.33-34
charge coupling, dynamic settling,
8.35
CMOS technology, 8.19-43
crosstalk, 8.34-35
DC performance,
switch off-resistance, 8.28
switch on-resistance, 8.27-28
dynamic performance,
charge injection
effects, 8.33
model, 8.32
errors, 8.40
off isolation, 8.30
vs. frequency, 8.31
on-resistance, 8.40-42
transfer accuracy vs. frequency,
8.29-30
equivalent circuit of adjacent
switches, 8.27
error sources, 8.27-37
ideal configuration, 8.19-20
MOSFET transistor, 8.20
multiplexing,
charge coupling, noise, 8.34
concepts, 8.19
into ADC, buffer, 8.42
overcurrent, protection method,
8.24, 8.26
parasitic latchup, 8.19-43
series-pass capacitance, large
feedthrough, 8.30-31
Andrews, James R., 4.31
Aperture delay time, SHA, 8.50
Aperture jitter:
effects, 5.20
effects on SHA output, 8.52
error, measurement, 8.52
SHA, 5.21, 8.51
Aperture time, SHA, 8.49-50
Aperture uncertainty, SHA, 8.51
Asta, Dan, 4.32-33

B
Baldwin, Eugene E., 4.31
Barber, William T., 3.61
Barrow, Jeff, 11.76
Baseband sampling, digital receiver,
4.19-20
BCD code, for data converter, 5.5
Bell, Barry A., 4.31
Bending vane, flow rate measurement,
9.9
Bennett, W.R., 4.31
Bias current:
cancellation, characteristics, 1.33-34
measurement, 1.31-33
in op amps, 1.31
BiFET amplifier, in transducer, 9.71
Binary code, for data converter, 5.5
Bipolar bias current input stage,
characteristics, 1.7
Blackman, R.B., 4.31
C

Capacitance:
capacitive coupling, equivalent
circuit, 11.20
capacitive noise, Faraday shields,
11.20-24
capacitive shielding, 11.21
diagram, 11.19
selection considerations, 10.22
stray, 11.19-30
tuned circuit in inductor, 11.38
temperature dependence, 10.22
Capacitive coupling, equivalent circuit,
11.20
Capacitor:
ceramic, 10.25, 10.27
comparison chart, 10.25
equivalent circuit, 10.24
mica, 10.25, 10.27
plastic film, 10.25, 10.27
polystyrene, 10.25, 10.27
real,
comparison chart, 11.30
dielectric absorption, 11.28-30
equivalent circuits, 11.25
high frequency decoupling, 11.28
inductance, 11.27
leakage, 11.26
series/loss resistance, 11.26
SHA use, materials, 11.29
Caves, J.T., 10.45
Chadwick, P.E., 3.61
Charge-coupled device, 9.80-82
construction, 9.80
fabrication, 9.81
linear array, 9.80
noise,
minimizing, correlated
double sampling, 9.81-82
sample-to-sample, 9.81
output waveform, 9.81
Chopper stabilization, of op amps,
definition, 1.10
Circuit:
analog, prototyping, 6.43-44
evaluation, 6.44
mixed signal, prototyping, 6.43-44
printed, track resistance, 11.5
sample and hold, 8.44-68
track and hold, 8.44
wire mounting, 6.44
CMOS DAC Application Guide, 10.45
CMOS switch:
 AC performance,
 parasitic capacitance, 8.29
 parasitic components, 8.29
 transfer accuracy, 8.29
basic technology, diagram, 8.22
bipolar transistor equivalent circuit,
parasitic SCR latchup, 8.24
crosstalk, 8.36
junction-isolated, cross-sectional
 diagram, 8.23
multiplexing circuit,
 latchup protection with diodes,
 8.25
 overcurrent protection, 8.26
off-isolation performance, 8.31-32
on-resistance vs. signal voltage, 8.22
parasitic SCR latchup, 8.23-26
 protection method, 8.24-25
settling time, 8.36-37
 time constants to accuracy
 band, 8.37
signal transfer, error sources, 8.29
CMOS technology, mixed signal,
 advantages, 8.21
CMRR:
 calculation, 1.69
 and frequency, 1.72
 measurement, 1.69-71
Coleman, Brendan, 4.31
Colotti, James J., 4.31
Common-mode rejection: See CMR
Common-mode rejection ratio: See
 CMRR
Comparator, 2.39-47
 characteristics, 2.39-40, 5.43-44
 circuit, 2.40
 fast, high gain and bandwidth, 2.46
 hysteresis, 2.41
 internal latch, 2.40
 latch-enable timing, 2.46
 1-bit ADC, 5.43-44
 oscillation, reducing, 2.47
 propagation delay, 2.42-43
 dispersion, 2.43
 for risetime measurement, 2.44
 specifications, 2.41
 time delay generation, using ramp
 generator, 2.44-45
 window, 2.45
Conductor, resistance, 11.5-18
Contact potential, 9.32
Converter:
 frequency-voltage, 2.37
 full-scale,
 bit sizes, 4.8-9, 11.4
 SNR, 4.8, 4.11
 theoretical quantization
 noise, 4.8-9
 high resolution, low-noise voltage
 reference, 8.18
 resolution, selection, 4.9
RMS-to-DC, 3.33-36
 by explicit method, 3.33-34
 by implicit method, 3.34
 detector element, 3.55
 monolithic, 3.35
 range size, 3.55
 wide dynamic-range system, 3.56
 circuit modification log error,
 3.60
deviation from ideal
 logarithmic output, 3.59
 gain ripple, 3.59
 cancellation, 3.60
 logarithmic output vs. input
 signal level, 3.58
 signal output vs. input level,
 3.58
 temperature stability, 3.57
 voltage stability, 3.57
 sigma-delta, 4.7
 voltage-frequency, 2.37
Counts, Lew, 2.48, 3.61
Crosstalk, in multiplexed data
 acquisition system, 7.9
Current-frequency converter, as
 current steering multivibrator, 5.52
Current steering multivibrator, as
 current-frequency converter, 5.52

D
DAC:
 1-bit,
 changeover switch, 5.28
 low-glitch design, 5.29
 monotonic, 5.29
 oversampling, for high
 resolution, 5.37
3-bit, transfer function
non-linearity, 5.9
non-monotonicity, 5.9
unipolar, transfer
characteristics, 5.3
4-bit, current segmented, 5.31
12-bit, cascaded architecture,
5.32-33
16-bit, converter, used with
PGA, 2.28
20-bit, audio, with offset MSB
transition, 5.37
AC errors, 5.12-16
distortion, 5.12
glitch, 5.12
phase noise, 5.12
settling time, 5.12
dead time, 5.12
linear settling time, 5.12
recovery time, 5.12
swelling time, 5.12
switching time, 5.12
spurious free dynamic range
(SFDR), 5.12
accuracy, reference voltage, 8.8
analog and digital ground, 11.47
architecture for digital audio, 5.37
binary-weighted current output,
5.31-32
cascaded binary quads, 5.32
comparison with ADC, 5.1
current segmented, 5.30-31
current-mode, decoded MSBs, 5.36
current-output,
buffering, 6.25
current-to-voltage converter,
6.24
monotonic, 5.29-30
daisy-chaining, 5.40
data acquisition system, 7.2
data distribution system, 7.18-19
decoupling, 6.31-40
definition, 5.1
deglitching,
with SHA, 6.26
advantages, 8.65
distortion, components, 5.22
DNL error, monotonicity, 5.8
double-buffered, 5.39
advantages, 5.39-40
input structures and update,
5.39
doublet glitch, definition, 5.13
fabrication on one chip, 5.40
fanout, 6.36
fast video, 6.21
filter,
inverse sin (x)/x, 6.27
programmable, state-variable,
10.16
fully decoded, 5.30
in segmented DAC, 5.30
glitch,
code-dependent, effects on
spectral output, 5.15
definition, 5.13
ground plane, 6.31-40, 6.35
grounding and decoupling, 6.35
high-impedance, 6.21
input, serial, 6.23
interfacing, 6.1-44, 6.21
double buffering, 6.22
with DSPs, 6.22-23
parallel, with DSP, 6.22
requirements, 6.1
serial, with DSP, 6.23
internal parallel latch, 6.21
isolation latch, 6.36
jitter, 6.29
ladder network,
current-mode, 5.34-35
gain, 5.34-35
higher glitch, 5.35
voltage-mode, 5.34
latch strobe, 6.21
latched, 5.39
layout, 6.31-40
logic, 5.39-41
multi-bit, Kelvin divider, 5.28
multiple,
advantages, 5.41
in data distribution system, 7.19
multiplying (MDAC), 5.35
definition, 2.28
non-monotonic architecture, 5.33
output, 6.21
buffering, 6.24-25
calculation, 5.35
glitch, 6.21
parallel structure, double buffered,
6.21
power supply, 6.31-40
 grounding and decoupling, 6.36-37
 separate, 6.36
reconstruction,
 output, 6.27
 sin(x)/x frequency rolloff, 6.27
reference voltage, 6.28
sampling clock, 6.29
 decoupled power supply, 6.30
 generation, 6.29-31
 grounding and decoupling, 6.36-37
 isolated circuits, 6.30
 jitter, effect on SNR and ENOB, 6.29
 low phase noise, 6.30
segmented, ladder network, 5.36
semi-multiplying, 5.35
serial, 5.40
settling time, definition, 5.12
sigma-delta, 5.37-38
single, with multiple SHAs, in data distribution system, 7.19
sin(x)/x frequency rolloff effect, 6.27
spurious frequency domain products, 5.15
structures, 5.27-38
 binary weighted, 5.27
 Kelvin divider, 5.27-28
 ladder networks, 5.27
thermometer, 5.30
timing jitter, 6.30
video, output, 6.25
voltage, segmented, 5.30
voltage-output, buffering, 6.24
Data acquisition system:
 8-channel,
 12-bit, diagram, 7.11
 specifications, 7.12
 ADC/DAC per channel, 7.2
 analog multiplexing/demultiplexing,
 single ADC/DAC, 7.2
 on chip, 7.10-12
 data distribution, 7.1
 using DACs, 7.18-19
digitizing signals, 7.1
filtering, 7.7-8
fundamentals, 7.1-20
multiplexing, 7.3-6
 accuracy limitation, 7.9
 crosstalk, 7.9
diagram, 7.3
settling times, 7.9-10
timing diagram, 7.6
multiplexing inputs, to sigma-delta
 ADCs, 7.13-16
programmable parameters, 7.10
sampling systems, simultaneous,
 7.16-18
settling times, 7.9-10
simultaneously sampled,
 using non-sampling ADC, 7.17
 using sampling ADC, 7.18
single-pole filter, 7.8
VLSI allowed integration, 7.10
Data converter:
 AC errors, 5.11-12
 AC sampling and reconstruction, 5.11
 BIMOS, 5.25
 bipolar, 5.5
 codes, 5.6
 offset, 5.6
 sign-magnitude converter, 5.5-6
characteristics of good devices, 5.25
 CMOS, 5.25
 components, 5.24-27
 compound monolithic, 5.24-25
 construction, 5.24
 DAC logic, 5.39-41
 DC errors, 5.3-10
definition, 5.1
differential non-linearity, DNL
 error, 5.8
digital coding schemes, 5.5
ENOB calculation, for effective resolution, 5.18
efforts, 5.6
gain error, 5.6-7
hybrid, 5.24-25
LCCMOS, 5.25
linearity error, 5.6-7
definition, 5.7
measurement
 best straight line method, 5.7-8
 end point method, 5.7-8
logic circuitry, 5.24
monolithic, processes, 5.26
multi-chip hybrids, 5.24-25
offset error, 5.6-7
LINEAR DESIGN SEMINAR

precision analog circuitry, 5.24
process technology,
complimentary bipolar (CB), 5.25-26
dielectrically isolated (DI), 5.25-26
thin-film resistor, 5.25-27
processes, 5.24-27
SFDR, decrease, 5.23
switches, 5.24
thin-film resistor,
characteristics, 5.27
laser trimming, 5.26
unipolar, 5.5
codes, 5.6
Data distribution system:
data acquisition, 7.1
multiple SHAs, single DAC, 8.66
Data system:
baseband sampled, key elements, 4.1
sampled, 4.1-33
Decimation:
characteristics, 5.67
improving SNR and ENOB, 5.66
Dielectric absorption, SHA performance degradation, 8.56
Digital audio:
antialiasing FDNR filter,
7-pole, 10.17
response, 10.17
DAC architecture, 5.37
Digital code, as normalized ratio of analog signal to reference, 5.4
Digital delay, SHA, 8.50
Digital ground, definition, 11.46
Digital receiver:
baseband sampling, 4.19-20
direct IF-to-digital, 4.20-21
Digital signal processor:
CMOS logic, 11.66
logic, 11.66
Digital voltmeter:
with integrating ADCs, 5.50
using sign-magnitude converter, 5.5
Diode, 8.2-3
Direct digital synthesis (DDS) system, 5.14
Dispersion, propagation delay in comparator, 2.43
Distortion:
harmonic, 5.14
intermodulation, 5.14
SFDR, 5.14
soft vs. hard, transfer characteristics, 4.18
Doernberg, Joey, 4.31
Dostal, J., 1.77
Drunkard's walk phenomenon, in offset voltage, 1.30

E
Effective number of bits: See ENOBs
8th Order Programmable Lowpass
Analog Filter Using 12-Bit DACs, 10.45
Einstein, Albert, 11.76
Electromagnetic interference, 11.60-63
photoelectric effects, 11.62-63
radio frequency, 11.60-62
prevention, 11.62
Electrostatic damage, high resistances, 11.10-12
Electrostatic discharge: See ESD
Elliptical filter, 4.6
characteristics, 4.7
ENOB:
calculation, 5.18
loss at higher frequencies, 5.20
ESD:
circuit degradation, 11.11
in printed circuit board, 11.10-12
protection, 11.12
E.S.D. Prevention Manual, 11.76

F
Faraday's Laws, 11.3
Faraday shield, 11.21-22
buffer latch, 11.25
Fast Fourier transform: See FFT
FDNR filter, 10.7, 10.9-10
Feedback factor, in current feedback op amp, 1.16
Ferguson, Paul F. Jr., 4.33, 5.74
FET:
characteristics, 1.8
op amp, performance, 1.9
Fiber optic receiver:
high speed, diagram, 9.69
photodiode component, 9.69
Field-effect transistor: See FET
Filter:
active, 10.39
bandpass, from lowpass, 10.7
characteristics, 10.2-3
configuration choices, 10.6
FDNR, 10.7, 10.9-10
advantages, 10.7
diagram, 10.9
lowpass
prototype, 10.7
switched-capacitor
equivalent, 10.42
multiple-feedback, 10.6, 10.9-10
diagram, 10.7-8
realizations, 10.9
Sallen-Key, 10.6, 10.9-10
diagram, 10.6
voltage controlled voltage
source, 10.6
state variable, 10.6, 10.9-10
diagram, 10.7-8
active analog, 10.1-45
active component, frequency
response, 10.20
antialiasing, 4.5-8, 10.10-16
Butterworth, 10.10
design specifications, 10.10
effects on system dynamic range,
4.6
FDNR, 10.14-15
diagram, 10.17
response, 10.17
7-pole, 10.17
filter response characteristic
changes, 10.16
multiple feedback, 10.14
passive, 10.12-13
normalized values, 10.12
Sallen-Key, 10.12-13
zero-impedance driver, 10.12
state-variable, 10.14-15
transition band, 4.6
sharpness, 4.7
tuning, 10.11
band reject, 10.34
bandpass, 10.34
frequency response, 10.36
multiple feedback, diagram,
10.35
biquad bandpass,
frequency response, 10.19
with quad amplifier, 10.18
Butterworth, 4.6
capacitance,
equivalent, 10.24
selection, 10.22
temperature changes, 10.22
class, 10.1
allpass, 10.1
bandpass, 10.1
bandstop, 10.1
highpass, 10.1
lowpass, 10.1
crystal, 10.39
design,
 general principles, 10.1-9
 implementation considerations,
 10.20
 parameters, 10.3-4
 popular, 10.5
 specifications, 10.3-4
digital, 10.39
distortion, 10.20
drift, 10.20
elliptical, 4.6
FDNR, op amp requirements,
10.30-31
frequency and Q, 10.23
function, 10.1
gain peaking from Q, 10.33
high frequency, example, 10.37-38
higher order, frequency response,
10.20
highpass, 10.34
input and output impedance, 10.20
lowpass, 10.34
active, switched-capacitor
equivalent, 10.42
Sallen-Key
 Butterworth response,
 10.37-38
 frequency response, 10.38
multiple feedback,
 bandpass, diagram, 10.35
 Q enhancement, 10.29-30
 SPICE simulation, and Q effects,
 10.35

Index-11
op amp,
design considerations, 10.27
limitations, 10.27-36
parameters, 10.3-4
cutoff frequency, 10.3-4
minimum passband attenuation, 10.3-4
order, 10.3-4
passband ripple, 10.3-4
stopband frequency, 10.3-4
parasitic capacitance, 10.20, 10.23
passive, 10.39
analog, 10.1-45
characteristics, 10.2
components, 10.21-27
configuration choices, 10.6
practical considerations, 10.20
programmable, state-variable, 10.16
Q enhancement, 10.34, 10.34-35
resistor, 10.21
comparison, 10.26
values, 10.23
resolution, settling times, 7.8
Sallen-Key,
amplifier frequency response
dependency, 10.28
current feedback amplifier, 10.37-38
op amp sensitivity, 10.28
state variable, op amp modes, 10.29
switched capacitor, 10.38-44
techniques, summary, 10.39
temperature drift, 10.21
type,
all-pole, 10.5
Butterworth, 10.5
Chebyshev, 10.5
elliptical, 10.5
maximally flat, 10.5
Filtering:
in data acquisition system, 7.7-8
filter locations, 7.7
Flash ADC:
characteristics, 5.44-46
diagram, 5.45
input circuit model, and distortion, 5.46
Flash converter, 2.45-46, 5.44
SHA driving, 4.30
using op amp and log amp, 3.20
Fleming, Tarlton, 4.32
Flow, measurement, 9.8-9
Force, measurement, microstrains, 9.2
Franco, S., 10.45
Fredrickson, Thomas M., 1.76, 9.86
Frequency-voltage converter, 2.37
Frequency dependent negative resistor:
See FDNR
Full signal bandwidth, defined, 5.17
Function generator, in
negative-feedback loop, 3.32

G
Garcia, Adolfo, 1.77, 9.1
Gay, M.S., 3.61
General impedance converter, 10.7
Gerke, Daryl, 11.77
Ghausi, M.S., 10.45
Gilbert, Barrie, 3.61
Gilbert cell:
 basis of translinear multiplier, 3.36
disadvantages, 3.26
two quadrant multiplier, 3.25-26
Glitch:
code-dependent, 5.14
glitch energy, definition, 5.13
glitch impulse, 5.13
Gold, Bernard, 4.32
Goodenough, Frank, 9.86
Grant, Doug, 11.77
Gratzek, Tom, 4.32
Gray, --, 10.45
Gray, G.A., 4.32
Gray, Paul R., 1.76
Gray code, for data converter, 5.5
Groshong, Richard, 4.32
Grounding:
 ground plane, 11.47-49
 break, 11.50
 ideal ground, 11.41
 loops, 11.41-43
 multiple star ground system,
 separate analog/digital ground,
 11.53
 noise, 11.41-43
 separate analog and digital,
 11.45-57
 signal routing, 11.40-57
 differential transmission, 11.56
 edge connections, 11.55
 multiple ground pins, 11.55
principles, 11.54
printed circuit board layout, 11.54
star ground, 11.44
system ground, 11.51-53
multiple card system, 11.52
transmission lines, 11.49-51
Ground loop, 11.41-43
Ground noise, 11.41-43
Ground plane, 11.47-49
analog and digital ground separation, 6.34
principles, 11.48
single-point ground, 6.34
slit, current flow reconfiguration, 11.49
star ground, 6.34
Guard ring, resistance minimizing, 11.9-10

H
Hall Effect sensor, 9.83-85
applications, 9.84-85
monolithic,
with signal conditioning, 9.84
silicon fabrication, 9.84
Hall Voltage, 9.83
Handbook of Chemistry and Physics, 9.86
Harmonic distortion:
op amp dynamic range, 1.63
output signal,
1dB compression point, 1.66-67
intercept points, 1.66-67
intermodulation products, 1.66-67
prediction from glitch specification, 5.15
Harris, Frederick J., 4.31
Higgins, Richard J., 4.32
Hilton, Howard, 4.32
Hodges, --, 10.45
Hodges, David A., 4.31
HP Journal (1982 Nov.), 4.31
HP Journal (1988 Apr.), 4.31
HP Journal (1988 June), 4.31
HP Product Note 5180A-2, 4.31
Huelsman, L.P., 10.45
Hughes, Richard Smith, 3.61
Hydrophone, 9.73-75
amplifier,
AC coupled, 9.75
charge-out mode, 9.74
DC servo loop, 9.75
requirements, 9.70
voltage-out mode, 9.74
output interfacing, 9.73
sonar applications, 9.73-74

I
IEEE Trial-Use Standard for Digitizing
Waveform Recorders, 4.32
IF, signal, aliasing, 4.23-24
Inductance:
ground plane break origin, 11.50
mixed signal circuit, 11.31-39
stray, 11.31-39
magnetic shielding, 11.35
mutual, 11.32-35
Kirchoff's Law, 11.32
ringing, 11.35-36
signal routing, 11.32
theory, 11.31
Inductive coupling:
basic principles, 11.33
in ribbon cable, 11.33-34
Inductor:
parasitic effects, 11.36-38
saturation, 11.36-38
Q, 11.38-39
quality factor, 11.38-39
stray capacitance, tuned circuit, 11.38
Input offset voltage:
circuit, 1.26, 1.32
definition, 1.25
Instrumentation amplifier: See In amp
In amp:
12-bit gain accuracy, 2.29-30
characteristics, summary, 2.13
circuit, 2.1
CMR, 2.2
configurations, 2.3-6
two op-amp, circuit, 2.3
three op-amp circuit, 2.4-5
CMR, 2.4
noise minimization, 2.5
based on op amps, 2.3
configured from active feedback amplifier, 2.16-17
DC error sources, 2.6-10
 bias current, 2.8
CMR, 2.9
 gain, 2.7-8
 input, 2.10
nonlinearity, 2.8
offset voltage, 2.8
PSR, 2.9
 positive and negative, 2.10
RTI, 2.9
definition, 2.1
diagram, 1.2
gain-of-N, configured from active feedback amplifier, 2.16-17
input overvoltage, considerations, 2.6
noise source, 2.11-13
 frequency response, 2.13
 input voltage and current noise, 2.12
 model, 2.11-12
 output, equation, 2.11
RTI, equation, 2.11
op amp, difference, 1.2
 three op-amp, circuit diagram, 1.3
Insulator, leakage, 11.8
Integrating ADC:
 characteristics, 5.50-51
diagram, 5.50
 frequency response, 5.51
 voltage-to-frequency converter/counter, 5.51-58
Intermediate frequency: See IF
International EMI Emission Regulations, 11.76
An Introduction to the Imaging CCD Array, 9.86
Irons, Fred H., 4.33
Isolation:
 high accuracy, 2.38
 techniques, 2.33
Isolation amplifier, 2.32-39;
 entries under Amplifier
Isolation transducer, characteristics, 2.39

J
Jantzi, S.A., 4.33, 5.74
JFET:
 headroom requirements, 1.9
 input op amp stage, offset and drift trims, 1.8
 vs. MOS/CMOS op amps, comparisons, 1.9
Johnson noise:
 op amp, 1.60
 resistor, 1.50-51, 1.53, 11.16-18
 calculation, 11.17
 properties, 11.17
Junction field effect transistor:
 See JFET
Jung, Walter G., 1.76, 1.77, 8.68, 11.77

K
Kaufman, M., 1.76
Kelvin divider, 5.30
Kelvin feedback, signal leads, 11.7-8
Kester, Walt, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 6.45, 7.1, 8.1, 8.44, 8.68, 9.1, 9.86, 10.1, 11.77
Kevin-Varley divider, 5.30
Kimmel, Bill, 11.77
Kirchoff's Law, 11.3, 11.40
Kirsten, Jeff, 4.32
Kitchin, Charles, 2.48, 3.61

L
Laker, K.R., 10.45
Large signal bandwidth, defined, 5.17
Latchup:
 latchproof vs. overvoltage-protected, 8.26
 overdrive effect on op-amp input, 1.19
Latchup, See also parasitic latchup;
parasitic SCR latchup
Law of intermediate metals, 9.33
LCCMOS switch:
 trench-isolated, advantage, 8.38-39
 structure, 8.39
Leakage, insulator, 11.8
Least significant bit (LSB):
 definition, 5.2
 size, 5.2
Lee, Hae-Seung, 4.31
Lenz's Law, 11.3
Logic, 11.64-71
 bus interface, 11.64-66
 fan-out, 11.64-66
 limiting factors, 11.65
 noise,
 sampling clock, 11.68-69
 TTL, 11.70-71
problems, 11.64
sampling clock noise, 11.68-69
 minimizing, 11.68-69
 oscillator, 11.69
timing,
 error, 11.67
 temperature variation, 11.67
 variation, 11.67
Log amp, 3.2-22
 architectures, 3.6
 basic, 3.4
 multistage
 architecture, 3.8-9
 unipolar response, 3.9
detecting, 3.4-5
 advantages, 3.8
diode, 3.6
diode/op-amp,
 circuit, 3.6
 disadvantages, 3.6-7
dynamic range, 3.11-12
 noise limit, 3.3
frequency response, 3.11-12
intercept point, 3.11-12
intercept voltage, 3.3
limiting/detecting amplifier,
 characteristics, 3.12
 schematic, 3.12
 transfer function, 3.13
log linearity, 3.11-12
low dynamic range output, 3.2-22
monolithic,
 analog computer circuit, 3.6-7
 broadband operation, 3.19
 cascaded, 3.18-19
 filters, 3.19
 characteristics, 3.16
 diagram, 3.16
logarithmic transfer function and
 error curve, 3.17
successive detection stages,
 3.20-22
 characteristics, 3.21
 diagram, 3.21
 output, 3.20-21
 uses, 3.22
 uses, 3.18
 waveform smoothing effect, 3.18
 waveform vs. intercept point,
 3.17
multistage construction, 3.13-14
 log strip, 3.15
negative input response, 3.4
noise, 3.11-12
slope, 3.11-12
 voltage, 3.4
specifications, 3.11-12
successive detection, 3.6, 3.10-11
 characteristics, 3.11
 outputs, 3.11
 transfer function, 3.3
 transistor/op-amp, 3.6-7
 true, 3.4-5
 advantages, 3.8
 structure and performance, 3.10
video, 3.4-5, 3.10
voltage, graph, 3.2-3
volts per decade factor, 3.4
Lyons, Richard G., 4.32

M
Mahoney, Matthew, 4.32
Manchester coding, in fiber optic
 receiver, 9.69
Marsh, Richard, 11.77
Mathcad 4.0, 4.32
MDAC, characteristics, 5.35-36
Meehan, Pat, 4.31
Melsa, James L., 1.76
Meyer, Robert G., 1.76
Microstrip transmission line, 11.50
Miller capacitance:
 disadvantages, 3.8
 in log amp, 3.6-7
Missing code, defining, 5.10
Mixed signal circuit:
 capacitance, 11.19-30
Faraday shields, 11.20-24
noise, 11.20-24
stray capacitance, 11.19-20
capacitor,
parasitic effects, 11.24-30
dielectric absorption,
11.28-30
inductance, 11.27-28
leakage, 11.26
series/loss resistance, 11.26
design, 11.1-77
laws of physics, 11.3
performance effects, 11.3
emagnetic interference,
11.60-63
photoelectric effects, 11.62-63
RF, 11.60-62
grounding and signal routing,
11.40-57
ground planes, 11.47-49
return currents
ground loops, 11.41-43
ground noise, 11.41-43
star grounds, 11.44
separate grounds, 11.45-57
ground planes, 11.47-49
signal return currents, 11.40-44
signal routing, 11.53-57
system grounds, 11.51-53
transmission lines, 11.49-51
high performance, prototyping,
11.74-75
inductance, 11.31-39
stray
mual, 11.32-35
parasitic effects in inductors,
11.36-38
Q or quality factor, 11.38-39
ringing, 11.35-36
stray inductance, 11.31-39
logic, 11.64-70
fan-out, 11.64-66
logic noise, 11.70
sampling clock noise, 11.68-69
timing variations, 11.67
power supply, 11.57-60
noise, 11.58
switching-mode, 11.59-60
problem areas, 11.71-75
limitations of SPICE modeling,
11.71-72
prototyping high performance
analog circuitry, 11.74-75
sockets, 11.73
resistance, 11.5-18
of conductors, 11.5
electrostatic damage, 11.10-12
guard rings, 11.9-10
Kelvin feedback, 11.7-8
leakage in insulators, 11.8
parasitic effects, 11.13-18
inductive resistors, 11.13
Johnson noise, 11.16-18
stability and matching, 11.15
thermo-electric effects, 11.14
voltage variation, 11.16
skin effect, 11.6-7
voltage drop in signal leads,
11.7-8
signal routing, and stray
inductance, 11.32
Mixed Signal Design Seminar (1991),
1.76, 4.33, 5.74, 6.45
Mixer:
definition, 3.36
frequency changer, 3.39
gain compression, 3.42
IMD, 3.42
monolithic,
low distortion, 3.42-43
key features, 3.43
reciprocal mixing, 3.39-40
second order intercept point, 3.42
second order intermodulation,
products, 3.40, 3.42
sum and difference, 3.38
third order intercept point, 3.40
third order intermodulation, 3.40,
3.42
products, 3.40-41
Modulator:
carrier input, 3.36
definition, 3.36
frequency changer, 3.38
as mixer, 3.38-39
mixing properties, uses, 3.44
models, 3.36
offset trimming, 3.37
phase-sensitive rectifier, 3.44-45
as precision rectifier, 3.44
receiver,
noise function, 3.39
strong signal performance, 3.39
signal and carrier leakage causes, 3.37
signal multiplier, 3.38
signal output, 3.36
Monolithic accelerometer, 9.77-79
Morrison, Ralph, 1.76, 6.45, 9.86, 11.76
MOSFET switch, on-resistance vs.
signal voltage, 8.21
MOSFET transistor:
in analog switch, 8.20
characteristics, 8.20
Most significant bit: See MSB
Motor control current sensing, 2.36
Multiple-feedback filter, 10.6, 10.9-10
Multiplexing, 7.3-6
Multiplier:
antilogarithmic circuits, computation, 3.24
basic,
circuit, 3.25
diagram, 3.23
bipolar, 3.22-23
block diagram, 3.24
definition, 3.22
direct-divide capability, 3.31
divider, 3.32
error trimming, 3.28
errors, 3.28
four quadrant, 3.24, 3.27, 3.29
Gilbert cell, 3.25-26
logarithmic amplifiers, 3.24
logarithmic circuits, computation, 3.24
signal output, 3.22-23
single quadrant, 3.22-23
translinear, 3.27
error trimming, 3.27
key features, 3.28
ture linear, 3.29
input bias currents, 3.29-30
two quadrant, 3.22-23, 3.47-49
unipolar, 3.22-23
as voltage-controlled amplifier, 3.47
wideband, 3.30
operation, 3.31
Murden, Frank, 4.32
Murphy's Law, 11.1
corollaries, 11.2
Mutual inductance:
magnetic shielding, 11.35

reduction, signal routing, 11.34
in ribbon cable, 11.34

N
Nahman, Norris S., 4.31
Negative temperature coefficient:
See NTC
Noise:
electromagnetic, generation, 11.60
interference, 11.61
prevention, 11.62
equivalent, bandwidth, 1.57
gain, second-order system, 1.61
gaussian, 1.57
hold mode, 8.58
limiting dynamic range of log amp, 3.3
minimization, 6.39
op amp, 1.50-63
input current, 1.52
input voltage, 1.51
peak-to-peak, 1.57-58
and RMS, 1.58
quantization, 4.11
RMS, 1.56-63
and peak-to-peak, 1.58
sources, and output, 1.61
spectral density, 1.56
supply and ground, 11.45
white, 1.57
Noise figure, cf op amp, characteristics, 1.55
Noise reduction pin, 8.12
Nyquist's criteria, 4.2-3
Nyquist bandwidth:
aliasing, 4.3-4
and glitches, 5.14

O
Offset binary code, for data converter, 5.5
Offset current, measurement, 1.32
Ohm's Law, 11.3
Omega Temperature Measurement Handbook, 9.86
Ones complement code, for data converter, 5.5
Open loop voltage gain, definition, 1.4
Op amp:
 bipolar,
 bias current input stage, 1.7
 input offset voltage, 1.26
 input stage, 1.6
 lower voltage noise, 1.52
 transistor input, characteristics, 1.6
 vs. chopper, comparison, 1.11
in bridge linearization, 9.19
chopper stabilized, 1.10-11
 characteristics, 1.10
 input offset voltage, 1.26
 voltage noise, 1.11
classical,
 structure, 1.3-19
 voltage feedback, structure, 1.3-19
closed loop,
 configuration, 1.4
 gain, 1.2
CMRR, 1.69-72
 calculation, 1.69
 measurement, 1.69-71
 and output offset error, 1.71
as comparator, disadvantages, 1.21
 current feedback, 1.15-16, 3.48
 characteristics, summary, 1.19
 compared with voltage
 feedback, 1.16-19
 equivalent circuit, 1.15
 feedback factor, 1.16
 filter
 limitations, 10.32
 Sallen-Key, 10.37-38
 frequency response, 1.48-50
 characteristics, 1.50
 high speed, noise model, 1.63
 inverting mode, disadvantage, 1.17
 noninverting, 10.33
 optimization for maximum
 bandwidth, 1.17
 Sallen-Key, 10.33
 filter, 10.37-38
 schematic, 1.16
 decoupling, techniques, 1.73
 definition, 1.2
 differential input voltage, 1.21
 distortion, 1.63-65
 harmonic, 1.63
 intermodulation product, 1.65-66
 calculation, 1.68
 third-order intermodulation vs.
 frequency, 1.67
 equivalent circuits, 1.4
 feedback factor, 1.4
 FET input stages, 1.8-9
 filter,
 considerations, 10.27
 current feedback, Sallen-Key,
 10.37-38
 distortion, 10.31-32
 dynamic range, 10.32
 FDNR, characteristics, 10.30-31
 frequency response on Q, 10.34
 gain peaking from Q, 10.33
 input impedance, 10.31-32
 limitations, 10.27-36
 multiple feedback, Q
 enhancement, 10.29-30
 noise, 10.32
 open loop gain, 10.36
 Q enhancement, 10.34
 Sallen-Key, sensitivity, 10.28, 10.32
 state variable, modes, 10.29
 voltage feedback devices,
 10.27-32
 frequency response,
 capacitive loads
 circuits, 1.44
 dominant pole, 1.45
 stabilizing, 1.44
 characteristics, 1.40
 current feedback, bandwidth,
 1.48
 full-power bandwidth, definition,
 1.41
 settling time
 definition, 1.42
 digitizing device, 1.43
 signal size, 1.40
 slew rate, definition, 1.41
 voltage feedback
 gain-bandwidth products
 compensated, 1.46
 decompensated, 1.46
 definition, 1.47
 gain stage, 1.5
high speed,
 no output current limitation, 1.24
 voltage-controlled, 3.49
input stage overdrive, 1.22
input stage overvoltage, 1.20
resistors, 1.20-21
schottky diodes, 1.20-21
temperature, 1.20-21
inverting, level shifters, 1.29
inverting mode transfer functions,
comparison, equations, 1.17
JFET input stage, 1.8
limitation, gain variation with
frequency, 10.28
limited common mode, 1.21
log amp output conversion, for flash
converter, 3.20
long-tailed pair as input stage, 1.5
loop gain, 1.4-5
low speed, output stages protected,
1.24
monolithic, rail-rail input, good
CMRR, 1.13
with multiplier, division function,
3.32
noise,
effects, reduction, 6.10
frequency characteristics,
1.55-56
input current, 1.52
input voltage, 1.51
internal generation, 1.50-56
total input and source resistance,
1.53
total output, calculations,
1.58-63
noise figure, definition, 1.54-55
noise gain, 1.4
noise model,
 first-order system, 1.62
 high speed current feedback
circuit, 1.63
 reactive elements, 1.59
 secord-order system, 1.62
noninverting,
 advantages, 1.17-18
 input, 1.15-16
 level shifters, 1.29
open loop voltage gain, 1.4
output stages, 1.22-25
CMOS FETs, advantages,
 1.22-23
construction, 1.22-23
negative rail, advantages, 1.24
protection, 1.25
rail-to-rail, limitations, 1.23-24
overdrive,
effects on inputs, 1.19-22
damage, 1.19
latch-up, 1.19
parasitic SCRs, 1.19
photodiode current-to-voltage
conversion, 9.61-62
power dissipation, 1.73
calculation, 1.74-75
power supply,
 characteristics, 1.74
decoupling, 1.73
PSRR, 1.69-72
definition, 1.71
measurement, 1.72
rail-rail input, 1.12-14
characteristics, 1.12
long tailed pairs, 1.12
monolithic, good CMRR, 1.13
N-channel JFETs, 1.13-14
PNP transistors, 1.13-14
poor CMRR, 1.12
RMS noise,
 bandwidth, 1.57
calculation, 1.60-61
filter errors, 1.57
source, 1.56
signal gain, 1.5, 1.61
specifications, 1.25-75
closed-loop gain, 1.39
calculation, 1.39
 and finite open-loop gain, 1.39
CMRR and PSRR, 1.69-72
distortion, 1.63-65, 1.63-68
frequency response, 1.40-50
capacitive loads, 1.44-45
current feedback, 1.48-50
settling time, 1.42-43
swell rate and full-power
bandwidth, 1.41
voltage feedback,
 gain-bandwidth products,
 1.46-48
input bias current, 1.31-34
cancellation (external to op amp), 1.33-34
diagram, 1.31
input impedance, 1.35-36
characteristics, 1.35
transimpedance, 1.35
input offset voltage, 1.25-30
drift and aging effects, 1.30
offset adjustment, 1.27-29
noise, 1.50-56
total output calculations, 1.58-63
noise gain, 1.37-38
diagram, 1.37-38
offset adjustment, pins, 1.27-28
open-loop gain, 1.36-37
transimpedance, 1.36-37
voltage feedback, 1.36-37
output offset error, calculation, 1.34
power supply
decoupling, 1.73
power dissipation, 1.73-75
RMS noise, 1.56-63
total output offset error, calculation, 1.34
structure,
specifications, 1.1-75
stages, diagram, 1.3
subtractor, 2.2
super-beta transistors, 1.6
transient settling time, 6.4
transimpedance, 1.15-16, 1.35
equivalent circuit, 1.15
model, 1.35-36
voltage feedback,
characteristics, summary, 1.18
compared with current feedback, 1.16-19
filter use, 10.27-32
frequency response, 1.46-48
gain-bandwidth products, 1.46-48
noise gain, Bode plot, 1.48
output noise and distortion, 1.65
wide bandwidth, RMS noise
calculation, 1.57
Optical isolator, 2.36
advantages, 2.33
Opto-isolator:
advantages, 2.33
construction and function, 2.33
uses, 2.37
Optoelectronics Data Book, 9.86
Oscillator, in voltage-to-frequency
converter, 5.51
Ott, Henry W., 1.76, 6.45, 9.86, 11.76
Output buffer delay, SHA, 8.49
Oversampling, sigma-delta ADC, 5.64
Overvoltage:
and latchup protection compared, 8.26
op amp input stage, 1.20

P

Pallas-Areny, Ramon, 9.86
Parallel ADC:
characteristics, 5.44-46
diagram, 5.45
input circuit model, and distortion, 5.46
Parasitic SCR:
latchup, mechanism, 8.23-24
overdrive effect on op-amp input, 1.19
Pease, Robert A., 6.45, 11.76
PGA:
accurate binary gain, using DAC in
op-amp feedback loop, 2.28
applications, 2.20-21
binary gain performance, 2.29
definition, 2.20
design issues, 2.22-24
accuracy using relays, 2.23
poor design example, 2.23
R(on) effects, 2.23-24
driving ADCs, 2.22
error sources, 2.22
gain programming, 2.22
gain accuracy, 2.29
instrumentation, single-supply, 2.30
location in circuit, 2.21
noninverting, with multiplying
DAC, 2.28
software programmable, 2.30
circuit, 2.25
features, 2.25
very low noise,
accuracy, 2.27
circuit, 2.26
Photodiode:
 amplifier, 9.65
 dark current flow, 9.65
 selection, 9.65-68
 equations, 9.67
 flow chart, 9.67
 applications, 9.58
 current proportional to illumination, 9.58
 equivalent circuit, 9.58-59
 high bandwidth preamp equivalent circuit, 9.66
 in high speed fiber optic receiver, 9.69
op amp, for current-to-voltage conversion, 9.61-62
 operation, 9.61-62
 bias, 9.59-60
 photoconductive, 9.59-60
 photovoltaic, 9.58
 photosensitivity, 9.60
 reverse bias, dark current, 9.60
picoampere circuit, 9.66
 guard ring, 9.63-64
 leakage paths, 9.63
 precautions, 9.63-65
 shielding, 9.64
 Teflon standoff insulator, 9.64-65
preamp circuit, 9.64-65
 considerations, 9.61-62
 using op amp, 9.68
 specifications, 9.61
 wide bandwidth circuit, applications, 9.66
Photodiode 1991 Catalog, 9.86
Photoelectric effect, in glass diodes, 11.63
Piezoelectric transducer:
 amplifier, 9.72-73
 with charge amplifier, 9.7
 function, 9.6
 output, 9.6
 pressure measurement, 9.7
Pitot tube:
 flow rate measurement, 9.8-9
 pressure transducer, 9.8
Power, transmission, isolation methods, 2.34
Power line, decoupled, resonant circuit formation, 11.36
Power supply, 11.57-60
decoupling, 6.33
differential LC filter, 6.37
glitch elimination, using LC filter, 6.38
noise, 11.58
 sources, 11.58
 switching-mode, 11.59-60
 switching-mode, advantages and disadvantages, 6.31
 characteristics, 6.32
 filtering, 6.32-33
 noise, 6.31, 11.59-60
Power supply rejection: See PSR
Power supply rejection ratio: See PSRR
Pressure transducer:
 force, 9.8
 function, 9.8
 liquid/gas measurement, 9.7
 mechanical converter, 9.7-8
Printed circuit board:
 leakage resistance, 11.9
 track resistance, 11.5
PSRR:
 definition, 1.71
 and frequency, 1.72
 measurement, 1.72
Q
Q, of inductor, 11.39
Quality factor, of inductor, 11.39
Quantization error, 5.4-5
 definition, 5.16
Quantization noise:
 of ADC, 5.16-17
 resolution, 5.65
 sigma-delta ADC, 5.64-65
Quantization theory, basic considerations, 4.12
Quantization uncertainty, 5.4-5
R
R:2R ladder network:
 4-bit, 5.33
 as DAC, 5.33-34
Rabiner, Lawrence, 4.32
Radar receiver, SFDR value, 4.24
Radio, third order intermodulation, nuisance products, 3.41
Radio frequency interference, 11.60-62
Radio receiver:
 mixer choice, 3.39
 sensitivity, 3.40
Ramirez, Robert W., 4.31
Rebold, T.A., 4.33
Receiver, direct IF-to-digital, 4.20-21
Rectifier, from modulator, 3.44
Reidy, John, 4.31
Resistance:
 conductor, 11.5-18
 direct measurement, 9.11
 skin effect, 11.6-7
Resistance temperature device:
 See RTD
Resistor:
 comparison chart, 10.26, 11.18
 discrete, 10.26
 comparison chart, 11.18
 equivalent circuit, 11.13
 Johnson noise, 1.50-51
 metal film, 10.26-27
 network, 10.26
 comparison chart, 11.18
 parasitic effect, 11.13-18
 inductive resistor, 11.13
 Johnson noise, 1.50-51, 11.16-18
 thermal effects
 gain, 11.15
 stability and matching, 11.15
 thermo-electric effects, 11.14
 thermocouple effects, 11.14
 minimizing, 11.14
 voltage variation, 11.16
 thin-film, characteristics, 5.27
Resonant circuit, in decoupled power line, 11.36
Ribbon cable:
 inductive coupling, 11.33-34
 signal coupling, 11.34
RMS computation:
 explicit, 3.33-34
 circuit, 3.34
 implicit, circuit, 3.34
Roberge, J.K., 1.76
Rose, John F., 4.32
RTD:
 amplifier,
 bridge, 9.46
 precision single supply,
 linearization, 9.48-49
 bridge,
 amplifier, 9.46
 circuit, 9.46
 calibration, 9.47
 response, 9.47
 4-wire, 9.45
 using 22-bit signal conditioning
 ADC, 9.48-49
 Kelvin connection, 9.45-46
 measurement techniques, 9.11
 output,
 inherent nonlinearity, 9.47
 linearization, 9.47
 platinum, comparison with Type S
 thermocouple, 9.44
 signal conditioning, 9.43-52
 intelligent
 digitizing, 9.49-50
 performance summary, 9.51
 3- and 4-wire connections, 9.51
 temperature sensor, 9.43
 voltage drop in lead wires, 9.44-45
Rusnak, Stephen, 4.32
Ruthroff, C.L., 3.61

S
Sallen-Key filter, 10.6, 10.9-10
 current feedback op amp, 10.37-38
 frequency response, 10.38
Sampled data system, definition, 5.11
Sample and hold circuit, 8.44-68
Sampling ADC:
 advantage, 8.44
 quantization noise, 5.65
Sampling clock, low-jitter, generation, 6.31
Sampling clock jitter:
 effects, 5.20
 SHA, effects on SNR, 8.53
 SNR, 5.21
Sampling converter, 5.45
Saturation, in inductor, 11.36-38
Schottky noise, from bias current in op amp, 1.52
Schreier, R., 4.33
Schultz, Donald G., 1.76
INDEX

Sensor:
 force transducer, 9.2-9
 applications, 9.84, 9.84-85
 monolithic
 with signal conditioning, 9.84
 silicon fabrication, 9.84
 magnetic, Hall Effect, 9.83-85
 passive, temperature, 9.43
 physical variable, output, 9.1
 resistive strain gauge, 9.8
 RTD, 9.43
 temperature,
 characteristics, 9.25
 with RTD, for cold-junction
 compensation, 9.51
Serial DAC, characteristics, 5.40
SFDR:
 definition, 5.14
 prediction from glitch specification,
 5.15
SHA, 8.44
 on ADC chip, 5.73
 aperture jitter, 5.21
 application, 8.44, 8.64-67
 analog delay circuit, 8.44
 cascaded, for analog delay, 8.67
 DAC deglitcher, 8.44
 data distribution system, 8.44
 deglitching DAC, 8.65
 driving ADC, 8.44, 8.64
 peak detector, 8.44
 simultaneous sampling system,
 8.44
 summary, 8.45
architecture, 8.60-63
 closed-loop, 8.61-62
 advantages, 8.63
 differential switching, 8.62
 inverting integrator, 8.62
 open-loop, 8.60-61
 diode bridge, 8.61
 circuit,
 analog delay, 8.49-50
 aperture jitter, 8.51
 effects, 8.52
 aperture time, 8.49-50
 aperture uncertainty, 8.51
 digital delay, 8.50
 effective aperture delay time,
 8.50
 measurement, 8.50-51
 internal timing, diagram, 8.49
 output buffer delay, 8.49
 circuit board leakage currents,
 guard shield, 8.55
 data acquisition system, settling
 time, 7.9-10
 definition, 5.72, 8.44-45
 deglitching DAC, 6.26
 distortion, 8.57
 error,
 circuit board leakage currents,
 reduction, 8.55
 droop, 8.53-54
 sources, 8.47
 external wideband, low distortion,
 for low frequency ADC, 8.64
 function, 8.44
 hold capacitor,
 low dielectric absorption, 8.56
 material choice, 8.57
 hold modes,
 distortion, 8.57
 measurement, 8.58
 errors, 8.53-58
 circuit board leakage
 currents, 8.54-55
 droop, 8.53-54
 noise, 8.58
 multiple,
 analog multiplexer, in
 simultaneous sampled system,
 8.65
 in data distribution systems,
 8.65
 and single DAC, in data
 distribution system, 7.19
 multiplexed system, considerations,
 7.10
 noise, 8.58
 operation, 8.45-47
 circuit, 8.46
 components, 8.45-46
 specification,
 hold mode, 8.46-47, 8.53-58
 distortion, 8.57
 noise, 8.58
 hold-to-track transition, 8.46-47,
 8.59
 acquisition time, 8.59
 track mode, 8.46-48
bandwidth, 8.48
distortion, 8.48, 8.57
gain, 8.48
noise, 8.48
nonlinearity, 8.48
offset, 8.48
settling time, 8.48
slew rate, 8.48
track-to-hold mode, 8.48-53
pedestal error, 8.48-49
settling time error, 8.48-49
transient error, 8.48
track-to-hold transition, 8.46-47
stray capacity, feedthrough, 8.57
track mode,
bandwidth, 8.48
distortion, 8.48, 8.57
gain, 8.48
noise, 8.48
nonlinearity, 8.48
offset, 8.48
settling time, 8.48
slew rate, 8.48
track-and-hold circuits, 5.72
track-to-hold mode,
errors, 8.48
pedestal error, 8.48-49
settling time error, 8.48-49
transient error, 8.48
waveforms, 8.50
Shannon’s information theorem, 4.2-3
Sheingold, Daniel H., 1.76, 2.48, 3.61, 4.31, 5.74, 7.20, 9.86
Sigma-delta ADC:
advantages, 5.61
bandpass, 5.70
characteristics, 5.62
decimation, 5.61
digital filtering, 5.61
first-order, 5.67
integrators, 5.70
key concepts, 5.62
modulators, quantization noise, 5.68
noise shaping, 5.61
oversampling, 5.61, 5.64
quantization error, 5.63
resonators, 5.70
second-order, 5.69
serial-output, 6.20
SNR vs. oversampling, 5.69
summary of characteristics, 5.71
Sigma-delta ADC, See also ADC, sigma-delta
Sigma-delta converter, 4.7
Sigma-delta DAC:
characteristics, 5.38
diagram, 5.38
Signal:
intermediate frequency, aliasing, 4.23-24
quantized, 5.2
sampling, ADC sub-multiple, 4.10
Signal compression:
linear, using voltage controlled amplifiers, 3.2
nonlinear, using log amps, 3.1-2
Signal processing:
80dB RMS-linear-dB measurement system, 3.55-60
analog,
circuits, 3.1-61
multipliers, 3.22-32
automatic gain control amplifier, 3.45-55
baseband signal, sampling and quantizing, 4.1
comparators, 3.1
digital receiver, baseband sampling, 4.19-20
dynamic range compression, 3.1-2
uses, 3.1
logarithmic amplifiers, 3.2-22
low dynamic range output, 3.1
uses, 3.1
Nyquist sampling, 4.1
RMS-to-DC converters, 3.33-36
sampled data systems, 4.1-33
sensor, 9.1-85
signal sidebands, 3.37
sub-Nyquist sampling, 4.1
super Nyquist sampling, 4.1
undersampling, 4.1, 4.19-30
voltage controlled amplifier, 3.47-55
Signal return current, and signal routing, 11.40-44
Signal routing:
differential transmission, 11.56
delayed connections, 6.40, 11.55
grounding, 6.40, 11.40-57
mixed signal system, 6.38
mutual inductance minimizing, 11.34
printed circuit board layout, 6.39, 11.54
signal return current, 11.40-44
Signal system, mixed, signal routing, 6.38
Silicon controlled rectifier: See SCR
Silicon Detector Corporation, 9.86
Simultaneous sampling system, multiple SHAs, single ADC, 8.66
Skin effect, conductor, 11.6-7
Slattery, Bill, 11.76
Smith, Lewis, 1.76
Snelgrove, M., 4.33, 5.74
Snelgrove, W. Martin, 4.33
Sockets:
 circuit evaluation, 6.42
disadvantages, 6.41-42
use, 11.73
SPICE modeling, limitations, 11.71-72
Spurious free dynamic range: See SFDR
Star ground:
 advantages, 6.34
definition, 11.44
State variable filter, 10.6, 10.9-10
Steysskal, Hans, 4.32
Stout, D., 1.76
Strain gauge:
bending vane, flow rate
measurement, 9.9
bonded,
 components, 9.3
 foil, 9.3
 stability, 9.3
 wire, 9.4
 construction, 9.3
comparison, semiconductor and metal, 9.6
load cell, construction, 9.5
low-impedance device, 9.4
resistance, 9.2
semiconductor, 9.2
 sensitivity and temperature dependence, 9.5
unbonded, 9.2
Stray capacitance:
between chip bondwires, 11.23
from metal lids, 11.22
mixed signal circuit, 11.19-30
shielding difficulties, 11.24
Subranging ADC:
 characteristics, 5.46-49
diagram, 5.47
with digital error correction, 5.47-48
half-flash ADC, 5.46-49
Successive approximation ADC:
 applications, 5.61
 characteristics, 5.60-61
diagram, 5.60
 as related to subranging ADC, 5.48
Successive approximation register, in ADC, 5.60
Switched-capacitor filter, 10.38-44
 advantages, 10.42
 bandwidth dependence, 10.41
 capacitor value dependence, 10.41
 CMOS implementation, 10.40
defined as analog filter, 10.42
equivalent,
 first-order active lowpass filter, 10.42
 passive RC network, 10.41
error sources, 10.44
limitations, 10.44
resistor, 10.40
sampling, 10.38
 rate dependence, 10.41
in sigma-delta ADC, 10.43
uses, 10.33, 10.41
Synchronous VFC:
 diagram, 5.55
 nonlinearity, 5.57
 output problems, 5.56
 performance as injection-locked
 phase-locked loop, 5.56
 quantized, 5.57
 waveforms, 5.56
System Applications Guide (1993), 2.48, 4.33
System Applications Guide (1994), 1.76, 5.74

T
Tant, M.J., 4.32
Teflon standoff insulator, leakage resistance, 11.10
Telemetry, use of voltage-to-frequency converter/cunter, 5.51
Temperature sensor:
 bandgap,
 applications, 9.28
 circuit, 9.27-28
diagram, 9.27
RTD, 9.25
semiconductor, 9.25
 basic relationships, 9.26-27
thermistor, 9.25
thermocouple, 9.25
Temperature transducer:
 RTD, 9.43-52
 temperature, 9.28-31
 thermistor, signal conditioning, 9.53-57
THD:
 calculation, 1.63
 definition, 1.64
 op amp dynamic range, 1.63
THD+N:
 definition, 1.64
 op amp dynamic range, 1.63
Thermistor:
 expense, 9.54
 fragility, 9.54
 high sensitivity, 9.53-54
NTC,
 linearization
 network deviation with
temperature, 9.56
 using shunt resistor, 9.55
 linearized, amplifier, 9.56-57
 resistance characteristics, 9.53
 temperature coefficient, 9.54
 signal conditioning, 9.53-57
Thermocouple, 9.28-31
 advantages, 9.28
 amplifier, 9.34, 9.35-40
 design, 9.35
 monolithic, cold-junction compensa-
tion, 9.39
 Type J, 9.35-38
 Type K, 9.35-38
 Type T, 9.35-38
 approximations, 9.36
 cold-junction compensation, 9.37
 error sources, 9.38
 Seebeck coefficient, 9.38
 basic considerations, 9.32
 behavior, 9.30
 cold-junction compensation, 9.32-35
 electronic, 9.34-35
 isothermal block, 9.35
 layout, 9.40-41
 maintenance, 9.40-41
 reference junction, 9.33-34
 temperature sensor, 9.34
 composition, 9.28
 linearization,
 digitizing output, 9.43
 techniques, 9.42-43
 using intelligent RTD, 9.51
 measurement, 9.32
 parasitic PCB errors, minimizing, 9.41-42
 principles, 9.32, 9.32-35
 range, 9.30-31
 Seebeck coefficient, 9.30-31
 selection, 9.30
 sensitivity, 9.30-31
 temperature measurement rule, 9.32
 thermoelectric voltage, 9.32
 Type S, comparison with platinum
 RTD, 9.44
 types, 9.29
 voltage generation, 9.33
 voltage-temperature curves, 9.29-30
Thermoelectric e.m.f., 9.32-33
Thermometer code, 5.44
Thin-film resistor, characteristics, 5.27
Three op-amp instrumentation
 amplifier, diagram, 1.3
Total harmonic distortion: See THD
Total harmonic distortion plus noise:
 See THD+N
Tracking ADC:
 characteristics, 5.58-59
 components, 5.58
 continuously available output, 5.59
Track and hold circuit, 8.44
Transconductance, and collector current
 of silicon junction transistor, 3.25
Transducer:
 amplifier,
 BiFET, 9.71
 charge-sensitive, 9.70
 circuit
 DC performance and
temperature, 9.71
 source impedance balanced,
 9.71-72
configuration
 charge output, 9.70-71
 voltage output, 9.70-71
piezoelectric, 9.72-73
analog accuracy, 2.33
capacitive, 9.70
charge-emitting, 9.70
displacement, 9.6
force, 9.2-9
flow measurement, 9.8
piezoelectric, 9.2
function, 9.6
output, 9.6
pressure measurement, 9.7
strain gauge, 9.2
high-impedance charge output, 9.70-72
interfacing, 9.1-85
isolation, characteristics, 2.39
photodiode, 9.58-69
protection using isolation amplifier, 2.32
remote, EMI/RFI source, 9.21
resistive,
advantages, 9.10
high gain, 9.10
resistances, comparison, 9.10
shield grounding, 9.21
temperature, 9.25-57
RTD, 9.25
semiconductor, 9.25
bipolar junction
characteristics, 9.25-26
thermistor, 9.25
thermocouple, 9.25, 9.28-31
Transimpedance open loop gain, current multiplier, 1.16
Tukey, J.W., 4.31
Twos complement code, for data converter, 5.5

U
Undersampling:
anti-aliasing filter, bandpass, 6.10
super-Nyquist, 4.19-30

V
Van Valkenburg, M.E., 10.45
VCA: See Amplifier, voltage-controlled
Video, signal transmission, 11.57
Videodac, output, 6.25
Video cable receiver/driver, using active feedback amplifier, 2.18
Video performance, of active feedback amplifier, 2.16, 2.18
Voltage-to-frequency converter, 2.37
applications, 5.57-58
architectures, 5.52
characteristics, 5.51
charge-balance, 5.52
changeover switch, 5.54
diagram, 5.54
operation, 5.54
performance limits, 5.54
synchrony, 5.52
current-steering, 5.53
diagram, 5.53
multivibrator, 5.52
for isolation, 2.37
large input problems, 5.57
synchronous (SVFC), 5.55
waveforms, 5.56
Voltage drop, signal leads, sense connection, 11.8
Voltage reference, 8.1-2
anomalous logic, 8.1
architecture, attributes, 8.7
bandgap,
advantage, 8.4
Brokaw cell, 8.4-5
circuit, 8.4
DC specifications, table, 8.10
decoupling, 8.1-2
diode, 8.2-3
advantages, 8.2-3
avalanche, 8.3
circuits, 8.3
polarity, 8.2-3
zener, 8.3
monolithic, 8.3-4
temperature-compensated, 8.3
driving sigma-delta ADC, 8.18
IC,
three-terminal
advantages, 8.6
bandgap, 8.7
buried zener, 8.7
circuit, 8.6
low-noise, for high resolution converter, 8.18
noise, 8.1
output, bypass capacitor, 8.15
pulse current,
 bypass capacitor, 8.14
 response, 8.14-17
 testing, 8.16
selection criteria, 8.2
specifications, 8.8-13
 drift, 8.8-9
 line sensitivity, 8.10
 increasing frequency, 8.10
load sensitivity, 8.9
noise, 8.11-13
 reduction pin, 8.12
 requirements vs. bits, 8.11
supply range, 8.9
temperature drift, 8.8-9
tolerance, 8.8
stability, large capacitive load, 8.16
start-up behavior, 8.1
temperature drift, 8.1
transient load behavior, 8.1
type, 8.2-7
Voltage sensing feedback, signal leads,
11.7-8

Z
Zener diode, 8.2-3
Zeoli, G.W., 4.32
Zumbahlen, Hank, 10.1
Zverev, A.I., 10.45

W
Wainwright Instruments, Inc., 6.45,
 11.76
Wainwright Instruments GmbH, 11.76
Waveform, sampled and reconstructed,
 5.11
Webb, Richard C., 4.32
Webster, John G., 9.86
Weeks, Pat, 4.31
Weigh scale, bridge application, 9.22-24
Wheatstone bridge, diagram, 9.12
Whitmore, Jerry, 8.1, 8.19
Widlar, Bob, 8.68
Williams, A.B., 10.45
Williams, Jim, 6.45, 9.86, 11.76
Wong, James, 9.86
Wurcer, Scott, 11.77
Wynne, John, 11.76
ANALOG DEVICES PARTS INDEX

A

AD1B60, 9.49-52
AD210, 2.34-36
AD524, 2.4-5
AD526, 2.24-26
AD534, 3.26-27, 3.29
AD538A, 3.35-36
AD537, 9.28
AD538, 3.6-7
AD539, 3.22, 3.24, 3.47-49
AD549, 1.31, 1.53, 9.65, 11.11
AD569, 5.30
AD574, 6.8, 7.5, 8.18
AD580, 8.4-6
AD584, 8.6
AD586, 6.12-14, 8.7-8, 8.10, 8.13, 9.46-47, 9.57
AD587, 8.12-13
AD588, 8.7-8, 8.10, 9.23
AD589, 8.4, 9.22
AD590, 9.28
AD592, 9.28, 9.37, 9.40, 9.42, 9.51
AD594, 9.28, 9.34, 9.38, 9.39
AD595, 9.28, 9.34, 9.38, 9.39
AD596, 9.28, 9.34, 9.40
AD597, 9.28, 9.34, 9.40
AD600, 3.51-54, 3.56-57, 3.60
AD602, 3.51-54
AD603, 3.51-52, 3.54-55
AD606, 3.20-22, 3.22
AD620, 2.6-7, 2.9-10, 2.12-13, 2.36, 9.22, 9.23
AD621, 2.7
AD624, 2.7
AD625, 2.29-30
AD630, 3.36
AD636, 3.36, 3.55-57, 3.60
AD637, 3.36
AD640, 3.15-20
AD645, 1.53-54, 9.63-64
AD676, 6.18-19
AD677, 6.19-20
AD680, 8.10
AD688, 8.9
AD705, 1.6
AD706, 9.46-47, 9.56-57
AD711, 9.75

AD712, 3.56
AD713, 10.16-17
AD734, 3.26, 3.30-31, 3.34-35
AD736, 3.36
AD737, 3.36
AD741, 1.54
AD743, 1.52, 1.54, 9.71-73
AD744, 1.54
AD745, 1.52, 1.54, 9.70-76
AD776, 6.19
AD779, 5.48-49
AD780, 6.13, 8.8-10, 8.16, 8.18, 9.24
AD781, 6.26
AD797, 2.26-27, 8.13
AD811, 1.49, 3.49-50
AD817, 1.6, 1.45
AD820, 1.13-14
AD822, 1.14
AD827, 3.49
AD830, 2.14-20
AD831, 3.42-43
AD834, 3.27, 3.29-31, 3.33-34, 3.49-50
AD843, 9.68
AD844, 3.20, 3.47-49
AD845, 6.13-14
AD846, 1.16
AD847, 1.45, 10.35-36
AD871, 8.44
AD872, 6.16
AD1170, 5.57
AD1671, 5.48-49
AD1674, 7.5-6, 7.9
AD1879, 5.70, 6.19
AD7502, 2.30
AD7528, 10.16
AD7710, 2.31, 5.70, 7.13-14, 8.18, 9.24
AD7711, 2.31, 9.24, 9.48-49
AD7712, 2.31, 9.24
AD7713, 2.31, 9.24
AD7716, 7.15-16
AD7846, 2.28, 5.30
AD7884, 6.8-9, 6.18-19
AD7885, 6.8-9
AD7890, 7.10-12
AD8036, 6.6, 6.8
AD8037, 6.6, 6.8
AD9002, 4.30
AD9014, 4.15-18, 4.26, 4.28
AD9022, 4.12-14, 4.24-25
AD9048, 6.14-15
AD9058, 3.20
AD9100, 4.25, 4.26-29, 8.59, 8.63
AD9101, 4.26, 4.29-30, 8.63
AD9617, 1.17, 1.72, 10.37-38
AD9622, 1.43, 1.64-65, 1.67-68
AD9696, 6.30-31
AD9720, 5.14
AD9721, 5.14-16
AD9955, 5.15-16
AD22100, 9.28
AD22150, 9.84-85
AD96685, 6.30-31
ADG411, 8.38
ADG412, 2.26-27, 8.34
ADG511, 2.30-31, 8.32, 8.36, 8.38
ADG512, 8.32
ADSP-2100, 11.65-66
ADSP-2101, 6.18-20
ADXL50, 9.77-79
AMP-02, 2.5
AMP-04, 2.30-31, 9.47-48

R
REF-01, 8.13, 9.37, 9.42
REF-02, 6.12-13, 8.13
REF-05, 8.13
REF-16, 8.13
REF-43, 8.9-10, 9.48-49
REF-195, 8.8-10, 9.23

T
TMP-01, 9.28

O
OP-07, 1.7, 1.54, 9.65
OP-27, 1.53, 6.12, 8.13
OP-90, 1.13-14, 10.35-36
OP-97, 1.6, 9.65
OP-113, 8.13
OP-176, 8.13
OP-177, 8.43, 9.22-23, 9.37-38, 9.42
OP-177E, 1.30
OP-213, 1.56, 2.28, 8.34, 9.23-24
OP-282, 1.13-14
OP-291, 1.13
OP-295, 9.47-48
OP-467, 10.18-19
OP-482, 1.13-14

Index -30