Bibliography

SOURCES OF ADDITIONAL INFORMATION

The published references listed here have appeared in the form of books, manuals, brochures, or articles in archival publications and the trade press. Individual items have been selected because of their general or specific interest—or because of an excellent collection of further references.

Today, articles that mention converters and conversion, in relation to design, testing, system applications, new-product news, etc., are appearing in numbers that grow by leaps and bounds. It is impossible (and might in any case be undesirable) to keep track of them all. In these few pages, no pretense is made as to thoroughness; our goal is to provide a few basic sources that will supplement in greater depth the material presented here.

It is still true that much of the most-advanced, relevant, timely, and useful published material available in this rapidly growing and changing field is published by manufacturers of converters—and of systems that use them—in the course of the ordinary business of trying to sell their products. As noted earlier, Databooks, Application Guides, Application Notes, and Technical Data sheets are available from leading manufacturers in this field—generally free or at nominal cost. Such publications are loaded with valuable information that is generally current and useful, particularly in terms of specification definitions and practical application techniques.

Magazines like Electronic Design, EDN, Electronic Products, Electronic Engineering Times, and Computer Design are good sources of product news and its interpretation, as well as application ideas. In general, their reporters and editors have good technical

Publications of Analog Devices, Inc., and reprints that are available as of the initial date of publication of this book are identified by an asterisk (); they can be obtained from Analog Devices, Inc., P.O. Box 796, Norwood, Massachusetts 02062. If a given publication is not free, the 1985 unit price (postpaid) in U.S. dollars is included in the listing. Publications not identified by (*) are not available from Analog Devices.
backgrounds, articles are competently written, data and specifications have accuracy as a goal, and readers are provided with various means (such as “bingo” cards, manufacturer’s addresses and telephone numbers, and “hot lines”) to get further information on matters that interest them. However, a cautionary word is in order: products have been known to be introduced in the press (by manufacturers in many fields) long before becoming available for purchase in reasonable quantity—and the preliminary specifications, and even pin connections, can differ from those ultimately established; such preemptive publication may aid planning but is of little help to the designer who needs accurate information for current use.

Every designer should ensure that suppliers keep him or her up to date on new products, applications ideas, and techniques. Manufacturers maintain mailing lists for that purpose. A method employed by Analog Devices since 1967 has been the publication of the technical magazine, Analog Dialogue—“A forum for the exchange of circuits, systems, and software for real-world signal processing;” it is mailed free to qualified interested persons.

A medium that appears to be potentially one of the most-promising services to designers employing integrated circuits—including converters and other analog ICs—is the interactive Videolog database, which is accessible to subscribers’ personal computers via the telephone lines. Videolog maintains an indexed catalog of technical product information from major manufacturers; it is—in principal—always current, because its color-graphic information screens are continuously updatable by the manufacturers as new products appear and older products are de-emphasized or obsoleted. Prices are also made available. It is cross-indexed in several ways, allowing searches by device type, by manufacturer, by part number, by parameters, etc.

Despite its great potential usefulness, Videolog requires a personal computer capable of communicating over telephone lines, and the payment of fees for the service and the use of the telephone lines. Although non-interactive and not as up-to-date, such industry catalogs as ICMaster, published by Hearst Business Communications, Inc., are easy to obtain and access—and are quite useful.

GENERAL INFORMATION

Videolog is a service mark of Videolog Communications, Norwalk, CT and Santa Clara, CA.

DATA ACQUISITION AND DISTRIBUTION

*Graves, Edward, “Very High Speed Data Acquisition,” Analog Dialogue, 13, no. 2 (1979), 3-7 (includes brief bibliography).

A/D AND D/A CONVERTERS

xxvi

CONVERTERS, MICROPROCESSORS AND COMPUTERS

Larsen, David G., Peter R. Rony, and Johnathan A. Titus, various books on microcomputer interfacing in the *Bugbook* and other series. Derby CT: E&L Instruments, Inc., and Indianapolis: Howard W. Sams & Co., Inc.

POSITION MEASUREMENT WITH RESOLVERS AND RELATED DEVICES

RANDOM NOISE and SIGNAL PROCESSING

SIGNAL CONDITIONING

TESTING

*Gagne, Alfred L., "On-Line Noise Figure Test Set," *Analog Dialogue, 12*, no. 2 (1978), 16-17.

SAMPLE-HOLDS & OTHER DATA-ACQUISITION PERIPHERALS

INTERFERENCE NOISE, ESD, and GOOD PRACTICE

*———, “An I.C. Amplifier Users’ Guide to Decoupling, Grounding, and Making

xxx

Emmens, Trevor, and Mark Lonsborough, “Use Flash ADCs Carefully to Handle High-Frequency Signals,” EDN, March 17, 1982, 137-143.

Index

A

Absolute Maximum ratings, 660
Accumulator, Multiplier-accumulator (def.), 654 (see also Multiplier/accumulator)
Accuracy:
 absolute, 348, 538
 logarithmic DAC, 349, 521-24
 relative, 349-51, 358
AC linearity, 432-33
Acquisition time, sample-hold, 25, 351, 555-56, 564
 measuring, 564-65
A/D, ADC (see Analog-to-digital)
Address generator, 635-38
Adjusting gain and zero, 366, 385-87
 automatically, 377, 539-40
 VFC, 491-94
Algorithm (def.), 654
Aliasing, 26-27
All-bits off, 356
All-bits on, 356
ALU (def.), 654
 floating-point, 644-45
Amplifier:
 digitally controlled gain:
 linear, 117-20
 logarithmic, 118-19, 524-27
 instrumentation, 8, 29-32, 42-43, 374
 isolation, 8, 29, 38-40
 common-mode rating, 353
 (cont.)
 logarithmic, 43-45, 374-75
 operational, 7, 31
 output, for DACs, 224-27, 230-35,
 241-45, 250-55
 programmable-gain, 37, 42-43
 with CMOS switches, 42-43, 596
 thermocouple, 29, 40
Analog:
 characteristics, vs. digital, 3-4, 666
 differentiation, 30
 function circuits, 8, 30-31, 44-45
 with digital components, 121-24
 integration, 30
 multiplexers, 9, 35-40, 42-43 (see also
 Multiplexing)
 multipliers, 30-31
Analog signal processing, 29-31
 with digital components, 107-32
Analog-to-digital converter (a/d, ADC), 10,
 17-19, 22-26, 68-71, 73-75
 adjusting gain and zero, 366, 385-87
 as analog divider, 191
 and basic circuits, 211-19
 buffering analog inputs, 338-39, 377-80
 conversion relationships, 175-76, 183-87
 counter types, 215-17
 digitally corrected subranging, 426-28
 dual-slope, 213-15, 354
 error characteristic, 422 (see also
 Nonlinearity)
 extended resolution, 548-50
 with stochastic techniques, 548-49
Analog-to-digital converter (cont.)
 “flash,” 218-19, 355, 420-26
 with track-hold, 423-26
floating-point, 546-48
integrated circuits, 258-74
integrating types, 22-23, 213-15, 354
microprocessor interfaces, 83-89 (see also
 Microprocessor interfacing)
missing codes (see Missing codes)
multiplexed, 35
parallel, 218-19 (see also “flash”)
quad-slope, 362
ratiometric, 362
sampling ADC, 426-28, 554-56, 426-28,
 570, 572
single-slope, 363
subranging, 355, 426-28
successive approximations:
 principle, 211-13, 364
 sensitivity to signal variation, 24-26
temperature coefficient (tempco), 365
gain, 365
differential linearity, 365
integral linearity, 365
offset, 365
unipolar zero, 365
tracking, 216-17, 451-54
transfer function, 175-77, 317-18
Aperture: (see also Sample-hold)
delay time, 351
effective aperture delay time, 562-63
jitter, 377, 555, 563
time, 569-70
 in sample-holds, 25, 60, 351, 562
 uncertainty, 25, 351, 376-77, 563
ASCII, 99-102
Attenuation (def.), 654
Attenuator:
 linear, 117-120
 logarithmic, 118-19, 524-25
Automatic gain and zeroing, 351, 539-45
 in VFC, 491-94
 use of multiplexer in, 377
Automatic testing, 134-40
converter ICs:
 ADCs, 330-35
 DACs, 312, 314-17
Autoranging:
 with CMOS switches, 596-98

B

Barrel shifter (def.), 654
BCD (see Binary-coded decimal)
Best straight line (see Nonlinearity)
Bias current, 351
 return path for in instrumentation
 amplifiers, 351
BiMOS (see Converter)
Binary code:
 complementary, 181-82
 fractional vs. integer, 170-73
 offset binary, 183-86, 299
 ones complement, 183-88
 sign-magnitude, 183-88
 twos complement, 183-88, 299
Binary-coded decimal (BCD), 176-78
Bipolar codes, 183-89
Bipolar offset (see Offset)
Bipolar process technology (see Converter, integrated-circuit)
Biquad, 634, 654 (def.)
Bit interactions (see Nonlinearity)
Bit-scan testing:
 DACs, 309-12
Bit weights (tables):
 BCD, 177, 178
 binary, 171, 172, 177, 178
 bipolar, 183, 184, 185
 complementary, 182, 188
Gray code, 179
Block floating point (def.), 654
Box method, 616-18, (see also Reference, voltage)
Buffering:
 ADC inputs, 338-39
 analog, 31, 59, 255
 DAC, 209-10
 digital (see also Register), 22, 41, 51-55,
 239-40, 255-56
Busy (ADC), 195
Butterfly method, 618-19 (see also
 Reference, voltage)
Byte serial, 22, 50, 54, 99, 101, 191, 241,
 242, 347

C

Capacitors:
 dielectric absorption, 510-11, 564
 for sample-holds, 571-72
 for v/f converters, 510-11
CAT scanning, 162-163
Channel-to-channel isolation, 351 (see also
 Crosstalk)
Character-serial, 99, 101, 352 (see also Byte
 serial)
Charge injection, in switches, 583-85
Charge transfer (sample-hold), 352, 361,
 562, 571

xxxiv
CMOS (see Converter; Switch)
CMOS logic, 194
Codes, 169-89 (see also Binary, BCD, Gray, etc.)
bipolar, 183-88
complementary, 182
Code transition, statistical aspects, 335-37
Code width, 317, 352
and differential linearity, 323
error (CWE), 319
Common mode:
error (CME), 353
reduction, 27-32, 266-68, 382-85, 396-99, 663
range, 352
rejection, 352
ratio (CMRR), 352
logarithmic (CMR), 352
voltage, 353
in isolation amplifiers, 353
Communications:
ASCII, 99-102
baseband applications, 412
digital current loops, 101-102
fibre optics applications, 412-13
protocols, 103-106
RS-232, 103
satellite applications, 412-13
Comparators, 13, 30, 360
in flash converters, 218, 421-25
Compliance voltage, 353, 541
Conversion, high-resolution, 532-56
Conversion rate, 353
Conversion time, 353
Converter: (see also Analog-to-digital, Digital-to-analog, Voltage-to-frequency, etc.)
electrical interfaces, 190-97
integrated-circuit, 219-74
a/d, 258-74
d/a, 222-58
multiple, 244-49, 257-58
processes, 220-22, 254
BiMOS, 253-56
bipolar, 222-33, 259-67
CMOS, 233-53, 267-73
hybrid, 228, 256-58, 273-74
v/f, 479-89
ratometric, 39-40, 190, 362
specifications classified, 372-73
Convolution (def.), 654
Correlation, 146, 655 (def.)
Counters (up-down), 13
CPU (see Microprocessor interfacing)
Crosstalk, 353 (see also Channel-to-channel isolation)
digital, 353

Current sources:

digitally controlled, 113-16
precision low-level, 613
simple current limiter, 613

D

D/A, DAC (see Digital-to-analog)
Data acquisition, 17-47, 59-60, 67-106
analog I/O subsystems for μC buses, 73, 75-77, 92-96
configurations, 21, 568
effects of environment, 19-20
key factors, 20
multi-channel, 32-40
noise, 24, 26, 46-47
remote, 67, 96-103
sample-holds in, 568-69 (see also Sample-Hold)
single-board complete subsystems, 78-80
single-channel, 22-32
systems, 67-106
Data distribution, 49-65
choices faced by designer, 50-51
factors affecting design, 50
with CMOS switches, 595
with sample-holds, 57-60, 569
Data format
left justified, 54
right justified, 54
Data ready, 661 (see also Status)
Data system:
human role, 5, 6, 15
Decoupling, 394-99, 509-10
Deglitcher, 60-62, 353-54, 416-18, 545, 569-70, 595, (see also Glitch)
digital audio, 545
with CMOS switches, 595
Delay-line applications:
analog signal delay, 127-29, 143
correlation, 146
FIFO memory, 142
filtering, 146-47
recirculation, 143-46
time compression, 145-46
waveform averaging, 143-45
Delay, using memory, 127-29, 141-47
Demultiplexing (see Multiplexing)
Dielectric absorption, 510-11, 564
Differential gain and phase, 436
Differential linearity (see Nonlinearity)
Digital fluorography, 406-408
Digital gain control, 117-20
Digital panel instruments (see Panel instruments)
Digital potentiometer (see Amplifier: digitally controlled gain)
Digital signal processing, 13, 140-48, 621-56
and video converters, 405-409
definitions, 405, 655
glossary, 654-56
processor architectures, 644-46
Digital-to-analog converter (d/a, DAC), 11, 42, 49-65, 68
adjusting gain and zero, 366, 385-87
automatically, 539-41
basic circuits, 198-210
bipolar, 206-209, 545-46
CMOS DAC design, 236-46
code-dependent noise-gain variation in CMOS DACs, 241-43
conversion relationships, 173-75, 183-87
current output, 113-15, 196-98, 278, 284-85, 288-90, 294-95
improving dynamics, 387-91
preserving output accuracy, 387-93
decoding (bit vs. segment), 198-201, 249-53
effects compared, 304-307
deglitched, 417-18
display DACs, 418-20
high-resolution DAC trimming, 537
integrated circuits, 222-58, 277-96
design insights, 277-96
reference loop, 283-84
V_{ref} difference correction, 285-93
interfacing to processor bus, 52-53
isolated, 64-65
logarithmic (see LOGDAC)
monotonicity (see Monotonicity)
multiple:
crosstalk, 353
multiplying, 11, 120, 123-24, 126-28, 189-90, 355, 360
four-quadrant, 355
resolution, 300, 355-41
serial input, 53
switch design, 281-83, 294
Craven cell, 281-83
switching, current vs. voltage, 202-206, 241-44
switching time, 365
temperature coefficient (tempco), 365
differential linearity, 365, 538
gain, 365
integral linearity, 365
offset, 365
unipolar zero, 365
testing, 307-17
transfer function, 173-75, 298-300

Digital-to-analog converter (cont.)
video DACs, 436-39
voltage output, 195-98
vs. sample-holds, 57-59
Digital-to-analog-impulse, 354
Digital-to-resolver converter, 458-61, 469
effect of radius-vector rotation, 461
Digital-to-synchro converter, 459-60
Digital world (vs. analog), 3-4, 107, 622
multiplexers, 9, 32-35
Discrete Fourier transform (def.), 655 (see also Fast Fourier transform)
Display, CRT, 148-59, 404-405
dot-matrix, 158-59
raster-scram, 150, 152-55, 418-20
DACs for, 418-20
vector graphics, 150, 155-58
Distortion, 433-34, 542-44
Droop, in S/H, 26, 60, 564
Droop rate, 354, 555-56, 564, 572
and bias or leakage current, 354, 564, 572
DSP (see Digital signal processing)
Dual-slope (see Analog-to-digital)
Dynamic range, wide, 41-45, 542
compression, 42-45, 374-75

E
ECL (see Emitter-coupled logic)
Electron-beam lithography, 532-33
Electrostatic discharge (ESD), 660, xxx-xxxii
Emitter-coupled logic, 194, 415-16, 559, 661
to-TTL conversion, 661
Enable, 195
Encoder, optical, 180-81, 443-45
absolute, 444-45
incremental, 443-45
End point (see Nonlinearity)
Environmental considerations:
actively vs. passively hostile, 20
system, 19, 20
EOC: end of conversion (see Busy)
Error correction in high-resolution converters, 535-41
ESD (see Electrostatic discharge)

F
Fast Fourier transform (FFT), 626-27, 651-53, 655 (def.)
radix-2 butterfly, 626
Feedthrough, 355, 555, 564
Filtering, 13, 26-27, 30-32, 60-61
analog filters, 32, 245-48, 375, 597
digital filtering, 146-48, 628-34
Fine-tuning converters, 355-41
Fire control:
resolvers in, 468-69
SDCs in, 469
FIR filter, 146-47, 628-33, 655 (def.)
as tapped delay line, 146-47, 628
dFT of 5-tap-, 631
effect of number of taps, 632
impulse response function, 629
Fixed-point arithmetic, 639-41, 655 (def.)
"Flash" converter (see also Analog-to-
digital)
2-stage, with digitally corrected
subranging, 426
Floating-point:
ALU architecture, 645
arithmetic, 641-44, 655 (def.)
converters, 546-48
multiplier, 644
Fluorography, digital, 406-408
Force-sense (see also Kelvin), 59
Fourier transforms, 624-27
effect of number of points on computed
spectrum, 627
Four-quadrant, 355 (see also Digital-to-
analog converter: multiplying)
Frequency:
analog-to- (see V/F converter)
and time domain compared, 630
digital-to-, 126
-shift keying (FSK), 647-48
-to-voltage, 355, 473, 496-97
phase-locked loop (PLL), 474,
497-505
Full scale, 356
Full-scale range (FSR), 355-56
Function generation, 121-22

G
Gain, converter, 356
Gain, digitally controlled, 117-20,
596-97
Gain error:
ADCs, 175, 319-20, 321-22
DACs, 174, 300, 301-302
Gain nonlinearity (see Nonlinearity,
amplifier)
Glitch:
d/a converter, 60-62, 210, 354, 357,
414-18, 544-45
de-glitcher, 60-62, 353, 416-18, 545
Glitch: (cont.)
system, 664
trimming, in ECL DACs, 415-16
video DACs, 414-18
Glitch specification:

\textit{glitch impulse} (preferred) vs. "glitch
charge" and "glitch energy,
357, 415
Gray code, 178-81
Gross malfunctions, causes of, 662
Grounding, 191-93, 380-82, 393-99, 428-29,
509-10, 553-54, 663, 666, 667, 668
in test setups, 337
Guarding, 28, 38, 254, 383-84

H
Harmonic distortion (see Distortion)
High byte, 195
High-resolution data conversion, 531-56
Human role in data system, 5, 6, 15
Hybrid (see Converter)
Hysteresis:
in f/v converter, 355
peak follower with, 131, 571

I
IIR filter, 147-48, 633-34, 655 (def.)
impulse response, 633
Inductosyn, 11, 441, 449-50, 451, 461, 463,
465-66, 467-68
machine-tool application, 467-68
system-design parameters:
linear Inductosyn:
converter accuracy, 463, 466
system resolution, 463, 466
system rms accuracy, 463, 466
system worst-case accuracy, 463,
466
velocity, 463, 466
rotary Inductosyn:
converter accuracy, 463, 465
system rms accuracy, 463, 465
system worst-case accuracy, 463,
465
tracking rate, 463, 465
to-digital converter, 454-55, 463,
465-66
Instrumentation amplifier, 374 (see also
Amplifier)
Integral linearity (see Nonlinearity)
Integrated Injection Logic (I^2L), 259-65
Intermodulation distortion, two-tone, 433-34
Isolation (see also Amplifier):
 isolated d/a converter, 64-65
 VFC with opto-isolator, 494-97

LOGDAC (cont.)
 range extension circuits, 528-30
 relationship to linear multiplying DAC, 515-20, 523-24
 specifications, 521-24
 Logic levels, 193-94
 Long tails, 665 (see also Thermal tail)
 Low byte, 195

M

MAC (see Multiplier/accumulator)
MACSYM Measurement And Control
SYsteMs, 67, 72, 81-83
Malfunctions, sources of, 662-65
Medical imaging, 161-63
Memory:
 a/d converter with 8-channel, 34-35, 74, 92
 as delay line, 127-28, 141
 Microcode (def.), 655
 Microcoded DSP systems, 636-39
 Microcomputer analog I/O subsystems, 74-77, 92-96
 Microprocessor interfacing:
 a/d converters, 86-89, 92-93, 267-68, 273-75
 asynchronous conversion mode, 272-73
 ROM interface, 272
 slow memory interface, 271
 synchronous conversion modes, 271-72
 analog I/O boards, 41-42, 75-77, 92-96
 DAS modules and ICs, 89-91
 I/O, 85-86
 memory-mapped, 85-86, 92-96
 parallel, 83-96
 serial, 96-106
 Missing codes, 176, 359, 360
 Modems (DSP application), 647-49
 LMS processing, 648
 Monolithic (see Converter)
 Monotonicity, 175, 300, 359, 538, 546
 Most-significant bit, 170, 359
 Multiplexing, 50
 analog, 34-39, 580-83, 588-92
 low-level, 37-39
 carrier-isolated, 39
 "flying capacitor," 38
 differential, 37-40, 75-77, 79-80, 590
 digital, 32-34, 56-57
 bus, 55-56
Multiplexing
 digital (cont.),
 three-state or wire-or, 33
 in automatic gain & zero, 377
 settling time, 377
 synchronous VFCs, 508
Multiplier:
 analog, 29-31
 analog-digital, 120
 and MAC architectures, 639-43
 digital, 13, 147-48
Multiplier/accumulator (MAC), 13, 146,
 628, 635, 639-43, 646, 654,
 655 (def.)
Multiplying DAC (see Digital-to-analog)

N

Natural binary (see Binary)
Noise:
 crest factor - p-p vs. rms, 47, 552
 described, 45-47
 Gaussian, 46, 552
 in a/d conversion, 550-53
 induced, or interference-type, 46, 360,
 552
 peak, 46, 360
 quantization, 45, 176, 362, 542, 550
 random, 46, 550-53
 rms, 46, 360, 551-52
 spectral density, 360
Noise-power ratio testing, 434-35
Nonlinearity, 173-76, 358-59
 ADC, 175-76, 323-34
 amplifier, 360
 analog, 358
 best straight line, 324, 358-59, 360
 bit interactions, 305-309 (see also
 superposition errors)
 DAC, 173-74, 302-303
 differential, 173-76, 302-303, 358, 360,
 533-35
 simple testing scheme, 534
 end point, 323-24, 358-59, 476-77
 integral, 174, 300, 302-303, 359, 535
 improving, 535-38
 sample-hold, 555-56, 561
 superposition errors, 303-309
 testing:
 ADCs, 324-335
 ATE methods, 330-35
 crossplot testing, 327-30
 DACs, 307-12, 533-35
 practical considerations, 335-42
Normalization, 360
 rejection, 360
Numerical control, 533
Nybble, 54, 196
Nyquist frequency, 26, 376, 556
 vs. Nyquist sampling rate, 26

O

Offset binary (see Binary)
Offset, bipolar, 361, 545
Offset error:
 ADCs, 175, 318-21
 DACs, 174, 300-302
Offset, sample-hold, 561
Offset step, 352, 361, 562
Offsetting, 18, 49, 545
Oil-well monitoring, 164-65
Ones complement, 183-88
Optical encoders, 181, 443-45
Output-voltage tolerance (see Reference
 errors)
Overload (DFIs), 361
Overrange, 178, 361

P

Panel instruments, digital, 15, 22, 72, 77-78,
 99-103
Parasitic capacitance in switches, 584
Passband (def.), 655
Peak follower, 131, 570-71
Pedestal, 352, 361, 555-56, 562, 572
Phase-analog approach to resolver-to-digital
 conversion, 455-56
Phase-locked loop, 474
f/v conversion, 474, 497-505
Phase shifter, digitally controlled, 122
Pipelining, 353, 661
 and conversion rate, 353, 661
 definition, 655
Polarity in converters, 182-87
 analog vs. digital polarity, 182-83
 bipolar DAC, 206-209
Positive reference, 183-84
Power supplies, 14, 191, 193, 430, 662,
 666, 667
Power-supply rejection ratio, 361
Power-supply sensitivity, 361
Preamplification (see Signal conditioning)
Processing, 17
Processing, signal:
 analog (see Analog signal processing)
 digital (see Digital signal processing)
Processors (see also Microprocessors), 12
 array, 13
Process technologies (see Converter, integrated-circuit)
Programmable-gain amplifier (see Amplifier)
Propagation delay, 362
PTAT (voltage or current Proportional To Absolute Temperature), 292-93, 609-11
Pumpback, in switches, 586

Q
Quad-slope converter, 362
Quantizing uncertainty, 362, (see also Noise, quantization)

R
Radar applications, 409-11, 469-71
I & Q, 409-11
plan-position indicator (PPI), 469-71
Range compression (see Dynamic range)
Ratiometric converter (see Converter)
RDC (see Resolver-to-digital converter)
Real world, 3, 622
Recording, studio (DSP application), 649-51
Reference (output) polarity, 184-87, 190, 198, 207
Reference, voltage, 11, 206, 225, 360, 600-20
accuracy specifications, 614-20
initial, untrimmed, 615, 616
trimming, 616
over temperature, 615, 616-19
box method, 616-19
butterfly method, 618-19
modified box method, 617-19
with input voltage (line regulation), 619
with output current (load regulation), 615, 619
with time (long-term stability), 615, 620
bandgap references, 609-14
bipolar output from unipolar reference, 614
boosted current output, 614
breakdown diodes, 600-602
buried Zener, 228, 294-95, 607-609
temperature-compensated, 603-604
Zener-diode drift with time, 620
Registers, 11
multiple rank, 53-56
with DACs, 51-57, 64-65, 209-10, 227
Remote data acquisition (see Data acquisition)
Resistance ladders (R-2R, etc.), 201-203
Resistors, IC, 223 (see also R-2R)
Resolution, 172, 300, 362-63
improvement in ADC with random dither, 548-49
Resolver, 446-48, 451
and synchro, 446-48, 452, 459, 462, 469
brushless, construction, 446-47
digital-to-, converters, 458-61
multiple-speed, 464
system design parameters:
converter accuracy, 462-63
frequency, 462, 464
system accuracy, 462-63
system resolution, 462
tracking rate, 462, 464
transducer accuracy & size, 462
worst-case accuracy, 462-63
to-digital converters, 451-58, 462-64,
470-71
phase-analog approach, 455-56
successive-approximation approach, 456-58
tracking converters, 451-55
tachometer output as bonus, 452,
454, 458
Right-justified (see Data format)
Ripple:
f/v converter output, 355
Robots, 163, 442-43
Rolloff (def.), 656
Rotary-to-linear measurement—resolver
with leadscrew, 468
Rotary variable differential transformer (RVDT), 446
Roundoff error, 362 (see also Noise, quantization)
R-2R ladder network, 202-206, 236-37, 278-96
resistor technology, 224, 236, 295

S
Sampled data in DSP, 624
Sample-Hold (see also Track-hold), 9, 50, 55-72
as deglitcher (see Deglitcher)
basic circuits, 560, 565-68, 593-94
for data acquisition vs. distribution, 59-60
internal timing, 563
multiple, 35-36
need for, 23-26, 376-77, 423-26, 559, 568-71, 661
parameters, 25, 560-65
hold mode, 564
dielectric absorption, 564
droop, 555-56, 564
feedthrough, 555, 564
hold-to-sample transition, 564-65
acquisition time, 555-56, 564-65
track mode, 561-62
bandwidth, 561
gain, 561
gain tempco, 555
nonlinearity, 555-56, 561
offset, 561
settling time, 556, 561
slew(ing) rate, 555, 562
thermal tail, 555-56
track-to-hold transition, 562-64
aperture delay (effective aperture delay time), 562-63
aperture time, 562
aperture uncertainty (jitter), 563
charge transfer, 562
jitter, 555, 563
offset nonlinearity, 555-56, 562
offset step, 562
pedestal, 555-56, 562
sample-to-hold offset, 562
switch delay time, 564
switching transient, 563
performance improvement with, 23-26, 376-77, 423-26, 555
technologies, 572
use with ADC, 25-26, 33, 36-38, 41-45, 144-46, 376-77, 367-70, 423-26, 555-56, 568-71
use with DAC, 57-62
with CMOS switches, 593-95
Sample/Infinite hold (tracking ADC), 129-30
Sample-to-hold offset, 352, 361
Sampling ADC, 426-28, 554-56, 426-28, 570, 572
Sampling theorem, 26, 376, 661
Scaling, 18, 29, 49
Segment DAC architecture, 200-201, 251-58
errors, 303-307
Sensors:
in data systems, 5
Sequencer, program, for DSP, 637-38
Serial digital signals, 12, 22, 33-34, 50, 53-54, 96-103, 191, 213, 241-42, 276, 347, 413
Served DAC setting, 62-64, 131-32
Settling time:
amplifier, 363
d/a converter, 363, 312-17, 436-39
testing, 312-17, 438-39
tracking-loop scheme, 314-17
sample-hold, 561
video DACs, 414
calculated, 437-38
window measurement, 438-39
SHA (see Sample-Hold)
Shaft encoder (see Encoder, optical)
Signal conditioning, 18, 29-31
bridge circuits, 31
preamplification, 27-29
Signal processing, analog and digital
compared, 622
Signal reconstruction, in testing video
ADCs, 340
Signal-to-noise ratio, 340-41, 431-32, 542
Sign-magnitude, 183-88
Sinusoid generation, 126
Slew(ing) rate, 364, 555
calculated, 437-38
sample-hold, 562
Span, 356
Spectral analysis, 624-27
Staircase, 124-26, 364
Status output (ADC), 195
Stochastic techniques to improve ADC
resolution, 548-49
Stopband (def.), 656
Strobe (DAC), 195 (see also Data
distribution; Microprocessor
interfacing)
Subranging, 355, 364, 426-27
Successive approximations, 364 (see also
Analog-to-digital)
in multichannel resolver-to-digital
conversion, 456-57
Superposition errors (see Nonlinearity)
Sweep-generator tuning, 160-61
Switches, 573-98
characteristics:
charge injection, 583-85
crosstalk, 588
insertion loss, 588
leakage, 582-83
off isolation, 587
pumpback, 586
resistance vs. supply, 578-82
settling time, 587
Switches
characteristics: (cont.)
switching speed, 586-87
CMOS, 575-77
multiple, 577, 578-83, 592-93
paralleled to reduce R_{ON}, 592
R_{ON} effects in differing configurations,
578-82
R_{ON} vs. voltage, 576
T configuration, 593
Switching time, 365, 586-87
Synchro, 446-48 (see also Resolver)
Synchronous VFC (see Voltage-to-
frequency)
System layout (see Layout)
System problems, 19, 431

T

Tables:
ASCII characters, 100
BCD and binary resolution, 178
BCD weighting, 178
binary and Gray code, 179
binary weights & resolution, 172
bipolar codes, 183
CMOS multiplexer characteristics, 580
CMOS multipliers and MACs, 641
CMOS switch characteristics, 579
complementary bipolar codes, 189
complementary codes, 182
converter interfaces, 191
electronic switches vs. relays, 574
ersors when ideal 6-bit linear DAC is
used for 3-dB log gain
steps
general-purpose ADC ICs, 368
general-purpose DAC ICs, 369
hierarchy of data-acquisition subsystems,
72-73
integer & fractional codes, 171
LOGDAC accuracy specifications, 522
LOGDAC attenuation vs. input code
(ideal)—AD7111, 521
LOGDAC attenuation vs. input code
(ideal)—AD7118, 529
LSB & (FS−LSB) values, 177
RDC selection charts, excerpts, 462-63
relations among bipolar codes, 188
sample-holds, comparative specifications
of typical devices, 572
settling time vs. resolution, 437
typical a/d converter ICs, 350
typical d/a converter ICs, 349
VFCs, specs of typical devices, 490

Tachometer:
output from RDC, 454, 458, 470
using VFC, 496-97
Temperature:
ambient, 19
Temperature coefficients, converter
(tempco), 365-66 (see also
device listings, e.g., Digital-
to-analog converter)
Testing:
automatic, 134-40
of converters, see individual specification
listings
under dynamic conditions:
analog waveform reconstruction,
340-41
digital waveform analysis, 342
video converters, 431-39
ADCs, 431-36
a-c linearity, 432-33
differential gain and phase, 436
intermodulation distortion, two-
tone, 433-34
noise power, 434-35
signal-to-noise ratio, 431-32
transient response, 435-36
DACs, 436-39
settling time:
calculated, 437-38
window measurement, 438-39
Test systems, converters in, 138-40
Thermal tail, 366, 555-56
Thermocouple effects in circuitry, 665
Thermometer, digital panel
(thermocouple), 72, 77
interfacing, 99-102
Threshold, f/v converter, 355
Throughput rate, 377, 556
Time-domain responses, 127-29
Total unadjusted error, 366
Track-Hold: (see also Sample-Hold)
vs. sample-hold, 10, 25, 559
with flash converter, 423-26
Tracking:
delay, in sample hold, 25
resolver-to-digital converter, 451-55
Transducers, 441-71 (see also Data
acquisition)
in data systems, 7
Transient-detection applications, 411-12
Transient recorder, 411-12
Transient response of video ADC, 435
Transitions, in ADCs, 176-77, 318-24,
335-37
testing, 324-37
Transmultiplexer applications, 413-14
Triangular wave, digital, 125-26
Trigonometric functions, 122-24
Trimming, laser wafers, 224, 295
T-switch configuration, 593
TTL (Transistor-transistor logic), 194
Twos complement, 183-88
Two-wire interfacing:
 current loops, 64, 96-103
 VFCs, 96-99, 475, 481

U

Ultrasound imaging (DSP application), 651-52
 phased-array, 408-409

V

Vibration analyzers (DSP application), 652-54
Video-speed converters, 403-39
 ADCs, 420-28
 applications, 403-14
 card-level construction, 428
 DACs, 414-20
 practical aspects of using, 428-31
 testing, 431-39
Voltage sources, digitally controlled, 108-13
Voltage-switching DAC (see Digital-to-analog)
Voltage-to-frequency (vf) converter, 33, 96-99, 473-511
 autozero and autogain, 492-94
 component selection, 510-11
 decoupling and grounding, 509-10
 definition, 475
ICs vs. assembled modules, 489-90
 principal types:
 charge-balance, 482-89
 synchronous, 489
 multivibrator, 479-81
 specifications:
 dynamic range, 476
 full-scale error, 477
 gain, 477
 tempco, 476
 nonlinearity, 475-77
 offset, 476-78
 power-supply rejection, 478-79
 synchronous, 489, 505-509
 modulating scale factor with free-running VFC, 507-508
 ratiometric application for clock independence, 507
 two-wire interfacing, 96-99, 475, 481

Volt box, 109
Voltmeter (VFC-based), 490-94
 automatic gain control, 493-94
 automatic zero, 491-94

W

Waveform generation, 124-27
Waveform reconstruction, signal-to-noise ratio, 431-32, 542
Word Slice, 636 (see also Microcoded DSP system)

X

X-ray, digital, 406-408

Z

Zener diodes, 600-608 (see also Reference, voltage)
Zero error, bipolar:
 ADC, 322-23
 DAC, 302
Zero-setting (see Adjusting gain and zero)