CMOS DAC APPLICATION GUIDE

3rd Edition

by
Phil Burton
Copyright © 1984 by Analog Devices, Inc. Printed in U.S.A.

All rights reserved. This publication, or parts thereof, must not be reproduced in any form without permission of the copyright owner.

Information furnished by Analog Devices, Inc., is believed to be accurate and reliable. However no responsibility is assumed by Analog Devices, Inc., for its use.

Analog Devices, Inc., makes no representation that the interconnection of its circuits as described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith.

Specifications and prices are subject to change without notice.

G872b–8–1/89
ACKNOWLEDGEMENTS

This booklet is a complete revision of a 1978 text by Jim Wilson and Jerry Whitmore. Jerry's interest has been maintained in the material and he was one of a team of reviewers for this text. Other reviewers included Bill Hunt, Don Travers, Trevor Emmens, John Wynne and Dan Sheingold, all of whom made useful contributions. Dan deserves special mention for his painstaking correction of the text and the many valuable suggestions he made on presentation.

John Wynne, aided by Mike Murray, had the unenviable task of building and testing all the circuits and made a number of corrections and improvements. Quite a number of the applications circuits were suggested by Norm. Bernstein.

Geraldine White and Gay Moynihan were responsible for typing the drafts and overcoming the daily trials and tribulations, not least of which included a lightning strike at the heart of the word processor.

Finally, it should be acknowledged that this text has been molded by my five years at Analog Devices. Everyone I worked with (and against) during that time has made some contribution to my thoughts and to this text.

Phil Burton,
N.I.H.E.,
Limerick,
Ireland.

October, 1984
TABLE OF CONTENTS

1.0 INTRODUCTION TO CMOS DACs ... 1
1.1 Introduction ... 1
1.2 A Basic DAC ... 1
1.3 Multiplying Properties ... 2
1.4 Codes and Terminology ... 2
1.5 Whole Numbers, Fractions and Justification 3

2.0 INSIDE CMOS DACs ... 5
2.1 Introduction ... 5
2.2 The Basic Design of CMOS DACs ... 5
2.3 CMOS DAC Parameters .. 7
 2.3.1 Output Leakage Current (ILKG) .. 7
 2.3.2 Gain Error ... 8
 2.3.3 Power Supply Rejection Ratio .. 8
 2.3.4 Output Capacitance ... 8
 2.3.5 Settling Time and Propagation Delays of CMOS DACs 8
 2.3.6 Multiplying Feedthrough Error ... 9
 2.3.7 Digital-to-Analog Glitch Impulse 9
 2.3.8 Distortion and Noise ... 9
 2.3.9 Supply Voltage (V_{DD}) .. 9

2.4 Equivalent Circuit of a CMOS DAC ... 10
 2.4.1 Feedback Capacitor Selection .. 10
 2.4.2 Noise Gain of CMOS DACs ... 10

2.5 Latch-Up in CMOS ... 10
2.6 Protecting CMOS Against Misuse .. 11
 2.6.1 Electrostatic Discharge (ESD) ... 11

3.0 BASIC APPLICATIONS CIRCUITS FOR CMOS DACs OPERATED IN THE CONVENTIONAL CURRENT-STEERING MODE .. 13
3.1 Unipolar (Current-Steering) .. 13
3.2 Op Amps for Current-Steering Mode DACs 13
3.3 Bipolar Output (Offset Binary and 2's Complement Coding) 14
3.4 Bipolar Output (Sign + Magnitude Coding) 15
3.5 Single Supply DAC with Offset Scale 15
3.6 Changing the Gain of CMOS DACs ... 16
3.7 Voltage References ... 16

4.0 SINGLE SUPPLY OPERATION FOR CMOS DACs USING THE VOLTAGE-SWITCHING MODE ... 19
4.1 Single supply Unipolar DAC .. 19
4.2 Single Supply DAC with Offset Scale (Voltage-Switching) 20
4.3 Op Amps for Voltage-Switching DAC Circuits 21
4.4 Op Amp Input Stages for Single Supply 21

5.0 THE LOGIC INTERFACE .. 23
5.1 Level Shifters .. 23
5.2 Microprocessor Compatible DACs .. 23
5.3 Practical Interface Design .. 25
5.3.1 Data and Address Bus Connections 25
5.3.2 Power Supply, Ground Connections and Circuit Board Layout .. 25

6.0 APPLICATIONS .. 27
6.1 Basic Applications Circuits 27
6.1.1 DAC as a Multiplier and Attenuator 27
6.1.2 DAC as a Divider or Programmable Gain Element 27
6.1.3 Programmable Integrator Circuit 28
6.2 D/A Converters and Programmable Power Supplies 29
6.2.1 D/A Converter with Minimal Leakage Current 30
6.2.2 Dual 8-Bit DAC – Single + 5V Supply 30
6.2.3 Low Cost 14-Bit Resolution D/A Converter 30
6.2.4 A 16-Bit D/A Converter 32
6.2.5 Simple Programmable Power Supply 32
6.3 CMOS DAC as a Calibration Trimmer 32
6.3.1 Simple Potentiometer Connection 34
6.3.2 Dual DAC Trims Gain Error 34
6.3.3 Precision Gain Summing Amplifier 35
6.3.4 Instrumentation Amplifier 35
6.3.5 Programmable Power Supply Using 723 Voltage Regulator .. 36
6.4 Programmable Current Sources 38
6.4.1 Basic Current Source Circuits 38
6.4.2 4-20mA Loop Circuits 40
6.5 Low Frequency Function Generation 41
6.5.1 Function Generation via DACs 41
6.5.2 Triangle to Sine Conversion 42
6.5.3 Interpolation Methods of Function Generation 43
6.6 Medium Frequency Function Generators and Oscillators .. 46
6.6.1 Triangle/Square Wave Generator 46
6.6.2 Triangle/Rectangle Wave Generator with Programmable Waveform ... 47
6.6.3 State Variable Sine Wave Oscillators 47
6.6.4 Digitally Programmable Oscillators and Frequency Modulators .. 48
6.6.5 Programmable One-Shots and Pulse Generators 50
6.6.6 Phased Locked Loop Stabilization 51
6.7 Digitally Controlled Filters 52
6.7.1 Simple Low Pass Filters 52
6.7.2 State Variable Filters 52
6.8 Audio Applications of CMOS DACs 55
6.8.1 Audio Attenuators (Volume Control) 55
6.8.2 Audio Balance and Panners 55
6.9 Microprocessor Interfaces 56
6.9.1 AD7545 to 8-Bit Data Bus Systems 56
6.9.2 MCS48 Microcontroller to AD7542 Interface 58
6.9.3 AD7542 to 8-Bit Data Bus Systems 58
6.10 Miscellaneous Systems Applications 59
6.10.1 Resolver-to-Digital Converter 59
6.10.2 Co-Ordinate Conversion 59
6.10.3 Using CMOS DACs in an AGC System 61

APPENDIX .. 62
Key Features and Connections for Analog Devices CMOS DACS .. 62
REFERENCES

Except where stated, copies of references are not available from Analog Devices.