ANALOG DEVICES TECHNICAL REFERENCE BOOKS

PUBLISHED BY PRENTICE HALL
 Analog-Digital Conversion Handbook
 Digital Signal Processing Applications Using the ADSP-2100 Family
 Digital Signal Processing in VLSI
 DSP Laboratory Experiments Using the ADSP-2101
 ADSP-2100 Family User's Manual

PUBLISHED BY ANALOG DEVICES
 Amplifier Applications Guide
 Mixed Signal Design Seminar Notes
 High-Speed Design Seminar Notes
 Nonlinear Circuits Handbook
 Transducer Interfacing Handbook
 Synchro & Resolver Conversion
ACKNOWLEDGEMENTS

Thanks are due the many technical staff members of Analog Devices in Engineering and Marketing who provided invaluable inputs during this project. Particular credit is due the individual authors whose names appear at the beginning of their material in this book.

Linda Grimes Brandon of Brandon's WordService prepared the new illustrations and typeset the text. Ernie Lehtonen of the Analog Devices' art department supplied many camera-ready drawings. Judith Douville compiled the index, and printing was done by R. R. Donnelley and Sons, Inc.

Walt Kester
1992

Copyright © 1992 by Analog Devices, Inc.
Printed in the United States of America

All rights reserved. This book, or parts thereof, must not be reproduced in any form without permission of the copyright owner.

Information furnished by Analog Devices, Inc., is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices, Inc., for its use.

Analog Devices, Inc., makes no representation that the interconnections of its circuits as described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith.

Specifications are subject to change without notice.

ISBN-0-916550-10-9
ANALOG DEVICES
AMPLIFIER APPLICATIONS GUIDE

SECTION I
INTRODUCTION

- Op Amp Evolution / Revolution
- Processes
- Architectures

SECTION II
PRECISION TRANSDUCER INTERFACES

- Bridge Circuit Configurations
- Bridge Amplifiers
- Signal Conditioning for Temperature Measurement: Thermocouples, Resistance Temperature Detectors (RTDs), Thermistors, Monolithic Thermocouple Amplifiers

SECTION III
HIGH IMPEDANCE, LOW CURRENT APPLICATIONS

- Precision Photodiode Preamplifier Design Analysis: Photodiode Characteristics, DC Analysis, AC Analysis, Noise Analysis, Circuit Tradeoffs, "T" Network Analysis
- High Speed Photodiode Preamplifiers: Characteristics of High Speed Photodiodes, Determining Circuit Frequency Response, Selecting the Proper Op Amp, Noise Analysis, Achieving More Bandwidth by Using Two Stages, Using a Composite Amplifier to Increase the Gain Bandwidth Product, High Speed Fiber Optic Receivers
Other High Impedance Transducer Applications:
- A pH Probe Buffer Amplifier
- High Impedance Charge Output Transducers
- Accelerometer Amplifiers
- Hydrophone Amplifiers
- Op Amp Performance: JFET Versus Bipolar, Using
- Decompensated Op Amps as I/V Converters
- A High Performance Audio I/V Converter

SECTION IV
SINGLE SUPPLY, LOW POWER APPLICATIONS

- Single Supply Design Considerations:
 - Reduced SNR, Determining the Ground Reference, Zero-Volt Input Signals, Zero-Volt Output Signals
 - Application Example: Designing a True Single Supply Instrumentation Amplifier

- Other Limitations of Zero-Volt Output Amplifiers
- Rail-to Rail Output Swing Op Amp
- Choosing Single Supply Op Amps
- Using Precision Op Amps in Single-Supply, Low Voltage Applications
- Noise Pickup and Logic Supplies

SECTION V
APPLICATIONS FOR AMPLIFIERS IN AUDIO

- A Low Noise Microphone Preamplifier with DC Servo Loop
- Line Receivers:
 - Basic Discrete Audio Line Receiver, Integrated Line Receiver
 SECTION VI
PASSIVE AND ACTIVE ANALOG FILTERING

■ Introduction to Filter Design and Implementation

■ Antialiasing Filter Design Example

■ A Programmable State Variable Filter

■ A Seven-Pole FDNR 20kHz Antialiasing Filter

■ A 2MHz Biquad Bandpass Filter Using a 30MHz Quad Op Amp

■ Practical Problems In Filter Implementation:
 Passive Components, Active Components

■ A 12MHz Sallen-Key Filter Using a Current Feedback Amplifier

 SECTION VII
DRIVING ADCs

■ ADC Performance Specifications

■ Effects of Drive Amplifier on System Performance

■ Specifying and Positioning the Antialiasing Filter

■ Driving Non-Sampling ADCs

■ Driving Sampling ADCs

■ Driving Flash Converters
Driving Precision 16-bit Sampling ADCs
Driving Sigma-Delta Audio ADCs
ADC Input Clamping and Protection Circuits

SECTION VIII
VIDEO AND OTHER HIGH SPEED OP AMP APPLICATIONS

Introduction to Broadcast Video

Video Applications:
 Video Cable Driving, A Composite Video Sync
 Tip DC Restorer, A Video Sync Stripper Circuit,
 A High Performance Video ADC Differential Input
 Buffer

Applying Ultra High Speed Op Amps:
 A Low Distortion Drive Circuit for Precision Wide
 Dynamic Range ADCs, Ultra High Speed Buffers,
 High Speed Differential Line Drivers and
 Receivers, A High Speed Three Op Amp
 Instrumentation Amplifier

SECTION IX
NON-LINEAR CIRCUIT APPLICATIONS

Introduction to Dynamic Range Compression

Voltage Controlled Amplifiers (VCAs):
 Exploiting the Bipolar Junction Transistor,
 VCAs Built Using Analog Multipliers, The X-AMP,
 X-AMP Applications

Logarithmic Amplifiers:
 Classifications, Scaling, Translinear Log Amps,
 Progressive Compression Log Amps, The AD640
 Log Amp, Log Amps Based on Bipolar
 Differential Stages
SECTION X
UNUSUAL APPLICATIONS FOR OP AMPS

- Where do Op Amps Come From?
- What Really is An Op Amp?
- Basic Assumptions About Op Amps
- Novel Applications:
- Op Amps Used as Comparators

SECTION XI
OP AMP SUBTLETIES

- Op Amp Output Voltage Phase Reversal
- Does Op Amp Open Loop Gain Non-Linearity Affect Linearity?
- High Speed Op Amp Settling Time Measurements
- Op Amp Noise and How to Avoid It:
 Internal Circuit Noise, Circuit Noise from Components, External Noise, Photoelectric Effects, Noise from Switching Supplies, Noise Reduction, Measuring External Noise
SECTION XII
HARDWARE TECHNIQUES

- Leakage In Insulators:
 Guard Rings, Electrostatic Damage (ESD)

- Grounding and Signal Routing:
 Signal Return Currents, Ground Noise and Ground Loops, Star Grounds, Separate Analog and Digital Grounds, Ground Planes, Transmission Lines, System Grounds, Signal Routing

- Problem Areas:
 Limitations of Spice Modelling, Sockets, Prototyping

SECTION XIII
ANALOG CIRCUIT SIMULATION

- Macromodel Versus Micromodel
- The ADSpice Model
- The Noise Model
- Current Feedback Amplifier Model
- Voltage Reference Model
- Analog Multiplier Model
- Simulation and Breadboarding
- Using Simulation Wisely

INDEX