analog-digital
CONVERSION HANDBOOK

by
The Engineering Staff of
Analog Devices, Inc.

Edited by
Daniel H. Sheingold

Published by
Analog Devices, Inc.
Norwood, Massachusetts 02062 U.S.A.
This book, a milestone rather than a culmination, is the direct outgrowth of a series of conversations with Ray Stata and Jim Pastoriza, starting at the beginning of 1969. At that time (and increasingly since then), it was felt that the growing availability of data-processing facilities at low cost — especially minicomputers — would bring the analog-digital interface, in the form of modular A/D and D/A converters and accessories, out of the specialty houses and into the realm of the working design engineer.

Although there are books in print on digital, analog, and hybrid computing, on circuit design, and on digital communication theory and sampled-data systems, there were — and still are — virtually no books that could serve as a guide to the engineer on the practical aspects of understanding, specifying, and applying the commercially-available modular elements of conversion systems in these pursuits.

Lest any reader either expect or question our altruism in publishing this book, let us first of all say that this book will seek to tell you merely "Everything You Always Wanted to Know About Data-Conversion System Design Using Modules*" rather than "Everything About Data-Conversion Systems," which would be an impossible (and at any rate, unrewarding) task.

Our viewpoint and credentials are those of a major producer of conversion-system integrated circuits and modules for the open market, and a growing supplier of high-performance monolithic-IC parts for in-house design and manufacture. We strive neither to hide nor to unduly emphasize our commercial motives, and the reader may find that the resulting honesty will impart a down-to-earth sense of practicality and realism.

On the other hand, we have restricted our temptations to crass commercialism to the extent of using model numbers and product specifications in the text for their flesh-and-blood illustrative effect. Our catalogs, data sheets, and other propaganda — and those of our competitors — are separately available in sufficient panoply, partisan quality, and timeliness, to make any effort to

*And Had Already Asked
outshine them in the present volume less than desirable (even if possible).

It is our hope that this volume will help the purely-digital or purely-analog hardware designer obtain appropriate practical knowledge of the complementary field, and that it will serve as a useful text and reference source for all designers of interface equipment. We will welcome the comments and suggestions of our readers for the benefit of future editions and readers.

June 1, 1972
Norwood, Mass.

D. H. Sheingold

ACKNOWLEDGEMENTS

In addition, this volume could not have been possible without the dedicated work of our Publications group, under Mrs. Marie Etchells; the cooperation of members of our top management team; the stimulation and understanding of Lawrence T. Sullivan, our Vice President, Marketing; and, finally, the original impetus and continuing encouragement (as well as budget authorization) provided by our President, Ray Stata.

Last — but surely not least — we thank our customers, past, present, and (yes) future, for their many stimulating questions, which revealed the need for such a book, and for the invaluable opportunity to gain mutual application experience, through an open and continuing dialogue. Since it might be inappropriate to mention that their custom, in the final analysis, has paid for this volume, we shall refrain from doing so.
CONTENTS IN BRIEF

Preface and Acknowledgements

Contents: In Brief

In Detail

Introduction

PART I: CONVERTERS AT WORK

Chapter 1 Data-System Components I-1
Chapter 2 Data Acquisition I-13
Chapter 3 Data Distribution I-41
Chapter 4 Analog Functions with Digital Components I-53
Chapter 5 Applications of Converter Systems I-77

A. Automatic Testing I-78
B. Communications and Signal Analysis I-84
C. Displays I-93
D. Commerce, Industry, and Elsewhere I-104

PART II: CONVERTERS

Chapter 1 Understanding Converters II-1
Chapter 2 Designing Converters II-55
Chapter 3 Testing Converters II-89
Chapter 4 Specifying Converters II-129
Chapter 5 Applying Converters Successfully II-155

PART III: OTHER SYSTEM COMPONENTS

Chapter 1 Operational Amplifiers III-1
Chapter 2 Instrumentation Amplifiers III-31
Chapter 3 Multiplexers and Multiplexing III-43
Chapter 4 Sample-Holds III-73

PART IV: GUIDE FOR THE TROUBLED

Bibliography xi

Index xvii
CONTENTS IN DETAIL

Preface and Acknowledgements i

Contents: In Brief
 In Detail iii
 iv
Introduction ix

PART I: CONVERTERS AT WORK

Chapter 1. Data-System Components
 Sensors; Amplifiers; Common-Mode Problems; Isolation; Function Modules; Multiplexers; Digital Multiplexing; Sample-Hold Circuits; A/D Converters; D/A Converters; Registers; Up-Down Counters; Filters; Comparators; Power Supplies; Digital Panel Meters (and DVM’s); Digital Displays; One More Important Element

Chapter 2. Data Acquisition
 Then and Now; Environment and Complexity; Key Factors; Single-Channel Conversion Subsystems; Direct Conversion; Sample-Hold and Conversion; Signal Conditioning; Multi-Channel Conversion; Multiplexing the Outputs of Single-Channel Converters; Multiplexing the Outputs of Sample-Holds; Multiplexing the Inputs of Sample-Holds; Multiplexing Low-Level Data; More than One Tier of Multiplexers; Signal Conditioning; Ratiometric Conversion; Wide Dynamic Ranges; Noise Reduction

Chapter 3. Data Distribution
 Factors Affecting Distribution-System Design; Digital vs. Analog Distribution; Converter-per-Channel Distribution; Simultaneous Updating; Analog Distribution; Acquisition vs. Distribution; Filtering/Smoothing; The Cost Factor; Minimizing Calibration Errors by Servoing; Isolation

Chapter 4. Analog Functions with Digital Components
 Sources; Scale Factors and Modulations; Functional Relationships; Trigonometric Applications; Waveforms; Functions of Time; Digital Servo Devices
Chapter 5. Applications of Converter Systems

A. Automatic Testing
 Uses for Automatic Testing; Ingredients of Test Systems; Converters in Test Systems;
B. Communications and Signal Analysis
 Shift-Register Delay Line; Read Out into Memory; Read Out as an Analog Signal; Recirculate; Perform Signal Averaging by Addition; Time Compression by Sampling; Real-Time Correlation; Incremental Delay Line as a Filter; Recursive Filtering
C. Cathode-Ray-Tube Displays
 Basic System; Uses of D/A Converters in Displays; Raster Displays; Dot-Matrix Displays; Graphic Displays; Delay-Line Integrator; Vectors and Segments; Differential Linearity and Linearity; Speed and Dynamics
D. Commerce, Industry, and Elsewhere
 Automatic Scale Zeroing; Low-Noise Communications; Music-Distribution Systems; Power-Rectifier Monitoring; List of Areas Where A/D and D/A Conversion May Help

PART II: CONVERTERS

Chapter 1. Understanding Converters

Analog Quantities; Digital Quantities; The Binary Code; Basic Conversion Relationships; Other Codes; Binary-Coded Decimal (BCD); Overranging; 2-4-2-1 BCD; Gray Code; Analog Polarity; Bipolar Codes; Code Conversion; Other Codes; Arbitrary Biasing and Scaling; DAC's as Multipliers and ADC's as Dividers; Ground Rule; Power Supplies; Digital Logic Levels; Control Logic – The Status Output; The Strobe; Analog Signals; D/A Converter Circuits; Resistance Ladders; Switching; References; Bipolar Conversion; Registers on DAC's; A/D Converter Circuits; Successive-Approximations; Integration; Counter Types; Parallel Types
Chapter 2. Designing Converters

Converter Design; Review of D/A Techniques; The Importance of Logic Buffering; Monolithic Components; Component Tolerance; Interquad Divider; Reference Loop; Trimming High-Accuracy Converters; Temperature-Variation Effects; Current vs. Voltage Output; Error Budgets; Layout Considerations; Successive-Approximation A/D Converters; The Logic Sequencer; Comparators: The Most Critical Element; Other Considerations in A/D Converter Design

Chapter 3. Testing Converters

Linearity; D/A Converters; A/D Converters; Gain Calibration; Zero and Gain Calibration; Unipolar DAC; Bipolar DAC Using Offset-Binary or 2's Complement; Temperature Effects; Differential Nonlinearity; Monotonicity; DAC Testing; Dynamic Programming; Bit-Scan Mode; Count Mode; Differential-Linearity Tester; Digital Dither Generator; Settling-Time Measurement; Zero and Full Scale; Comparator Thermal Effects; Alternate Method for Zero and Full-Scale Measurement; Major Carry; ADC Testing; Dynamic Crossplot; Anomalous Errors; Single-Shot Conversion Errors; Semi-Automatic Testing

Chapter 4. Specifying Converters

Two Basic Factors; Defining the Objectives – Application Checklists; Considerations for D/A Converters; Considerations for A/D Converters; Considerations for Analog Multiplexers and Sample-Holds; Definitions of Specifications; System-Component Selection Process; Typical Converter Classifications; An Example of the Selection and Verification Process; First Approximation; Error Analysis

Chapter 5. Applying Converters Successfully

Making the Proper System Choices; Data-Acquisition Systems; Three Classes of Converter Specifications; Approaches to Relaxing the Specifications; Logarithmic Compression; Filtering; Sample-Hold; Contributions to Error; Installation and Grounding; Reducing Common-Mode Errors
PART III: OTHER SYSTEM COMPONENTS

Chapter 1. Operational Amplifiers

Understanding Operational Amplifiers; The Ideal Op Amp; Non-Inverting Amplifier; Inverting Amplifier; Gain, Errors, and Stability; Difference Amplifier; Inside-Out Follower; Static Errors of Op Amps; Choosing an Op Amp; Classification of Amplifiers; Definitions of Specifications; Selection Principles; Selection Process

Chapter 2. Instrumentation Amplifiers

Design; Applications; Specifications; An Example; Isolation Amplifiers

Chapter 3. Multiplexers and Multiplexing

Functional Requirements; Analog Elements; Digital Elements; Basic Analog Multiplexer Configurations; High-Level Multiplexers; Low-Level Multiplexing; Errors in High-Level Multiplexers; Static Errors; Dynamic Errors; Errors in Low-Level Multiplexers; The Multiplexer System in High-Noise-Level Environments

Chapter 4. Sample-Holds

Uses of Sample-Holds; Characteristics of Real Sample-Holds; Typical Designs; Applications

PART IV: GUIDE FOR THE TROUBLED

Frequently-Asked Questions; Frequently-Encountered Problems; Frequently-Given Advice; What to Do If All Else Fails

APPENDIX: Bibliography

INDEX
INTRODUCTION: How to Use This Book

The users of this book, whether students or experienced design engineers, have a wide variety of backgrounds, interests, and needs. Although it is not expected to totally satisfy any reader, all who seek enlightenment, ideas, or guidance on matters having to do with modular and I.C. conversion devices should find something of value.

Whatever his interest, the reader will find this brief Introduction of assistance in making the best use of the book. Its self-explanatory structure is laid bare in the "Contents in Detail," which every reader should explore thoroughly before proceeding further. If he approaches with specific questions, the key to the answers might be found via "Frequently Asked Questions," in Part IV.

One can read through this book sequentially, but it is not necessary to do so; browsing is encouraged. Each unit is essentially self-contained. Though this involves some redundancy, it also enables a topic to be approached from several points of view. The Index should be useful in exploring any topic in depth.

The Bibliography is a brief and eclectic assortment of sources of information on various topics covered within the book. Each item is chosen, either because of its specific practical value or timely interest, or because it in turn has a reference section that will "fan out" and give the reader large coverage from a small base.

Design engineers should use this Handbook in conjunction with the most-recent edition of the comprehensive Analog Devices Product Guide. In addition to its up-to-date contents and much data (with prices) on specific products, it also contains a wealth of technical information, not all of which is duplicated in these pages.

Readers are invited to communicate to us their comments and suggestions for future editions of this Handbook, as to content, errata, omissions believed significant, and new applications ideas.
Figure 1. Functions in a Data System