PREFACE TO THE 1977 SEMINAR EDITION

This volume contains Parts I and II of that book, updated wherever specific converter products are referred to, in order to reflect the revolution in cost, size and (in some cases) performance brought about by the development of converters in integrated-circuit and hybrid form.

Two entirely new chapters have been added to further reflect changes in the structure of the technological marketplace brought about by the availability of both converters and computers as true components. Chapter II-2 is a consideration of the relationship between processes, configurations, and performance in miniature low-cost converters. Chapter I-4 considers the application of converters with parallel and serial digital interfaces, micro-computers, asynchronous serial data ports, and proprietary integrated data-conversion-subsystem architectures—a natural sequel to the wide-ranging discussion of system considerations in Chapters I-2 and I-3.

As with the earlier volume, it is our hope that this volume will help the purely digital or purely analog designer obtain appropriate practical knowledge of the complementary field and the interface between them, and that it will serve as a useful text and reference source for all designers and users of interface equipment. We will welcome the comments and suggestions of our readers for the benefit of future editions and readers.

March 1, 1977
Norwood, Mass.

D.H. Sheingold
CONTENTS IN BRIEF

Preface to the 1977 Seminar Edition i

Contents ii

PART I: CONVERTERS AT WORK

Chapter I-1 Data-System Components 1
Chapter I-2 Data Acquisition 7
Chapter I-3 Data Distribution 23
Chapter I-4 Subsystems and Data Communication 31
Chapter I-5 Analog Functions with Digital Components 57
Chapter I-6 Applications of Converter Systems 73
 A. Automatic Testing
 B. Communications and Signal Analysis
 C. Displays
 D. Commerce, Industry, and Elsewhere

PART II: CONVERTERS

Chapter II-1 Understanding Converters 95
Chapter II-2 Converter Microcircuits 127
Chapter II-3 Converter Design Insights 171
Chapter II-4 Testing Converters 191
Chapter II-5 Specifying Converters 217
Chapter II-6 Applying Converters Successfully 237
CONTENTS IN DETAIL

Preface

Contents: In Brief ii
In Detail iii

PART I: CONVERTERS AT WORK

Chapter I-1. Data-System Components
Sensors; Amplifiers; Common-Mode Problems; Isolation; Function Modules; Multiplexers; Digital Multiplexing; Sample-Hold Circuits; A/D Converters; D/A Converters; Registers; Up-Down Counters; Filters; Comparators; Power Supplies; Digital Panel Meters (and DVM's); Digital Displays; One More Important Element 1

Chapter I-2. Data Acquisition
Then and Now; Environment and Complexity; Key Factors; Single-Channel Conversion Subsystems; Direct Conversion; Sample-Hold and Conversion; Signal Conditioning; Multi-Channel Conversion; Multiplexing the Outputs of Single-Channel Converters; Multiplexing the Outputs of Sample-Holds; Multiplexing the Inputs of Sample-Holds; Multiplexing Low-Level Data; More than One Tier of Multiplexers; Signal Conditioning; Ratiometric Conversion; Wide Dynamic Ranges; Noise Reduction 7

Chapter I-3. Data Distribution
Factors Affecting Distribution-System Design; Digital vs. Analog Distribution; Converter-per-Channel Distribution; Simultaneous Updating; Analog Distribution; Acquisition vs. Distribution; Filtering/Smoothing; The Cost Factor; Minimizing Calibration Errors by Servoing; Isolation 23

Chapter I-4. Subsystems and Data Communication
Subsystems for Interfacing Converters to Analog and Digital Worlds; The AD7550 13-bit converter-on-a-chip; The AD2008 System-Oriented Panel Meter; SERDEX SERial Data-EXchange cards; DAS1128 Data-Acquisition Subsystem; RTI-1200 Real-Time Interface; MACSYM ONE, a Compleat System; Interfacing Converters with Microprocessors, Using Parallel Connections; Microprocessor Interfacing, I/O vs. Memory; Interfacing DAS1128 and an 8080; Interfacing AD7550's with μC's; A Note on Bit-Labelling; Sophisticated Memory-Managed Interfacing with the RTI 1200; Serial Interfacing; V/f Converters; More on SERDEX 31

Chapter I-5. Analog Functions with Digital Components
Sources; Scale Factors and Modulation; Functional Relationships; Trigonometric Applications; Waveforms; Functions of Time; Digital Servo Devices 57
Chapter I-6. Applications of Converter Systems

A. Automatic Testing
 Uses for Automatic Testing; Ingredients of Test Systems; Converters in Test Systems;
B. Communications and Signal Analysis
 Shift-Register Delay Line; Read Out into Memory; Read Out as an Analog Signal; Recirculate; Perform Signal Averaging by Addition; Time Compression by Sampling; Real-Time Correlation; Incremental Delay Line as a Filter; Recursive Filtering
C. Cathode-Ray-Tube Displays
 Basic System; Uses of D/A Converters in Displays; Raster Displays; Dot-Matrix Displays; Graphic Displays; Delay-Line Integrator; Vectors and Segments; Differential Linearity and Linearity; Speed and Dynamics
D. Commerce, Industry, and Elsewhere
 Automatic Scale Zeroing; Low-Noise Communications; Music-Distribution Systems; Power-Rectifier Monitoring; List of Areas Where A/D and D/A Conversion May Help

PART II: CONVERTERS

Chapter II-1. Understanding Converters

Analog Quantities; Digital Quantities; The Binary Code; Basic Conversion Relationships; Other Codes; Binary-Coded Decimal (BCD); Overtanging; 2-4-2-1 BCD; Gray Code; Analog Polarity; Bipolar Codes; Code Conversion; Other Codes; Arbitrary Biasing and Scaling; DAC's as Multipliers and ADC's as Dividers; Ground Rule; Power Supplies; Digital Logic Levels; Control Logic—The Status Output; The Strobe; Analog Signals; D/A Converter Circuits; Resistance Ladders; Switching; References; Bipolar Conversion; Registers on DAC's; A/D Converter Circuits; Successive-Approximations; Integration; Counter Types; Parallel Types

Chapter II-2 Converter Microcircuits

Technologies for Converters; Circuit Techniques, Performance, and Applications; The AD7520—A 10-Bit Monolithic CMOS D/A Converter: Early CMOS D/A Conversion; Equivalent Circuit; Applying the AD7520 (Analog Division, Single-Supply Application, Audio-Circuit Applications); The AD7522—A Double-Buffered 10-Bit CMOS Multiplying DAC: Applications; The AD7570—A 10-Bit Successive-Approximations CMOS A/D Converter: Microprocessor Capability; Advantages of CMOS; How the AD7570 Works; Notes on Logic Functions; Applications; AD7550—13-Bit CMOS μP-Compatible A/D Converter: Microprocessor Compatibility; Applications; How the Quad-Slope Converter Works; The AD562—12-Bit Digital-to-Analog Converter: Circuit Design; Applications; The AD561—High-Accuracy 10-Bit DAC with Built-In Reference: Process Limitations; Buried Reference Diode; Design; Application Features and Circuits; The AD2026 Panel Meter: Design; The I 2 L Chip; What is I 2 L? The AD572—12-Bit Successive-Approximation A/D Converter: Design; Theory of Operation; Timing; Digital Output Data; Applications; Conclusion
Chapter II-3. Converter Design Insights

Converter Design; Review of D/A Techniques; The Importance of Logic Buffering; Monolithic Components; Component Tolerance; Interquad Divider; Reference Loop; Trimming High-Accuracy Converters; Temperature-Variation Effects; Current vs. Voltage Output; Error Budgets; Layout Considerations; Successive-Approximation A/D Converters; The Logic Sequencer; Comparators: The Most Critical Element; Other Considerations in A/D Converter Design

Chapter II-4. Testing Converters

Linearity; D/A Converters; A/D Converters; Gain Calibration; Zero and Gain Calibration; Unipolar DAC; Bipolar DAC Using Offset-Binary or 2’s Complement; Temperature Effects; Differential Nonlinearity; Monotonicity; DAC Testing; Dynamic Programming; Bit-Scan Mode; Count Mode; Differential-Nonlinearity Tester; Digital Dither Generator; Settling-Time Measurement; Zero and Full Scale; Comparator Thermal Effects; Alternate Method for Zero and Full-Scale Measurement; Major Carry; ADC Testing; Dynamic Crossplot; Anomalous Errors; Single-Shot Conversion Errors; Semi-Automatic Testing

Chapter II-5. Specifying Converters

Two Basic Factors; Defining the Objectives—Application Checklists; Considerations for D/A Converters; Considerations for A/D Converters; Considerations for Analog Multiplexers and Sample-Holds; Definitions of Specifications; System-Component Selection Process; Typical Converter Classifications; An Example of the Selection and Verification Process; First Approximation; Error Analysis

Chapter II-6. Applying Converters Successfully

Making the Proper System Choices; Data-Acquisition Systems; Three Classes of Converter Specifications; Approaches to Relaxing the Specifications; Logarithmic Compression; Filtering; Sample-Hold; Contributions to Error; Installation and Grounding; Reducing Common-Mode Errors
Figure 1. Functions in a data system.