
 

   

 

Rev 0; 5/24 
 

 

 

 

 

 

 

 

 

 

MAX96793 Single CSI-2 to GMSL3 Serializer  

User Guide 

Authored by: GMSL SerDes Applications Team 

UG-2232 

 

 

  



 

   

 

www.analog.com  Analog Devices | 2 

 

Device Overview 
This user guide is intended to be used in conjunction with other documents such as the MAX96793 data sheets, 
errata documents, and other user and design guides. It provides explanations, examples, and instructions to help 

set up video configurations and use various features.  

Examples may be shown without errata writes that are necessary to ensure reliable operation in production. 

Contact the Analog Devices, Inc. field applications engineer or representative to obtain the errata documents. The 
user should include any relevant errata writes in the final production software. In addition to the errata, it is also 

important to have the latest revision of the GMSL device for testing. 

The GMSL3 serial links use packet-based, bidirectional architecture with forward and reverse channels. The 

forward channel transfers data from the serializer to the deserializer; the reverse channel transfers data from the 

deserializer to the serializer. The GMSL3 devices have a forward channel serial bit rate of 3Gbps, 6Gbps, or 12Gbps 

and reverse channel serial bit rate of 187.5Mbps. See Table 1 for supported data rates/features by part number.  

The MAX96793 is a full featured GMSL3/2 serializer device. The MAX96793 is capable of 3Gbps, 6Gbps, or 12Gbps 

forward link rate (selectable with resistors connected to the CFG pin or with register writes) with a 187.5Mbps 
reverse direction rate. 

Table 1. MAX96793 High-Level Features 

Part Number 
Forward Link 

Rate 
Coax/STP MIPI Input GMSL Links ASIL Rating 

MAX96793 
3Gbps, 6Gbps, or 

12Gbps 
Coax or STP DPHY or CPHY 1 B 

Note:  This is not a complete list of device differences. See the device data sheets for all feature details. 

Application Use Case 
In a typical configuration, the MAX96793 serializer accepts mobile industry processor interface (MIPI) CSI-2 D-PHY 

or C-PHY video data from an image sensor in the 8MP to 17MP range, see Figure 1. The MAX96793 serializer then 

takes that data, converts it to GMSL, and sends it out over the link to a GMSL3 deserializer. In Figure 1, there are two 
MAX96793s operating independently and sending data out to a MAX96792A deserializer. Coax or shielded twisted-

pair (STP) cables can be used for the GMSL link. 



 

   

 

www.analog.com  Analog Devices | 3 

 

MIPI CSI-2 v1.3

Graphics 

Processing 

Unit (GPU)

I2C x 2

GPIO

MAX96793

MAX96793

MAX96792A

SIOA

SIOB

Serializer

Serializer

Deserializer

GMSL3

Tunnel or Pixel Mode

Coax or STP

GMSL3

Tunnel or Pixel Mode

Coax or STP

PORTA

PORTB

MIPI CSI-2 v1.3

1. Video Channel 2. Control Channel
 

Figure 1.  MAX96793 Two Camera Application Example 

Architecture  
The MAX96793 video path starts with one MIPI PHY that connects to a CSI-2 controller which then routes to internal 

Pipe Z and ends with a GMSL PHY. The default video path settings are shown in Figure 2. 

PHY 1

CSI-2 
Controller 1

D3P/N

D2P/N

-1

-1

Lane 1

Lane 0

Lane 1

Lane 0

Polarity
Inversion

PHY 2

(Main)

D1P/N

D0P/N

-1

-1

Lane 1

Lane 0

CLK

Lane 1

Lane 0

BCLKCLKP/N

Lane 

Map

CSI-2 Port B

2

MAX96793

1x4 Mode

Lane 2

Lane 3

Controller to 
Pipe Mapping
(FRONTTOP)

Pipe STR_ID 
Assignment

GMSL 

Core

Lane 0

Lane 1

BCLK

Pipe Z

VC Filter

GMSL

Video Pipes

-1

 

Figure 2. MAX96793 Video Path (1x4 D-PHY Mode) 



 

   

 

www.analog.com  Analog Devices | 4 

 

Startup and Programming Sequence  
The GMSL3 SerDes devices have many application use cases and features that work in conjunction with each other. 
To avoid feature and system sequencing issues, Table 2 outlines the preferred sequence order. Features or 

configuration changes may not be required and may be skipped in the start-up sequence. This depends on system 

requirements and data configurations. 

Table 2. GMSL3 SerDes Start-Up Sequence 

GMSL3 Start-Up and Programming Sequence 
Sequence  

Number 

Configuration Setup Notes 

0 Ramp-Up Voltage Power Supply -No power supply voltage sequencing required; voltage 
rails are internally independent and managed by on-chip 

power management block. 

1 Release PWNDB Pin (L→H) 
(If necessary) 

 

 I2C Wake-Up Time  Time from power-up or rising edge of PWDNB for local 
register access. For remote register access, I2C wakeup is 

the same as GMSL Link Lock time.  

2 CFG Pins Automatically Set Link -CFG pins sampled on every power-on reset (POR) and/or 

PWDNB L→H transition  

3 Link Configuration (Single Link vs. 
Multilink Operation Setup) 

Some deserializers power up in single-link mode while 
others in multilink modes. Read register map for correct 

registers to set up correct link operation mode.  

 

See Multilink Operation section for more information. 

4 GMSL Link Lock is Established  -If GMSL Link Lock is not established, verify the 
following:  

1) Voltage rails are correct per DS specification. 

2) Datarate, Coax/STP mode, and GMSL settings 
match between serializer and deserializer. 

 

5 I2C Rate Adjustment  

(If necessary)  

SerDes has I2C rate register settings that need to match 

up to I2C main.  

6 SER I2C Device Address Reassignment (If 

necessary)  

Reassigning SER I2C device address can help in 

multicamera systems  

7 Disable DES CSI Output -Set register bitfield CSI_OUT_EN=0 

8 DES Errata Settings 

(If necessary) 

-Ensure errata settings match DEV_REV and use case 

9 DES MIPI TX Configuration  -MIPI Port Config 

-Lane Count  

-Lane Mapping/Polarity Swap 

-Pipe to Controller Mapping 
-Deskew (>1.5Gbps/Lane) 

-MIPI Data Rate 

10 DES GPIO and Other Feature 
Configuration  

-GPIO Forwarding 
-FSYNC 



 

   

 

www.analog.com  Analog Devices | 5 

 

-I2C/UART Pass-through Channels 
-Line Fault 

11 DES Interrupt Handling (ERRB) and ASIL 
Configuration  

-See Error Flags section and Safety Documents of the 
Deserializer for more information 

12 SER Errata Settings  

(If necessary) 

-Ensure Errata settings match DEV_REV and use case 

13 SER MIPI RX Configuration  -Lane Count  

-Lane Mapping/Polarity Swap 

-Pipe to Controller Mapping 

-Deskew (>1.5Gbps/Lane) 

-MIPI Continuous vs. Noncontinuous Mode 

14 SER GPIO and Other Feature 

Configuration  

-GPIO Forwarding 

-FSYNC 

-I2C/UART Pass-through Channels 

-Reference Clock Out 
-ADC 
-Line Fault 

15 SER Interrupt Handling (ERRB) and ASIL 
Configuration  

-See Error Flags section and Safety Documents of the 
Serializer for more information. 

16 RESET LINK=1 -Reset whole data path to allow configuration and errata 

settings to take effect. (While this bit is ‘1’ remote access 

to link is not possible.) 

17 RESET LINK=0 -Release of reset, link relocks. Remote access is possible 

after link is locked. 

18 DES Enable CSI Output  -Set register bitfield CSI_OUT_EN=1 

19 Enable Deserializer Register CRC Safety 
Mechanism (If necessary)   

Review Safety documents of the Deserializer for more 
information.  

 
See Register CRC section for more information. 

20 Enable Serializer Register CRC Safety 
Mechanism (If necessary)   

Review Safety documents of the Serializer for more 
information.  

 

See Register CRC section for more information. 

21 Start Video Source  

 

Note(s): 

• Perform any configuration changes before video starts.  

• If changes are needed after video has started; stop the video, then make changes, and restart the video. 

• Dynamic configuration is not supported.   

Video Configuration  

Overview  
The forward video paths of the MAX96793 serializers are configured with the following programming: 



 

   

 

www.analog.com  Analog Devices | 6 

 

• Pixel and Tunneling Mode 

• Link Initialization  

• Link Lock Check 

• MIPI Controller and PHY Settings 

• Datatype (DT)/Virtual Channel (VC) Filtering and Overrides 

Enable the video only after the video path is configured; dynamic configuration is not supported. The following 

subsections detail the operation of each of these steps with descriptions of relevant registers and programming 
examples. 

Pixel and Tunneling Mode 
The MAX96793 supports both pixel and tunneling modes. Always ensure that both serializer and deserializer are in 

pixel or tunneling mode.  

Pixel mode provides the ability for systems to manipulate data types, bits per pixel (BPP), and virtual channels. This 

mode can be used when the incoming data must be manipulated over the serial link before outputting from the 
deserializer. 

Tunneling mode can be used when data integrity is a major system concern as it ensures end-to-end data integrity. 
End-to-end data protection is a common requirement for Advanced Driver Assistance Systems (ADAS), where data 

may not be altered from the transmitter to the downstream receiver. In tunneling mode, data may not be changed 

as it is protected with an end-to-end cyclic redundancy check (CRC) and is passed from serializer to deserializer 
without any manipulation. In tunneling mode, any combination of data type, BPP, and virtual channel may be 

transmitted if the video bandwidth total does not exceed the link bandwidth. 

 

Figure 3. Pixel and Tunneling Mode Comparison 

The following tables show MAX96793 registers to enable pixel or tunneling mode and the mode differences.   

Table 3. MAX96793 Pixel and Tunneling Mode Register Settings 

Register 

Address 

Bitfield Name Bits POR Decode 

0x383 TUN_EN 7 0b0 0b0: Pixel Mode  

0b1: Tunneling Mode 

 



 

   

 

www.analog.com  Analog Devices | 7 

 

 

Table 4. MAX96793 Features Supported by Pixel Mode vs. Tunneling Mode 

Feature Pixel Mode Tunneling Mode  

Video Processing (Watermarking)* Supported Not Supported 

Virtual Channel Reassignment Supported Not Supported 

Synchronous Aggregation Not Supported Not Supported 

First Come First Serve Aggregation Supported Supported** 

Compatibility with Legacy GMSL2 Pixel Parts Supported Not Supported 

D-PHY to C-PHY Translation Supported Not Supported 

C-PHY to D-PHY Translation Supported Not Supported 

Mixed Mode (One GMSL Link is C-PHY and other 

GMSL Link is D-PHY) 

Supported Supported 

End-to-End CRC Coverage for Video Not Supported Supported 

Video Line CRC (LCRC) Supported Supported 

GMSL Packet CRC (VID_PXL_CRC) Supported Supported 

Line Length >8k pixels at 24BPP Not Supported Supported 

16-Channel Virtual Channel Support Supported Supported 

*Check device data sheet to verify watermarking is supported.  

**Video source needs to set different VCs, as VC reassignment is not supported in tunneling mode. 

Link Initialization  
Link initialization establishes the device link modes and speeds. The MAX96793 device family is a GMSL3 Single CSI-
2 to GMSL3 Serializer  that can support coax or STP cables. Using the following registers, select the GMSL link rate 

and coax or STP connectivity. Any changes to the GMSL link should be followed by a link reset to reinitialize the link 

(toggle RESET_LINK=1 and then RESET_LINK=0). The CFG pins are the preferred method of setting up the GMSL rate 
and transmission mode. The selected configuration becomes the new default on power-up once the CFG pins are 

set and the part is power cycled. The following tables show capabilities of MAX96793 devices and its link 

initialization registers.  

 

         

Table 5. MAX96793 Basic Settings (CFG1 Pin) 

CFG1 Value  Coax/STP Data Rate  Transmission Mode 

0 STP 6Gbps Tunneling Mode 

1 STP 12Gbps Tunneling Mode 

2 STP 3Gbps Pixel Mode 

3 STP 6Gbps Pixel Mode 

4 Coax 6Gbps Tunneling Mode 

5 Coax 12Gbps Tunneling Mode 

6 Coax 3Gbps Pixel Mode 

7 Coax 6Gbps Pixel Mode 

 

Table 6. MAX96793 Link Initialization Registers 



 

   

 

www.analog.com  Analog Devices | 8 

 

Register Address Bitfield Name Bits POR Decode 

0x0001 TX_RATE 3:2 0b10 0b00: RSVD 

0b01: 3Gbps 

0b10: 6Gbps 
0b11: 12Gbps 

0x0011 CXTP_A 0 0b1 0b0: Shielded twisted pair drive  
0b1: Coax drive  

0x0010 RESET_ALL 7 0b0 0b0: No action  
0b1: Activate chip rest  

0x0010 RESET_LINK 6 0b0 0b0: Release link A reset  

0b1: Activate link A reset  

0x0010 RESET_ONESHOT 5 0b0 0b0: No action   

0b1: Reset data path  

Note: A link reset on CSI-2 serializers resets the entire data path of any video connected to the PHY. Link resets 
should not be used when video is being fed to the device. Doing this can corrupt data and have unintended 

consequences. 

Multilink Operation  
The MAX96793 has only one GMSL link so it does not have multilink operation. Although multicamera systems can 

be created with multiple MAX96793 and single, dual, and quad CSI-2 deserializers. 

Link Lock Check 
If the MAX96793 device configuration is correct, the link automatically locks upon connection. 

Pin #17 (MFP3) can be used as LOCK indication if enabled by register write. Bit 3 in register 0x0013 asserts if link is 

locked. 

Video Pipe Selection  
Video pipes must be configured to match video streams between the deserializer and serializer. This programming 
step is typically done following link initialization and ensures that the deserializer properly receives video data 

from the serializer. By default, the deserializer is programmed to accept the most common stream from the 

serializers and configuration is not usually needed. 

The MAX96793 has one video pipe (video pipe Z) that can select one of the four stream IDs. By default, the 

MAX96793 pipe Z stream ID is set to 0b10.  



 

   

 

www.analog.com  Analog Devices | 9 

 

CSI-2 

Controller 1

2

FRONTTOP
Assign stream IDs

(TX_STR_SEL)

GMSL Core

Pipe Z

VC Filter

Video Pipes

CSI-2 Port B

*Default controller-to-pipe routing shown.

 

Figure 4. MAX96793 Video Pipe Path 

Video Pipe Selection Registers  
Select the serializer stream ID to match the video streams (STR_ID) from the serializers for each deserializer video 
pipe. The GMSL3 camera serializers can have up to four video pipes (X, Y, Z, and U). These are annotated as 2 bits 

representing the stream ID. Pipe X = 0b00, Pipe Y = 0b01, Pipe Z = 0b10, and Pipe U = 0b11. 

By default, the MAX96793 serializer selects stream ID 0b10, which is the default for most CSI-2 deserializers. 

Table 7. MAX96793 Video Pipe Selection Registers 

Register 

Address 

Bitfield Name Bits POR Decode 

0x5B TX_STR_SEL (Pipe Z) 00 0b10 0b00: str_id=00   

0b01: str_id=01  

0b10: str_id=10 

0b11: str_id=11 

 

Video Pipe to MIPI Controller Mapping (VC/DT Mapping and Filtering) 
As data comes in through the MIPI PHY on serializer input, the pixel data goes to a CSI-2 controller then is routed to 

internal video pipes. Video pipes are then mapped to a GMSL PHY that is sent over the GMSL link. Pixel data within 

video pipes can be filtered by DT or VC.    



 

   

 

www.analog.com  Analog Devices | 10 

 

The MAX96793 has only one CSI-2 input port (B) and one video pipe (Z). This means the video routing is much 

simpler since there is only one path for video data to flow. Register 0x0308, shown in the Video Pipe and Filtering 

Registers table (see Table 8), contains the bits for enabling/disabling MIPI port B. 

Default Mapping:  

MIPI PHY1/2 → MIPI Controller 1 → Video Pipe Z 

 

GMSL PipesDT/VC 

FILTERING BLOCK

MIPI CONTROLLER/

PHYS

Pipe Z

Source:

VC and DT

Filtered:

VC and DT
CTRL1

(PHY1/2)

0x30D/30E 

0x318/319

0x3C8/3C9

0x3D0/3D1

0x3DC/3DD  

Figure 5. MAX96793 MIPI Controller to Video Pipe Block Diagram 

Using the default video routing, any data received on the MIPI input port B is automatically routed onto video pipe 

Z, unless filtering by DT or VC is being used. Every CSI-2 packet includes a header that indicates the DT and VC. If 

pixel mode is being used, this information can be used to route the incoming data throughout the serial link 
system. The DT and VC filtering is not supported in tunneling mode. 

The data within the serializer’s controller can be filtered so that the user can control what data, if not all, gets 
serialized and sent across the GMSL link. The mem_dt_selz registers are used to filter the controller data by CSI-2 

datatype code at the FRONTTOP before it reaches the video pipe. When using DT filtering, up to four datatypes can 

be routed from the controller to pipe Z. The pixel datatype codes to be routed must be set in mem_dt{1,2,7,8}_selz. 
Bits [5:0] in these registers must match the incoming datatype code. Bit 6 enables the filter. 

Another form of filtering is by VC which is configured with the VC_SELZ bitfield. In pixel mode, when multiple data 

streams are transmitted over the same pipe with different virtual channels, the VC_SELZ_L and VC_SELZ_H bits 

must be set to represent the virtual channels present on that pipe. Each bit place represents a VC within these 

registers. For example, if VC_SELZ_L[0] = 1 and VC_SELZ_L[1] = 1, then pipe Z would expect to have VC 0 and 1 on 
the pipe. When a bit position is set to zero, that VC is not allowed to enter that pipe. The VC_SELZ_L/H registers on 

this part have a default value of 0xFF, meaning that all 16 VCs (0-15) are allowed onto the pipe unless programmed 

otherwise. 

Table 8. MAX96793 Video Pipe and Filtering Registers 

Register Bitfield Name Bits Default 
Value 

Decode 

0x0308 START_PORTB 5 0b1 0 = CSI-2 on port B disabled 

1 = CSI-2 on port B enabled 

0x0308 CLK_SELZ 2 0b1 0 = Reserved (Port A does not exist) 

1 = Port B selected for pipe Z 

0x0002 VID_TX_EN_Z 6 0b1 0 = Video transmit on pipe Z disabled 



 

   

 

www.analog.com  Analog Devices | 11 

 

 1 = Video transmit on pipe Z enabled 

0x005B TX_STR_SEL[1:0] 1:0 0b10 00 = Stream ID for pipe Z is 0 

01 = Stream ID for pipe Z is 1 

10 = Stream ID for pipe Z is 2 

11 = Stream ID for pipe Z is 3  

0x0318, 

0x0319, 

0x03DC, 

0x03DD 

mem_dt{1,2,7,8}_selz[6] 6 0b0 0 = Datatype filtering disabled 

1 = Datatype filtering enabled 

0x0318, 

0x0319, 

0x03DC, 

0x03DD 

mem_dt{1,2,7,8}_selz[5:0] 5:0 0b000000 The value of bits 5:0 in this register should equal the 

datatype ID of the datatype the user wishes to allow onto 

the video pipe (e.g., RAW12 = 0x2C). 

0x03C8, 

0x03C9 

mem_dt{3,4}_selz[7:6] 7:6 0b00 These two bits select the two LSBs of the virtual channel 

that is to be filtered onto the video pipe 

0x03C8, 

0x03C9 

mem_dt{3,4}_selz[5:0] 5:0 0b000000 The value of bits 5:0 in this register should equal the 

datatype ID of the datatype the user wishes to allow onto 

the video pipe. 

0x03D1 mem_dt{3,4}_selz_en 1:0 0b00 0 = Disable filtering set in registers 0x3C8, 0x3C9  

1 = Enable filtering set in registers 0x3C8, 0x3C9 

0x030D VC_SELZ_L 7:0 0xFF Bits 0-7 represent VC0-VC7, respectively. If a bit is high, it 

means that VC is allowed onto the video pipe (e.g., if only 

bits 0 and 2 are HIGH, then only VC0 and VC2 are 

accepted). 

0x030E VC_SELZ_H 7:0 0xFF This register works the same as register 0x30D except bits 

0-7 represent VC8-VC15, respectively  

 

Video Pipe to Controller Routing Example  
This example filters video pipe Z for RAW12 datatype and virtual channel 1 on the MAX96793.  

0x80, 0x0318, 0x6C, #enable DT filter for RAW12 (ID = 0x2C)  

0x80, 0x030D, 0x02, #only VC1 allowed onto pipe 

Video Lock Check  
In pixel mode, the MAX96793 register 0x112 bit 7 (PCLKDET) asserts if it is receiving valid MIPI long packets (pixel 

data) and GMSL Link LOCK=1. 

In tunneling mode, the MAX96793 register 0x112 bit 7 (PCLKDET) asserts if it is receiving valid CSI-2 clock and GMSL 

Link LOCK=1. 

DT/VC Software Override 

The software override manually overrides the video DT (i.e., packet header), VC number, or BPP. This operation 

affects the video data between the video pipe(s) and the MIPI controller(s). Overriding the DT and VC information is 

used for MIPI controller mapping. If the received video data is from a serializer in parallel mode (e.g., GMSL1 
serializers), it is necessary to specify the desired DT, VC, and BPP with the software override. 

Note: The VC can be changed individually. However, DT and BPP must be adjusted together to ensure settings 
compatibility. 



 

   

 

www.analog.com  Analog Devices | 12 

 

Input DT BPP Manipulation (Pixel Mode Only) 
One advantage of pixel mode is that the data can be manipulated, such as by doubling or zero padding. Doubling 

the BPP of a data type allows for more efficient bandwidth usage. Zero padding is used to match the BPP of two or 

more data types so that they can share a video pipe. 

Double Mode  

Double mode is a data arrangement available for data types with BPP = 8, 10, or 12. With double mode enabled, 

two input pixels are concatenated and processed as a single pixel within the video pipe. This concatenation 
reduces the internal PCLK and increases the GMSL3 bandwidth efficiency. Double mode is enabled on a BPP basis.  

Further, user-defined 8-bit data types (UDP or UDT), which have header codes 0x30, 0x31–0x37, or 0x10–0x11 can 
alternatively be combined and transmitted by the serializer as 24-bit data. Set ctrl1_mode_UDT = 1 to treat these 

data types as 24BPP. This mode cannot be used simultaneously while bpp8dblz = 1, and tripled data types can only 

share a pipe with data types that use 24BPP or other tripled 8-bit data types.  

When using double or triple mode, the new internal BPP must be programmed into the serializer in addition to 
enabling the mode. Video pipe Z has a soft_bppz bitfield that must be set to the new BPP (e.g., 8→16, 8→24, 
10→20, 12→24) and a soft_bpp_en bit. 
        

Table 9. MAX96793 Double Mode Registers 

Register Bitfield Name Bits Default 
Value 

Decode 

0x312 bpp8dblz 2 0b0 0: Send as 8-bit pixels 

1: Send 8-bit pixels as 16-bit pixels 

0x313 bpp10dblz 2 0b0 0: Send as 10-bit pixels 

1: Send 10-bit pixels as 20-bit pixels 

0x313 bpp12dbl{Z} 6 0b0 0: Send as 12-bit pixels 

1: Send 12-bit pixels as 24-bit pixels 

0x337 ctrl1_mode_UDT 5 0b0 0: Treat UDP as 8 bits 

1: Treat UDP as 24 bits 

 

Zero Padding 

Pixel data being received by the MAX96793 can be zero padded as it enters a video pipe up to a resulting BPP of 16. 

With zero padding, an input with multiple BPP rates can be routed through its video pipe if the following conditions 

are met:  

1. 8 ≤ bpp ≤ 16 for all incoming bpp rates that are routed to the video pipe 

a. Zero padding occurs after doubling. The 8 ≤ bpp ≤ 16 requirement applies to the resulting bpp after 

doubling.  

2. Bandwidth is lost proportionally to the amount of zero padding. Some amount of GMSL3 bandwidth is 

dedicated to sending zeros instead of the original CSI-2 data. Ensure system bandwidth requirements can 

be met by using the calculations shown in the User Guide Bandwidth Efficiency Optimization  section.  

3. Video pipe Z’s PCLK Drift detection must be disabled. 

Zero padding applies to all data being routed in the pipe. When enabled, the pipe PCLK is set to the fastest 
incoming PCLK (smallest BPP) and all data within the pipe is treated as having a pixel width set by the BPP bitfield. 



 

   

 

www.analog.com  Analog Devices | 13 

 

To enable zero padding, set AUTO_BPP = 0, BPP = largest bpp in the pipe (≤16), soft_bpp = smallest bpp in the pipe, 

and soft_bpp_en = b1. PCLK drift detection must also be disabled using the pipe’s DRIFT_DET_EN bit. Using this 

method, all incoming data types with a BPP < BPP (Register) are zero padded so that all BPP rates within the pipe 

are equal. See Table 10 for zero padding registers. 

The zero-padded data is automatically recovered correctly on the deserializer based on the DT information that is 

automatically transmitted to the deserializer. But any DT that were “doubled” in the serializer must be 
“undoubled” in the deserializer. 
          

Table 10. MAX96793 Zero Padding Registers 

Register Bitfield Name Bits Default 
Value 

Decode 

0x110 AUTO_BPP 3 0b1 0: Use BPP from BPP register 

1: Use BPP from MIPI receiver 

0x111 BPP 5:0 0b011000 Number of bits per pixel (AUTO_BPP must = 0) 

0x112 DRIFT_DET_EN 1 0b1 Enables PCLK frequency drift detection, 

resets video pipeline upon error and reports it 

 

Double Mode and Zero Padding Example  

EMB8, RAW12, and RAW16 share Pipe Z. EMB8 is doubled to 16BPP. RAW12 is zero padded to 16BPP. RAW16 is 

unmodified. All data types are 16BPP inside of the pipe. EMB8 is doubled rather than zero padded because 
doubling is more efficient than zero padding, and EMB8 (DBL) has a BPP equal to the largest BPP in the pipe 

(RAW16). 

1. AUTO_BPP = 0 – Do not set BPP based on CSI-2 header (Pipe Z). 

2. BPP = 0x10 – Force Pipe Z BPP to 16 by zero-padding. 

3. soft_bppz = 0x0C – This must be set to the smallest input BPP (before padding and after doubling). 

4. soft_bppz_en = 1 – This enables software override of BPP. 

5. bpp8dblz = 1 – This doubles all incoming BPP = 8 DTs. 

6. DRIFT_DET_EN = 0 – PCLK frequency drift detection is disabled for Pipe Z. 

Software Override 
The data type, virtual channel, and bpp overrides must be enabled to take effect. The following table are the 

required registers on the MAX96793.  

Table 11. MAX96793 Software Override Registers  

Register Bitfield Name Bits Default 

Value 

Decode 

0x031E soft_dtz_en 7 0b0 0 = Data type software override disabled on pipe Z 

1 = Data type software override enabled on pipe Z 

0x031E soft_vcz_en 6 0b0 0 = Virtual channel software override disabled on pipe Z 

1 = Virtual channel software override enabled on pipe Z 

0x031E soft_bppz_en 5 0b0 0 = BPP software override disabled on pipe Z 

1 = BPP software override enabled on pipe Z 

0x031E soft_bppz[4:0] 4:0 0b11000 These bits should be set to the smallest input BPP (before 

padding and after doubling). 

0x0320 soft_vcz[1:0] 5:4 0b00 00 = VC0 



 

   

 

www.analog.com  Analog Devices | 14 

 

01 = VC1 

10 = VC2 

11 = VC3 

0x0323 soft_dtz[5:0] 5:0 0b110000 These bits should be set to the appropriate data type ID.  

 

Software Override Programming Examples 

Some examples of software override settings are as follows: 

• DT: soft_dtz[5:0]  

DT = 0x24 = 0b100100 for RGB888 

• VC: soft_vcz[1:0]  

VC = 0x03 = 0b11 for VC3 

• BPP: soft_bppz[4:0]  

BPP = 0xC = 0b01100 for RAW12 

Extended Virtual Channels  
Virtual channels allow the serial link system to differentiate video inputs by the VC assigned to them. When 

extended VCs are enabled, the standard 2-bit VC selection is extended to 4-bit (D-PHY), increasing the number of 

available VCs to 16 for D-PHY applications. The increase in available VCs allows systems to support more camera 
inputs. 

Extended VCs are enabled by the ctrl1_vcx_en bit. Once this feature is enabled, VCs 0-16 can be accommodated on 

the serializer input. If this bit is disabled, the VC is limited to the least significant 2 bits. Virtual channel remapping is 

available if the incoming video streams cannot be changed at the video source.  

The VC remapping is typically done at the deserializer but can be remapped on the serializer using 

ctrl1_vc_map_en and ctrl1_vc_map0-15 bit fields. When the mapping is enabled, each ctrl1_vc_map field remaps 
its respective VC. For example, when ctrl1_vc_map0 bit field is set to 0101b, then the input VC0 would remap to 

VC5. Similarly, ctrl1_vc_map1 would allow for the remapping of input VC1. 

Table 12. MAX96793 New Virtual Channel Mapping (Extended VC) 

CTRL1_VC_Map 0-15 

VC Input Ctrl1_vc_map VC Remap Bit 7 Bit 6 Bit 5 Bit 4 

0 ctrl1_vc_map0 VC = 5 0 1 0 1 

1 ctrl1_vc_map1 VC = 4 0 1 0 0 

3 ctrl1_vc_map3 VC = 2 0 0 1 0 

 

Table 13. MAX96793 Extended Virtual Channel Registers 

Register Bits Default Value Description 

0x0330 7 0 Ctrl1_vcx_en: 

0 = VC Extension Disabled 

1 = VC Extension Enabled 

0x0331 5 0 Ctrl1_vc_map_en: 

0 = VC Remapping Disabled 



 

   

 

www.analog.com  Analog Devices | 15 

 

1 = VC Remapping Enabled 

0x0345 7:4 0x00 Ctrl1_vc_map0: 

Bits [7:4]: New Virtual Channel for VC0 

0x0346 7:4 0x00 Ctrl1_vc_map1: 

Bits [7:4]: New Virtual Channel for VC1 

0x0347 7:4 0x00 Ctrl1_vc_map2: 

Bits [7:4]: New Virtual Channel for VC2 

0x036C 7:4 0x00 Ctrl1_vc_map3: 

Bits [7:4]: New Virtual Channel for VC3 

0x036D 7:4 0x00 Ctrl1_vc_map4: 

Bits [7:4]: New Virtual Channel for VC4 

0x036E 7:4 0x00 Ctrl1_vc_map5: 

Bits [7:4]: New Virtual Channel for VC5 

0x036F 7:4 0x00 Ctrl1_vc_map6: 

Bits [7:4]: New Virtual Channel for VC6 

0x0377 7:4 0x00 Ctrl1_vc_map7: 

Bits [7:4]: New Virtual Channel for VC7 

0x0378 7:4 0x00 Ctrl1_vc_map8: 

Bits [7:4]: New Virtual Channel for VC8 

0x0379 7:4 0x00 Ctrl1_vc_map9: 

Bits [7:4]: New Virtual Channel for VC9 

0x037A 7:4 0x00 Ctrl1_vc_map10: 

Bits [7:4]: New Virtual Channel for VC10 

0x037B 7:4 0x00 Ctrl1_vc_map11: 

Bits [7:4]: New Virtual Channel for VC11 

0x037C 7:4 0x00 Ctrl1_vc_map12: 

Bits [7:4]: New Virtual Channel for VC12 

0x037D 7:4 0x00 Ctrl1_vc_map13: 

Bits [7:4]: New Virtual Channel for VC13 

0x037E 7:4 0x00 Ctrl1_vc_map14: 

Bits [7:4]: New Virtual Channel for VC14 

0x037F 7:4 0x00 Ctrl1_vc_map15: 

Bits [7:4]: New Virtual Channel for VC15 

 

Pixel Mode  

Pixel mode supports VC extension as well as overriding VC in the deserializer. If the incoming video source is using 

extended VCs, VCX needs to be enabled on the serializer and deserializer.  

See Table 13 for extended virtual channel and VC override registers details. 

Pixel Mode Programming Example  

This example enables the extended VCs on the MAX96793 and remaps VCs 0 and 1 to be 5 and 6.  

# Turn on VC extension 

0x80, 0x331, 0xB0 

# Enable VC remapping 

0x80, 0x330, 0x20  



 

   

 

www.analog.com  Analog Devices | 16 

 

# VC remap of VC0 to VC5 

0x80, 0x345, 0x50  

# VC remap of VC1 to VC6 

0x80, 0x346, 0x60 

Tunneling Mode  

Tunnel mode does not support overriding of the VC; however, it supports VC extension. If the incoming video 
source is using extended VCs, VCX needs to be enabled on serializer and deserializer. 

Tunneling Mode Programming Example  
0x04,0x80,0x03,0x31,0xB0, // ctrl1_vcx_en=1, enable VCX on Serializer controller 1  

0x04,0x98,0x04,0x4A,0xD8, // CSI_VCX_EN=1, enable VCX on Deserializer controller 1 

MIPI Controller and PHY Settings  
MIPI PHY Settings  
The MIPI PHY settings contain programming options for continuous vs. noncontinuous clock modes, number of 
lanes, lane mapping, polarity swapping, and port selection. 

The MAX96793 CSI-2 to GMSL3 Serializer  has two 2-lane capable MIPI PHYs (PHY 1, 2) controlled by one MIPI 
controllers (Ctrl 1) to establish up to one 4-lane input port. The 0 contains the MIPI PHY setting registers.  

The 1x1, 1x2, 1x3, and 1x4 configurations use lane count settings. See Table 14 for register write details. 
       

Table 14. MAX96793 MIPI PHY Setting Registers 

Register Bitfield Name Bits Default Value Description 

0x0330 mipi_noncontclk_en 6 0b0 0 = enables MIPI continuous clock 

1 = enables MIPI noncontinuous clock 

0x0330 ctrl1_vc_map_en 5 0b0 0 = disables VC mapping 

1 = enables VC mapping 

0x0330 mipi_rx_reset 3 0b0 0 = do not reset MIPI receiver 

1 = resets MIPI receiver 

(This bit should be toggled HIGH and then LOW 

before any video is received—per errata.) 

0x0330 phy_config[2:0] 2:0 0b000 0 = 1x4 (only available option) 

0x0331 ctrl1_vcx_en 7 0b0 0 = extended VC disabled 

1 = extended VC enabled 

0x0331 ctrl1_deskewen 6 0b0 0 = deskew calibration disabled 

1 = deskew calibration enabled  

0x033C, 

0x033E 

phy{1,2}_hs_err[7:6] 7:6 0b0000 Bit 7 represents lane 0, Bit 6 represents lane 1 

0 = Deskew calibration pattern flag not received 

1 = Deskew calibration pattern flag received 

0x033C, 

0x033E 

phy{1,2}_hs_err[5:4] 5:4 0b0000 Bit 5 represents lane 0, Bit 4 represents lane 1 

0 = Default 

1 = Deskew calibration failure 

0x0331 ctrl1_num_lanes[1:0] 5:4 0b11 00 = 1 data lane 

01 = 2 data lanes 



 

   

 

www.analog.com  Analog Devices | 17 

 

10 = 3 data lanes 

11 = 4 data lanes  

0x0332 phy1_lane_map[3:2] 7:6 0b11 00 = map lane0 to lane3 

01 = map lane1 to lane3 

10 = map lane2 to lane3 

11 = map lane3 to lane3 

0x0332 phy1_lane_map[1:0] 5:4 0b10 00 = map lane0 to lane2 

01 = map lane1 to lane2 

10 = map lane2 to lane2 

11 = map lane3 to lane2 

0x0333 phy2_lane_map[3:2] 3:2 0b01 00 = map lane0 to lane1 

01 = map lane1 to lane1 

10 = map lane2 to lane1 

11 = map lane3 to lane1 

0x0333 phy2_lane_map[1:0] 1:0 0b00 00 = map lane0 to lane0 

01 = map lane1 to lane0 

10 = map lane2 to lane0 

11 = map lane3 to lane0 

0x0334 phy1_pol_map[1] 5 0b0 0 = normal polarity for data lane 3 

1 = inverse polarity for data lane 3 

0x0334 phy1_pol_map[0] 4 0b0 0 = normal polarity for data lane 2 

1 = inverse polarity for data lane 2 

0x0335 phy2_pol_map[2] 2 0b0 0 = normal polarity for clock lane 

1 = inverse polarity for clock lane 

0x0335 phy2_pol_map[1] 1 0b0 0 = normal polarity for data lane 1 

1 = inverse polarity for data lane 1 

0x0335 phy2_pol_map[0] 0 0b0 0 = normal polarity for data lane 0 

1 = inverse polarity for data lane 0 

0x0345-

0x0347, 

0x036C-

0x036F, 

0x0377-

0x037F 

ctrl1_vc_map{0,15} 7:4 0b0000 VC reassignment registers. See the Extended 

Virtual Channels section for description.  

 

MIPI Data Lane and Polarity Swap  
The MAX96793 supports lane swapping for pins on the same MIPI port.  

The data pins can be swapped within each port, but the clock location is fixed. For example, in 2x4 mode, the 

default mappings of the D0, D1, D2, and D3 pairs can be swapped to different output pins. Additionally, the polarity 

of each output data and clock pair can be inverted.  

See Table 14 for relevant registers. Figure 6 shows the default lane mapping that matches device pinout. Figure 7 

demonstrates the polarity swap exatabe. 



 

   

 

www.analog.com  Analog Devices | 18 

 

CSI-2 
Controller 1

-1

-1

Polarity
Inversion

D1P/N

D0P/N

-1

-1

CLKP/N -1

D3P/N

D2P/N

MAX96793

(1x4) Mode, DPHY

Lane 2

Lane 3

Lane 0

Lane 1

CSI-2 Port B

BCLK

Pipe Z

Lane 

Map

PHY 1

Lane 1

Lane 0

Lane 1

Lane 0

PHY 2

(Main)

Lane 1

Lane 0

CLK

Lane 1

Lane 0

BCLK

D1P/N

D0P/N

D3P/N

D2P/N

MAX96793
Serializer Lane/

IC Pins

MIPI Source/Sensor
IC Pins

 

Figure 6. MAX96793 1x4 DPHY Default Lane Mapping 

CSI-2 
Controller 1

-1

-1

Polarity
Inversion

D2P/N

D3P/N

-1

-1

CLKP/N -1

D0P/N

D1P/N

MAX96793

(1x4) Mode, DPHY

Lane 2

Lane 3

Lane 0

Lane 1

CSI-2 Port B

BCLK

Pipe Z

Lane 

Map

PHY 1

Lane 1

Lane 0

Lane 1

Lane 0

PHY 2

(Main)

Lane 1

Lane 0

CLK

Lane 1

Lane 0

BCLK

D1P/N

D0P/N

D3P/N

D2P/N

MAX96793
Serializer Lane/

IC Pins

MIPI Source/Sensor
IC Pins

 

Figure 7. MAX96793 1x4 DPHY Lane Swap Example 
  



 

   

 

www.analog.com  Analog Devices | 19 

 

Lane Swap Programming Example  

Figure 7 lane swap example register writes are seen in the following description.  

#SER I2C Address=0x80 

# Set lane mapping for all 4 lanes on ctrl 1. This is written to completely swap the device pinout from default as 

shown in the figure. 

0x80,0x0332,0x10 #D0 mapped to D3, D1 mapped to D2 

0x80,0x0333,0x0B #D2 mapped to D1, D3 mapped to D0 

MIPI D-PHY Deskew Settings  
The D-PHY deskew mechanism is only relevant to lane speeds greater than 1.5Gbps per lane (Deskew optional for 

data rates below 1.5Gbps/lane). Periodic deskew requires a continuous clock and the clock lane always in the high-

speed mode. Deskew is initiated by the transmitter under CSI-PPI control. 

The MAX96793 serializer only has one bit for enabling deskew calibration (ctrl1_deskewen) which can be found in 
REG 0x331. See Table 14 for more information.  

Deskew Register Example  
#SER I2C Address=0x80 

# Enable deskew calibration on the serializer  

0x80, 0x331, 0x70 

I2C Control Channels 

Overview 
The primary I2C control channel is used to provide access to both serializer and deserializer registers across the 
GMSL link. This provides flexibility where the registers for both serializer and deserializer are accessible from 

whichever side the main microcontroller resides (for camera applications, the main microcontroller typically 
resides on the deserializer side). 

The pass-through I2C channels are used to send I2C data across the GMSL Link. The pass-through channels can 

access the remote-side devices connected through the corresponding pass-through ports but cannot access the 

serializer or deserializer registers. 

When making changes to any of the serializer’s or deserializer’s I2C configuration, such as enabling or disabling an 

I2C channels, a 10µs delay from the write acknowledgment (ACK) to the next transaction is required. 

Port Access and Routing  
The multifunction pins (MFPs) shown in Table 15 are used for the I2C primary and pass-through channels. 

Table 15. MAX96793 MFPs for I2C 

MFP 

Pin 

Default Function I2C Function #1 I2C Function #2 Notes 

MFP7 GPI7 SDA1_RX1 N/A Enables I2C pass-

through by register 



 

   

 

www.analog.com  Analog Devices | 20 

 

MFP8 GPIO SCL1_TX1 N/A Enables I2C pass-
through by register 

MFP9 SDA_RX or RX SDA_RX or RX SDA2_RX2 I2C or UART function 
selected by CFG0 pin or 

Enables I2C pass-

through by register 

MFP10 SCL_TX or TX SCL_TX or TX SCL2_TX2 I2C or UART function 

selected by CFG0 pin or 

Enables I2C pass-
through by register 

 

On power-up, the device should be set to I2C mode by the CFG0 latch. The function names in the MFPs table and 

following I2C sections assume that the device has been configured for I2C mode.  

By default, the primary I2C control channel lines are brought out on MFP9 and MFP10 for SDA and SCL, respectively. 

The user can disable the primary control channel’s line access by setting field DIS_LOCAL_CC in register 0x1. Also, 
the access to remote device control can be disabled by setting field DIS_REM_CC in register 0x1. 

CRC for I2C and Message Counter Transactions  
The MAX96793 devices have the option to add CRC and a message counter to the I2C interface. The interface 

protocols are the same as in legacy designs, but there are new bytes introduced in the packets to support CRC and 
a message counter. The ECU and SerDes device each keep a copy of a message counter, which increments each 

transaction. The message counter and CRC bytes are sent in each transaction to ensure data integrity. Features are 

available only on primary I2C control channel, not supported for pass-through channels. Features are disabled by 
default and need to be enabled with register writes.  

Note: These features can only be used with I2C host controller that supports addition of this CRC. 

CRC for I2C Transactions 
The CRC feature is used to detect corrupt data written on the serializer’s primary I2C control channel. Each I2C 

transaction has a corresponding CRC packet associated with it. If a CRC is detected, the command is not executed, 
and the transaction is reported as Not Acknowledge (NACK).  

The MAX96793 CRC feature is enabled by setting fields CC_CRC_EN and CC_CRC_MSGCNTR_OVR in register 0x4.  

Message Counter for I2C Transactions  
The message counter feature is used to detect missing or repeated I2C transactions. For every transaction, the 

message counter is incremented accordingly while a copy of the counter is maintained on both ends of the I2C link. 

If a mismatch between copies is found, then the transaction is rejected. 

The MAX96793 message counter feature is enabled by setting fields CC_MSGCNTR_EN and CC_CRC_MSGCNTR_OVR 
in register 0x4. 

Enabling CRC for I2C and Message Counter 
Following are the register writes to enable CRC for I2C and Message counter for primary I2C control channel.  

(This only works with I2C host controller that supports CRC/Message counter.) 

#SER I2C Address=0x80  



 

   

 

www.analog.com  Analog Devices | 21 

 

#Enable CRC and Message Counter on SER in XTAL Mode 

0x80,0x4,0x1D  

I2C Registers 

Table 16 has registers that are needed to enable/disable primary and pass-through I2C channels. 
 

Table 16. MAX96793 I2C Registers  

Register Bits Default Value Description 

0x0001 7:4 0x08 I2C Enable Register: 

Bit [7]: Enables pass-through I2C Control Channel 2 (SDA2, 

SCL2) 

Bit [6]: Enables pass-through I2C Control Channel 1 (SDA1, 

SCL1) 

Bit [5]: Disables main I2C Control Channel connection to SDA 

and SCL pins  

Bit [4]: Disables access to remote device Control Channel over 

GMSL3 connection 

0x0004 4:2 0x18 Enable CRC and Message Counter Register: 

Bit [4]: Enables I2C message counter. Note: Only active when 

Bit [2] is also set to 1. 

Bit [3]: Enables I2C CRC packeting. Note: Only active when Bit 

[2] is also set to 1. 

Bit [2]: Enables manual override of I2C CRC or message counter 

configuration. If set to a 0, then CRC and message counter 

features are disabled.  

0x0006 4 0x80 I2C Selection Register: 

Bit [4]: Enables I2C when set to a 1 or UART when set to a 0 

Note: This bit is set according to the CFG0 pin value on 

power-up. Writing to this register is not recommended. 

0x1D00 3 0x00 Enable CRC Computation Register: 

Bit [3]: Computes register CRC after every I2C register write 

0x1D08 0 0x00 Message Counter Reset Register: 

Bit [0]: Resets Message Counter value to 0 

0x1D09 1:0 0x00 CRC Reset Register: 

Bit [1]: Resets Message Counter error count to 0 

Bit [0]: Resets CRC error count to 0. 

0x1D0A 7:0 0x00 Read CRC Value Register: 

Bits [7:0]: CRC value for the last write transaction 

0x1D0B 7:0 0x00 Read Message Counter Low Bits Register: 

Bits [7:0]: Low bits of current message counter value 

0x1D0C 7:0 0x00 Read Message Counter High Bits Register: 

Bits [7:0]: High bits of current message counter value 

 

Enabling I2C Pass-Though Channels 

When enabling an I2C pass-through channel, other MFP functions must be disabled first. 



 

   

 

www.analog.com  Analog Devices | 22 

 

With the MAX96793, the user can bring out the first pass-through I2C channel (SDA1_RX1/SCL1_TX1) on MFP7/MFP8. 

The second pass-through I2C channel (SDA2_RX2/SCL2_TX2) can be programmed on MFP9/MFP10. Pass-through 

channels are enabled by setting the fields IIC_1_EN and IIC_2_EN in register 0x1.  

Control Channel Programming Example  
The following example shows the register writes needed to enable I2C pass-through channel 1 on the MAX96793.  

#DES I2C Address=0x98 

#SER I2C Address=0x80 

#Enable I2C Pass-through channel 1 on DES 

0x98,0x0001,0x42 

#Disable UART Pass-through channel 1 on DES 

0x98,0x0003,0x43 

#Enable I2C Pass-through channel 1 on SER 

0x80,0x0001,0x48 

I2C Broadcasting 

Overview 
When transmitting to a multiple-link input deserializer or multiple deserializers, each device on the serializer side 

requires a unique address for individual programming and identification. Through I2C translation and address 

reassignment, each serializer and image sensor can have both a unique address and a broadcasting address. This 

allows for selective programming of each device and the ability to broadcast commands to all devices 
simultaneously. When broadcasting, if any remote GMSL I2C port ACKs the packet, it ACKs for all remote GMSL I2C 

ports.  

Note: When making changes to any of the serializer or deserializer’s I2C configuration, such as enabling or disabling 

an I2C port, at least a 10µs delay from the write ACK to the next transaction is required. 

An example of I2C broadcasting is discussed in the following section. Two equivalent camera modules, including an 
image sensor and GMSL3 serializer with the same respective addresses, are connected to two GMSL3 deserializers 

with different device addresses. Each of the camera modules comprises a serializer at the default I2C address 0x80 
and an image sensor at address 0x20. 



 

   

 

www.analog.com  Analog Devices | 23 

 

 

Figure 8.  I2C Interfaced Camera-Module System with Default Address Settings and Dual Deserializer  

I2C Broadcasting Technique  
The I2C broadcasting technique helps to communicate with multiple camera-serializer modules with a single 

microcontroller, which in turn streamlines the transmission process. 

The general procedure is to: 

• Isolate a single camera/serializer module for remote I2C access, meaning no other device with the same address 

should be connected to the I2C data line. 

• Change the serializer address to a unique address.  

• Modify the first I2C address translation register with a common source address but the unique destination 

address. This is to streamline the interface with the serializer. 

• Modify the second I2C address translation register with a unique source address but the default image sensor 

addresses for the destination address. This is to streamline the interface with the image sensor.  

• Repeat this process for each camera serializer module.  

Note: When making changes to any of the serializer or deserializer’s I2C configuration, such as enabling or disabling 

an I2C port, at least a 10µs delay from the write ACK to the next transaction is required. 

I2C Broadcasting GMSL3 Use Case Example  
The procedure for the I2C broadcasting example is as follows: 

• Isolate camera module 1 by disabling camera module 2’s GMSL link (RESET_LINK = 1).  

• Change the serializer device address in camera module 1 from 0x80 to 0x82. This is done with a register write to 

DEV_ADDR[6:0] located in REG0. 

• Modify the first address translation register in this serializer to give a broadcast address (0xC4) to the serializer. 

Program 0xC4 into the source register SRC_A[6:0], and 0x82 in the destination register DST_A[6:0]. Thus, for the 

serializer in camera module 1, anything sent to address 0xC4 is sent to address 0x82 instead. 

• Modify the second translation register in this serializer to give a unique address to the image sensor. Program 

0x22 into the source register SRC_B[6:0] and 0x20 into the destination register DST_B[6:0]. Thus, for the 

serializer in camera module 1, anything sent to address 0x22 is sent to address 0x20 instead. 

• Isolate camera module 2 by disabling camera module 1’s GMSL link (RESET_LINK = 1) and enabling camera 2’s 

GMSL link (RESET_LINK = 0). 



 

   

 

www.analog.com  Analog Devices | 24 

 

• Change the serializer device address in camera module 2 from 0x80 to 0x84. This is done with a register write to 

DEV_ADDR[6:0] located in REG0. 

• Modify the first address translation register in this serializer to give a broadcast address (0xC4) to the serializer. 

Program 0xC4 into the source register SRC_A[6:0] and 0x84 in the destination register DST_A[6:0]. Thus, for the 

serializer in camera module 2, anything sent to address 0xC4 is sent to address 0x84 instead. 

• Modify the second translation register in this serializer to give a unique address to the image sensor. Program 

0x24 into the source register SRC_B[6:0] and 0x20 into the destination register DST_B[6:0]. Thus, for the 

serializer in camera module 2, anything sent to address 0x24 is sent to address 0x20 instead. 

• Now, enable all the links for remote primary I2C port access.  

• All devices should be present on the I2C bus. Continue with any additional required system configuration. 

 
 

Figure 9.  Two Camera-Module System with Translated Address Settings and Dual Deserializer 
     

Table 17. I2C Broadcasting Example – Serializer  

Old I2C Address New I2C Address SRC_A 
(SER, 0x42) 

DST_A 
(SER, 0x43) 

Sink Devices 

0x80 0x82 0xC4 0x82 Serializer in Camera Module 1 

0x80 0x84 0xC4 0x84 Serializer in Camera Module 2 

0 shows how the serializers are assigned a single device address to allow writes to all devices as a broadcast. This 
allows I2C host controller to broadcast with address 0xC4. 

Table 18. I2C Broadcasting Example - Image Sensor 

Old I2C Address New I2C Address SRC_B 

(SER, 0x44) 

DST_B 

(SER, 0x45) 

Sink Devices 

0x20 0x22 0x22 0x20 Serializer in Camera Module 1 

0x20 0x24 0x24 0x20 Serializer in Camera Module 2 

Table 18 shows how each image sensor is assigned a unique device address. This allows I2C host controller to 

isolate I2C commands to only one image sensor. 

I2C Broadcasting Programming Example 
This script sets up the I2C broadcasting as shown in Figure 9.  



 

   

 

www.analog.com  Analog Devices | 25 

 

#DES I2C Address=0x98 

# Disable GMSL Link B  

0x98,0x0013,0x1 

# Change I2C address for this Link A serializer 

0x80,0x0000,0x82 

# Set Ser source to 0xC4 

0x82,0x0042,0xC4  

# Set Ser destination to 0x82 

0x82,0x0043,0x82  

# Set Image sensor source to 0x22 

0x82,0x0044,0x22  

# Set Image sensor destination to 0x20 

0x82,0x0045,0x20  

# Enable GMSL Link B  

0x98,0x0013,0x10 

# Disable GMSL Link A 

0x98,0x0010,0x51 

# Change I2C address for this Link B serializer 

0x80,0x0000,0x84  

# Set Ser source to 0xC4 

0x84,0x0042,0xC4  

# Set Ser destination to 0x84 

0x84,0x0043,0x84  

# Set Image sensor source to 0x24 

0x84,0x0044,0x24  

# Set Image sensor destination to 0x20 

0x84,0x0045,0x20  

# Enable GMSL Link A  

0x98,0x0010,0x31 



 

   

 

www.analog.com  Analog Devices | 26 

 

UART Control Channel 

Overview 
The primary universal asynchronous receiver/transmitter (UART) control channel is used to provide access to both 
serializer and deserializer registers across the GMSL link. This provides flexibility where the registers for both 

serializer and deserializer are accessible from whichever side the main microcontroller resides (for camera 

applications, the main microcontroller typically resides on the deserializer side). 

The pass-through UART channels are used to send UART data across the GMSL Link. The pass-through channels can 

access the remote-side devices connected through the corresponding pass-through ports but cannot access the 

serializer or deserializer registers. 

Note: When making changes to any of the serializer or deserializer’s UART configuration, such as enabling or 

disabling an UART channels, a 10µs delay from the write ACK to the next transaction is required. 

Base Mode  
Base mode allows the device registers of both the serializer and the deserializer to be accessed by the host 

microcontroller. It is the default mode for the primary UART control channel on power-up. 

Bypass Mode 
In the bypass mode, both the serializer and deserializer ignore all UART commands from the microcontroller. The 
serializer/deserializer registers are not accessible and the microcontroller can freely communicate with any 

peripherals using its defined UART protocol. In this mode, the UART commands are still sent over the GMSL3 link. 
This mode prevents inadvertent programming of the serializer/deserializer registers and can be switched in and 

out of during normal operation. 

Port Access and Routing 
The MFPs shown in Table 19 are used for the UART primary and pass-through channels. 

Table 19. MAX96793 MFP Pins for UART 

MFP 
Pin 

Default Function UART Function #1 UART Function #2 Notes 

MFP7 GPI7 RX1 N/A Enables UART pass-
through by register 

MFP8 GPIO TX1 N/A Enables UART pass-
through by register 

MFP9 SDA_RX or RX SDA_RX or RX RX2 I2C or UART function 

selected by CFG0 pin or 

Enables UART pass-

through by register 

MFP10 SCL_TX or TX SCL_TX or TX TX2 I2C or UART function 

selected by CFG0 pin or 

Enables UART pass-

through by register 

On power-up, the device should be set to UART mode by the CFG0 latch. The function names in this MFP table and 
following UART sections assume the device has been configured for UART mode.  



 

   

 

www.analog.com  Analog Devices | 27 

 

By default, the primary UART control channel lines are brought out on MFP9 and MFP10 for RX and TX, respectively. 

The user can disable the primary control channel’s line access by setting field DIS_LOCAL_CC in register 0x01. One 

can also disable access to remote device control by setting field DIS_REM_CC in register 0x01. 

CRC for UART and Message Counter Transactions  
The MAX96793 devices have the option to add CRC and a message counter to the UART interface. The interface 

protocols are the same as in legacy designs, but there are new bytes introduced in the packets to support CRC and 
a message counter. The ECU and SerDes device each keep a copy of a message counter, which increments each 

transaction. The message counter and CRC bytes are sent in each transaction to ensure data integrity. Features are 

available only on primary UART control channel, not supported for pass-through channels. Features are disabled 

by default and need to be enabled with register writes.  

Note: These features can only be used with UART Host controller that supports addition of this CRC. 

CRC for UART Transactions  
The CRC feature is used to detect corrupt data written on the UART control channel. Each UART transaction has a 
corresponding CRC packet associated with it. The host microcontroller must compute and send a CRC byte after 
each data byte.  

• If the host microcontroller is writing to the serializer registers, then the serializer receives the data byte, 

calculates the CRC using an identical CRC engine, and verifies a match before accepting the data byte. If a 

mismatch is detected, then the write is not accepted, and the error counter is incremented.  

• If the host microcontroller is reading the serializer registers, then the serializer calculates the CRC byte and 

appends it to the output data stream. The host microcontroller’s CRC engine should then calculate its own CRC 

byte and compare it with the one received from the serializer to determine if there is a mismatch. 

The MAX96793 CRC feature is enabled by setting fields CC_CRC_EN and CC_CRC_MSGCNTR_OVR in register 0x4. 

Message Counter for UART Transactions 
The message counter feature is used to detect missing or repeated UART transactions. For every transaction, the 

message counter is incremented accordingly while a copy of the counter is maintained on both ends of the UART 

transaction. If a mismatch between copies is found, then the transaction is rejected.  

The MAX96793 message counter feature is enabled by setting fields CC_MSGCNTR_EN and CC_CRC_MSGCNTR_OVR 

in register 0x4. 

Enabling CRC for UART and Message Counter  
Following are the register writes to enable CRC for UART and Message counter for primary UART control channel. (It 
only works with UART Host controller that supports CRC/Message counter.) 

#SER UART Address=0x80 

#Enable CRC and Message Counter on SER in XTAL Mode  

0x98,0x4,0x1D  

UART Registers 
The following table has registers that are needed to enable/disable primary and pass-through UART channels. 
       

Table 20. MAX96793 UART Registers 



 

   

 

www.analog.com  Analog Devices | 28 

 

Register Bits Default Value Description 

0x0001 5:4 0x08 UART Control Channel Enable Register: 

Bit [5]: Disables main UART Control Channel connection to 

TX/RX pins  

Bit [4]: Disables access to remote device control channel over 

GMSL3 connection 

0x0003 5:4 0x00 UART Pass-Through Channel Enable Register: 

Bit [5]: Enables pass-through UART Channel 2  

Bit [4]: Enables pass-through UART Channel 1 

0x0004 4:2 0x18 Enable CRC and Message Counter Register: 

Bit [4]: Enables UART message counter. Note: Only active 

when Bit [2] is also set to 1. 

Bit [3]: Enables UART CRC packeting. Note: Only active when 

Bit [2] is also set to 1. 

Bit [2]: Enables manual override of UART CRC or message 

counter configuration. If set to a 0, then CRC and message 

counter features are disabled.  

0x0006 4 0x80 UART Selection Register: 

Bit [4]: Enables UART when set to a 0. Note: This bit is set 

according to the CFG0 pin value on power-up. Writing to 

this register is not recommended. 

0x0048 5:0 0x42 UART Bypass Mode Control Register: 

Bit[5]: Enables UART bypass mode control by remote GPIO pin 

(Function MS on MFP8) 

Bit[4]: Enables UART bypass mode control by local GPIO pin 

(GPIO2)  

Bit[3]: Enables or disables parity bit in bypass mode 

Bit[2]: UART soft-bypass timeout duration 

Bit[1]: Enables UART soft-bypass mode 

0x004F 7:6 

3:2 

0x00 UART Pass-Through Channels Config Register: 

Bit[7]: Uses standard or custom bit rate 

Bit[6]: Enables parity bit 

Bit[3]: Uses standard or custom bit rate 

Bit[2]: Enables parity bit 

0x1D08 0 0x00 Message Counter Reset Register: 

Bit [0]: Resets Message Counter value to 0 

0x1D09 1:0 0x00 CRC Reset Register: 

Bit [1]: Resets Message Counter error count to 0 

Bit [0]: Resets CRC error count to 0. 

0x1D0A 7:0 0x00 Read CRC Value Register: 

Bits [7:0]: CRC value for the last write transaction 

0x1D0B 7:0 0x00 Read Message Counter Low Bits Register: 

Bits [7:0]: Low bits of current message counter value 

0x1D0C 7:0 0x00 Read Message Counter High Bits Register: 

Bits [7:0]: High bits of current message counter value 

 

Serial Peripheral Interface 



 

   

 

www.analog.com  Analog Devices | 29 

 

Overview  
The SPI is available on the MAX96793. Unlike I2C and UART, SPI cannot be used to modify any registers in either 

serializer or deserializer, it is only used to transfer SPI data across the GMSL link. Typical SPI use cases are to send 

commands for other devices or to stream data other than video data (e.g., for sensors). GMSL devices support SPI 
transmission rate up to 25MHz.  

Figure 10 shows the GMSL SPI architecture. On each side of the link, the GMSL devices become part of a main-
subordinate pair and have transmit and receive buffers inside. On the local side, an internal SPI subordinate 

receives data from an external SPI main or microcontroller and transmits it across the serial link. On the remote 

side, the device receives the data from GMSL link and uses an internal SPI main to transmit the data to the external 

SPI main/subordinate devices. 

SPI
Subordinate 

SPI GMSL3 
Packet Tx

SPI GMSL3 
Packet Rx

spi_gmsl3

GMSL3
Pin

Control

SPI GMSL3 
Packet Tx

SPI GMSL3 
Packet Rx

SPI
Main

spi_gmsl3

GMSL3
Pin

Control

External
SPI

Subordinate 

sck
mosi
miso

ss0

External
SPI

Subordinate 

ss1

External
SPI

Main

sck

mosi
miso

ro
bne

 

Figure 10. GMSL3 SPI Architecture 

MFP/CFG Pin Setup for SPI 
• Refer to the latest device data sheets for SPI MFP pins. Some MFP pins may have default alternate functions that 

must be disabled before enabling SPI. MFP status tool in the GMSL GUI can be used to verify the MFP functions 

that are enabled/disabled. If any of the SPI pins are also used as CFG pins, do not let any external SPI devices 

pull the CFG pins up or down until the GMSL devices power up and the CFG pins are latched. Power on the GMSL 

parts with the external SPI main device not connected, or not pulling on the CFG pins, otherwise, the GMSL part  

boots up into an unwanted configuration. 

• RO (Read Only) is an input bit that determines if the SPI subordinate is in read or write mode.  



 

   

 

www.analog.com  Analog Devices | 30 

 

• BNE (Buffer Not Empty) is an output bit that shows the receive FIFO state. BNE is low when the buffer is empty; 

BNE is high when there is data in the buffer. This bit is used to determine the status of the buffer for data 

transfers and avoiding buffer overflow. 

SPI Setup Registers  
The following table shows some of the important setup registers for enabling SPI. Register block in the data sheet 

has additional details for configuring the SPI main, subordinate, SCLK timings, etc.). See the programming script in 

the SPI Example with Register Writes  section as an example. 
       

Table 21. MAX96793 SPI Register Settings 

Register Bitfield Name Bits Default Value Description 

0x170 SPI_EN 0 0 0 = SPI not enabled 

1 = SPI enabled 

0x170 MST_SLVN 1 0 0 = SPI subordinate 

1 = SPI main 

0x170 SPI_IGNR_ID 2 1 0 = Accepts packets with proper ID 

1 = Ignores ID and accepts all packets 

(recommended) 

0x172 SPIM_SS1_ACT_H 0 1 0 = SS1 is active low 

1 = SS1 is active high 

0x172 SPIM_SS2_ACT_H 1 1 0 = SS2 is active low 

1 = SS2 is active high 

0x176 RWN_IO_EN 0 0 0 = Do not bring RO out to MFP pin 

1 = Bring out RO to MFP pin 

0x176 BNE_IO_EN 1 0 0 = Do not bring BNE out to MFP pin 

1 = Bring out BNE to MFP pin 

0x176 BNE 5 0 0 = No bytes to read 

1 = Bytes ready to read 

0x177 SPI_TX_OVRFLW 6 0 0 = No overflow 

1 = Overflow 

0x177 SPI_RX_OVRFLW 7 0 0 = No overflow 

1 = Overflow 

 

SPI Initialization  
Configure Serializer and deserializer in the following order to initialize SPI (starting from the default values):  

Configure SPI mode 0 or 3 on the serializer and deserializer 

Set SS output polarity (remote side). 

Set the clock delay and SCLK rate high/low times (in number of 300MHz clocks). 

Program the IO pin enables (BNE/RO/SS1/SS2). 

Configure internal GMSL Main/Subordiante mode, SPI ID (if needed), and enable SPI. 

SPI Example with Register Writes  



 

   

 

www.analog.com  Analog Devices | 31 

 

SPI Setup Example Script (0x80 is the serializer address, 0x98 is the deserializer address), assuming microcontroller 

or external SPI main is on serializer side.*  

0x98,0x003,0x3  #disable pass-through UART 

0x98,0x162,0x0  #select SPI link A on deserializer (SPI_LINK_SELECT). 

0x80,0x170,0x9  #enable SPI, default set to subordinate, and ignore the SPI header ID 

0x80,0x171,0x1D #default, sets SPI packet size and GMSL link scheduler priority. 

0x80,0x172,0x0  #default, subordinate select (SS) is active low, SPI mode is 0. 

0x80,0x173,0x0  #default, delay between assertion of subordinate select (SS) and SPI clock (SCLK) start 

0x80,0x176,0x3  #enable RO and BNE 

0x80,0x178,0x0  #default, timeout delay 

0x98,0x170,0xB  #Enable SPI channel, set as main 

0x98,0x171,0x1D #default, sets SPI packet size and GMSL link scheduler priority. 

0x98,0x172,0x0  #default, subordinate select is active low, SPI mode is 0. 

0x98,0x173,0x1E #default, delay between assertion of subordinate select and clock start. 

0x98,0x174,0x1E #SPI clock low time 

0x98,0x175,0x1E #SPI clock high time 

0x98,0x176,0xC  #Enable subordinate select 1 (SS1) and 2 (SS2), RO and BNE not enabled 

0x98,0x178,0x0  #SPI timeout delay 

*If microcontroller or external SPI main is on deserializer side, swap the Ser and Des register writes in the script. 

Figure 11 and Figure 12 show MFP pins being used for SPI after running this script.  

 

Figure 11. SPI MFP Pin Settings for Serializer 



 

   

 

www.analog.com  Analog Devices | 32 

 

 

Figure 12. SPI MFP Pin Settings for Deserializer 

SPI Example using GMSL GUI and Evaluation Boards  

• It is recommended to set the SCLK output rate equal or more than the SCLK input rate to avoid buffer overflow 

in the ser or des. The SCLK rate can be set using register writes.  

• Disconnect external SPI main device or do not pull CFG pins on Ser and Des.  

• Power up EV boards (ensure that VDDIO on the external SPI main device matches the VDDIO on GMSL Ser and 

Des) 

• Start GMSL GUI. 

• Load GMSL script to enable SPI.  

• Reconnect external SPI main device. 

• Set RO high and write 0xA0, 0xA4(0xA0-0xA3 are used for SPI ID selection, 0xA4 asserts SS1, 0xA5 asserts SS2, 

and 0xA6 de-asserts both SS1 and SS2). 

• As a best practice, before starting SPI data transfer, check BNE to ensure that the buffer is empty. If BNE is high, 

there is data in the RX buffer that is ready to be read by the external SPI main device. Set RO high and write FF 

until BNE = 0.  

• Set RO low and start the SPI data transfer. 

SPI With and Without Video Running  
The SPI Tx FIFO is 16 bytes and Rx FIFO is 32 bytes. The following screenshots show the SPI oscilloscope probes on 

the SPI clock and data output (the receiving end at the deserializer). When there is no video through the GMSL link, 
the SPI data is transferred consistently without any delay, however when the GMSL link is utilized 90% by video 

data, there may be some intermittent pauses during the SPI data transmission. This is because video data has 

higher priority as compared to SPI data transfer. The 32-byte buffer compensates for this scheduling delay and 
makes continuous streaming of the data possible. 



 

   

 

www.analog.com  Analog Devices | 33 

 

 

Figure 13. SPI Clock and Data at Final Output (at External SPI Subordinate), No Video on GMSL Link 

 

Figure 14. SPI Clock and Data at Final Output (at External SPI Subordinate), 92% Video on GMSL Link 

Data Integrity and Avoiding Buffer Overflow  
In general, SPI streams continuously and without having the SPI external main/generator read back any of the 

values. However, the techniques in this section are additional steps that are recommended to be implemented in 
the system to ensure that all the data is sent correctly. 

After a SPI data byte is sent across the GMSL link, the GMSL device on the remote side will send the data out on the 

MFP pins. It will also send the data back across the link so that the external SPI main device can read back the data. 

State of RO pin dictates direction of data movement. 

• RO = 0:  Data transmitted between main and subordinate by MOSI 



 

   

 

www.analog.com  Analog Devices | 34 

 

• RO = 1:  Data transmitted between subordinate and main by MISO, BNE is high if there are bytes in this buffer to be 

read back.  

Note that the word “read” in the name of the RO pin does not mean that it is an output pin; it is in fact an input pin 

that is toggled externally high or low depending on read or write operation. 

It is recommended to limit the amount of “Bytes in Transit” (bytes that have been sent but not received back) to 16. 

The external SPI main device can compute this value (= valid bytes sent – valid bytes read). 

One way of doing this is to send the data in a group of 16 bytes or less. If more than 16 bytes are sent at a time, it is 

still possible (depending on timing) that all the data is sent properly but it is not possible to easily be sure that the 

data was sent properly. 

 Following is an example of transferring 4 bytes of SPI data across the GMSL link: 

• RO is pulled high, and the A0 and A4 control commands are sent. 

• RO is pulled low, and 4 bytes of SPI data (0x80, 0x04, 0x01, 0x47) are sent from the external SPI main device to 

the GMSL input side (serializer). 

• The last three signals in the graph show SPI data output from the remote side of the link (Deserializer), and 

there may be some delay between the input and output of the SPI data across the GMSL link. 

• RO is high, and the bytes are read back by the external SPI main device. Note: BNE is high which indicates 

that SPI data bytes from the external SPI subordinate are available to be read.  

 

Figure 15. SPI Transmission Example 

Each Rx and Tx SPI buffer has overflow detection logic with status bits that can be monitored by registers 

SPI_TX_OVRFLW and SPI_RX_OVRFLW. 

Frame Synchronization 

Overview 
Frame synchronization (FSYNC) is used to align image frames sent from multiple sources in surround-view 

applications and is required for deserializer functions like concatenation. In FSYNC mode, the deserializer sends a 
sync signal to each serializer connected; the serializers then send the signal to the connected image sensor. 



 

   

 

www.analog.com  Analog Devices | 35 

 

Video frame synchronization occurs by synchronizing the vertical sync (VS) signals of the various video streams at 

the image sensors. This is done on the serializer side of the link by enabling GPIO tunneling and selecting a GPIO to 

act as an output to the image sensor.  

There are two types of FSYNC methods available on the GMSL3 CSI-2 deserializers: internal and external frame syncs. 

The internal frame sync indicates the GMSL3 CSI-2 deserializer generates the sync signal internally from its internal 

clock. The sync signal frequency must be specified in terms of the onboard crystal clock (25MHz) in the FSYNC period 
registers. The deserializer may be configured as a main that generates the FSYNC and outputs it on an MFP pin, or as 

a subordinate. If configured as a subordinate, it may accept an FSYNC output from another deserializer configured 

as the main.  

With external frame sync, the GMSL3 CSI-2 deserializer forwards a sync signal generated by a system-on-chip (SoC). 
In the GMSL3 application, any of the serializer or deserializer general purpose inputs/outputs (GPIOs) can be used 

as a sync signal input/output by using GPIO forwarding.  

 

Figure 16. Frame Alignment (Without Frame Sync) 

 



 

   

 

www.analog.com  Analog Devices | 36 

 

 

Figure 17. Frame Alignment (Frame Sync Enabled) 

Configuration 
The frame synchronization can be enabled on any MFP of the serializer. This is done by making the selected MFP a 
general-purpose output. The deserializer must be programmed to send the FSYNC signal to the selected MFP’s 

RX_ID to ensure the FSYNC signal is transmitted across the link. The deserializer programming is determined by 

whether the frame sync is generated externally by an SoC, or internally by the deserializer. 

Programming Example 
External FSYNC 
The following example sets up Deserializer MFP8 to accept FYSNC signal from SoC/ECU and outputs on Serializer 
MFP8.  

SoC

MAX96792A

Deserializer

FSYNC Input 

(MFP Input)

GMSL Link 

Tunneled FSYNC
FSYNC Output 

(MFP Output)

MAX96793

Serializer

MAX96793

Serializer

FSYNC Output 

(MFP Output)

FSYNC Input 

(MFP Input)

Image Sensor

FSYNC Input 

(MFP Input)

Image Sensor

GMSL Link 

Tunneled FSYNC

FSYNC 

Generation 

(30Hz)

 

Figure 18. External Frame Sync Example 

#DES I2C Address=0x98 



 

   

 

www.analog.com  Analog Devices | 37 

 

#SER I2C Address=0x80 

#SER MFP8 Outputs FSYNC  

0x80,0x02D6,0x84 # GPIO RX Tunnel Enabled, 1MΩ Pull-Down 

0x80,0x02D7,0x68 # Pull-up, Push-pull, TX_ID=0x08  

0x80,0x02D8,0x48 # RX_ID=0x08 

#DES MFP8 Accepts FYSNC Signal  

0x98,0x03E0,0x08 # FSYNC mode set to external  

0x98,0x03EF,0x86 # FYSNC enabled on Pipe Y and Z 

0x98,0x02C8,0x83 # GPIO TX tunnel Enabled  

0x98,0x02C9,0x68 # TX_ID=0x08 

0x98,0x02CA,0x48 # RX_ID=0x08 

Power Manager and Sleep Mode 

Overview 
The MAX96793 includes an integrated power manager that ensures the reliable and efficient operation of various 
power functions. The power manager controls the internal switched supply domains during the full sequence of 

power states so that the device powers up and down smoothly. During power-up, the power manager guards the 

device until the internal supplies have been validated and the digital core assumes normal operations. In all power 

modes, the power manger monitors power supplies for under and overvoltage conditions. In sleep mode, the 

power manager minimizes current consumption and can quickly restore device configurations after waking up. 

Table 22. MAX96793 Power Manager and Sleep Mode Availability 

Part Number Power Manager Sleep Mode 

MAX96793 Supported Supported 

 

Device Power Operation 
The power manager block minimizes required user interaction while providing extensive diagnostic indicators. 

Power manager status registers can be polled for valid supply levels, and a system-level interrupt (ERRB=0) can be 

generated in the case of a device power failure. 

The MAX96793 uses common power rails (VDD, VDD18, and VDDIO) and an integrated internal VDD_SW regulator.  

Note: If the power manager sends an ERRB interrupt due to a power fail condition, check PWR0, PWR1, and other 

diagnostic registers to identify the source of the failure. Refer to the Voltage Monitoring section of the respective 

data sheet for additional details. 

Power Supplies 
The MAX96793 shares a common set of power supply voltages that power universal functions such as the digital 
core, GMSL link circuitry, and GPIO. These power supplies are summarized as follows: 



 

   

 

www.analog.com  Analog Devices | 38 

 

• VDD: The input voltage to the VDD rail can be between 1.0V and 1.2V. An Internal LDO regulates the voltage to 1.0V.  

• VDD18: 1.8 V power rail 

• VDDIO: 1.8 V or 3.3 V I/O power rail for I/O 

• VDD_SW: (CAP_VDD pin): Internal 1.0 V power rail that powers the digital core logic.  

External power is supplied directly to VDD, VDD18, VTERM, and VDDIO, but the VDD_SW (CAP_VDD pin) just has external 

capacitors connected. 

Power Manager States 
At device power-up, the power manager block automatically controls the power sequencing process. Power 
supplies can ramp in any order and do not need to be externally sequenced. When power is applied, the power 
manager senses the presence of each domain. When the voltage threshold is reached for all supplies, the power 

manager signals to the other device domains that power is stable and begins to transition into run mode. 

The power manager state machine has four power states: boot, run, saved, and reset (power down/sleep). The 

power manager circuitry is in the “always-on” VDD18 domain so that all power domains may be managed and 
monitored during the full sequence of power states. This architecture allows for a seamless resume from the sleep 
to run mode and draws minimal current. Retention memories are also powered by the VDD18 domain so that device 

configuration and register settings can be saved and restored. 

Figure 19 shows the state diagram for the power manager. 

 



 

   

 

www.analog.com  Analog Devices | 39 

 

 

Figure 19. Power Manager State Diagrams 

Reset (Power Down/Sleep) 
Power down and sleep are two substates of the reset state. 

The device enters the power-down state if the PWDNB pin is asserted (low), VDD_sw falls below the internally set 

threshold, or if any other supply falls below the associated POR value. In power down, all registers in the digital 

core revert to default reset values. Power failure latches are retained unless VDD18 falls too low. De-asserting 
PWDNB (high) releases the chip from the power-down state and into the boot state. 

Sleep is a low-power consumption state that preserves the configurations and settings saved in the previous state 

and enables a much faster return to running operation than from power down. When the device is in the run state, 

the system (µC/SoC) can initiate sleep state with an I2C/UART command (SLEEP = 1). Sleep mode is entered 
automatically after the retention memory is loaded following the SLEEP=1 command. In the sleep state, the VDD18 

supply must be continuously maintained to ensure that previous configurations and settings are preserved. It is 

recommended that all other supplies be maintained during sleep mode to simplify the sleep and wake-up 

sequences. 

BOOT 



 

   

 

www.analog.com  Analog Devices | 40 

 

The device can enter the boot state from reset after external supplies have ramped up or the device has resumed 

operation from sleep. In boot, all power switches are turned on, and all power manager subblocks are enabled. 

When all post-switch supplies are valid, the chip enters run state. The power manager has an inrush current control 

feature; in boot state, the core supply switches are turned on gradually. 

RUN 
The run state is the normal operating mode of the device. The device enters run when all power supplies to the chip 

are valid. Once entering this state, the crystal begins to warm up, on-board calibration is initiated, and the GMSL 
handshake begins the process of establishing link lock. 

SAVED 
Saved mode is initiated with an I2C/UART command (SLEEP = 1) while the device is in run mode. Before the power 
manager enters the saved state, the core saves the current device configuration and register values to retention 

memory. In the saved state, all power switches are turned off and the power manager blocks are disabled. The 

device enters the sleep state. 

Sleep Mode  
Sleep mode provides a low power state from which prior configuration information is automatically loaded upon 

wakeup. This enables very fast recovery from low power sleep to full run operation by eliminating the need for the 

user to reprogram configuration registers as is required after a full power cycle. 

In run mode (normal operation), writing (SLEEP=1) starts the process of saving device configuration and register 
settings. The power manager shuts down all internal power supplies, the clocks are disabled, and the chip enters 

the very low power consumption sleep state. VDD18 must remain stable to provide continuous power to the data 

retention memory, and it is recommended that all supplies be maintained in their nominal operating range. 

Sleep and Wake-Up Sequences  
There are two ways to enable and wake up from sleep mode. Depending on the device (remote or local to 

microcontroller) that is desired to be in sleep mode, the following procedures can be used. 

Enable SLEEP Mode  

• Remote device 

• Write SLEEP = 1 to remote device 

• Write RESET_LINK = 1 to local device (Note: Perform within 8ms after the SLEEP = 1 command) 

• Local Device  

• Write register WAKE_EN_A = WAKE_EN_B = 0 to local device. (Note: This prevents the local device from 

being woken up from the remote side.) 

• Write RESET_LINK = 1 to local device 

• Write SLEEP = 1 to local device 

Wake-Up (Exit Sleep Mode): 

• Remote device  

• Write RESET_LINK = 0 to local device (or power-up/wake-up the local device) 

• Wait for LOCK = 1 

• Write SLEEP = 0 to remote device (Note: Perform within 8ms after LOCK = 1) 

• Local device  

• Perform a dummy I2C/UART transaction (Note: This wakes up the device.) 



 

   

 

www.analog.com  Analog Devices | 41 

 

• Wait 5ms 

• Write SLEEP = 0 to local device 

• Write RESET_LINK = 0 to local device to enable the link 

 

If devices at both ends of a GMSL link are sleeping, the host processor must initiate the wake-up sequence by 
waking up the local device first and waiting for link lock. The host can then immediately disable sleep mode in the 

remote device. 

The opposite sequence is used when transitioning devices at both ends of a GMSL link into sleep mode. The host 

must first configure sleep mode in the remote device while the link is locked. It can then immediately place the 

local device in sleep mode. 

Sleep Mode Limitations  
Sleep mode should not be used in conjunction with RESET_ALL. 

The GMSL3 family includes a global soft reset function called RESET_ALL. This is a self-clearing reset command that 
is intended to reset all subsystems to their default configurations. However, if a device has previously gone through 

a sleep/wake cycle, issuing a RESET_ALL resets the device and erroneously loads the contents of the retention 
memory that had been stored when the most recent SLEEP command was executed. As a result, the device “resets” 

to the state that had been configured prior to entering sleep mode previously rather than recovering in a clean 

power-up default state. The most severe implication of this is that the (SLEEP=1) state is saved in the retention 
memory, so the device recovers from reset and immediately enters sleep mode. 

Due to this described behavior, RESET_ALL and sleep should never be used together. 

Not All Registers are Saved in Retention Memory  
Most key registers corresponding to common device configuration are saved in retention memory. However, 

applications requiring extensive low-level configuration or infrequently used features may require writing to 
registers that are not saved in retention after resume from sleep. In these cases, full recovery from sleep mode to 

the pre-sleep device state requires some repeated register configuration following resume from sleep. Registers 

that are stored in retention memory are marked with “*” in the register map in the data sheet. 

Register CRC 

Overview  
This device includes a register CRC to alert if the device is accidentally placed into an undesired state. This is done 

by calculating a CRC value based on the state of the specific control registers’ values. These control registers 

program certain device and system parameters such as, but not limited to, GMSL link speed, MIPI port 

configuration, and GPIO configuration. If any of these parameters are changed mid-operation, the device 

configuration changes, and the ERRB output of the device is activated. 

The period within the CRC calculations is programmable from 2ms to ~500ms. 

Usage Models 
There are two usage modes to employ register CRC (basic and rolling). There is also a register block to skip specific 

registers from CRC calculation. 

Basic CRC 



 

   

 

www.analog.com  Analog Devices | 42 

 

The basic mode simply calculates a CRC value during each ‘CRC_PERIOD’ and checks that this value remains 

unchanged. The calculated CRC value is deposited in the REGCRC_MSB/LSB registers. Errors are indicated on the 

interrupt pin, which can be enabled or disabled using the standard interrupt mechanism. 

Rolling CRC 
The rolling CRC mode incorporates a rotating 2-bit counter that is incremented each ‘CRC_PERIOD’ so that the CRC 

value changes through four values in a repeating fashion. The calculated CRC value is deposited in the 

REGCRC_MSB/LSB registers. In this mode, poll the CRC value to verify the CRC value is cycling through these four 
values and has not stopped working. ERRB is not indicated as the CRC value is changing periodically, and the usage 

mode is to have the user poll the CRC register. 

Skipping Registers from CRC Calculation  
If desired, registers can be removed from the CRC calculation using SKIPX_MSB[7:0] and SKIPX_LSB[7:0]; where X = 

0 to 7. 

Note: The register CRC protection mechanism must be enabled as the final function on the chip (including all 
interrupt ERRB flags); no register writes to CRC protected registers can occur after enabling the register CRC, or the 

CRC is corrupted. 

System Implementation  
Follow these steps to enable the Register CRC feature.  

1. Configure SerDes link per use case. Program any ‘SKIP’ registers to avoid CRC calculation. 
Example: Skipping GPIO_C register 0x02D8: SKIP0_MSB=0x02, SKIP0_LSB=0xD8. 

2. Enable video. 

3. Enable the REG CRC feature.  

a. Basic CRC 

i. Set REG_CRC_ERR_OEN = 1b’1. 

ii. Set I2C_WR_COMPUTE = 0b’1. 

iii. Set CRC_PERIOD[7] = 1’b1 (corresponds to a CRC period of ~250 ms). 

iv. Set PERIODIC_COMPUTE = 1b’1. 

v. Set CHECK_CRC bit = 1b’1. 

vi. Read calculated CRC MSB/LSB and store. 

Example: ‘REGCRC_Original’, REGCRC_MSB[7:0], REGCRC_LSB[7:0] 

b. Rolling CRC 

i. Set GEN_ROLLING_CRC = 1’b1. 

ii. Follow steps for basic CRC mode. 

1. Read calculated CRC MSB/LSB and store.  

Example: ‘REGCRC_Original’, REGCRC_MSB[7:0], REGCRC_LSB[7:0]. 



 

   

 

www.analog.com  Analog Devices | 43 

 

2. There are four individual CRCs calculated automatically that should be 

checked per CRC_PERIOD.  

4. *If REG_CRC_ERR_FLAG only asserts, do the following: 

a. Rewrite register values to get back to the original state. 

b. Read calculated CRC MSB/LSB. 

i. If new calculated CRC MSB/LSB = ‘REGCRC_Original’, registers are back to the original 
state. 

1. Do RESET_CRC = 1’b1. 

2. Continue system operation.  

ii. If new calculated CRC MSB/LSB ≠ ‘REGCRC_Original’, a different register must have been 

written. 

1. Restart the link. 

2. Reconfigure the SerDes link.  

*Events that trigger REG_CRC_FLAG may also simultaneously trigger other ERRB flags. Prioritize error handling 

accordingly. 

Reference over Reverse 

Overview  
All GMSL3 parts must receive an external clock for full function (typically through a crystal). Some serializers can 

get a reference clock through reference clock over reverse channel (RoR). In RoR, there is no need to connect a 

crystal next to the serializer because the deserializer is supplying the reference signal on the reverse channel of the 
GMSL link. 

Using RoR instead of the crystal oscillator (XTAL) provides several advantages, including: 

• Reduced system cost 

• Increased reliability 

• Reduced board area 

• Simplified board layout 

Note: RoR is a serializer function. Check the serializer user guide for more information. 



 

   

 

www.analog.com  Analog Devices | 44 

 

CAMERA
SERIALIZER

DESERIALIZER

FORWARD DATA

REVERSE DATA + TIME REFERENCE
(DATA TRANSITIONS USED FOR TIME REFERENCE)

XTAL

 

Figure 20. RoR Block Diagram 

The MAX96793 supports RoR mode and can receive reference signal from a companion deserializer that also 

supports RoR mode.  

Enabling RoR Mode by CFG Pins 

The MAX96793 device selects XTAL or RoR mode by CFG0 setting. Deserializer automatically detects that RoR is 

enabled and sends reference signal to companion serializer, no additional deserializer configuration is required.  

Enabling RoR with Register Writes 

The RoR mode can be enabled by register writes. This is useful for evaluating performance in RoR mode if the board 
is already set up with a crystal. The procedure is as follows and assumes I2C access on the deserializer side only. 

To switch from crystal mode to RoR mode: 

• Bring up the GMSL link in crystal mode per normal use case. 

• Write serializer bit XTAL_PU=0 (bit 0 in register 0x4) to disable the serializer crystal driver. This results in the 

GMSL link losing lock and automatically relocking in RoR mode. It is not necessary to issue a reset link 

command. 

• Reading of serializer bit ROR_CLK_DET (bit 5 in register 0x14AA) now shows a logic 1, indicating RoR mode is 

active. 

To switch from RoR mode back to crystal mode: 

• Write SER bit XTAL_PU=1 to enable the serializer crystal driver. This results in the GMSL link losing lock and 

automatically relocking in crystal mode. It is not necessary to issue a reset link command. 

• Reading of serializer bit ROR_CLK_DET (bit 5 in register 0x14AA) now shows a logic 0, indicating RoR mode is no 

longer active. 

GMSL Link Lock in RoR Mode 
The GMSL link lock time in the RoR mode is same as crystal mode. Refer to the device data sheet for lock time 
specifications. 

Hardware Considerations  
When RoR mode is enabled and a crystal is not used, the X1 and X2 pins on the serializer may be left unconnected. 

It is not necessary to drive the X1 or X2 pins to any specific logic level because they are internally disabled when not 

used. However, for customers who prefer to connect the X1 and X2 pins, they may be tied directly to ground. 



 

   

 

www.analog.com  Analog Devices | 45 

 

For the MAX96793 devices being operated in GMSL3-12Gbps and in RoR mode, Vref pin requires an 18nF or 22nF 

±10% capacitor to ground.  

RoR Jitter Considerations  
While the RoR jitter does affect the serializer transmit signal, the jitter bandwidth is limited and can be tracked by 

the clock recovery circuit in the deserializer. The deserializer clock input source must meet the data sheet 

requirements for reference clock input jitter. 

Spread Spectrum Clocking  
Spread Spectrum Clocking (SSC) is an alternate configuration for the GMSL link that helps with EMI. SSC is 

supported in RoR mode. If it is used, it is enabled only in the deserializer. The serializer clock follows the 

deserializer clock modulation and consequently, the serializer operates with a spread spectrum clock as well. 

Recovery After Loss of GMSL Link Lock 
The PLL used to recover the clock from the reverse channel has a narrow bandwidth of approximately 1MHz. The 

narrow bandwidth makes it robust to glitches on the link. However, if the clock reference is lost, the link 

automatically resets and the RoR synchronization sequence is repeated to regain link lock. The time needed to 
relock is the same as the initial lock time. 

RCLKOUT Setup 

Overview  
Instead of having separate crystal oscillators for the serializer and image sensor, it is recommended to just use one 

crystal or RoR and feed that clock signal from the serializer to the image sensor. RCLKOUT or DPLL_OUT is the 
name of a clock signal that gets sent from the serializer to the image sensor. RCLKOUT is 25MHz and can be divided 

by 2 or 4.  DPLL_OUT is programmable from 1MHz to 75MHz.  

Xtal 

or RoR

Serializer
Image 

Sensor

RCLKOUT/ 
DPLL_OUT

MFP

 

Figure 21. Serializer RCLKOUT/DPLL_OUT Clock Diagram 

Following are the descriptions of the major blocks used for serializer clocking. 

Xtal/OSC: In crystal mode, this block receives the 25MHz clock from a crystal by X1/OSC and X2 pins. The clock is 

then forwarded to the PLL/CMU block.  

RoR CLOCK RX: In RoR mode, this block extracts the clock from the GMSL reverse channel. The clock is then 

forwarded to the PLL/CMU block.  

DIVIDER/DPLL: This block has two methods of generating an output clock signal: Divider mode and DPLL mode. In 
Divider mode, RCLKOUT/DPLL_OUT pin can be programmed to /1, /2 or /4 of the 25MHz input reference. In DPLL 

mode, RCLKOUT/DPLL_OUT pin can be programmed to any frequency from 1MHz to 75MHz. Serializer 

RCLKOUT/DPLL_OUT is disabled by default and can be enabled with a register write.  

 



 

   

 

www.analog.com  Analog Devices | 46 

 

RCLKOUT/DPLL_OUT frequency is always relative to the input reference frequency. If the clock source’s frequency 

stays within the limits, then the RCLKOUT/DPLL_OUT frequency stays within the limits. (Refer to the specific 

device’s data sheet for the limits.) 

For the MAX96793, RCLKOUT/DPLL_OUT is available from MFP4, or MFP2 as an alternate. 

Path from XTAL/RoR to RCLKOUT/DPLL_OUT 
In Figure 22, a partial block diagram of the MAX96793 is shown. There are connections for the crystal oscillator, the 

clock signal output for the image sensor, and the GMSL link (SIOP and SION). 

 

 

Figure 22. Functional Block Diagram of XTAL and RoR 

There are four possible cases of using a crystal or RoR mode to generate the reference clock RCLKOUT/DPLL_OUT.  

Figure 23 shows the path of using a crystal as the clock source and divider to generate the reference clock.  

X1/OSC X2

XTAL

OSC

PLL/CMU
ROR

CLOCK RX

DIVIDER/DPLL

RCLKOUT/

DPLL_OUT

 

 

Figure 23. XTAL/OSC to RCLKOUT 

The following figure shows the path of using a crystal as the clock source and DPLL to generate the reference clock. 



 

   

 

www.analog.com  Analog Devices | 47 

 

X1/OSC X2

XTAL

OSC

PLL/CMU
ROR

CLOCK RX

DIVIDER/DPLL

RCLKOUT/

DPLL_OUT

 

Figure 24. XTAL/OSC to DPLL_OUT 

 

Another setup is RoR mode as the clock source and the divider generating the reference clock. 

 

X1/OSC X2

XTAL

OSC

PLL/CMU
ROR

CLOCK RX

DIVIDER/DPLL

RCLKOUT/

DPLL_OUT

 

Figure 25. RoR to RCLKOUT 

And, finally the setup of using RoR mode as the clock source and DPLL to generate the reference clock. 

 

X1/OSC X2

XTAL

OSC

PLL/CMU
ROR

CLOCK RX

DIVIDER/DPLL

RCLKOUT/

DPLL_OUT

 

Figure 26. RoR to DPLL_OUT 

Setting Serializer into XTAL or RoR Mode  
To choose XTAL or RoR mode, choose the appropriate resistor values connected to the CFG0 pin as shown in Table 

23. All deserializers that support RoR mode automatically detect and generate RoR with no additional deserializer 

configuration required.  

If the deserializer has multiple PHYs connected to different serializers, it is possible to operate the system in a 

mixed configuration with some serializers in RoR mode and some in crystal mode. The RoR enabling procedure is 

the same as in a single PHY case. 
 

Table 23. MAX96793 CFG0 RoR vs. XTAL Settings 

CFG0 Value  RoR or XTAL 

0 RoR 



 

   

 

www.analog.com  Analog Devices | 48 

 

1 RoR 

2 XTAL 

3 XTAL 

4 RoR 

5 RoR 

6 XTAL 

7 XTAL 

The MAX96793 RoR-mode status can be read back from serializer bit ROR_CLK_DET (bit 5 in register0x14AA). Logic 1 
indicates RoR mode is active and logic 0 indicates RoR mode is not active. 

Recovery After Loss of GMSL Link Lock 
When the serializer is in RoR mode and the GMSL link lock is not established for any reason, RCLK/DPLLOUT 

frequency will be approximately 10% lower than the programmed frequency. For example, if RCLK/DPLLOUT is 

programmed to 25MHz, when the link is not locked the output will be 22.5MHz. The reduced frequency results from 

the Voltage Controlled Oscillator (VCO) input being held at a constant voltage allowing the CMU to continue 

oscillating at approximately a 10% reduced frequency. Once the GMSL link is locked in RoR mode, the RCLK 
frequency returns to the programmed 25MHz.  

Upon loss of GMSL link lock, the RCLKOUT/DPLL_OUT frequency initially increases approximately 16% for roughly 
150µs, and then settles to the unlocked 10% reduced frequency of 22.5MHz. This behavior is shown in Figure 27.  

If the RCLKOUT frequency is out of the image sensor’s tolerance range, it may impact the operation of the image 

sensor, and the image sensor may require reinitialization. 

 

Figure 27. 25MHz RCLK to 16% Frequency Overshoot (29MHz) and then to 10% Reduced Frequency (22.5MHz) 



 

   

 

www.analog.com  Analog Devices | 49 

 

SSC with RCLKOUT 
The serializer RCLKOUT output reference is also the frequency modulated in the same manner as the GMSL link. 

 

Figure 28. 25MHz RCLKOUT Signal using RoR Without SSC Feature Enabled 

 

Figure 29. 25MHz RCLKOUT Signal using RoR with SSC Feature Enabled 



 

   

 

www.analog.com  Analog Devices | 50 

 

Turning on RCLKOUT/DPLL_OUT 
Set slew rate to maximum in register 0x56F if using MFP2 and in register 0x570 if using MFP4. In Register 0x03, set 

bit 2 low to use MFP4, or set it high to use MFP2. In register 0x06, set bit 5 high to enable RCLKOUT. 

ADC Voltage Monitoring  
GMSL Serializer features a 10-bit analog-to-digital converter (ADC) with an analog input multiplexer. The 
multiplexer selects a single-ended input channel from external input lines (MFP3/5/6), internal power supply 

monitors, and a temperature monitor. 

High-Level Features  
Following is a list of features of the ADC for the MAX96793. 

• Programmable ADC voltage reference options 

• Internal thermally corrected 1.25V reference (preferred) 

• Internal VDD18 voltage rail 

• External voltage reference via the VREF pin 

• Programmable input multiplexer 

• Three external voltages (MFP3/5/6) 

• Three internal voltages (CAP_VDD, VDDIO, VDD18) 

• Die temperature monitor within 0.5 Kelvin resolution 

• Programmable modes of operation 

• On-demand monitoring of voltages and temperature  

• Continuous round-robin monitoring of voltage and temperature  

• Programmable under and overvoltage/temperature limit thresholds (up to eight channels) 

• Programmable internal and external voltage scaling 

• ADC accuracy BIST and ability to verify GPIO Input MUX functionality 

Typical ADC Flow of Operation  
The general steps of setting up the ADC for operation are listed in the following section. Each portion is expanded 
on in the Details of Operation section. 

• ADC Setup 

• Power up ADC  

• Select voltage reference 

• Set up HI/LO channel limits (if desired) 

• On-Demand ADC read or enable round-robin state machine 

• Shutdown ADC 

Details of Operation  
This section is a descriptive overview. Actual use case examples with direct register writes appear past this section 

in the Examples of ADC Operation section. 

ADC Setup 
Setting up the ADC comprises shutting down the ADC, powering up the ADC, and selecting the voltage reference to 

be used. 

ADC Shutdown 



 

   

 

www.analog.com  Analog Devices | 51 

 

It is recommended to shut down the ADC prior to setup so the ADC is in a known state before programming the 

register map for the desired configuration. The steps in the following table are relevant for the shutdown of the 

round-robin state machine as well as the ADC. 
      

Table 24. MAX96793 ADC Shutdown Flow 

Step Action Register 

Address 

Bitfield Name Bits POR Decode 

1 Disable round robin 

state machine 

0x534 adc_rr_run 0 0b0 0b0 – Hold round-robin state 

machine in idle 

0b1 – Run round-robin state 

machine 

2 Power down the ADC 0x500 adc_pu 1 0b0 0b0: ADC powered off 

0b1: ADC powered on 

3 Power down the input 

buffer 

0x500 buf_pu 2 0b0 0b0: ADC internal buffer off 

0b1: ADC internal buffer on 

4 Power down the 

reference buffer 

0x500 adc_refbuf_pu 3 0b0 0b0: ADC reference buffer off 

0b1: ADC reference buffer on 

5 Power down the ADC 

charge pump 

0x500 adc_chgpump_pu 4 0b0 0b0: ADC charge pump off 

0b1: ADC charge pump on 

6 Disable the clock 0x501 adc_clk_en 3 0b0 0b0: ADC clock disable 

0b1: ADC clock enable 

 

ADC Power Up  
The following table shows the relevant registers necessary to apply power to the ADC and enable operation. Before 
the ADC can be utilized, the power manager for the serializer must have VDD, VDD18 and VDDIO supplies available 

and the link between the serializer and deserializer must be established. 

After the power supplies have been validated, the ADC clock must be enabled, and power-up controls must be 

applied. Note that the ADC’s charge pump requires a 10µs delay from initial power-up before it is in steady state 
and available for use. The interface detects when the ADC circuits are enabled and sets the ADC ready interrupt flag 

(ADC_INTRIE0.adc_ref_ready_ie, ADC_INTR0.adc_ref_ready_if); once the delay has passed, the ADC is ready for use. 
     

Table 25. MAX96793 ADC Power Up Flow 

Step Action Register 
Address 

Bitfield Name Bits POR Decode 

1 Enable Global ADC 

Interrupt 

0x1E ADC_INT_OEN 2 0b0 0b0: Reporting 

disabled 

0b1: Reporting 

enabled 

2 Enable ADC clock 0x501 adc_clock_en 3 0b0 0b0: ADC clock 

disable 

0b1: ADC clock 

enable 



 

   

 

www.analog.com  Analog Devices | 52 

 

3 Select 1.25V or 1.8V internal 

reference 

(not used for external 

reference) 

0x501 adc_refsel 2 0b0 0b0 – Use the 

internal 1.25V as 

reference 

0b1 – Use VDD18 

as reference 

4 Select internal or external 

reference 

0x502 adc_xref 1 0b0 0b0: Internal 

reference for 

ADC 

0b1: External 

reference for 

ADC 

5 If using VDD18/2 internal 

reference, enable voltage 

correction bypass (not used 

for external reference) 

0x509 bypass_volttempt_corr 7 0b0 0b0 :Do not 

bypass 

0b1: Bypass 

6 Enable ADC ready interrupt 0x50C adc_ref_ready_ie 1 0b0 0b0: Reporting 

disabled 

0b1: Reporting 

enabled 

7 Enable ADC done interrupt 0x50C adc_done_ie 0 0b0 0b0: Reporting 

disabled 

0b1: Reporting 

enabled 

8 Enable ADC calibration 

done interrupt 

0x50C adc_calDone_ie 7 0b0 0b0: Reporting 

disabled 

0b1: Reporting 

enabled 

9 Clear ADC interrupts 0x510 

0x511 

0x512 

0x513 

ADC.INTR0 

ADC.INTR1 

ADC.INTR2 

ADC.INTR3 

7:0 

7:07:07:0 

0x000x00 

0x00 

0x00 

ADC Interrupt 

reporting, clear 

on read 

10 Power up the ADC charge 

pump 

0x500 adc_chgpump_pu 4 0b0 0b0: ADC charge 

pump off 

0b1: ADC charge 

pump on 

11 Power up the ADC 0x500 adc_pu 1 0b0 0b0: ADC 

powered off 

0b1: ADC 

powered on 

12 Power up the ADC reference 

buffer (not needed for 

external reference) 

0x500 adc_refbuf_pu 3 0b0 0b0: ADC 

reference buffer 

off 

0b1: ADC 

reference buffer 

on 

13 Power up the ADC internal 

buffer 

0x500 buf_pu 2 0b0 0b0: ADC 

internal buffer 

off 



 

   

 

www.analog.com  Analog Devices | 53 

 

0b1: ADC 

internal buffer 

on 

14 Wait for ready interrupt to 
be asserted 

0x510 adc_ref_ready_if 1 0b0 0b0: Flag 
cleared 
0b1: ADC 
reference 
ready, cleared 
on read 

 

If using internal 1.25V thermally corrected reference (see the following sections) 

 

15 Initialize a temperature 

conversion 

0x1D28 RUN_TMON_CAL 1 0b0 0b0: Do not run 

0b1: Run, 

cleared on write 

16 Wait for ADC done interrupt 

to assert 

0x510 adc_done_if 0 0b0 0b0: Flag cleared 

0b1: ADC 

conversion done 

17 Wait for calibration done 

interrupt to assert 

0x510 adc_calDone_if 7 0b0 0b0: Flag cleared 

0b1: ADC 

accuracy 

calibration done 

 

On-Demand Conversions  
After the ADC is powered up and a voltage reference has been configured, the user can use the ADC in whichever 

configuration is desired. On-demand ADC readings allow the user to dictate what input is read and when to start an 

ADC conversion. To initiate an On-Demand read, the user needs to set up the input MUX, initiate the ADC 
conversion, and then read the output data from the conversion. 

Temperature Readings  
To take a die temperature measurement, the internal 1.25V thermally corrected voltage reference must be used. 
The relevant registers to read the internal die temperature are shown in Table 26. 

Table 26. MAX96793 On-Demand Temperature Reading 

Step Action Register 

Address 

Bitfield Name Bits POR Decode 

1 Initiate temperature 

conversion 

0x1D28 RUN_TMON_CAL 0 0b0 0b0: Do not run 

0b1: Run, cleared on 

write 

2 Wait for ADC done interrupt to 

assert 

0x510 adc_done_if 0 0b0 0b0: Flag cleared 

0b1: ADC conversion 

done 

3 Wait for calibration done 

interrupt to assert 

0x510 adc_calDone_if 7 0b0 0b0: Flag cleared 

0b1: ADC accuracy 

calibration done 

4 Read internal die temperature 

registers 

0x1D3B 

0x1D3C 

T_EST_OUT_B0 

T_EST_OUT_B1 

7:0 

7:6 

0xFF 

0b11 

Bits 7:0 of TMON temp 

Bits 9:8 of TMON temp 



 

   

 

www.analog.com  Analog Devices | 54 

 

5 Read alternate internal die 

temperature registers 

(optional) 

0x1D3C 

0x1D3D 

ALT_T_EST_OUT_B1 

ALT_T_EST_OUT_B0 

1:0 

7:0 

0b11 

0xFF 

Bits 9:8 of alt TMON 

temp 

Bits 7:0 of alt TMON 

temp 

 

Reading the registers 0x1D3B and 0x1D3C provide the 10-bit reading of the die temperature, which is split across 
these two registers. Use the following equation to convert the T_EST_OUT[9:0] value to die temperature: 

𝑇_𝐸𝑆𝑇_𝑂𝑈𝑇[9: 0](𝐷𝑒𝑐𝑖𝑚𝑎𝑙)

2
= 𝐷𝑖𝑒 𝑇𝑒𝑚𝑝 (𝐾) − 273.15 = 𝐷𝑖𝑒 𝑇𝑒𝑚𝑝 (℃) 

In addition to this die temperature reading, the redundant die temperature reading can be found by reading 

registers 0x1D3C and 0x1D3D. Using the following equation provides the die temperature as read by the redundant 

temperature monitor: 

𝐴𝐿𝑇_𝑇_𝐸𝑆𝑇_𝑂𝑈𝑇[9: 0](𝐷𝑒𝑐𝑖𝑚𝑎𝑙)

2
= 𝐷𝑖𝑒 𝑇𝑒𝑚𝑝 (𝐾) − 273.15 = 𝐷𝑖𝑒 𝑇𝑒𝑚𝑝 (℃) 

 

Internal Voltage Reading  
The MAX96793 provides the ability to measure the three internal voltage rails: VDDIO, VDD18 and CAP_VDD with the 

ADC. To take these measurements, the MUX must be set up to read the desired internal voltage prior to initiating 
the ADC conversion. After taking the ADC conversion, it is recommended to disable the input MUX to create a 

“Break before Make” functionality that avoids shorting two inputs momentarily. 

Table 27. MAX96793 On-Demand Internal Voltage Reading 

Step Action Register 
Address 

Bitfield 
Name 

Bits POR Decode 

1 Set input channel to desired 

input channel 

0x501 adc_chsel 7:4 0x0 0x8 – VDDIO/4 

0x9 – VDD18/2 

0xA – CAP_VDD/2 

2 Enable channel multiplexer 0x502 Inmux_en 0 0b0 0b0: Input MUX is open 

0b1: MUX selected by 

adc_chsel field 

3 Clear ADC interrupts 0x510 

0x511 

0x512 

0x513 

ADC.INTR0 

ADC.INTR1 

ADC.INTR2 

ADC.INTR3 

7:0 

7:07:07:0 

0x00 

0x00 

0x00 

0x00 

ADC interrupt reporting, 

clear on read 

4 Start ADC conversion 0x500 cpu_acd_start 0 0b0 0b0: Conversion 

complete 

0b1: Start ADC conversion 

5 Wait for ADC done interrupt 0x510 adc_done_if 0 0b0 0b0: Flag cleared 

0b1: ADC conversion 

done 

6 Read ADC result 0x508 

0x509 

adc_data_l 

adc_data_h 

7:0 

1:0 

0x00 

0b00 

Bits 7:0 of 10b ADC data 

Bits 9:8 of 10b ADC data 

7 Open input multiplexer 0x502 Inmux_en 0 0b0 0b0: Input MUX is open 



 

   

 

www.analog.com  Analog Devices | 55 

 

0b1: MUX selected by 

adc_chsel field 

 

External Voltage Reading  
On the MAX96793 external voltages can be monitored on MFP3, MFP5 and MFP6 using the inputs ACD0, ADC1 and 

ADC2, respectively. The process to take an external voltage reading is like that of an internal voltage, but it is 
important to note that the ADC0/1/2 must also be enabled by writing to 0x53E. In addition to this, ensure that the 

voltage divider is used if attempting to measure a voltage above the reference voltage used. Table 28 shows the 

sequence to monitor the voltage at any of the three MFPs: 

Table 28. MAX96793 On-Demand External Voltage Reading 

Step Action Register 

Address 

Bitfield 

Name 

Bits POR Decode 

1 Set input channel to desired 

input channel 

0x501 adc_chsel 7:4 0x0 0x0 – ADC0 (MFP3) 

0x1 – ADC1 (MFP5) 

0x2 – ADC2 (MFP6) 

2 Enable channel multiplexer 0x502 Inmux_en 0 0b0 0b0: Input MUX is open 

0b1: MUX selected by 

adc_chsel field 

3 Set voltage divider as 

needed 

0x502 adc_div 3:2 0b00 0b00 – Divide by 1 

0b01 – Divide by 2 

0b10 – Divide by 3 

0b11 – Divide by 4 

4 Enable monitoring of MFP 

with ADC 

0x53E adc_pin_en 2:0 0b000 0bXX1 – Enable ADC0 

0bX1X – Enable ADC1 

0b1XX – Enable ADC2 

5 Clear ADC interrupts 0x510 

0x511 

0x512 

0x513 

ADC.INTR0 

ADC.INTR1 

ADC.INTR2 

ADC.INTR3 

7:0 

7:0 

7:0 

7:0 

0x00 

0x00 

0x00 

0x00 

ADC interrupt reporting, 

clear on read 

6 Start ADC conversion 0x500 cpu_acd_start 0 0b0 0b0: Conversion complete 

0b1: Start ADC conversion 

7 Wait for ADC done interrupt 0x510 adc_done_if 0 0b0 0b0: Flag cleared 

0b1: ADC conversion done 

8 Read ADC result 0x508 

0x509 

adc_data_l 

adc_data_h 

7:0 

1:0 

0x00 

0b00 

Bits 7:0 of 10b ADC data 

Bits 9:8 of 10b ADC data 

9 Open input multiplexer 0x502 Inmux_en 0 0b0 0b0: Input MUX is open 

0b1: MUX selected by 

adc_chsel field 

 

Converting from the 10-bit ADC reading to the corresponding voltage uses the same equation as internal voltages. 
Again, it is important to use the correct reference voltage value and divider value. For external voltages, the Divider 

value is what was set in the adc_div bitfield (1, 2, 3 or 4). If using the VDD18 voltage rail as the ADC reference, use 

900mV as the value for Vref. The equation is as follows: 



 

   

 

www.analog.com  Analog Devices | 56 

 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 =  
𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 (𝐷𝑒𝑐𝑖𝑚𝑎𝑙) × 𝑉𝑟𝑒𝑓

1023
× 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 

 

Round-Robin Conversion  
To use the round-robin state machine, first shut down the ADC and then configure it to use the desired voltage 

reference. Next, HI/LO channel thresholds should be configured for the channels that are going to be monitored. 

These thresholds can be set for the three internal voltages, three external voltages, and the die temperature. After 
configuring the HI/LO thresholds for the desired channels, follow these steps to enable the round-robin state 

machine. 

Table 29. MAX96793 Round-Robin Setup Flow 

Step Action Register 

Address 

Bitfield Name Bits POR Decode 

After configuring HI/LO limits for all desired channels (shown in “Channel HI/LO Limits” section) 

1 (Optional) Run ADC Accuracy 

BIST 

0x1D28 RUN_ACCURACY 2 0b0 0b0 – Do not run 

0b1 - Run 

2 Set number of conversion cycles 

between ADC conversion 

0x536 

0x537 

adc_rr_sleep_l 

adc_rr_sleep_h 

7:0 

7:0 

0x00 

0x00 

Bits 7:0 of ADC conversion 

cycles 

Bits 15:8 of ADC 

conversion cycles 

3 Enable round robin state 

machine 

0x534 adc_rr_run 0 0b0 0b0 – Hold round robin 

state machine in idle 

0b1 – Run round robin 

state machine 

 

Once the round-robin state machine is enabled, monitor the 0x510 register for a HI_LIMIT or LO_LIMIT interrupt 
flag. For a HI_LIMIT flag, use register 0x511 to see the specific channel(s) with an over limit detected. For a LO_LIMIT 

flag, use register 0x512 to see the specific channel(s) with an under limit detected. These over/under limits assert 
the ADC interrupt in the 0x50C register, if configured to do so. 

The order in which the round-robin state machine executes its conversions is shown in the following table: 

Table 30. MAX96793 Round-Robin Timing 

Step Action Estimated Time 
(μs) 

Comment 

1 Temperature Monitor 

Update 

860  

2 Channel 0 430  

3 ADC Accuracy 1750 If enabled 

4 Channel 1 through 7 430  

5 Sleep Mode SleepCount * 430 SleepCount from 0 to 65535, programmed in registers 

0x536 and 0x537 

 



 

   

 

www.analog.com  Analog Devices | 57 

 

Channel HI/LO Limits  
To simplify and minimize power consumption during power supply monitoring, the ADC supports programmable 

data limits and interrupt enables for up to eight (8) channels. If the converted level for the programmed channel 

has crossed the enabled threshold, an interrupt is generated. 

The ADC output is compared to a limit (ChxHiLimit) when a selected channel (ChxSel) is sampled. If the detector is 

enabled (ChxHiLimitEn) and the over-limit interrupt is enabled, an interrupt is generated. This same capability is 
provided for the under-range limit detector. 

Setting up the channel HI/LO limits is the first step to programming the ADC for round robin operation. Start by 

determining the desired voltage or temperature limits and using the following equations to determine the 

hexadecimal equivalent for the HI/LO channel limit registers. 

Internal/External Voltage Threshold Formula  
To calculate the thresholds for internal or external voltages, use the following formula to get the HI/LO threshold 
value: 

 
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × 1023

𝑉𝑟𝑒𝑓 × 𝐷𝑖𝑣𝑖𝑑𝑒𝑟
 = 𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 (𝐷𝑒𝑐𝑖𝑚𝑎𝑙) 

 

Internal Die Temperature Threshold Formula  
Calculating the temperature thresholds is device specific and based on six EFUSE registers. The following equations 

are required and require the device’s EFUSE registers to get the correct HI and LO threshold values. 

EFUSE registers to read: 0x1C2D, 0x1C2E, 0x1C26, 0x1C27, 0x1C2A, 0x1C2B. 

Using the previously read EFUSE registers, calculate the values of DADC_THOT, VBG_THOT and THOT: 

𝐷𝐴𝐷𝐶_𝑇𝐻𝑂𝑇 =  0𝑥1𝐶2𝐷[7: 0] + (0𝑥1𝐶2𝐸[6: 0]  × 256)  

𝑉𝐵𝐺_𝑇𝐻𝑂𝑇 =  0𝑥1𝐶26[7: 0] + (0𝑥1𝐶27[6: 0]  × 256) 

𝑇𝐻𝑂𝑇 = 0𝑥1𝐶2𝐴[7: 0]  + (0𝑥1𝐶2𝐵[3: 0]  × 256) 

Next values of ADC_HOT and TRIM_TEMP are calculated as follows: 

𝐴𝐷𝐶_𝐻𝑂𝑇 = 𝑅𝑜𝑢𝑛𝑑 (
224

𝐷𝐴𝐷𝐶_𝑇𝐻𝑂𝑇
×

𝑉𝐵𝐺_𝑇𝐻𝑂𝑇

20,480
) 

𝑇𝑅𝐼𝑀_𝑇𝐸𝑀𝑃 (𝐾𝑒𝑙𝑣𝑖𝑛) =  
𝑇𝐻𝑂𝑇

4
 

Finally, the HI/LO threshold values (in decimal) can be calculated using the previous values and the value of the 

adc_scale[0] bit found in register 0x501: 

𝐴𝐷𝐶 𝑇𝐸𝑀𝑃 𝑅𝐸𝐺 = 𝑅𝑜𝑢𝑛𝑑 (
𝐴𝐷𝐶_𝐻𝑂𝑇

𝑇𝑅𝐼𝑀_𝑇𝐸𝑀𝑃
× 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐿𝑖𝑚𝑖𝑡 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛) /2𝑎𝑑𝑐_𝑠𝑐𝑎𝑙𝑒 

 

Writing 10-Bit HI/LO Thresholds  



 

   

 

www.analog.com  Analog Devices | 58 

 

The 10-bit HI/LO voltage thresholds are stored across multiple registers, so it is necessary to correctly break up 

each threshold when writing to the ADC_LIMIT_0, ADC_LIMIT_1 and ADC_LIMIT_2 registers. The low 8 bits of the LO 

threshold are written to the ADC_LIMIT_0 register. The ADC_LIMIT_1 register comprises the upper 2 bits of the LO 

threshold in the [1:0] bit position and the lower 4 bits of the HI threshold in the [7:4] position. Lastly, the 
ADC_LIMIT_2 register comprises the upper 6 bits of the HI threshold in the [5:0] positions. An example is shown in 

the following lines: 

Calculated LO threshold = 0x260   

Calculated HI threshold = 0x2E6 

ADC_LIMIT_0 register = 0xXX 

ADC_LIMIT_1 register = 0bXXXXXXXX 

ADC_LIMIT_2 register = 0bXXXXXXXX 

 

Table 31. Channel HI/LO Limit Register Setup 

 Step Action Register 
Address 

Bitfield Name Bits POR Decode 

1 Program the 10b 

LO threshold 

ADC_LIMIT<CH>_0 

ADC_LIMIT<CH>_1 

chLoLimit_l<CH> 

chLoLimit_h<CH> 

7:0 

1:0 

0x00 

0b00 

Bits 7:0 of 10b LO 

limit 

Bits 9:8 of 10b LO 

limit 

2 Program the 10b 

HI threshold 

ADC_LIMIT<CH>_1 

ADC_LIMIT<CH>_2 

chHiLimit_l<CH> 

chHiLimit_h<CH> 

7:4 

5:0 

0x0 

0x00 

Bits 3:0 of 10b HI 

limit 

Bits 9:4 of 10b HI 

limit 

3 Program the 

multiplexer 

input channel 

ADC_LIMIT<CH>_3 ch_sel<CH> 3:0 0x00 0x0 – ADC0 (MFP3) 

0x1 – ADC1 (MFP5) 

0x2 – ADC2 (MFP6) 

0x8 – VDDIO/4 

0x9 – VDD18/2 

0xA – CAP_VDD/2 

0xB – Die 

Temperature 

3a Enable 

monitoring of 

ADC0, ADC1 or 

ADC2 (if 

monitoring 

MFP3/5/6) 

0x53E adc_pin_en 2:0 0x00 0bXX1 – Enable 

ADC0 

0bX1X – Enable 

ADC1 

0b1XX – Enable 

ADC2 

4 Program the 

GPIO divider 

setting if needed 

ADC_LIMIT<CH>_3 div_sel<CH> 4:5 0b00 0b00 – Divide by 1 

0b01 – Divide by 2 

0b10 – Divide by 3 

0b11 – Divide by 4 



 

   

 

www.analog.com  Analog Devices | 59 

 

 

Internal Testing  
The MAX96793 has the capability to internally test various portions of the ADC. The checks include an ADC accuracy 

BIST and GPIO input MUX verification. The ADC accuracy is a set of internal tests which comprises manipulating the 
input voltage and divider settings to test the accuracy of the ADC. Each of these functions can be run as an “on-

demand” (upon start-up or as required during operation), or the ADC accuracy BIST can be run as part of the round-

robin functionality. 

The accuracy checks only work when using the ADC’s internal voltage reference. 

ADC Accuracy BIST 
The checks performed during the ADC accuracy BIST are described in the following table. The different modes of 
the ADC’s internal dividers are checked during the accuracy test. 

Table 32. MAX96793 ADC Accuracy Tests 

ADC Input 
Voltage (V) 

adc_scale adc_refscl Low Code 
Limit 

High Code 
Limit 

Comments 

1.0 0 0 838-REFLIM 838+REFLIM This ADC code is stored as 

REFTSTCODE for following tests. 

0.5 0 1 REFTSTCODE 

-REFLIMSCL1 

REFTSTCODE 

-REFLIMSCL1 

 

0.25 1 0 REFTSTCODE/8 

-REFLIMSCL2 

REFTSTCODE/8 

+REFLIMSCL2 

 

0.125 0 0 REFTSTCODE/8 

-REFLIMSCL3 

REFTSTCODE/8 

+REFLIMSCL3 

 

 

• REFLIM is a 5b register that controls the limits for accuracy of the reference comparisons (default: 17). 

• REFLIMISCL1 is a 4b register that controls the limits for the accuracy of the second test (default: 5). 

5 Enable the 

channel HI 

interrupt 

0x50D ch<CH>_hi_limit_ie 7:0 0x00 0b1 – Enable 

Channel X interrupt 

in the [X] bit 

position 

6 Enable the 

channel LO 

interrupt 

0x50E ch<CH>_lo_limit_ie 7:0 0x00 0b1 – Enable 

Channel X interrupt 

in the [X] bit 

position 

7 Enable the 

global HI 

interrupt 

0x50C adc_hi_limit_ie 2 0b0 0b0 – ADC interrupt 

source disabled 

0b1 – HI limit 

monitor asserts 

ADC interrupt 

8 Enable the 

global LO 

interrupt 

0x50C adc_lo_limit_ie 3 0b0 0b0 – ADC interrupt 

source disabled 

0b1 – LO limit 

monitor asserts 

ADC interrupt 



 

   

 

www.analog.com  Analog Devices | 60 

 

• REFLIMISCL2 is a 4b register that controls the limits for the accuracy of the third test (default: 5). 

• REFLIMISCL3 is a 4b register that controls the limits for the accuracy of the fourth test (default: 5). 

The following register reads/writes initiate the ADC accuracy checks as an on-demand operation. 

Table 33. MAX96793 ADC Accuracy BIST Setup 

Step Action Register 

Address 

Bitfield Name Bits POR Decode 

1 Set the desired REFLIM accuracy 

(limit between the two BG 

references) 

0x1D31 REFLIM 7:0 0x0F 0xXX: LSBs of 

accuracy (Default: 17) 

2 Set the reference scale /2 accuracy 

limit 

0x1D32 REFLIMSCL1 7:0 0x0F 0xXX: LSBs of 

accuracy (Default: 5) 

3 Set the ADC scale /2 accuracy limit 0x1D33 REFLIMSCL2 7:0 0x07 0xXX: LSBs of 

accuracy (Default: 5) 

4 Set the ADC input /8 accuracy limit 0x1D34 REFLIMSCL3 7:0 0x07 0xXX: LSBs of 

accuracy (Default: 5) 

5 Enable the ADC calibration done 

interrupt 

0x50C adc_calDone 7 0b0 0b0: Reporting 

disabled 

0b1: Reporting 

enabled 

6 Enable the interrupts for each of the 

REF limits 

0x50F reflim_ie 

reflimscl1_ie 

reflimscl2_ie 

reflimscl3_ie 

6 

5 

4 

3 

0b0 

0b0 

0b0 

0b0 

0b0: Reporting 

disabled 

0b1: Reporting 

enabled 

7 Clear the interrupt status flags by 

reading registers 

0x510 

0x513 

ADC_INTR0 

ADC_INTR3 

7:0 

7:0 

0x00 

0x00 

ADC Interrupt 

reporting, clear on 

read 

8 Execute the ADC accuracy BIST 0x1D28 RUN_ACCURACY 2 0b0 0b0: Do not run 

0b1: Run 

9 Wait for calibration done and ADC 

done 

0x510 adc_done_if 

adc_calDone_if 

0 

7 

0b0 

0b0 

0b0: Flag cleared 

0b1: Flag set 

10 Read status interrupt registers 0x513 reflim_if 

reflimscl1_if 

reflimscl2_if 

reflimscl3_if 

6 

5 

4 

3 

0b0 

0b0 

0b0 

0b0 

0b0: Flag cleared 

0b1: Flag set 

 

ADC GPIO Input Verification Test (Errata) 
GPIO input MUX functionality is not tested using the built-in-self-test of the ADC. This functionality can be manually 

verified via software. Verification is only required for the MFP channels that will be monitored using the ADC. If no 

MFP3/5/6 voltages are being monitored using the ADC, then this test is not necessary. The steps to complete this 

test are shown in the following sections and are also described in the MAX96793 Errata Sheet. 

ADC Power Up 

The ADC should be powered up using the procedure in the following table prior to running the verification test on 

each GPIO input that is used. This ADC setup is common to each of the input tests and only needs to be done once 

at the beginning. 



 

   

 

www.analog.com  Analog Devices | 61 

 

Table 34. MAX96793 ADC GPIO Input Verification Power-Up Flow 

Step Action Register 

Address 

Bitfield Name Bits POR Decode 

1 Reset the device  0x10 RESET_ALL 7 0b0 0b0: No action 

0b1: Activate chip reset 

2 Enable ADC clock 0x501 adc_clock_en 3 0b0 0b0: ADC clock disable 

0b1: ADC clock enable 

3 Enable ADC ready 

interrupt 

0x50C adc_ref_ready_ie 1 0b0 0b0: Reporting disabled 

0b1: Reporting enabled 

4 Enable ADC done interrupt 0x50C adc_done_ie 0 0b0 0b0: Reporting disabled 

0b1: Reporting enabled 

5 Power up the ADC charge 

pump 

0x500 adc_chgpump_pu 4 0b0 0b0: ADC charge pump off 

0b1: ADC charge pump on 

6 Power up the ADC 0x500 adc_pu 1 0b0 0b0: ADC powered off 

0b1: ADC powered on 

7 Power up the ADC 

reference buffer  

0x500 adc_refbuf_pu 3 0b0 0b0: ADC reference buffer 

off 

0b1: ADC reference buffer 

on 

8 Power up the ADC internal 

buffer 

0x500 buf_pu 2 0b0 0b0: ADC internal buffer off 

0b1: ADC internal buffer on 

9 Turn on multiplexer input 

enable 

0x502 Inmux_en[0] 0 0b0 0b0: Input MUX is open 

0b1: MUX selected by 

adc_chsel field 

10 Select ADC0 for input MUX 0x501 adc_chsel 7:4 0x0 0x0 – ADC0 (MFP3) 

11 Initiate temperature 

conversion 

0x1D28 RUN_TMON_CAL 0 0b0 0b0: Do not run 

0b1: Run 

12 Enable the MUX 

verification bit 

0x1D28 MUXVER_EN 4 0b0 0b0: Disable 

0b1: Enable 

 

Input Verification Test  

Once the ADC has been set up, the following test can be run for each GPIO input that is being used. 

Table 35. MAX96793 ADC GPIO Input Verification Test Flow 

Step Action Register 

Address 

Bitfield 

Name 

Bits POR Decode 

1 Enable ADC0/1/2 Input 0x53E adc_pin_en 2:0 0b000 0bXX1: Enable 

ADC0 

0bX1X: Enable 

ADC1 

0b1XX: Enable 

ADC2 

2 Set channel for GPIO being tested to low 

and all other channels to high 

CH0 – ADC0 

CH1 – ADC1 

0x1D37 MUXV_CTRL 7:0 0x00 0bXXXXXXX0: CH0 

driven low 

0bXXXXXXX1: CH0 

driven high 



 

   

 

www.analog.com  Analog Devices | 62 

 

CH2 – ADC2 …….. 

0b0XXXXXXX: CH7 

driven low 

0b1XXXXXXX: CH7 

driven high 

3 Start an ADC conversion 0x500 cpu_adc_start 0 0b0 0b0: Conversion 

complete 

0b1: Start ADC 

conversion 

4 Read the ADC data registers and check 

that result is within 15LSB of 0x000 

0x508 

0x509 

adc_data_l 

adc_data_h 

7:0 

1:0 

0x00 

0b00 

Bits 7:0 of 10b ADC 

data 

Bits 9:8 of 10b ADC 

data 

5 Set channel for GPIO being tested to 

high and all other channels to low 

CH0 – ADC0 

CH1 – ADC1 

CH2 – ADC2 

0x1D37 MUXV_CTRL 7:0 0x00 0bXXXXXXX0: CH0 

driven low 

0bXXXXXXX1: CH0 

driven high 

…….. 

0b0XXXXXXX: CH7 

driven low 

0b1XXXXXXX: CH7 

driven high 

6 Start an ADC conversion 0x500 cpu_adc_start 0 0b0 0b0: Conversion 

complete 

0b1: Start ADC 

conversion 

7 Read the ADC data registers and check 

that result is within 35LSB of 0x3E6 

(0x3C3 – 0x409) 

0x508 

0x509 

adc_data_l 

adc_data_h 

7:0 

1:0 

0x00 

0b00 

Bits 7:0 of 10b ADC 

data 

Bits 9:8 of 10b ADC 

data 

 

Reset for Normal Operation 
After running the GPIO Input Verification test for all the desired GPIO inputs, disable the input MUX test bit to return 

the part to normal operation. 

Table 36. MAX96793 Returning to Normal Operation 

Step Action Register Address Bitfield Name Bits POR Decode 

1 Disable input MUX test 0x1D28 MUXVER_EN 4 0b0 0b0: Disable 

0b1: Enable 

 

Examples of ADC Operation  
ADC Shutdown Example  
Prior to setting up the ADC, it is assumed that the ADC Shutdown sequence is used to ensure that the ADC is in a 
known state. 

Table 37. MAX96793 ADC Shutdown 



 

   

 

www.analog.com  Analog Devices | 63 

 

Step Action Read/Write Register 

Address 

Value Comments 

1 Disable round-robin state machine W 0x534 0x00  

2 Power down ADC, input buffer, reference buffer and 

charge pump 

W 0x500 0x00  

3 Disable ADC clock W 0x501 0x00  

 

ADC Setup Example  
Prior to setting up the ADC, it is assumed that the ADC Shutdown sequence is used to ensure that the ADC is in a 
known state. 

Table 38. MAX96793 ADC Setup 

Step Action Read/Write Register 

Address 

Value Comments 

1 Enable Global ADC Interrupt W 0x1E 0xFF  

2 Enable ADC clock and select 1.25V internal 

reference 

W 0x501 0x08  

3 Enable ADC ready interrupt, done interrupt and 

calibration done interrupt 

W 0x50C 0x83  

4 Clear ADC interrupts R 0x510 

0x511 

0x512 

0x513 

- Read to clear 

5 Select internal or external reference W 0x502 0x00  

6 Power up the ADC, charge pump, internal buffer, 

and reference buffer 

W 0x500 0x1E  

7 Wait for ready interrupt to be asserted R 0x510 - Waiting to read 

0x02 

8 Initialize a temperature conversion W 0x1D28 0x01  

9 Wait for ADC done, and calibration done interrupt 

to assert 

R 0x510 - Waiting to read 

0x81 

 

On-Demand Read Examples 
It is assumed that the ADC has been properly configured using the “ADC Setup” example prior to doing any on-

demand reads. 

Die Temperature 
Note: The 1.25V thermally corrected voltage reference must be used to perform a die temperature reading. 

Table 39. MAX96793 On-Demand Die Temperature Reading 

Step Action Read/Write Register 

Address 

Value Comments 

1 Initiate temperature conversion W 0x1D28 0x01  



 

   

 

www.analog.com  Analog Devices | 64 

 

2 Wait for ADC done, and calibration done interrupt 

to assert 

R 0x510 - Waiting for 

0x81 

3 Read internal die temperature registers R 0x1D3B 

0x1D3C 

-  

4 Read alternate internal die temperature registers 

(optional) 

R 0x1D3C 

0x1D3D 

-  

 

Internal Voltage  

In this example, the VDD18 rail is monitored using the ADC. 

Table 40. MAX96793 On-Demand Internal Voltage Reading 

Step Action Read/Write Register Address Value Comments 

1 Set input channel to VDD18 W 0x501 0x98 Keep adc_clk_en = 1 

2 Enable channel multiplexer W 0x502 0x01  

3 Clear ADC Interrupts R 0x510 

0x511 

0x512 

0x513 

- Read to clear 

4 Start ADC conversion W 0x500 0x1F Keep power up bits enabled 

5 Wait for ADC done interrupt R 0x510 - Waiting for 0x01 

6 Read ADC result R 0x508 

0x509 

-  

7 Open input multiplexer W 0x502 0x00  

 

External Voltage (MFP3) 

In this example, MFP3 is being monitored and 2.0V is the expected voltage. 

Table 41. MAX96793 On-Demand External Voltage Reading 

Step Action Read/Write Register 

Address 

Value Comments 

1 Set input channel to ADC0 W 0x501 0x08 Keep adc_clk_en = 1 

2 Enable channel to multiplexer & set internal 

divider to divide by 2 

W 0x502 0x05  

3 Enable monitoring of MFP with ADC W 0x53E 0x01  

4 Clear ADC Interrupts R 0x510 

0x511 

0x512 

0x513 

- Read to clear 

5 Start ADC conversion W 0x500 0x1F Keep power up bits 

enabled 

6 Wait for ADC done interrupt R 0x510 - Waiting for 0x01 

7 Read ADC result R 0x508 

0x509 

-  

8 Open input multiplexer W 0x502 0x00  

 



 

   

 

www.analog.com  Analog Devices | 65 

 

HI/LO Channel Limit Example  

Voltage Threshold Calculations  
As an example, the thresholds are calculated for a ±10% HI/LO threshold on the 3.3V VDDIO rail. The LO 
threshold is 2.97V, and the HI threshold is 3.63V. 

𝐿𝑂 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × 1023

𝑉𝑟𝑒𝑓 × 𝐷𝑖𝑣𝑖𝑑𝑒𝑟
 =  

2.97𝑉 × 1023

1.25𝑉 × 4
=  608 (𝑑𝑒𝑐𝑖𝑚𝑎𝑙) → 0𝑥260 

𝐻𝐼 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × 1023

𝑉𝑟𝑒𝑓 × 𝐷𝑖𝑣𝑖𝑑𝑒𝑟
 =  

3.63𝑉 × 1023

1.25𝑉 × 4
=  742 (𝑑𝑒𝑐𝑖𝑚𝑎𝑙) → 0𝑥2𝐸6 

It is important to use the correct values for VREF and Divider as they can be different from this example. VREF is 
1.25V if using the thermally corrected internal voltage reference, but this reference can be configured to different 
voltages (internal 1.8V which uses 900mV in this equation, or an external voltage reference). The divider value is 
different depending on which internal voltage is monitored or what GPIO divider setting is used. 

Temperature Threshold Calculations 

An example of calculating HI/LO thresholds for die temperature is shown in this section. In this example, EFUSE 
registers must first be read to calculate device specific values. After reading these values, convert only the bits used 

in the equations to decimal for use in the DADC_THOT, VBG_THOT, and THOT equations. 

Read 0x1C2D = 0x67 

Read 0x1C2E = 0x74 

Read 0x1C26 = 0xEC 

Read 0x1C27 = 0x4D 

Read 0x1C2A = 0x06 

Read 0x1C2E = 0x86 

0x1C2D [7:0] = 0x67 -> 103 

0x1C2E [6:0] = 0x74 -> 116 

0x1C26 [7:0] = 0xEC -> 236 

0x1C27 [6:0] = 0x4D -> 77 

0x1C2A [7:0] = 0x06 -> 6 

0x1C2E [3:0] = 0x06 -> 6 

 

With these EFUSE register values, DADC_THOT, VBG_THOT, and THOT can be calculated: 

𝐷𝐴𝐷𝐶_𝑇𝐻𝑂𝑇 =  0𝑥1𝐶2𝐷[7: 0] + (0𝑥1𝐶2𝐸[6: 0]  × 256) = 103 + (116 × 256) = 29,799  

𝑉𝐵𝐺_𝑇𝐻𝑂𝑇 =  0𝑥1𝐶26[7: 0] + (0𝑥1𝐶27[6: 0]  × 256) = 236 + (77 × 256) =  19,948 

𝑇𝐻𝑂𝑇 = 0𝑥1𝐶2𝐴[7: 0]  + (0𝑥1𝐶2𝐵[3: 0]  × 256) = 6 + (6 × 256) = 1,542 



 

   

 

www.analog.com  Analog Devices | 66 

 

Next, ADC_HOT and TRIM_TEMP are calculated: 

𝐴𝐷𝐶_𝐻𝑂𝑇 = 𝑅𝑜𝑢𝑛𝑑 (
224

𝐷𝐴𝐷𝐶_𝑇𝐻𝑂𝑇
×

𝑉𝐵𝐺_𝑇𝐻𝑂𝑇

20,480
) = 𝑅𝑜𝑢𝑛𝑑 (

224

29,799
× 

19,948

20,480
) = 548 

𝑇𝑅𝐼𝑀𝑇𝐸𝑀𝑃(𝐾𝑒𝑙𝑣𝑖𝑛) =  
𝑇𝐻𝑂𝑇

4
=  

1,542

4
= 385.5 

Now, the hexadecimal HI/LO thresholds can be calculated. In this example, the values calculated are for -37°C and 

102°C: 

𝐴𝐷𝐶 𝑇𝐸𝑀𝑃 𝑅𝐸𝐺 = 𝑅𝑜𝑢𝑛𝑑 (
𝐴𝐷𝐶_𝐻𝑂𝑇

𝑇𝑅𝐼𝑀_𝑇𝐸𝑀𝑃
× 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐿𝑖𝑚𝑖𝑡 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛) /2𝑎𝑑𝑐_𝑠𝑐𝑎𝑙𝑒[0] 

𝐴𝐷𝐶 𝑇𝐸𝑀𝑃 𝐿𝑂𝑊 =

𝑅𝑜𝑢𝑛𝑑 (
548

385.5
× (−37°𝐶 + 273.15))

20
=  336 →  0𝑥150 

𝐴𝐷𝐶 𝑇𝐸𝑀𝑃 𝐻𝐼𝐺𝐻 =

𝑅𝑜𝑢𝑛𝑑 (
548

385.5
× (102°𝐶 + 273.15))

20
=  533 →  0𝑥215 

Note that in this example adc_scale[0] = 0, but this is dependent on what is set in register 0x501. 

These hexadecimal values are what is written to ADC_LIMIT<CH>_0, ADC_LIMIT<CH>_2 and ADC_LIMIT<CH>_2. 

Round-Robin Example  
In the following example, 5 HI/LO channel limits are set for VDDIO, VDD18, CAP_VDD, die temperature, and MFP3. 

The limit channels and thresholds are shown as follows: 

CH0: +/-10% of 3.3V for VDDIO 

CH1: +/-5% of VDD18 

CH2: +/-5% of 1.0V for CAP_VDD 

CH3: -37°C to 100°C for die temperature 

CH4: +/-10% of 2.0V for MFP3 

Note: These channels and thresholds can be changed depending on the specific application. 

Table 42. MAX96793 ADC Round-Robin Example 

Step Action Read/Write Register 

Address 

Value Comments 

1 Program the 10b HI & LO thresholds 

for CH0 (VDDIO) 

W 0x514 

0x515 

0x516 

0x60 

0x62 

0x2E 

LO threshold – 0x260 

HI threshold – 0x2E6 

2 Program the multiplexer input 

channel to VDDIO 

W 0x517 0x08  

3 Program the 10b HI & LO thresholds 

for CH1 (VDD18) 

W 0x518 

0x519 

0xBC 

0x52 

LO threshold – 0x2BC 

HI threshold – 0x305 



 

   

 

www.analog.com  Analog Devices | 67 

 

0x51A 0x30 

4 Program the multiplexer input 

channel to VDD18 

W 0x51B 0x09  

5 Program the 10b HI & LO thresholds 

for CH2 (CAP_VDD) 

W 0x51C 

0x51D 

0x51E 

0x71 

0x21 

0x1C 

LO threshold – 0x171 

HI threshold – 0x1C2 

6 Program the multiplexer channel 2 

to CAP_VDD 

W 0x51F 0x0A  

7 Read EFUSE registers used to 

calculate temperature thresholds 

R 0x1C2D 

0x1C2E 

0x1C26 

0x1C27 

0x1C2A 

0x1C2B 

0x67 

0x74 

0xEC 

0x4D 

0x06 

0x86 

 

8 Program the 10b HI & LO thresholds 

for CH3 (TMON) 

W 0x520 

0x521 

0x522 

0x50 

0x51 

0x21 

LO threshold – 0x150 

HI threshold – 0x215 

9 Program the multiplexer input 

channel to TMON 

W 0x523 0x0B  

10 Program the 10b HI & LO thresholds 

for CH4 (ADC0/MFP3) 

W 0x524 

0x525 

0x526 

0xE1 

0x42 

0x38 

LO threshold – 0x2E1 

HI threshold – 0x384 

11 Enable ADC0 (MFP3) W 0x53E 0x01  

12 Program the multiplexer input 

channel to ADC0 (MFP3) and set 

divider to Divide by 2 

W 0x527 0x10  

13 Enable the channel HI interrupt W 0x50D 0x1F CH0-CH4 enabled 

14 Enable the channel LO interrupt W 0x50E 0x1F CH0-CH4 enabled 

15 Enable the global HI and LO 

interrupts 

W 0x50C 0x8F Keeps adc_done_ie, 

adc_ref_ready_ie and 

adc_calDone enabled 

16 (Optional) Run ADC Accuracy test  W 0x1D28 0x80 0x80 will run ADC accuracy test 

in round robin state machine 

17 Set number of conversion cycles 

between ADC conversion 

W 0x536 

0x537 

0x6B 

0x2D 

5 second sleep time = 0x2D6B 

18 Enable round robin state machine W 0x534 0x01  

 

Internal Testing Examples  

ADC Accuracy BIST          

Table 43. MAX96793 ADC Accuracy BIST Example 

Step Action Read/Write Register 
Address 

Value Comments 

1 Set the desired REFLIM accuracy (limit 

between the two BG references) 

W 0x1D31 0x11 Default 17 LSBs 

2 Set the reference scale /2 accuracy 

limit 

W 0x1D32 0x05 Default 5 LSBs 



 

   

 

www.analog.com  Analog Devices | 68 

 

3 Set the ADC scale /2 accuracy limit W 0x1D33 0x05 Default 5 LSBs 

4 Set the ADC input /8 accuracy limit W 0x1D34 0x05 Default 5 LSBs 

5 Enable the ADC calibration done 

interrupt 

W 0x50C 0x83 Preserves ADC done and 

ADC ref ready interrupt 

6 Enable the interrupts for each of the 

REF limits 

W 0x50F 0x78 Enables all interrupts for 

ADC accuracy tests 

7 Clear the interrupt status flags by 

reading registers 

R 0x510 

0x513 

- Clear on read 

8 Execute the ADC accuracy tests W 0x1D28 0x04  

9 Wait for Calibration done and ADC 

done 

R 0x510 - Waiting for 0x81 

10 Read status interrupt registers R 0x513 - 0x00 for no failures 

 

ADC GPIO Input Verification Test (Errata)  

In this example, the GPIO input verification test is run for MFP3. Full scripts can also be found in the MAX96793 

Errata Sheet. 

Table 44. MAX96793 ADC GPIO Input Verification Test Example 

Step Action Read/Write Register 

Address 

Value Comments 

1 Reset the device W 0x10 0x80 Cleared on write 

2 Enable ADC clock W 0x501 0x08  

3 Enable ADC ready, ADC done interrupts W 0x50C 0x03  

4 Power up the ADC, ADC charge pump, input 

buffer and internal reference 

W 0x500 0x1E  

5 Turn on multiplexer input enable W 0x502 0x01  

6 Select ADC0 for input MUX W 0x501 0x08 Keep ADC clock 

enable on 

7 Initiate temperature conversion W 0x1D28 0x01 Cleared on write 

8 Enable the MUX verification bit W 0x1D28 0x10  

9 Enable ADC0/1/2 Input W 0x53E 0x01  

10 Set channel for GPIO being tested to low and 

all other channels to high 

CH0 – ADC0 

CH1 – ADC1 

CH2 – ADC2 

W 0x1D37 0x0FE  

11 Start an ADC conversion W 0x500 0x1F  

12 Read the ADC data registers and check that 

result is within 15LSB of 0x000 

R 0x508 

0x509 

-  

13 Set channel for GPIO being tested to high and 

all other channels to low 

CH0 – ADC0 

CH1 – ADC1 

CH2 – ADC2 

W 0x1D37 0x01  

14 Start an ADC conversion W 0x500 0x1F  

15 Read the ADC data registers and check that 

result is within 35LSB of 0x3E6 

R 0x508 

0x509 

-  



 

   

 

www.analog.com  Analog Devices | 69 

 

16 Disable input MUX test bit for normal 

operation 

W 0x1D28 0x00  

 

Power on Self-Test (LBIST/MBIST) 

Overview  
POST runs on the chip during the power-up sequence and is turned off afterwards. During POST, a portion of the 

logic is tested using the logic built-in self-test (LBIST) and memories are tested using the memory built-in self-test 

(MBIST). 

The runtime for POST is under 10ms and cannot be bypassed. Following POST, a status register contains a bit 
indicating pass/fail for LBIST and a bit for MBIST pass/fail. Although LBIST/MBIST testing may fail, the chip 

continues the bring-up operation, enabling continued functionality. 

As LBIST and MBIST operate on multiple blocks, LBIST and MBIST pass/fail bits indicate that all LBIST sub-blocks or 
all MBIST memories passed. Therefore, a failure in one of the LBIST sub-blocks or one of the MBIST memories 

indicates that the entire LBIST or MBIST operation failed. 

Operation 
POST cannot be bypassed. There are no configuration bits for this function. During start-up, do not attempt to 
configure the part until 15ms after power is applied. The status of the POST step is checked by reading the 

following table’s register bit fields. 

Note: If LBIST or MBIST fails, do not use the device (shut down the application). 
      

Table 45. MAX96793 POST Status Registers 

Register Bitfield Name Bits Default Value Decode  

0x1D20 POST_DONE 7 0 0b0= POST did not run 

0b1= POST is run 

POST_MBIST_PASSED 6 0 0b0= POST MBIST has failed 

0b1= POST MBIST has passed 

POST_LBIST_PASSED 5 0 0b0= POST LBIST has failed 

0b1= POST LBIST has passed 

 

Bandwidth Efficiency Optimization  

Overview  
Before implementing a new design, it is critical to do bandwidth (BW) calculations to verify that the right devices 

and settings are used. If this is not done, it is possible that data is lost or corrupted. Although the MAX96793 family 
can transmit at 3Gbps, 6Gbps, or 12Gbps depending on part number and configuration, the maximum allowable 

video payload is smaller due to the overhead of the GMSL link. The video payload should not exceed the values 

shown in this table. 
      

Table 46. GMSL3 Maximum Video Payloads 

GMSL3 Mode Maximum Video Payload 



 

   

 

www.analog.com  Analog Devices | 70 

 

3Gbps Mode (NRZ) 2.6Gbps (2600Mbps) 

6Gbps Mode (NRZ) 5.2Gbps (5200Mbps) 

12Gbps Mode (PAM4*) 9.7Gbps (9700Mbps) 

*While operating in 12Gbps PAM4 mode, FEC is required (enabled by default). 

Calculating Bandwidth 
The basic video payload can be calculated using the following equations: 

𝑃𝐶𝐿𝐾 = 𝐻𝑡𝑜𝑡𝑎𝑙 × 𝑉𝑡𝑜𝑡𝑎𝑙 × 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒   𝑂𝑅   𝑃𝐶𝐿𝐾 =  
𝐿𝐴𝑁𝐸_𝐶𝑁𝑇 × 𝐿𝐴𝑁𝐸_𝑅𝐴𝑇𝐸

𝑏𝑝𝑝
 

𝑉𝑖𝑑𝑒𝑜 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑃𝐶𝐿𝐾 × 𝑏𝑝𝑝 

 

Note: (1) Htotal and Vtotal must include the horizontal and vertical blanking. (2) Use a BPP of 9 when calculating 

the BW for 8 BPP datatypes. This is the minimum BPP required for the video pipe. 

If the lane speeds on the MIPI receiver are fast enough to handle the video payload, the part should not overflow. 
After calculating the video payload, overhead is added to calculate the total GMSL bandwidth. 

 

𝑉𝑖𝑑𝑒𝑜 𝐵𝑊 = [(𝑣𝑖𝑑𝑒𝑜 𝑝𝑎𝑦𝑙𝑜𝑎𝑑) + (𝑣𝑖𝑑𝑒𝑜 𝑝𝑎𝑐𝑘𝑒𝑡 ℎ𝑒𝑎𝑑𝑒𝑟) + (𝑣𝑖𝑑𝑒𝑜 𝑝𝑖𝑥𝑒𝑙 𝐶𝑅𝐶)] × (9𝑏10𝑏 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔) ×
(𝑠𝑦𝑛𝑐 𝑤𝑜𝑟𝑑𝑠) × (𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛)∗  

𝑉𝑖𝑑𝑒𝑜 𝐵𝑊 = 𝑃𝐶𝐿𝐾 × [(𝑏𝑝𝑝) + (
1

2
) + (

1

2
)] × (

10

9
) × (

2048

2047
) × (

128

120
)

∗

 

 

The majority of GMSL3 serial link bandwidth comprises video transmission. The total link bandwidth consumed by 

video is derived from the incoming video stream and calculated by multiplying the pixel clock (PCLK) expressed in 
MHz, BPP, and GMSL3 link overhead factors. Note that control channel features (e.g., GPIO, SPI) affect link 

bandwidth consumption and must be considered if enabled. 

∗Only applies when GMSL FEC is enabled. Bandwidth utilization for all control channel and side channel 
communication increases by 6.7% when FEC is enabled. FEC is optional for GMSL2 operation. 

Note: FEC is mandatory when operating in GMSL3 12Gbps mode.   

Optimizing Bandwidth  
Data can be manipulated over the GMSL link to utilize the bandwidth more efficiently. The easiest way to optimize 

the bandwidth consumption is by using tunneling mode. In tunneling mode, all BPPs are forced to 24 regardless of 

datatype and this allows for the PCLK and overall bandwidth to be reduced. Another common way of optimizing 
the bandwidth is by double or tripling the BPP. When transmitting an 8BPP datatype at 16BPP or 24BPP, less 

bandwidth is consumed for the same reason as when using tunneling mode. With regards to bandwidth, zero 

padding has the opposite effect compared to what doubling or tripling has. Zero padding always consumes more 

bandwidth so this method of data manipulation should only be used when necessary. 



 

   

 

www.analog.com  Analog Devices | 71 

 

Bandwidth Optimization Example  
The GMSL GUI has a very useful tool called Bandwidth Calculator that is used for calculating the total GMSL 

bandwidth consumed by the link. The following example compares the tool’s calculations between identical pixel 

mode links with and without utilizing double mode. 

Case 1: Transmitting 4-lanes of RAW8 data at 1100Mbps/lane without doubling the BPP 

• RAW8 datatype, without doubling, gives a total GMSL BW of roughly 5,829Mbps. 

• Note that the pipe BPP is 9 instead of 8. This is the minimum BPP supported on the pipe. 

 

Figure 30. Bandwidth Calculations without Doubling 

Case 2: Transmitting 4-lanes of RAW8 data at 1100Mbps/lane with doubling the BPP to 16 

• RAW8 datatype, with doubling, gives a total GMSL BW of roughly 5,064Mbps. 

• Doubling the BPP saved over 750Mbps worth of BW 

• Note that the pipe BPP is 16, confirming that RAW8 was doubled. 

 



 

   

 

www.analog.com  Analog Devices | 72 

 

 

Figure 31. Bandwidth Calculations with Doubling 

MIPI Packet Counter  

Overview  
The MIPI packet count registers are used to determine whether MIPI data is flowing. This is usually done as a 
debugging step if the video is not being received. 

MIPI Packet Counter Registers  
Each GMSL link has a built-in, 8-bit received packet counter. Within the MIPI PHY/Controller there are packet 

counters implemented that can be used to verify data is being transferred within the serializer and deserializer. 
Sequential reads returning different values indicate that data is being transmitted by the associated MIPI 

controller, PHY, or function. 

The MAX96793 has packet counters for MIPI PHY, Controller, DPHY Clock, and tunneling mode packets. 

Table 47. MAX96793 MIPI Counter Registers 

Register Bits Default Value Description Decode 

0x38D 7:0 0x00 Packet count of MIPI PHY1 Phy1_pkt_cnt registers: 

 

0bXXXx: Toggling bits indicate 

MIPI data is active on the PHY 

0x38E 7:0 0x00 Packet count of CSI-2 

Controller  

csi1_pkt_cnt registers: 

 

0bXXXX: Toggling bits indicate 

MIPI data is active on the 

controller. (Packets Processed) 



 

   

 

www.analog.com  Analog Devices | 73 

 

0x38F 7:0 0x00 Packet Count of Tunnel 

Packet Processed 

tun_pkt_cnt register: 

 

0bXXXx: Toggling bits indicate 

MIPI data is active on the PHY 

0x390 7:0 0x00 MIPI PHY Clock Counter phy_clk_cnt register: 

 

0bXXXx: Toggling bits indicate 

MIPI clock is detected 

 

Packet Counter Example  
The following example demonstrates the use case of the MIPI Packet counters.  

Setup:  MAX96793 and MAX96792A with SV4E Introspect Generator and Analyzer. 

• Connect the SV4E Introspect generator to the MAX96793.  

• Connect Link A of the MAX96792A to the MAX96793. 

• Generate a CSI_RGB888 Pattern on the Introspect Generator. 

• Check PCLKDET on the MAX96793 and video lock on the MAX96792A. 

• Now, check registers 0x38D, 0x38E, 0x390 on the MAX96793 to check if bits are toggling. 

• Now, check registers 0x342, 0x344, and 0x345 on the MAX96792A to check if bits are toggling.  

• If the bits are not toggling, then check the parts configuration. 

Error Flags 

Overview  
The device contains many internal error detection mechanisms to alert the system or user of any issues. Error flags 

are register bits that can be checked to see if an error has occurred. 

The error bar (ERRB) pin is an MFP pin that logically NORs many of the errors. Whether an error is included in the 

ERRB output depends on if its output-enable (OEN) bitfield is set high. Most OENs are high by default. 

ERROR A

ERROR B

ERROR C

ERROR Z

A_
ER

R
_O

EN
B_

ER
R

_O
EN

C
_E

R
R_

O
E

N
Z_

E
RR

_O
E

N

SELECT  IF  

ERR IS 

REPORTED 

TO ERRB

ERRB

(ON MFP8)

 



 

   

 

www.analog.com  Analog Devices | 74 

 

Figure 32. MAX96793 ERRB Reporting Flow 

Device Error Flags 
  

The MAX96793 ERRB pin (active low) is available on MFP3 and needs to be enabled by register writes. In addition, 

register bitfield ERROR (register 0x13 bit 2) goes HIGH when device has an error. Table 48 lists all the error flags in 

the MAX96793. 

Table 48. MAX96793 Error Flags Table 

Error Flag Error Description 

VREG_OV_FLAG CAP_VDD overvoltage indication 

EOM_ERR_FLAG_A Eye Opening is below the configured threshold 

VDD_OV_FLAG VDD overvoltage indication 

VDD18_OV_FLAG VDD18 overvoltage indication 

MAX_RT_FLAG Combined ARQ maximum retransmission limit error flag 

RT_CNT_FL AG Combined ARQ retransmission event flag 

PKT_CNT_F LAG Packet Count Flag 

VDDCMP_INT_FLAG Combined undervoltage comparator output. Asserted when GMP_SATATUS is asserted.  

PORZ_INT_FLAG PORZ interrupt flag. PORZ is Monitoring of undervoltage levels of VDD18 and VDDIO. 

VDDBAD_INT_FLAG Combined VDD bad indicator. Asserted when either with VDDBAD_STATUS or CAP_VDD 

<0.82V. 

EFUSE_CRC_ERR EFUSE CRC error indicator. An issue with the device EFUSE has occurred, the device 

should no longer be used. 

RTTN_CRC_INT Retention memory restore CRC error interrupt 

ADC_INT_FLAG ADC Interrupt 

MIPI_ERR_FLAG MIPI RX Error Flag 

REFGEN_UNLOCKED Reference DPLL generating RCLKOUT is not locked. 

REM_ERR_FLAG Received remote side error status 

LFLT_INT Line-Fault Interrupt Asserted when either one of line-fault monitors indicates a fault status 

IDLE_ERR_FLAG Idle-Word Error Flag 

DEC_ERR_FLAG Errors detected in GMSL packet 

I2C_UART_ MSGCNTR_ 

ERR_INT 

I2C/UART message counter error flag. Asserted when two message counter bytes sent do 

not match expected count value. 

I2C_UART_ CRC_ERR_I 

NT 

I2C/UART CRC error flag. Asserted when CRC byte sent does not match calculated value. 

MEM_ECC_ ERR2_INT Error flag for 2-bit uncorrectable memory ECC errors seen in any memories 

MEM_ECC_ ERR1_INT Error flag for 1-bit uncorrectable memory ECC errors seen in any memories 

REG_CRC_ ERR_FLAG Error occurred on the register CRC calculation. 

SPI_RX_OVRFLW SPI Rx Buffer Overflow Flag 

SPI_TX_OVRFLW SPI Tx buffer overflow flag 

adc_overRange_ie ADC Digital Correction Overrange enabled 

adc_tmon_cal_ood_ie Enable temperature sensor out-of-date interrupt 

adc_lo_limit_ie Enable ADC low limit monitor interrupt 

adc_hi_limit_ie Enable ADC high limit monitor interrupt 

adc_ref_read y_ie Enable ADC ready interrupt 

adc_done_ie Enable ADC conversion completed Interrupt 

adc_calDone_ie Signal that ADC accuracy/temperature sensor calibration is completed 

DRIFT_ERR VID_TX_PCLK drift error detected 



 

   

 

www.analog.com  Analog Devices | 75 

 

FIFO_WARN Transmitted video (VID_TX_FIFO) is more than half full 

OVERFLOW VID_TX FIFO overflow occurred 

tun_fifo_overflow Tunnel FIFO overflow occurred 

CMP_STATUS VDD18, VDDIO, and CAP_VDD supply voltage comparator status bits. Latched when the 

supply voltages are not in range.  

phy*1_lp_err Unrecognized commands or Invalid line sequences are detected. *May be replaced with 

phy1/phy2. 

phy*1_hs_err HS Synch pattern with error detected on data lanes. *May be replaced with phy1/phy2. 

ctrl1_csi_err_ l ECC or CRC errors detected in CSI-2 controller, low byte 

ctrl1_csi_err_ h Packets terminated early or/and Frame count error detected in CSI-2 controller 

 

General-Purpose Input and Output 

Overview  
This section explains the GPIO function of MFP pins. The GPIO blocks communicate and regenerate state changes 
of GPIO pins from one side of the serial link to the other. An input GPIO value on one side of the GMSL link may be 

sent to any of the GPIO outputs on the opposite side of the link. 

Depending on the pin, they can be used as either full or partial GPIO pins or for other functionality (e.g., I2C, LOCK, 

ERRB, etc.). Refer to the data sheets for additional details on GPIO capabilities and default states after power-up. 

The MAX96793 has 11 MFPs. 

Operation  
GPIO pin mapping is coordinated across the serial link through GPIO “pin ID” assignments. Each GPIO input is 

assigned a pin ID that is included in the packet sent across the serial link and corresponds with a GPIO output. By 
default, the GPIO mapping is GPIO0 to GPIO0, GPIO1 to GPIO1, GPIO2 to GPIO2, etc. The GPIO mappings can be 

changed through registers. 

The MAX96793 uses 5-bit pin IDs that can support mapping up to 32 GPIO pins. Note that the usable number of 

GPIOs is limited by the specific GPIO pinout. Each GPIO is controlled by three registers: GPIO_A, GPIO_B, and 
GPIO_C. In the register documentation, the GPIO mapping is sequential (i.e., the first three GPIO registers 

correspond to GPIO0, then next three to GPIO1, etc.). Additional details related to these registers can be found in 
the “GPIO Registers” section of the respective data sheet. 

When programming GPIOs, it is important to program the GPIO Rx before the GPIO Tx to avoid asynchronous initial 

states. For example, if Tx is low but Rx is high, the first transition of Tx from low to high is ignored by Rx as Rx is 
already high. All subsequent transitions are correctly observed. 

DESERIALIZERSERIALIZER

RX_ID = 3

TX_ID = 3

MFP0
(GPIO0)

GMSL LINK

MFP3
(GPIO3)

 

Figure 33. GPIO Forwarding Example with a Transition from MFP3 to MFP0 



 

   

 

www.analog.com  Analog Devices | 76 

 

MFP3

MFP0

t0 t1

GPI-TO-GPO DELAY

 

Figure 34. GPIO Forwarding Timing Diagram 

MFP Capabilities: GPIO, GPI, GPO and ODO 

The MAX96793 have eleven MFPs; five of these MFPs are GPIO, two are GPO (general-purpose output) and four are 

ODO_GPI (open-drain output, general-purpose input) which are reserved for the primary control channel. Table 49 
shows the GPIO capabilities of each MFP. 

Table 49. MAX96793 Multifunction (MFP) Capabilities 

Pin Name Capability 

MFP0 GPIO0 

MFP1 GPO1 

MFP2 GPO2 

MFP3 GPIO3 

MFP4 GPIO4 

MFP5 ODO5_GPI5 

MFP6 ODO6_GPI6 

MFP7 GPIO7 

MFP8 GPIO8 

MFP9 ODO9_GPI9 

MFP10 ODO10_GPI10 

 

GPIO Pull-Up and Pull-Down Resistor Setup  
Each GPIO can be programmed to have either a pull-up, pull-down, or no resistor. The pull-up or pull-down 
resistance can be set to either 40kΩ or 1MΩ. 

The resistor is configured with the PULL_UPDN_SEL[1:0] register:  

• 00: No resistor 

• 01: Pull-up resistor 

• 10: Pull-down resistor 

• 11: Reserved 

The resistance value of the resistor is set using the RES_CFG register: 

• 0: 40 kΩ 

• 1: 1 MΩ 



 

   

 

www.analog.com  Analog Devices | 77 

 

GPIO Output Driver Setup  
The GPIO output driver can be enabled or disabled. When enabled, the output driver can be configured to be either 

open-drain or push-pull. The output driver is enabled by writing GPIO_OUT_DIS = 0 and disabled by writing 

GPIO_OUT_DIS = 1. The output driver is configured for the open-drain mode (i.e., NMOS output driver enabled) by 
writing OUT_TYPE = 0 and for push-pull mode (i.e., both NMOS and PMOS output driver enabled) by writing 

OUT_TYPE = 1. 

Configuring GPIO Forwarding  
GPIO forwarding is the transmission and regeneration of state changes of GPIO pins on the local side of the serial 

link to the corresponding GPIO pins on the remote side. To forward the pin value, the local and remote side GPIOs 

must be properly configured. Each GPIO has configurable registers GPIO_TX_ID and GPIO_RX_ID used for mapping 
GPIO pins across the serial link. Note that this configuration applies to both the serializer-to-deserializer and 

deserializer-to-serializer communications. 

Configuring Input GPIO: 

• Set GPIO_TX_ID with a value from 0 to 31 to assign the GPIO pin ID. 

• Write GPIO_TX_EN = 1 to enable the GPIO transmit block.  

Configuring Output GPIO: 

• Set GPIO_RX_ID with a value from 0 to 31 to assign the GPIO pin ID. This must be the same value used for 

GPIO_TX_ID to map the input and output GPIO pins. 

• Write GPIO_RX_EN = 1 to enable the GPIO receive block for the GPIO pin. 

By default, the GPIO_TX_ID and GPIO_RX_ID are the same value as the GPIO number. For example, the default 
GPIO_TX_ID and GPIO_RX_ID values for GPIO1 is 1. Accordingly, GPIO1 is mapped to GPIO1 on the opposite side of 

the serial link by default. 

GPIO Broadcasting 
The same concept of GPIO forwarding can be configured so that a transition on a single GPIO input is mapped to 

multiple GPIO outputs (broadcasting). To do this, set the GPIO_TX_ID of the input GPIO to the same GPIO_RX_ID of 
multiple output GPIO pins. Figure 35 is an example of this configuration. 

DESERIALIZERSERIALIZER

RX_ID = 0TX_ID = 0
MFP0

(GPIO0)

GMSL LINK

MFP0
(GPIO0)

RX_ID = 0
MFP3

(GPIO3)

 

Figure 35. GPIO Broadcasting 

GPIO Delay Compensation  
In the nondelay-compensated mode (default), the GPI transition is sent as fast as possible across the link, based on 

priority and available link bandwidth. As a result, there is a variable delay between an input transition and the 
subsequent transition on the other side of the GMSL3 link. Delay compensation can be used to ensure that the 

timing delay between input transition and output transition is constant. Table 50 shows the typical values and the 
next table’s registers show how to set delay compensation. 



 

   

 

www.analog.com  Analog Devices | 78 

 

Table 50. GPIO (with/without) Delay Compensation Values  

Direction  Delay Compensation  Delay 

GPIO Forwarding from Serializer to Deserializer 0 1us 

1 3.5us (default) 

GPIO Forwarding from Deserializer to Serializer 0 6us 

1 15us (default) 

 
      

Table 51. MAX96793 GPIO Delay Compensation Delay Registers 

Register Bitfield Name Bits Default Value Decode 

0x30 GPIO_FWD_CDLY 5:0 0b000001 Bit [5:0]: 0bxxxxxx 

Compensation delay multiplier for the forward 

direction.  

 

This must be the same value as GPIO_FWD_CDLY of 

the chip on the other side of the link.  

 

Total delay is the (value + 1) multiplied by 1.7μs. 

Default delay is 3.4μs. 

0x31 
GP  IO_REV_CDLY 

5:0 0b001000 Bit [5:0]: 0bxxxxxx 

Compensation delay multiplier for the reverse 

direction.  

 

This must be the same value as GPIO_REV_CDLY of 

the chip on the other side of the link.  

 

Total delay is the (value + 1) multiplied by 1.7μs. 

Default delay is 3.4μs. 

 

Toggling GPIO Manually with Registers  
GPIO pins can be manually controlled through I2C or UART register writes. Write to the local device to toggle local 

GPIO pins; write to the remote device using the control channel to toggle remote GPIO pins. 

• Set GPIO_OUT_DIS = 0 to enable the output driver and configure OUT_TYPE to the desired output mode (open-

drain or push-pull). 

• Set GPIO_RX_EN = 0 to disable the GPIO receive block for the GPIO pin. This sets the GPIO to receive its value 

from the bitfield GPIO_OUT instead of from the value being transmitted across the GMSL3 link. 

• Set GPIO_OUT to the desired value. 
      

Table 52. MAX96793 GPIO Registers 

Register  Bits Default Value Decode 

0x2BE 7:0 0x83 GPIO0 A:  

Bit 7: RES_CFG 

0=40kΩ 

1=1MΩ 



 

   

 

www.analog.com  Analog Devices | 79 

 

 

Bit 6: RSVD 

 

Bit 5: TX_COMP_EN 

0=Jitter compensation disabled 

1=Jitter compensation enabled  

 

Bit 4: GPIO_OUT 

0=Drive output to LOW (0) 

1=Drive output to HIGH (1) 

 

Bit 3: GPIO_IN,  

0=GPIO input level LOW (0) 

0=GPIO input level HIGH (1) 

 

Bit 2: GPIO_RX_EN 

0=Disable receiving from the link. 

1=Enable receiving from the link 

 

Bit 1: GPIO_TX_EN 

0=Disable transmitting to the link. 

1=Enable transmitting to the link 

 

Bit 0: GPIO_OUT_DIS 

0=Output driver enabled 

1=Output driver disabled 

0x2BF 7:0 0xA0 GPIO0 B:  

Bit [7:6]: Resistor Configuration 

00=None 

01=Pull-up 

10=Pull-down 

 

Bit 5: OUT_TYPE 

0 = Open-drain 

1 = Push-pull 

 

Bit [4:0]: GPIO_TX_ID 

Address=0-31  

0x2C0 7:0 0x40 GPIO0 C:  

Bit 6: GPIO_RECVED 

0=Received GPIO Value 0 

1=Received GPIO Value 1 

 

Bit [4:0]: GPIO_RX_ID 

Address=0 to 31  

0x2C1 to 0x2DE … … Repeat Registers A, B, C for GPIO1 to GPIO10.  

 



 

   

 

www.analog.com  Analog Devices | 80 

 

GPIO Programming Example  
In this example, GPIO0 on a MAX96793 serializer is forwarded across the link to GPIO0 on a GMSL3 deserializer. This 

example can be adjusted to use different GPIO pins or forward a GPIO on the local side to the remote side, 

depending on the desired application. An important note is to set up the GPIO Rx side before setting up the GPIO Tx 
side to prevent asynchronous states. 

DESERIALIZERSERIALIZER

RX_ID = 0TX_ID = 0
MFP0

(GPIO0)

GMSL LINK

MFP0
(GPIO0)

 

Figure 36. GPIO Forwarding Programming Example 

#DES I2C Address=0x98 

#SER I2C Address=0x80 

#Setup SER MFP0 Pin 

#1MΩ Pull-Up, Open Drain 

0x80,0x02BE,0x83 

0x80,0x02BF,0x40 

0x80,0x02C0,0x40 

#Setup DES MFP0 Pin 

#1MΩ Pull-Up, Open Drain 

0x98,0x02B0,0x84 

0x98,0x02B1,0x40 

0x98,0x02B2,0x40 

MFP Slew Rate 
The MAX96793 MFPs have configurable rise and fall times (slew rate). This parameter may be referred to as the I/O 

“speed (control)”, “slew (rate)”, or “edge rate” in register control bit names. Note that the MFP slew rate cannot be 

adjusted independently on a per-pin basis. MFPs are divided into separate speed groups; the slew rate adjustment 

register contains a bitfield for each group that configures the rise and fall time to all pins in the group. Refer to the 

data sheet for the relevant register map and MFP speed grouping details. 

The MFP edge transitions must be fast enough to meet the application’s requirement; however, the high-speed I/O 
of the GMSL link and video protocols (e.g., MIPI) are sensitive to coupling and crosstalk from MFP transitions. Take 

care at a system level to prevent high edge rates and high frequencies on the MFP inputs close to these I/O. In 

general, the MFP pins should be configured to the slowest slew rate that allows proper function to mitigate I/O 

interference. 



 

   

 

www.analog.com  Analog Devices | 81 

 

Note: Coupling refers to both inductive and capacitive coupling. Higher VDDIO supply values increase the MFP edge 

rate and energy. This can introduce additional noise into the high-speed I/O. 

High MFP slew rates, especially combined with high toggle frequencies, near the GMSL or high-speed video pins 

may adversely affect performance of the data path, including CRC errors, 9b10b code or disparity errors, reduction 

of link margin, and/or loss of link lock. 

Configuration 
MFPs are divided into speed groups by digital function. The slew rate adjustment register configures the rise and 

fall times for each MFP in the group simultaneously. The MFP slew rate can be adjusted at any time, and the 

changes are applied immediately.  

The MFP slew rate configuration applies to all pins in the speed group regardless of the enabled function of the pin. 

For example, the speed setting is applied to a GPIO and a dedicated pin function if both are in the same MFP speed 

group. 

Refer to the corresponding device’s data sheet Control- and Side-Channel Typical Rise and Fall Times section for 

VDDIO timing details. The following tables present Slew Rate Registers and the typical rise and fall times for the 
MAX96793. 
      

Table 53. MAX96793 MFP Slew Rate Registers 

Register Bitfield Name Bits Default Value Description 

0x56F PIO00_SLEW 1:0 0x10 MFP0 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

PIO01_SLEW 3:2 0x11 MFP1 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

PIO02_SLEW 5:4 0x11 MFP2 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

0x570 PIO05_SLEW 3:2 0x11 MFP5 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

PIO06_SLEW 5:4 0x11 MFP6 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

0x571 PIO09_SLEW 3:2 0x11 MFP9 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

PIO10_SLEW 5:4 0x11 MFP10 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

PIO11_SLEW 7:6 0x11 MFP11 Slew Rate 

0b00=Fastest Slew Rate 

0b11=Slowest Slew Rate 

 

Table 54. MAX96793 Typical MFP Rise/Fall Times 



 

   

 

www.analog.com  Analog Devices | 82 

 

Register Value   Rise Time   Fall Time  

 VDDIO=1.8V VDDIO=3.3V VDDIO=1.8V VDDIO=3.3V 

0x00 1ns 0.6ns 0.8ns 0.5ns 

0x01 2.1ns 1.1ns 2ns 1.1ns 

0x10 4ns 2.3ns 4.3ns 2.3ns 

0x11 9ns 5ns 10ns 5ns 

I2C N/A N/A 40ns 30ns 

 

VPRBS Generator and Checker  

Overview  
One way to verify the link is functional and check for issues is to run a pseudorandom binary sequence (PRBS) test. 

During this testing, the serializer generates the video PRBS signal and the deserializer checks it. 

In conjunction with the VPRBS generator/checker, the serializer error generator feature can also be used to validate 

errors can be seen on the deserializer. The MIPI input to the serializer must be disabled before running this test. 

Table 55. Serializer Video PRBS Generator and Checker Registers 

Register  Bits Default 

Value 

Description Decode 

0x110 3 0b1 Select BPP source 0b0: Use BPP from register (note 1)  

0b1: Use BPP from MIPI RX 

0x24F 3:1 0b000 Pattern generator clock source for 

video PRBS, checkerboard and 

gradient patterns. 

0b0xx: Use external PCLK 

0b100: Use 25MHz internal CLK 

0b101: Use 75MHz internal CLK 

0b110: Use 150MHz internal CLK 

0b111: Use 375MHz internal CLK 

0x26B 7 0b0 Enable Video PRBS generator 0b0: Video PRBS generator disabled 

0b1: Video PRBS generator enabled 

0x112 7 0b0 PCLKDET 0b0: Video transmit PCLK not detected 

0b1: Video transmit PCLK detected 

Note 1: When VPRBS is enabled, the default BPP = 24 when register 0x111 is used. 

Programming Example  
The following script configures a MAX96793 and a MAX96792A to conduct the standard VPRBS test. In this test, the 
serializer generates a PRBS pattern and the deserializer checks it. For this test, the serializer must have PCLK and 

no video must be running into the serializer. 

#DES I2C Address=0x98 

#SER I2C Address=0x80 

# Connect Serializer GMSL link to Deserializer GMSL link A 

#Disable auto bpp on serializer 

0x80,0x0110,0x60 

#Enable serializer internal PCLK generation, PCLK = 150MHz 



 

   

 

www.analog.com  Analog Devices | 83 

 

0x80,0x024F,0x0D 

#Enable serializer pattern generator 

0x80,0x026B,0x01 

#Delay for 3ms 

#Enable PRBS checker for deserializer 

0x98,0x01FC,0x90 

#Delay for 3ms 

#Enable serializer VPRBS generator 

0x80,0x026B,0x81 

#Verify serializer has PCLKDET = 1 

0x80,0x0112,0x8A 

#Verify deserializer has VIDEO_LOCK = 1 for Pipe Y 

0x98,0x01FC,0x91 

#Verify deserializer does not have PRBS errors VPBRB_ERR = 0x00 

0x98,0x01FB,0x00 

#Optional Step: Enable Serializer errors to verify setup and PRBS error detection 

#Note: Error generation also creates decode and idle errors, so these must be cleared as well.  

#Enable serializer error generator 

0x80,0x0029,0x18 

#Delay for a short time to accumulate errors.  

#Disable serializer error generator 

0x80,0x0029,0x08 

#Verify deserializer has PRBS errors VPBRB_ERR > 0x00, 0xFF is used as the read value in this example, but errors 

may vary. VPRBS Errors should clear after reading this register. 

0x98,0x01FB,0xFF 

Video Pattern Generator  

Overview  
The video pattern generator (VPG) creates either a checkerboard or gradient pattern with programable parameters. 

These patterns can be used to replace the incoming video or in conjunction with the VTG to create an RGB888 video 

pattern when no video is present on the serializer input.  



 

   

 

www.analog.com  Analog Devices | 84 

 

The serializer and deserializer have an internal VPG that accommodates a wide range of resolutions and frame 

rates. The VPG does not require an external PCLK source from the CSI-2 input and uses the external 25MHz crystal 

clock (i.e., REFCLK input) to derive four different pixel clock (PCLK) options. Link lock is not required to use the VPG 

when being outputted on deserializer, link lock is required if using serializer as VPG source.  

The VPG has its own register block settings for timing configurations. See the following tables for register settings 

required. 

There are two clock configuration registers that set the PCLK value for the video pipes. The video pattern PCLK 

frequency can optionally be set to 25MHz/75MHz/150MHz/375MHz. This internal PCLK is not related to the MIPI CSI-
2 port clock rate, which must be set to accommodate the VPG data stream.  

The GMSL SerDes GUI can be used to set up the VPG and to generate VPG register write example codes. 

 

Figure 37. VPG - Gradient Pattern 

 

Figure 38. VPG - Checkerboard Pattern 



 

   

 

www.analog.com  Analog Devices | 85 

 

 

Figure 39. GMSL VTG and VPG Checkerboard Example 

     

Table 56. MAX96793 Video Pattern Registers 

Parameter Register Bitfield Decode and Description 

Select the pattern type VTX29 PATGEN_MODE[1:0] Select the VPG pattern 

00: Pattern generator disabled; use video from 

the serializer input (default) 

01: Generate checkerboard pattern 

10: Generate gradient pattern 

11: Reserved 

In gradient mode: 

Select the gradient 

direction 

VTX29 GRAD_MODE[0] 0: Gradient mode increasing. Each gradient color 

starts from a value of 0x00 and increases to 0xFF. 

1: Gradient mode decreasing. Each gradient color 

starts from a value of 0xFF and decreases to 0x00. 

In gradient mode: 

Select the gradient 

pattern length 

VTX30 GRAD_INC[7:0] Selects the value each pixel increments, program 

to the desired increment amount multiplied by 4. 

The default value of 4 results in each pixel 

incrementing by 1, resulting in a pattern length of 

256 pixels per color. 

In checkerboard mode: 

Set the value of color A 

VTX31 

VTX32 

VTX33 

CHKR_A_L[7:0] 

CHKR_A_M[7:0] 

CHKR_A_H[7:0] 

Sets the red component of color A 

Sets the green component of color A 

Sets the blue component of color A 



 

   

 

www.analog.com  Analog Devices | 86 

 

In checkerboard mode: 

Set the value of color B 

VTX34 

VTX35 

VTX36 

CHKR_B_L[7:0] 

CHKR_B_M[7:0] 

CHKR_B_H[7:0] 

Sets the red component of color B 

Sets the green component of color B 

Sets the blue component of color B 

In checkerboard mode: 

Set the length of color A 

VTX37 CHKR_RPT_A[7:0] Sets the number of pixels of color A. The first line 

outputs color A first. 

In checkerboard mode: 

Set the length of color B 

VTX38 CHKR_RPT_B[7:0] Sets the number of pixels of color B. The first line 

outputs color B after CHKR_RPT_A pixels. Set 

equal to CHKR_RPT_A for a square checkerboard 

pattern. 

In checkerboard mode: 

Set the height of the 

checkerboard 

VTX39 CHKR_ALT[7:0] After CHKR_ALT lines, the pattern switches to 

output color B before color A. Set equal to 

CHKR_RPT_A and CHKR_RPT_B for a square 

checkerboard pattern. 

 

Table 57. MAX96793 VPG PCLK Setting Registers  

Register  Bits Default Value Description 

0x24F 3:1 0x000 0XX=Use external clock* (MFP0 can be used) 

100=25MHz internal clock  

101=75MHz internal clock 

110=150MHz internal clock 

111=375MHz internal clock  

Note: When using MFP0 as external clock source, valid PCLK frequency must be used.  

Programming Example  
# ------------------------ 

# Script that sets up pattern generator in MAX96793 out on Pipe Z 

# Settings: 8MP @8fps, RGB888 

# ------------------------  

#SER I2C Address=0x80 

0x80,0x024E,0x03 

0x80,0x0250,0x00 

0x80,0x0251,0x00 

0x80,0x0252,0x00 

0x80,0x0253,0x00 

0x80,0x0254,0x50 

0x80,0x0255,0x78 

0x80,0x0256,0x8A 

0x80,0x0257,0x4E 



 

   

 

www.analog.com  Analog Devices | 87 

 

0x80,0x0258,0x40 

0x80,0x0259,0x00 

0x80,0x025A,0x00 

0x80,0x025B,0x00 

0x80,0x025C,0x00 

0x80,0x025D,0x2C 

0x80,0x025E,0x0F 

0x80,0x025F,0xEC 

0x80,0x0260,0x08 

0x80,0x0261,0x9D 

0x80,0x0262,0x02 

0x80,0x0263,0x94 

0x80,0x0264,0x98 

0x80,0x0265,0x0F 

0x80,0x0266,0x00 

0x80,0x0267,0x01 

0x80,0x0268,0x18 

0x80,0x0269,0x08 

0x80,0x026A,0x70 

0x80,0x026B,0x01 

0x80,0x026D,0xFF 

0x80,0x026E,0xFF 

0x80,0x026F,0xFF 

0x80,0x0270,0x00 

0x80,0x0271,0x00 

0x80,0x0272,0x00 

0x80,0x0273,0xF0 

0x80,0x0274,0xF0 

0x80,0x0275,0x78 



 

   

 

www.analog.com  Analog Devices | 88 

 

0x80,0x0007,0xF6 

0x80,0x024F,0x0B 

0x80,0x0110,0x62 

0x80,0x0383,0x00 

0x80,0x024E,0xE3 

Video Timing Generator  

Overview  
The Video Timing Generator (VTG) generates or adjusts video sync signals. It may be used to modify the timing 

details of incoming video streams, or it may be used with the Video Pattern Generator (VPG) to generate test 
images. The VTG is implemented within the video pipe of the serializer. The MAX96793 all have the same VTG 

functionality. 

The VTG provides user-configurable options for the video sync signals: Vertical Sync (VS), Horizontal Sync (HS), and 

Data Enable (DE). If enabled, the VTG regenerates the video sync signals in accordance with user defined timing 

parameters. These parameters offer flexibility to customize the sync polarity, pulse width, and timing of the 
regenerated video sync signals.  

Input Video Port

(CSI-2)

Conversion to 

Parallel

Parallel to Serial 

Conversion

SEL_EXT_PCLK

External PCLK GPIO Pin

HS

VS

DE

VTG

VPG

Gradient

Checkerboard

PCLK PCLK

PATGEN_MODE

HS

VS

DE

PCLK

HS

VS

DE

VIDEO[23:0]

GMSL2

 

Figure 40. MAX96793 Video Timing Generator Block Diagram 

VTG Operation  
The core function of the VTG block is to generate VS, HS, and DE signals based on a trigger. The VTG can be 

configured to generate these signals internally or if the VTG is not enabled then the VS/HS/DE signals at the input of 

the VTG drive the output signals. This selection is made individually for each sync signal by the GEN_VS, GEN_HS, 

and GEN_DE register bits.  

The VTG can be triggered by either a VS input transition (i.e., the external trigger) or an internally generated VS 
trigger (i.e., the tracking VS signal). In the case of the external trigger, the VS transition trigger is selected to be 

either the rising edge or the falling edge of the input VS signal with the VS_TRIG bit. Note that the selected edge for 

the input transition is referred to as the active edge. The polarity, start timing (i.e., delay from the trigger), 

periodicity, duty-cycle, and the number of HS and DE pulses per frame are all programmable. 

Note: After the VTG is enabled, the first and/or second frame sync output pulses (VS/HS/DE) may be invalid. 



 

   

 

www.analog.com  Analog Devices | 89 

 

VTG Configuration  
Configuring the VTG consists of two steps: selecting the VTG operation mode and configuring the timing 

parameters for the VS, HS, and DE generation as shown in the following table. 
     

Table 58. MAX96793 VTG Operation Mode 

Parameter Register Bitfield Decode and Description 

VS Generation Enable VTX0 GEN_VS 0: Bypass VTG and use the VS signal from the video input 

1: Generate VS signal from the VTG with specified timing 

HS Generation Enable VTX0 GEN_HS 0: Bypass VTG and use the HS signal from the video input 

1: Generate HS signal from the VTG with specified timing 

DE Generation Enable VTX0 GEN_DE 0: Bypass VTG and use the DE signal from the video input 

1: Generate DE signal from the VTG with specified timing 

VS trigger mode VTX0 VTG_MODE 00: VS tracking mode 

01: VS one-trigger mode 

10: Auto-repeat mode 

11: Free-running mode (default) 

Select PCLK source VTX1 PATGEN_CLK_SRC Pattern generator clock source for video PRBS, 

checkerboard, and gradient patterns.  

decode: 

0XX: Use external clock 

100: Use 25MHz internal clock 

101: Use 75MHz internal clock 

110: Use 150MHz internal clock 

111: Use 375MHz internal clock 

VS trigger polarity VTX0 VS_TRIG 0: Falling edge 

1: Rising edge (default) 

Sync signal polarity VTX0 VS_INV The VTG timing configuration instructions assume positive 

sync polarity (sync pulse active high), so if negative VS 

polarity is desired, use this bit to invert 

0: Do not invert VS signal 

1: Invert VS signal 

Note: This bit is active even when GEN_VS=0 and can be 

used to invert the VS polarity without configuring the VTG 

timing parameters. 

Sync signal polarity VTX0 HS_INV The VTG timing configuration instructions assume positive 

sync polarity (sync pulse active high), so if negative HS 

polarity is desired, use this bit to invert 

0: Do not invert HS signal 

1: Invert HS signal 

Note: This bit is active even when GEN_HS=0 and can be 

used to invert the HS polarity without configuring the VTG 

timing parameters. 



 

   

 

www.analog.com  Analog Devices | 90 

 

Sync signal polarity VTX0 DE_INV The VTG timing configuration instructions assume positive 

sync polarity (sync pulse active high), so if negative DE 

polarity is desired, use this bit to invert 

0: Do not invert DE signal 

1: Invert DE signal 

Note: This bit is active even when GEN_DE=0 and can be 

used to invert the DE polarity without configuring the VTG 

timing parameters 

 

VTG Trigger Modes 
There are four different VTG trigger modes: 

1. VS tracking mode – This mode is used to reduce the glitches and jitters of the input VS signal. In this mode, 

the input VS period (VS_HIGH + VS_LOW) is tracked. After the VS tracking has locked, any VS input edge not 

in the expected PCLK cycle (e.g., glitch) is ignored. VS tracking is locked upon three consecutive periodic 

matches; VS tracking is unlocked following three consecutive periodic mismatches. At power-up or if VS 

tracking is unlocked, the next VS input edge is assumed to be the correct VS edge.  

2. VS one-trigger mode – In this mode, only one frame of VS, HS, and DE output signals is generated per VS 

input trigger. The polarity, timing (delay from the VS input trigger), and period/duty cycle of the generated 

VS, HS, and DE signals are in accordance with the user-programmed parameters. 

3. Auto-repeat mode – This mode uses the VS input trigger to generate VS, HS, and DE signals as with VS one-

trigger mode. However, instead of one frame per VS input trigger, auto-repeat mode generates continuous 

frames of VS, HS, and DE output signals following a VS input trigger. If the next VS input edge occurs earlier 

or later than expected by the VS period (VS_HIGH + VS_LOW), the newly generated frame is considered 

correct. The previous VS/HS/DE signals are cut or extended at the time point of the rising edge of the newly 

generated VS, HS, and DE signals. 

4. Free-running mode (default) – This mode is based on auto-repeat mode. In this mode, the VS input signal 

is not needed to generate continuous frames of VS, HS, and DE output signals. The VTG automatically starts 

generating a continuous stream of frames, consisting of VS, HS, and DE signals in accordance with the user-

programmed parameters. 

VTG Timing Parameters 
The sync pulse timing parameters for the VTG are shown in the following figure and configuring the timing 

parameters for the VS, HS, and DE generation is shown in the following table. 



 

   

 

www.analog.com  Analog Devices | 91 

 

Input VS

VS Out

DE Out

HS Out

VS_DLY VS_LOW

Start of 

Frame N

Start of 

Frame N + 1

V2D

VS_HIGH

DE_LOW

HS_LOW

HS_HIGH

Start of 

Frame N

Start of 

Frame N + 1

HS_CNT

DE_CNT

V2H

DE_HIGH

 

Figure 41. MAX96793  VTG Timing Parameters Diagram 

All parameters are defined in terms of PCLKs. Vertical timing parameters must be converted from lines to pixel 
clocks by multiplying by Htotal.  

Only the parameters associated with the sync pulses that are enabled must be configured. For example, if only VS is 
being generated by the VTG (GEN_VS=1, GEN_HS=0, GEN_DE=0), only VS_DLY, VS_HIGH, and VS_LOW must be 

configured. 

Note: In cases where the VTG is used to regenerate DE in combination with incoming video data, the incoming data 

is not retimed to DE if it is adjusted from the original timing. This will result in lost video data. E.g., If DE is delayed 

four PCLKs, the first four pixels from the incoming data are lost and the last four are converted to zeros (i.e., 
padded). 
     

Table 59. MAX96793 Timing Parameter Configuration Registers 

Parameter Register Bitfield Description 

VS_DLY VTX2  

VTX3 

VTX4 

VS_DLY_2[7:0] 

VS_DLY_1[7:0] 

VS_DLY_0[7:0] 

The delay from the VS trigger to the generated VS signal in terms of 

PCLKs. Note, if using the input video stream, this will delay the 

output sync signals relative to the video data.  

VS_HIGH VTX5  

VTX6 

VTX7 

VS_HIGH_2[7:0] 

VS_HIGH_1[7:0] 

VS_HIGH_0[7:0] 

The high duration of the generated VS output signal in terms of 

PCLKs 

VS_LOW VTX8 

VTX9 

VTX10 

VS_LOW_2[7:0] 

VS_LOW_1[7:0] 

VS_LOW_0[7:0] 

The low duration of the generated VS output signal in terms of 

PCLKs 



 

   

 

www.analog.com  Analog Devices | 92 

 

V2H VTX11 

VTX12 

VTX13 

V2H_2[7:0] 

V2H_1[7:0] 

V2H_0[7:0] 

The delay from the VS trigger to the rising edge of the generated HS 

signal 

HS_HIGH VTX14 

VTX15 

HS_HIGH_1[7:0] 

HS_HIGH_0[7:0] 

The high duration of the generated HS output signal in terms of 

PCLKs 

HS_LOW VTX16 

VTX17 

HS_LOW_1[7:0] 

HS_LOW_0[7:0] 

The low duration of the generated HS output signal in terms of 

PCLKs 

HS_CNT VTX18 

VTX19 

HS_CNT_1[7:0] 

HS_CNT_0[7:0] 

The number of HS output pulses generated per video frame 

V2D VTX20 

VTX21 

VTX22 

V2D_2[7:0] 

V2D_1[7:0] 

V2D_0[7:0] 

The delay from the VS trigger to the rising edge of the generated DE 

signal 

DE_HIGH VTX23 

VTX24 

DE_HIGH_1[7:0] 

DE_HIGH_0[7:0] 

The high duration of the generated DE output signal in terms of 

PCLKs 

DE_LOW VTX25 

VTX26 

DE_LOW_1[7:0] 

DE_LOW_0[7:0] 

The low duration of the generated DE output signal in terms of 

PCLKs 

DE_CNT VTX27 

VTX28 

DE_CNT_1[7:0] 

DE_CNT_0[7:0] 

The number of DE pulses generated per video frame 

 

Use Case Programming Examples  

Overview  
The following use case examples demonstrate how many of the features described throughout this document can 
be used together to program a SerDes system. These examples may need to be manipulated or completely 

changed for more specific use cases. The basic flow of programming and important steps is annotated to give a 

broad picture of the requirements users can expect to get a system working.  

The format of the programming examples throughout this section follow the format allowable by the GMSL GUI for 

.CPP files, so that users may copy them for use immediately. 

Use Case Examples  
The following examples (Description, Block Diagram, and Script) shown are with the MAX96793 serializer and 

MAX96792A deserializer. 

Use Case Example #1  

Example #1 is a common use case that that takes two image sensors data and aggregates them out of one DES MIPI 

output port. In this example the image sensor outputted data on the same virtual channel (VC0), but one image 
data stream VC was renumbered in the DES. Now, the SoC can filter data between the two image sensors. 

-Image Sensor #1 (Input to SER): 

Virtual Channel: VC0 

Data Type(s): RAW12 & EMB8 

-Image Sensor #2 (Input to SER): 

Virtual Channel: VC0 

Data Type(s): RAW16 & EMB8 



 

   

 

www.analog.com  Analog Devices | 93 

 

-DES MIPI Output A (Input to SoC): 

VC0, RAW12 & EMB8 

VC1, RAW16 & EMB8 

MAX96792A Deserializer

SOC

Image 
Sensor

MIPI D-PHY 1x4 Output
2.2Gbps/Lane

MIPI D-PHY 1x4 Input
Raw12+EMB8

RAW12+EMB8  Data on Pipe Y, 
VC = 0

RAW16+EMB8 Data on Pipe Z, 
VC = 1

MIPI D-PHY 1x4 Input
Raw16+EMB8

GMSL Links 

A

B

RAW12+EMB8 Data on Pipe-Z, 
VC = 0

MAX96793 Serializer

RAW16+EMB8 Data on Pipe-Z, 
VC = 0

MAX96793 Serializer
Image 
Sensor

MIPI Port A

 

Figure 42. MAX96793 Use Case Example #1 

// GMSL-A / Serializer: MAX96793 (Pixel Mode) / Mode: 1x4 / Device Address: 0x80 / Multiple-VC Case: Single VC / 
Multiple-VC Pipe Sharing: N/A 

// PipeZ: 

// Input Stream: VC0 RAW12 PortB (D-PHY) 

// Input Stream: VC0 EMB8 PortB (D-PHY) 

// GMSL-B / Serializer: MAX96793 (Pixel Mode) / Mode: 1x4 / Device Address: 0x80 / Multiple-VC Case: Single VC / 
Multiple-VC Pipe Sharing: N/A 

// PipeZ: 

// Input Stream: VC0 RAW16 PortB (D-PHY) 

// Input Stream: VC0 EMB8 PortB (D-PHY) 

// Deserializer: MAX96792A / Mode: 2 (1x4) / Device Address: 0x98 

// PipeY: 

// GMSL-A Input Stream: VC0 RAW12 PortB - Output Stream: VC0 RAW12 PortA (D-PHY) 

// GMSL-A Input Stream: VC0 EMB8 PortB - Output Stream: VC0 EMB8 PortA (D-PHY) 

// PipeZ: 

// GMSL-B Input Stream: VC0 RAW16 PortB - Output Stream: VC1 RAW16 PortA (D-PHY) 

// GMSL-B Input Stream: VC0 EMB8 PortB - Output Stream: VC1 EMB8 PortA (D-PHY) 

0x04,0x98,0x03,0x13,0x00, //  (CSI_OUT_EN): CSI output disabled 



 

   

 

www.analog.com  Analog Devices | 94 

 

// Single Link Initialization Before Serializer Device Address Change 

0x04,0x98,0x00,0x10,0x02, //  (AUTO_LINK): Disabled |  (LINK_CFG): 0x2 

0x04,0x98,0x0F,0x00,0x02, //  (LINK_EN_A): Disabled | (Default)  (LINK_EN_B): Enabled 

0x04,0x98,0x00,0x12,0x24, //  (RESET_ONESHOT LINK B): Activated 

0x00,0x78, 

// GMSL-B Serializer Address Change from 0x80 to 0x82 

0x04,0x80,0x00,0x00,0x82, // DEV : REG0 | DEV_ADDR (DEV_ADDR): 0x41 

// Link Initialization for Deserializer 

0x04,0x98,0x00,0x10,0x23, // (Default)  (AUTO_LINK): Disabled |  (LINK_CFG): 0x3 |  (RESET_ONESHOT LINK A): 

Activated 

0x04,0x98,0x00,0x12,0x24, // (Default)  (RESET_ONESHOT LINK B): Activated 

0x00,0x78, 

// Video Transmit Configuration for Serializer(s) 

0x04,0x80,0x00,0x02,0x03, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Disabled 

0x04,0x82,0x00,0x02,0x03, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Disabled 

//   

// INSTRUCTIONS FOR GMSL-A SERIALIZER MAX96793 

//   

// MIPI DPHY Configuration 

0x04,0x80,0x03,0x30,0x00, // MIPI_RX : MIPI_RX0 | (Default) RSVD (Port Configuration): 1x4 

0x04,0x80,0x03,0x83,0x00, // MIPI_RX_EXT : EXT11 | Tun_Mode (Tunnel Mode): Disabled 

0x04,0x80,0x03,0x31,0x30, // MIPI_RX : MIPI_RX1 | (Default) ctrl1_num_lanes (Port B - Lane Count): 4 

0x04,0x80,0x03,0x32,0xE0, // MIPI_RX : MIPI_RX2 | (Default) phy1_lane_map (Lane Map - PHY1 D0): Lane 2 | (Default) 

phy1_lane_map (Lane Map - PHY1 D1): Lane 3 

0x04,0x80,0x03,0x33,0x04, // MIPI_RX : MIPI_RX3 | (Default) phy2_lane_map (Lane Map - PHY2 D0): Lane 0 | (Default) 

phy2_lane_map (Lane Map - PHY2 D1): Lane 1 

0x04,0x80,0x03,0x34,0x00, // MIPI_RX : MIPI_RX4 | (Default) phy1_pol_map (Polarity - PHY1 Lane 0): Normal | 

(Default) phy1_pol_map (Polarity - PHY1 Lane 1): Normal 

0x04,0x80,0x03,0x35,0x00, // MIPI_RX : MIPI_RX5 | (Default) phy2_pol_map (Polarity - PHY2 Lane 0): Normal | 

(Default) phy2_pol_map (Polarity - PHY2 Lane 1): Normal | (Default) phy2_pol_map (Polarity - PHY2 Clock Lane): 

Normal 

// Controller to Pipe Mapping Configuration 



 

   

 

www.analog.com  Analog Devices | 95 

 

0x04,0x80,0x03,0x08,0x64, // FRONTTOP : FRONTTOP_0 | (Default) RSVD (CLK_SELZ): Port B | (Default) 

START_PORTB (START_PORTB): Enabled 

0x04,0x80,0x03,0x11,0x40, // FRONTTOP : FRONTTOP_9 | (Default) START_PORTBZ (START_PORTBZ): Start Video 

0x04,0x80,0x03,0x18,0x6C, // FRONTTOP : FRONTTOP_16 | mem_dt1_selz (mem_dt1_selz): 0x6C 

0x04,0x80,0x03,0x19,0x52, // FRONTTOP : FRONTTOP_17 | mem_dt2_selz (mem_dt2_selz): 0x52 

0x04,0x80,0x03,0x15,0x80, //  (independent_vs_mode): Enabled 

0x04,0x80,0x03,0x0D,0x01, // FRONTTOP : FRONTTOP_5 | VC_SELZ_L (VC_SELZ_L): 0x1 

// Double Mode Configuration 

0x04,0x80,0x03,0x12,0x04, // FRONTTOP : FRONTTOP_10 | bpp8dblz (bpp8dblz): Send 8-bit pixels as 16-bit 

0x04,0x80,0x03,0x1E,0x2C, // FRONTTOP : FRONTTOP_22 | soft_bppz (soft_bppz): 0xC | soft_bppz_en 
(soft_bppz_en): Software override enabled 

// Pipe Configuration 

0x04,0x80,0x00,0x5B,0x01, // CFGV__VIDEO_Z : TX3 | TX_STR_SEL (TX_STR_SEL Pipe Z): 0x1 

//   

// INSTRUCTIONS FOR GMSL-B SERIALIZER MAX96793 

//   

// MIPI DPHY Configuration 

0x04,0x82,0x03,0x30,0x00, // MIPI_RX : MIPI_RX0 | (Default) RSVD (Port Configuration): 1x4 

0x04,0x82,0x03,0x83,0x00, // MIPI_RX_EXT : EXT11 | Tun_Mode (Tunnel Mode): Disabled 

0x04,0x82,0x03,0x31,0x30, // MIPI_RX : MIPI_RX1 | (Default) ctrl1_num_lanes (Port B - Lane Count): 4 

0x04,0x82,0x03,0x32,0xE0, // MIPI_RX : MIPI_RX2 | (Default) phy1_lane_map (Lane Map - PHY1 D0): Lane 2 | (Default) 
phy1_lane_map (Lane Map - PHY1 D1): Lane 3 

0x04,0x82,0x03,0x33,0x04, // MIPI_RX : MIPI_RX3 | (Default) phy2_lane_map (Lane Map - PHY2 D0): Lane 0 | (Default) 
phy2_lane_map (Lane Map - PHY2 D1): Lane 1 

0x04,0x82,0x03,0x34,0x00, // MIPI_RX : MIPI_RX4 | (Default) phy1_pol_map (Polarity - PHY1 Lane 0): Normal | 

(Default) phy1_pol_map (Polarity - PHY1 Lane 1): Normal 

0x04,0x82,0x03,0x35,0x00, // MIPI_RX : MIPI_RX5 | (Default) phy2_pol_map (Polarity - PHY2 Lane 0): Normal | 

(Default) phy2_pol_map (Polarity - PHY2 Lane 1): Normal | (Default) phy2_pol_map (Polarity - PHY2 Clock Lane): 
Normal 

// Controller to Pipe Mapping Configuration 

0x04,0x82,0x03,0x08,0x64, // FRONTTOP : FRONTTOP_0 | (Default) RSVD (CLK_SELZ): Port B | (Default) 

START_PORTB (START_PORTB): Enabled 



 

   

 

www.analog.com  Analog Devices | 96 

 

0x04,0x82,0x03,0x11,0x40, // FRONTTOP : FRONTTOP_9 | (Default) START_PORTBZ (START_PORTBZ): Start Video 

0x04,0x82,0x03,0x18,0x6E, // FRONTTOP : FRONTTOP_16 | mem_dt1_selz (mem_dt1_selz): 0x6E 

0x04,0x82,0x03,0x19,0x52, // FRONTTOP : FRONTTOP_17 | mem_dt2_selz (mem_dt2_selz): 0x52 

0x04,0x82,0x03,0x15,0x80, //  (independent_vs_mode): Enabled 

0x04,0x82,0x03,0x0D,0x01, // FRONTTOP : FRONTTOP_5 | VC_SELZ_L (VC_SELZ_L): 0x1 

// Double Mode Configuration 

0x04,0x82,0x03,0x12,0x04, // FRONTTOP : FRONTTOP_10 | bpp8dblz (bpp8dblz): Send 8-bit pixels as 16-bit 

0x04,0x82,0x03,0x1E,0x30, // FRONTTOP : FRONTTOP_22 | soft_bppz (soft_bppz): 0x10 | soft_bppz_en 

(soft_bppz_en): Software override enabled 

// Pipe Configuration 

0x04,0x82,0x00,0x5B,0x02, // CFGV__VIDEO_Z : TX3 | (Default) TX_STR_SEL (TX_STR_SEL Pipe Z): 0x2 

// INSTRUCTIONS FOR DESERIALIZER MAX96792A 

// Video Pipes And Routing Configuration 

0x04,0x98,0x01,0x61,0x31, //  (STR_SELY): Link A Stream Id 1 | (Default)  (STR_SELZ): Link B Stream Id 2 

// Pipe to Controller Mapping Configuration 

0x04,0x98,0x04,0x4B,0x0F, //  (MAP_EN_L Pipe Y): 0xF 

0x04,0x98,0x04,0x4C,0x00, // (Default)  (MAP_EN_H Pipe Y): 0x0 

0x04,0x98,0x04,0x4D,0x2C, //  (MAP_SRC_0 Pipe Y DT): 0x2C | (Default)  (MAP_SRC_0 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x4E,0x2C, //  (MAP_DST_0 Pipe Y DT): 0x2C | (Default)  (MAP_DST_0 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x4F,0x00, // (Default)  (MAP_SRC_1 Pipe Y DT): 0x0 | (Default)  (MAP_SRC_1 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x50,0x00, // (Default)  (MAP_DST_1 Pipe Y DT): 0x0 | (Default)  (MAP_DST_1 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x51,0x01, //  (MAP_SRC_2 Pipe Y DT): 0x1 | (Default)  (MAP_SRC_2 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x52,0x01, //  (MAP_DST_2 Pipe Y DT): 0x1 | (Default)  (MAP_DST_2 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x53,0x12, //  (MAP_SRC_3 Pipe Y DT): 0x12 | (Default)  (MAP_SRC_3 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x54,0x12, //  (MAP_DST_3 Pipe Y DT): 0x12 | (Default)  (MAP_DST_3 Pipe Y VC): 0x0 

0x04,0x98,0x04,0x6D,0x55, //  (MAP_DPHY_DST_0 Pipe Y): 0x1 |  (MAP_DPHY_DST_1 Pipe Y): 0x1 |  

(MAP_DPHY_DST_2 Pipe Y): 0x1 |  (MAP_DPHY_DST_3 Pipe Y): 0x1 

0x04,0x98,0x04,0x8B,0x0F, //  (MAP_EN_L Pipe Z): 0xF 

0x04,0x98,0x04,0x8C,0x00, // (Default)  (MAP_EN_H Pipe Z): 0x0 

0x04,0x98,0x04,0x8D,0x2E, //  (MAP_SRC_0 Pipe Z DT): 0x2E | (Default)  (MAP_SRC_0 Pipe Z VC): 0x0 



 

   

 

www.analog.com  Analog Devices | 97 

 

0x04,0x98,0x04,0x8E,0x6E, //  (MAP_DST_0 Pipe Z DT): 0x2E |  (MAP_DST_0 Pipe Z VC): 0x1 

0x04,0x98,0x04,0x8F,0x00, // (Default)  (MAP_SRC_1 Pipe Z DT): 0x0 | (Default)  (MAP_SRC_1 Pipe Z VC): 0x0 

0x04,0x98,0x04,0x90,0x40, // (Default)  (MAP_DST_1 Pipe Z DT): 0x0 |  (MAP_DST_1 Pipe Z VC): 0x1 

0x04,0x98,0x04,0x91,0x01, //  (MAP_SRC_2 Pipe Z DT): 0x1 | (Default)  (MAP_SRC_2 Pipe Z VC): 0x0 

0x04,0x98,0x04,0x92,0x41, //  (MAP_DST_2 Pipe Z DT): 0x1 |  (MAP_DST_2 Pipe Z VC): 0x1 

0x04,0x98,0x04,0x93,0x12, //  (MAP_SRC_3 Pipe Z DT): 0x12 | (Default)  (MAP_SRC_3 Pipe Z VC): 0x0 

0x04,0x98,0x04,0x94,0x52, //  (MAP_DST_3 Pipe Z DT): 0x12 |  (MAP_DST_3 Pipe Z VC): 0x1 

0x04,0x98,0x04,0xAD,0x55, //  (MAP_DPHY_DST_0 Pipe Z): 0x1 |  (MAP_DPHY_DST_1 Pipe Z): 0x1 |  

(MAP_DPHY_DST_2 Pipe Z): 0x1 |  (MAP_DPHY_DST_3 Pipe Z): 0x1 

// Double Mode Configuration 

0x04,0x98,0x04,0x73,0x10, //  (ALT2_MEM_MAP8 CTRL1): Alternate memory map enabled 

// MIPI DPHY Configuration 

0x04,0x98,0x03,0x30,0x04, // (Default)  (Port Configuration): 2 (1x4) 

0x04,0x98,0x04,0x4A,0xD0, // (Default)  (Port A - Lane Count): 4 

0x04,0x98,0x03,0x33,0x4E, // (Default)  (Lane Map - PHY0 D0): Lane 2 | (Default)  (Lane Map - PHY0 D1): Lane 3 | 
(Default)  (Lane Map - PHY1 D0): Lane 0 | (Default)  (Lane Map - PHY1 D1): Lane 1 

0x04,0x98,0x03,0x35,0x00, // (Default)  (Polarity - PHY0 Lane 0): Normal | (Default)  (Polarity - PHY0 Lane 1): Normal | 
(Default)  (Polarity - PHY1 Lane 0): Normal | (Default)  (Polarity - PHY1 Lane 1): Normal | (Default)  (Polarity - PHY1 

Clock Lane): Normal 

0x04,0x98,0x04,0x43,0x81, //  (Controller 1 Auto Initial Deskew): Enabled 

// This is to set predefined (coarse) CSI output frequency 

// CSI Phy 1 is 2200 Mbps/lane. 

0x04,0x98,0x1D,0x00,0xF4, 

0x04,0x98,0x03,0x20,0x36, 

0x04,0x98,0x1D,0x00,0xF5, 

0x04,0x98,0x03,0x32,0x34, //  (phy_Stdby_2): Put PHY2 in standby mode |  (phy_Stdby_3): Put PHY3 in standby 

mode 

0x04,0x98,0x03,0x13,0x02, //  (CSI_OUT_EN): CSI output enabled 

// Video Transmit Configuration for Serializer(s) 

0x04,0x80,0x00,0x02,0x43, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Enabled 

0x04,0x82,0x00,0x02,0x43, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Enabled 



 

   

 

www.analog.com  Analog Devices | 98 

 

Use Case Example #2 

Example #2 is a use case that that takes two image sensors data and sends them independently out of two DES MIPI 

outputs. 

-Image Sensor #1 (Input to SER): 

Virtual Channel: VC0 

Data Type(s): RAW12 & EMB8 

-Image Sensor #2 (Input to SER): 

Virtual Channel: VC0 

Data Type(s): RAW10 & EMB8 

-DES MIPI Output A (Input to SoC): 

VC0, RAW12 & EMB8 

-DES MIPI Output B (Input to SoC): 

VC0, RAW10 & EMB8 

MAX96792A Deserializer

SOC

Image 
Sensor

MIPI D-PHY 1x4 Output
1.5Gbps/Lane

MIPI D-PHY 1x4 Input
Raw12+EMB8

RAW12+EMB8  Data on Pipe Y, 
VC = 0

RAW10+EMB8 Data on Pipe Z, 
VC = 0

MIPI D-PHY 1x4 Input
Raw10+EMB8

GMSL Links 

A

B

RAW12+EMB8 Data on Pipe-Z, 
VC = 0

MAX96793 Serializer

RAW10+EMB8 Data on Pipe-Z, 
VC = 0

MAX96793 Serializer
Image 
Sensor

MIPI Port A

MIPI D-PHY 1x4 Output
1.5Gbps/Lane

MIPI Port B

 

Figure 43. MAX96793 Use Case Example #2 

// GMSL-A / Serializer: MAX96793 (Tunnel Mode) / Mode: 1x4 / Device Address: 0x80 / Multiple-VC Case: Single VC / 

Multiple-VC Pipe Sharing: N/A 

// PipeZ: 

// Input Stream: VC0 RAW12 PortB (D-PHY) 

// Input Stream: VC0 EMB8 PortB (D-PHY) 

// GMSL-B / Serializer: MAX96793 (Tunnel Mode) / Mode: 1x4 / Device Address: 0x80 / Multiple-VC Case: Single VC / 

Multiple-VC Pipe Sharing: N/A 

// PipeZ: 

// Input Stream: VC0 RAW10 PortB (D-PHY) 



 

   

 

www.analog.com  Analog Devices | 99 

 

// Input Stream: VC0 EMB8 PortB (D-PHY) 

// Deserializer: MAX96792A / Mode: 2 (1x4) / Device Address: 0x98 

// PipeY: 

// GMSL-A Input Stream: VC0 RAW12 PortB - Output Stream: VC0 RAW12 PortA (D-PHY) 

// GMSL-A Input Stream: VC0 EMB8 PortB - Output Stream: VC0 EMB8 PortA (D-PHY) 

// PipeZ: 

// GMSL-B Input Stream: VC0 RAW10 PortB - Output Stream: VC0 RAW10 PortB (D-PHY) 

// GMSL-B Input Stream: VC0 EMB8 PortB - Output Stream: VC0 EMB8 PortB (D-PHY) 

0x04,0x98,0x03,0x13,0x00, //  (CSI_OUT_EN): CSI output disabled 

// Single Link Initialization Before Serializer Device Address Change 

0x04,0x98,0x00,0x10,0x02, //  (AUTO_LINK): Disabled |  (LINK_CFG): 0x2 

0x04,0x98,0x0F,0x00,0x02, //  (LINK_EN_A): Disabled | (Default)  (LINK_EN_B): Enabled 

0x04,0x98,0x00,0x12,0x24, //  (RESET_ONESHOT LINK B): Activated 

0x00,0x78, 

// GMSL-B Serializer Address Change from 0x80 to 0x82 

0x04,0x80,0x00,0x00,0x82, // DEV : REG0 | DEV_ADDR (DEV_ADDR): 0x41 

// Link Initialization for Deserializer 

0x04,0x98,0x00,0x10,0x23, // (Default)  (AUTO_LINK): Disabled |  (LINK_CFG): 0x3 |  (RESET_ONESHOT LINK A): 

Activated 

0x04,0x98,0x00,0x12,0x24, // (Default)  (RESET_ONESHOT LINK B): Activated 

0x00,0x78, 

// Video Transmit Configuration for Serializer(s) 

0x04,0x80,0x00,0x02,0x03, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Disabled 

0x04,0x82,0x00,0x02,0x03, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Disabled 

//   

// INSTRUCTIONS FOR GMSL-A SERIALIZER MAX96793 

//   

// MIPI DPHY Configuration 

0x04,0x80,0x03,0x30,0x00, // MIPI_RX : MIPI_RX0 | (Default) RSVD (Port Configuration): 1x4 

0x04,0x80,0x03,0x83,0x80, // MIPI_RX_EXT : EXT11 | (Default) Tun_Mode (Tunnel Mode): Enabled 



 

   

 

www.analog.com  Analog Devices | 100 

 

0x04,0x80,0x03,0x31,0x30, // MIPI_RX : MIPI_RX1 | (Default) ctrl1_num_lanes (Port B - Lane Count): 4 

0x04,0x80,0x03,0x32,0xE0, // MIPI_RX : MIPI_RX2 | (Default) phy1_lane_map (Lane Map - PHY1 D0): Lane 2 | (Default) 

phy1_lane_map (Lane Map - PHY1 D1): Lane 3 

0x04,0x80,0x03,0x33,0x04, // MIPI_RX : MIPI_RX3 | (Default) phy2_lane_map (Lane Map - PHY2 D0): Lane 0 | (Default) 

phy2_lane_map (Lane Map - PHY2 D1): Lane 1 

0x04,0x80,0x03,0x34,0x00, // MIPI_RX : MIPI_RX4 | (Default) phy1_pol_map (Polarity - PHY1 Lane 0): Normal | 

(Default) phy1_pol_map (Polarity - PHY1 Lane 1): Normal 

0x04,0x80,0x03,0x35,0x00, // MIPI_RX : MIPI_RX5 | (Default) phy2_pol_map (Polarity - PHY2 Lane 0): Normal | 

(Default) phy2_pol_map (Polarity - PHY2 Lane 1): Normal | (Default) phy2_pol_map (Polarity - PHY2 Clock Lane): 

Normal 

// Controller to Pipe Mapping Configuration 

0x04,0x80,0x03,0x08,0x64, // FRONTTOP : FRONTTOP_0 | (Default) RSVD (CLK_SELZ): Port B | (Default) 

START_PORTB (START_PORTB): Enabled 

0x04,0x80,0x03,0x11,0x40, // FRONTTOP : FRONTTOP_9 | (Default) START_PORTBZ (START_PORTBZ): Start Video 

0x04,0x80,0x03,0x15,0x00, // (Default)  (independent_vs_mode): Disabled 

// Pipe Configuration 

0x04,0x80,0x00,0x5B,0x00, // CFGV__VIDEO_Z : TX3 | TX_STR_SEL (TX_STR_SEL Pipe Z): 0x0 

//   

// INSTRUCTIONS FOR GMSL-B SERIALIZER MAX96793 

//   

// MIPI DPHY Configuration 

0x04,0x82,0x03,0x30,0x00, // MIPI_RX : MIPI_RX0 | (Default) RSVD (Port Configuration): 1x4 

0x04,0x82,0x03,0x83,0x80, // MIPI_RX_EXT : EXT11 | (Default) Tun_Mode (Tunnel Mode): Enabled 

0x04,0x82,0x03,0x31,0x30, // MIPI_RX : MIPI_RX1 | (Default) ctrl1_num_lanes (Port B - Lane Count): 4 

0x04,0x82,0x03,0x32,0xE0, // MIPI_RX : MIPI_RX2 | (Default) phy1_lane_map (Lane Map - PHY1 D0): Lane 2 | (Default) 
phy1_lane_map (Lane Map - PHY1 D1): Lane 3 

0x04,0x82,0x03,0x33,0x04, // MIPI_RX : MIPI_RX3 | (Default) phy2_lane_map (Lane Map - PHY2 D0): Lane 0 | (Default) 

phy2_lane_map (Lane Map - PHY2 D1): Lane 1 

0x04,0x82,0x03,0x34,0x00, // MIPI_RX : MIPI_RX4 | (Default) phy1_pol_map (Polarity - PHY1 Lane 0): Normal | 

(Default) phy1_pol_map (Polarity - PHY1 Lane 1): Normal 

0x04,0x82,0x03,0x35,0x00, // MIPI_RX : MIPI_RX5 | (Default) phy2_pol_map (Polarity - PHY2 Lane 0): Normal | 

(Default) phy2_pol_map (Polarity - PHY2 Lane 1): Normal | (Default) phy2_pol_map (Polarity - PHY2 Clock Lane): 

Normal 

// Controller to Pipe Mapping Configuration 



 

   

 

www.analog.com  Analog Devices | 101 

 

0x04,0x82,0x03,0x08,0x64, // FRONTTOP : FRONTTOP_0 | (Default) RSVD (CLK_SELZ): Port B | (Default) 

START_PORTB (START_PORTB): Enabled 

0x04,0x82,0x03,0x11,0x40, // FRONTTOP : FRONTTOP_9 | (Default) START_PORTBZ (START_PORTBZ): Start Video 

0x04,0x82,0x03,0x15,0x00, // (Default)  (independent_vs_mode): Disabled 

// Pipe Configuration 

0x04,0x82,0x00,0x5B,0x03, // CFGV__VIDEO_Z : TX3 | TX_STR_SEL (TX_STR_SEL Pipe Z): 0x3 

// INSTRUCTIONS FOR DESERIALIZER MAX96792A 

// Video Pipes And Routing Configuration 

0x04,0x98,0x01,0x61,0x38, //  (STR_SELY): Link A Stream Id 0 |  (STR_SELZ): Link B Stream Id 3 

// Double Mode Configuration 

// MIPI DPHY Configuration 

0x04,0x98,0x03,0x30,0x04, // (Default)  (Port Configuration): 2 (1x4) 

0x04,0x98,0x04,0x74,0x09, //  (Port A Tunnel Mode): Enabled 

0x04,0x98,0x04,0x4A,0xD0, // (Default)  (Port A - Lane Count): 4 

0x04,0x98,0x03,0x33,0x4E, // (Default)  (Lane Map - PHY0 D0): Lane 2 | (Default)  (Lane Map - PHY0 D1): Lane 3 | 
(Default)  (Lane Map - PHY1 D0): Lane 0 | (Default)  (Lane Map - PHY1 D1): Lane 1 

0x04,0x98,0x03,0x35,0x00, // (Default)  (Polarity - PHY0 Lane 0): Normal | (Default)  (Polarity - PHY0 Lane 1): Normal | 
(Default)  (Polarity - PHY1 Lane 0): Normal | (Default)  (Polarity - PHY1 Lane 1): Normal | (Default)  (Polarity - PHY1 

Clock Lane): Normal 

// This is to set predefined (coarse) CSI output frequency 

// CSI Phy 1 is 1500 Mbps/lane. 

0x04,0x98,0x1D,0x00,0xF4, 

0x04,0x98,0x03,0x20,0x2F, // (Default)  

0x04,0x98,0x1D,0x00,0xF5, 

0x04,0x98,0x04,0xB4,0x0F, //  (Port B Tunnel Mode): Enabled 

0x04,0x98,0x04,0x8A,0xD0, // (Default)  (Port B - Lane Count): 4 

0x04,0x98,0x03,0x34,0xE4, // (Default)  (Lane Map - PHY2 D0): Lane 0 | (Default)  (Lane Map - PHY2 D1): Lane 1 | 

(Default)  (Lane Map - PHY3 D0): Lane 2 | (Default)  (Lane Map - PHY3 D1): Lane 3 

0x04,0x98,0x03,0x36,0x00, // (Default)  (Polarity - PHY2 Lane 0): Normal | (Default)  (Polarity - PHY2 Lane 1): Normal | 

(Default)  (Polarity - PHY3 Lane 0): Normal | (Default)  (Polarity - PHY3 Lane 1): Normal | (Default)  (Polarity - PHY2 
Clock Lane): Normal 

// This is to set predefined (coarse) CSI output frequency 



 

   

 

www.analog.com  Analog Devices | 102 

 

// CSI Phy 2 is 1500 Mbps/lane. 

0x04,0x98,0x1E,0x00,0xF4, 

0x04,0x98,0x03,0x23,0x2F, // (Default)  

0x04,0x98,0x1E,0x00,0xF5, 

// Tunnel Mode Configuration 

0x04,0x98,0x03,0x13,0x02, //  (CSI_OUT_EN): CSI output enabled 

// Video Transmit Configuration for Serializer(s) 

0x04,0x80,0x00,0x02,0x43, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Enabled 

0x04,0x82,0x00,0x02,0x43, // DEV : REG2 | VID_TX_EN_Z (VID_TX_EN_Z): Enabled 

Revision History  
  

REVISION NUMBER REVISION DATE DESCRIPTION 

0 5/24 Initial release 

   

   

   

   



 

   

 

www.analog.com 

# 

# 

 Analog Devices | 103 

 

 


	Device Overview
	Application Use Case
	Architecture
	Startup and Programming Sequence
	Video Configuration
	Overview
	Pixel and Tunneling Mode
	Link Initialization
	Multilink Operation
	Link Lock Check
	Video Pipe Selection
	Video Pipe Selection Registers
	Video Pipe to MIPI Controller Mapping (VC/DT Mapping and Filtering)
	Video Pipe to Controller Routing Example

	Video Lock Check

	DT/VC Software Override
	Input DT BPP Manipulation (Pixel Mode Only)
	Double Mode
	Zero Padding
	Double Mode and Zero Padding Example

	Software Override
	Software Override Programming Examples

	Extended Virtual Channels
	Pixel Mode
	Pixel Mode Programming Example
	Tunneling Mode
	Tunneling Mode Programming Example


	MIPI Controller and PHY Settings
	MIPI PHY Settings
	MIPI Data Lane and Polarity Swap
	Lane Swap Programming Example

	MIPI D-PHY Deskew Settings
	Deskew Register Example



	I2C Control Channels
	Overview
	Port Access and Routing
	CRC for I2C and Message Counter Transactions
	CRC for I2C Transactions
	Message Counter for I2C Transactions
	Enabling CRC for I2C and Message Counter

	I2C Registers
	Enabling I2C Pass-Though Channels
	Control Channel Programming Example
	I2C Broadcasting
	Overview
	I2C Broadcasting Technique
	I2C Broadcasting GMSL3 Use Case Example
	I2C Broadcasting Programming Example


	UART Control Channel
	Overview
	Base Mode
	Bypass Mode
	Port Access and Routing
	CRC for UART and Message Counter Transactions
	CRC for UART Transactions
	Message Counter for UART Transactions
	Enabling CRC for UART and Message Counter

	UART Registers

	Serial Peripheral Interface
	Overview
	MFP/CFG Pin Setup for SPI
	SPI Setup Registers
	SPI Initialization
	SPI Example with Register Writes
	SPI Example using GMSL GUI and Evaluation Boards
	SPI With and Without Video Running
	Data Integrity and Avoiding Buffer Overflow


	Frame Synchronization
	Overview
	Configuration
	Programming Example
	External FSYNC


	Power Manager and Sleep Mode
	Overview
	Device Power Operation
	Power Supplies
	Power Manager States
	Reset (Power Down/Sleep)
	BOOT
	RUN
	SAVED
	Sleep Mode
	Sleep and Wake-Up Sequences
	Sleep Mode Limitations
	Not All Registers are Saved in Retention Memory


	Register CRC
	Overview
	Usage Models
	Basic CRC
	Rolling CRC
	Skipping Registers from CRC Calculation

	System Implementation

	Reference over Reverse
	Overview
	Enabling RoR Mode by CFG Pins
	Enabling RoR with Register Writes
	GMSL Link Lock in RoR Mode
	Hardware Considerations
	RoR Jitter Considerations
	Spread Spectrum Clocking
	Recovery After Loss of GMSL Link Lock

	RCLKOUT Setup
	Overview
	Path from XTAL/RoR to RCLKOUT/DPLL_OUT
	Setting Serializer into XTAL or RoR Mode
	Recovery After Loss of GMSL Link Lock
	SSC with RCLKOUT
	Turning on RCLKOUT/DPLL_OUT

	ADC Voltage Monitoring
	High-Level Features
	Typical ADC Flow of Operation
	Details of Operation
	ADC Setup
	ADC Shutdown
	ADC Power Up

	On-Demand Conversions
	Temperature Readings
	Internal Voltage Reading
	External Voltage Reading

	Round-Robin Conversion
	Channel HI/LO Limits
	Internal/External Voltage Threshold Formula
	Internal Die Temperature Threshold Formula
	Writing 10-Bit HI/LO Thresholds

	Internal Testing
	ADC Accuracy BIST
	ADC GPIO Input Verification Test (Errata)
	ADC Power Up
	Input Verification Test
	Reset for Normal Operation


	Examples of ADC Operation
	ADC Shutdown Example
	ADC Setup Example
	On-Demand Read Examples
	Die Temperature
	Internal Voltage
	External Voltage (MFP3)

	HI/LO Channel Limit Example
	Voltage Threshold Calculations
	Temperature Threshold Calculations

	Round-Robin Example
	Internal Testing Examples
	ADC Accuracy BIST
	ADC GPIO Input Verification Test (Errata)



	Power on Self-Test (LBIST/MBIST)
	Overview
	Operation

	Bandwidth Efficiency Optimization
	Overview
	Calculating Bandwidth
	Optimizing Bandwidth
	Bandwidth Optimization Example

	MIPI Packet Counter
	Overview
	MIPI Packet Counter Registers
	Packet Counter Example

	Error Flags
	Overview
	Device Error Flags

	General-Purpose Input and Output
	Overview
	Operation
	MFP Capabilities: GPIO, GPI, GPO and ODO
	GPIO Pull-Up and Pull-Down Resistor Setup
	GPIO Output Driver Setup
	Configuring GPIO Forwarding
	GPIO Broadcasting
	GPIO Delay Compensation
	Toggling GPIO Manually with Registers
	GPIO Programming Example
	MFP Slew Rate
	Configuration


	VPRBS Generator and Checker
	Overview
	Programming Example

	Video Pattern Generator
	Overview
	Programming Example
	Video Timing Generator
	Overview
	VTG Operation
	VTG Configuration

	VTG Trigger Modes
	VTG Timing Parameters

	Use Case Programming Examples
	Overview
	Use Case Examples
	Use Case Example #1
	Use Case Example #2



	Revision History

