

MAX32675C User Guide

UG2346; Rev 0; 1/2026

Abstract: The MAX32675C user guide provides application developers information on how to use the memory and peripherals of the MAX32675C microcontroller. Detailed information for all registers and fields in the device are covered. Guidance is given for managing all the peripherals, clocks, power, and startup for the device family.

MAX32675C User Guide

Table of Contents

MAX32675C User Guide-----	1
1. Introduction -----	21
1.1 <i>Related Documentation</i> -----	21
1.2 <i>Document Conventions</i> -----	21
1.2.1 Number Notations -----	21
1.2.2 Register and Field Access Definitions -----	21
1.2.3 Register Lists-----	22
1.2.4 Register Detail Tables -----	22
2. Overview -----	23
2.1 <i>Block Diagram</i> -----	24
3. Memory, Register Mapping, and Access -----	25
3.1 <i>Memory, Register Mapping, and Access Overview</i> -----	25
3.2 <i>Device Memory Regions and Instances</i> -----	27
3.2.1 Code Space-----	27
3.2.2 Instruction Cache Memory -----	27
3.2.3 Information Block Flash Memory -----	27
3.2.4 SRAM Space-----	28
3.2.5 AES Key and Working Space Memory-----	29
3.2.6 Peripheral Space-----	29
3.2.7 External RAM Space -----	29
3.2.8 External Device Space-----	29
3.2.9 System Area (Private Peripheral Bus)-----	29
3.2.10 System Area (Vendor Defined)-----	30
3.3 <i>AHB Interfaces</i> -----	30
3.3.1 Core AHB Interfaces-----	30
3.3.1.1 I-Code-----	30
3.3.1.2 D-Code-----	30
3.3.1.3 System-----	30
3.3.2 AHB Controller -----	30
3.3.2.1 Standard DMA-----	30
3.4 <i>Peripheral Register Map</i> -----	30
3.4.1 APB Peripheral Base Address Map-----	30
3.5 <i>Error Correction Coding (ECC) Module</i> -----	31
3.5.1 SRAM -----	32
3.5.2 Flash-----	32
3.5.3 Cache -----	32
3.5.4 Limitations-----	32
4. System, Power, Clocks, Reset -----	33

4.1	<i>Oscillator Sources and Clock Switching</i>	33
4.1.1	Oscillator Implementation	36
4.1.2	12MHz Internal Primary Oscillator (IPO)	36
4.1.3	16MHz External Radio Frequency Oscillator (ERFO)	36
4.1.3.1	Calculating the Crystal Load Capacitor	36
4.1.4	7.3728MHz Internal Baud Rate Oscillator (IBRO)	37
4.1.5	115kHz Ultra-Low-Power Internal Nanoring Oscillator (INRO)	37
4.2	<i>Operating Modes</i>	37
4.2.1	ACTIVE	38
4.2.2	Low-Power Modes	38
4.2.3	SLEEP	38
4.2.3.1	Entering SLEEP	38
4.2.4	DEEPSLEEP	40
4.2.4.1	Entering DEEPSLEEP	40
4.2.5	BACKUP	41
4.2.5.1	Entering BACKUP	42
4.2.6	STORAGE	44
4.2.6.1	Entering STORAGE	44
4.3	<i>Shutdown State</i>	46
4.4	<i>Device Resets</i>	46
4.4.1	Peripheral Reset	48
4.4.2	Soft Reset	48
4.4.3	System Reset	49
4.4.4	Power-On Reset (POR)	49
4.5	<i>Unified Internal Cache Controller (ICC)</i>	49
4.5.1	Enabling ICC	49
4.5.2	Disabling ICC	49
4.5.3	Invalidating and Flushing the ICC Cache	49
4.5.4	ICC Registers	49
4.5.5	Register Details	50
4.6	<i>RAM Memory Management</i>	51
4.6.1	On-Chip Cache Management	51
4.6.2	RAM Zeroization	51
4.6.3	RAM Low-Power Modes	51
4.6.4	RAM LIGHTSLEEP	51
4.6.5	RAM Shutdown	51
4.7	<i>Miscellaneous Control Registers</i>	52
4.7.1	Registers Details	52
4.8	<i>Power Sequencer and Always-On Domain Registers</i>	53
4.8.1	Register Details	54
4.9	<i>Global Control Registers</i>	59
4.9.1	Register Details	60
4.10	<i>Error Correction Coding Enable Register</i>	74
4.10.1	Register Details	74
4.11	<i>System Initialization Registers</i>	74
4.11.1	Register Details	75

4.12	<i>Function Control Registers</i>	75
4.12.1	Register Details	75
5.	Interrupts and Exceptions	77
5.1	<i>Features</i>	77
5.2	<i>Interrupt Vector Table</i>	77
6.	General-Purpose I/O (GPIO) and Alternate Function (AF) Pins	79
6.1	<i>Instances</i>	80
6.2	<i>Configuration</i>	80
6.2.1	Peripheral Clock Enable	80
6.2.2	Power-On-Reset Configuration	80
6.2.3	Input mode configuration	82
6.2.4	Output Mode Configuration	82
6.2.5	GPIO Drive Strength	82
6.2.6	Alternate Function Usage	83
6.3	<i>Configuring GPIO Interrupts and Wake</i>	83
6.3.1	GPIO Interrupt Handling	84
6.3.2	Using GPIO for Wake-Up from Low-Power Modes	85
6.3.3	Using GPIOWAKE for Wake-Up from All Power Modes	85
6.4	<i>GPIO Registers</i>	85
6.4.1	Register Details	87
7.	Flash Controller (FLC)	97
7.1	<i>Instances</i>	97
7.2	<i>Usage</i>	97
7.2.1	Clock Configuration	97
7.2.2	Lock Protection	98
7.2.3	Flash Write Width	98
7.2.4	Flash Information Block	98
7.2.4.1	Unlocking the Flash Information Block	98
7.2.5	Flash Write	99
7.2.6	Page Erase	100
7.2.7	Mass Erase	100
7.3	<i>Flash Error Correction Coding</i>	100
7.4	<i>FLC Registers</i>	101
7.4.1	Register Details	101
8.	Debug Access Port (DAP)	107
8.1	<i>Instances</i>	107
8.2	<i>Access Control</i>	107
8.2.1	Locking the DAP	107
8.2.1.1	Option 1	107
8.2.1.2	Option 2	110
8.3	<i>Pin Configuration</i>	110
9.	Standard Direct Memory Access (DMA)	111
9.1	<i>Instances</i>	111

9.2	<i>DMA Channel Operation (DMA_CH)</i>	111
9.2.1	DMA Channel Arbitration and DMA Bursts	111
9.2.2	DMA Source and Destination Addressing	112
9.2.3	Data Movement from Source to DMA	114
9.2.4	Data Movement from DMA to Destination	114
9.3	<i>Usage</i>	115
9.4	<i>Count-To-Zero (CTZ) Condition</i>	116
9.5	<i>Chaining Buffers</i>	116
9.6	<i>DMA Interrupts</i>	118
9.7	<i>Channel Timeout Detect</i>	118
9.8	<i>Memory-to-Memory DMA</i>	119
9.9	<i>DMA Registers</i>	119
9.9.1	Register Details	119
9.10	<i>DMA Channel Register Summary</i>	120
9.11	<i>DMA Channel Registers</i>	120
9.11.1	Register Details	120
10.	<i>Universal Asynchronous Receiver/Transmitter (UART)</i>	126
10.1	<i>Instances</i>	128
10.2	<i>DMA</i>	128
10.3	<i>UART Frame</i>	128
10.4	<i>FIFOs</i>	129
10.4.1	Transmit FIFO Operation	129
10.4.2	Receive FIFO Operation	129
10.4.3	Flushing	129
10.5	<i>Interrupt Events</i>	129
10.5.1	Frame Error	130
10.5.2	Parity Error	131
10.5.3	CTS Signal Change	131
10.5.4	Overrun	131
10.5.5	Receive FIFO Threshold	131
10.5.6	Transmit FIFO Half-Empty	131
10.5.7	Transmit FIFO One Byte Remaining	132
10.6	<i>Inactive State</i>	132
10.7	<i>Receive Sampling</i>	132
10.8	<i>Baud Rate Generation</i>	132
10.8.1	UART Clock Sources	132
10.8.2	LPUART Clock Sources	133
10.8.3	Baud Rate Calculation	133
10.9	<i>Hardware Flow Control</i>	134
10.9.1	Automated HFC	135
10.9.2	Software-Controlled HFC	135
10.9.2.1	RTS/CTS Handling for Application-Controlled HFC	135
10.10	<i>UART Registers</i>	137

10.10.1	Register Details	137
11.	I ² C Controller/Target Serial Communications Peripheral	144
11.1	I ² C Controller/Target Features	144
11.2	Instances	144
11.3	I ² C Overview	145
11.3.1	I ² C Bus Terminology	145
11.3.2	I ² C Transfer Protocol Operation	145
11.3.3	START and STOP Conditions	145
11.3.4	Controller Operation	145
11.3.5	Acknowledge and Not Acknowledge	146
11.3.6	Bit Transfer Process	146
11.4	Configuration and Usage	147
11.4.1	SCL and SDA Bus Drivers	147
11.4.2	SCL Clock Configurations	147
11.4.3	SCL Clock Generation for Standard, Fast and Fast-Plus Modes	147
11.4.4	Controller Mode Addressing	148
11.4.5	Controller Mode Operation	149
11.4.5.1	I ² C Controller Mode Receiver Operation	150
11.4.5.2	I ² C Controller Mode Transmitter Operation	150
11.4.5.3	I ² C Multicontroller Operation	150
11.4.6	Target Mode Operation	151
11.4.6.1	Target Transmitter	153
11.4.6.2	Target Receivers	156
11.4.7	Interrupt Sources	157
11.4.8	Transmit FIFO and Receive FIFO	157
11.4.9	Transmit FIFO Preloading	158
11.4.10	Interactive Receive Mode (IRXM)	159
11.4.11	Clock Stretching	160
11.4.12	Bus Timeout	160
11.4.13	DMA Control	161
11.5	I ² C Registers	162
11.5.1	Register Details	162
12.	Serial Peripheral Interface (SPI)	175
12.1	Instances	176
12.2	Formats	177
12.2.1	Four-Wire SPI	177
12.2.2	Three-Wire SPI	177
12.3	Pin Configuration	178
12.3.1	SPI Alternate Function Mapping	178
12.3.2	Four-Wire Format Configuration	179
12.3.3	Three-Wire Format Configuration	179
12.3.4	Dual-Mode Format Configuration	179
12.4	Configuration	179
12.4.1	Serial Clock	179
12.4.2	Peripheral Clock	180
12.4.3	Controller Mode Serial Clock Generation	180

12.4.4	Clock Phase and Polarity Control-----	181
12.4.5	Target Select Configuration-----	182
12.4.6	Transmit and Receive FIFOs -----	182
12.4.7	Interrupts and Wakeups-----	182
12.5	<i>SPI Registers</i> -----	183
12.5.1	Register Details -----	184
13.	<i>Analog Front-End (AFE)</i> -----	194
13.1	<i>Instances</i> -----	194
13.2	<i>SPI Communication Interface</i> -----	194
13.2.1	AFE Peripheral Register Byte Width-----	196
13.2.2	DOUT/INTB-----	196
13.2.3	SPI Transactions-----	196
13.2.3.1	SPI Register Address Byte-----	196
13.2.4	SPI Transactions and ADC Conversions-----	197
13.3	<i>Selecting an AFE Peripheral</i> -----	197
13.4	<i>Loading the AFE Trim Values</i> -----	198
13.5	<i>AFE Registers</i> -----	199
13.5.1	Register Details -----	199
14.	<i>HART Modem (HART)</i> -----	201
14.1	<i>Instances</i> -----	201
14.2	<i>Functional Description</i> -----	202
14.3	<i>Selecting the HART Modem Using the AFE</i> -----	202
14.4	<i>Modulator</i> -----	202
14.5	<i>Demodulator</i> -----	203
14.6	<i>HART Registration</i> -----	203
14.7	<i>HART Protocol and Interface Management</i> -----	203
14.8	<i>Writing and Reading the HART Registers</i> -----	204
14.9	<i>HART Registers</i> -----	204
14.9.1	Register Details -----	204
15.	<i>24-Bit Delta-Sigma ADC with PGA</i> -----	209
15.1	<i>Instances</i> -----	209
15.2	<i>Functional Description</i> -----	209
15.3	<i>Detailed Description</i> -----	210
15.4	<i>Analog Inputs</i> -----	211
15.5	<i>Signal Path Considerations</i> -----	211
15.5.1	Bypass (Direct Signal Path) Mode-----	211
15.5.2	Buffered Mode-----	211
15.5.3	PGA Mode-----	211
15.6	<i>Digital Gain</i> -----	212
15.7	<i>Reference Inputs</i> -----	213
15.8	<i>Low-Power Considerations</i> -----	213

15.9	<i>Modulator Duty Cycle Mode</i>	213
15.10	<i>Sleep Mode</i>	214
15.11	<i>Circuit Settling Time</i>	214
15.11.1	Input Multiplexer	214
15.11.2	PGA	214
15.11.3	Reference Multiplexer	214
15.11.4	Excitation Current Source	214
15.12	<i>V_{BIAS} Source</i>	215
15.13	<i>Sensor Excitation Current Sources</i>	215
15.14	<i>Burnout Currents</i>	215
15.15	<i>Calibration</i>	215
15.15.1	Self-Calibration	216
15.15.1.1	Self-Calibration Example	217
15.15.2	PGA Self-Calibration	217
15.15.2.1	PGA Gain Calibration Example	217
15.15.3	System Offset and Gain Calibration	218
15.15.3.1	System Offset Calibration Example	218
15.15.3.2	System Gain Calibration Example	219
15.15.4	Sensitivity of Calibration Coefficients	219
15.16	<i>GPIOs</i>	219
15.16.1	Low-Side Power Switch	220
15.16.1.1	Automatic Low-Side Switch Operation	220
15.16.1.2	Manual Low-Side Switch Operation	220
15.17	<i>Status</i>	220
15.17.1	Status Interrupt Enable	221
15.18	<i>Conversion Data Formats</i>	221
15.19	<i>Digital Filter</i>	221
15.20	<i>Sequencer</i>	223
15.20.1	Sequencer Notes	224
15.20.2	Sequencer Example	224
15.21	<i>ADC Registers</i>	227
15.21.1	Register Details	230
15.21.1.1	16-Bit Sequencer Registers	255
16.	<i>Digital-to-Analog Converter (DAC)</i>	258
16.1	<i>Instances</i>	258
16.2	<i>Operation</i>	258
16.2.1	Selecting the DAC Using the AFE	258
16.2.1.1	DAC Reference	258
16.2.2	DAC Power Modes	259
16.2.3	Enabling the DAC	259
16.2.4	FIFO	259
16.3	<i>DAC Registers</i>	260

16.3.1	Register Details	260
17.	Timers (TMR/LPTMR)	265
17.1	Instances	266
17.2	Basic Timer Operation	266
17.3	32-Bit Single / 32-Bit Cascade / Dual 16-Bit	267
17.4	Timer Clock Sources	267
17.5	Reading the TMRn_CNT and TMRn_PWM Registers	268
17.6	Timer Pin Functionality	268
17.7	Wakeup Events	270
17.8	Low-Power Timer Wake-up Events	270
17.9	Operating Modes	271
17.9.1	One-Shot Mode (0)	273
17.9.2	Continuous Mode (1)	275
17.9.3	Counter Mode (2)	277
17.9.4	PWM Mode (3)	280
17.9.5	Capture Mode (4)	282
17.9.5.1	Capture Event	283
17.9.5.2	Rollover Event	283
17.9.6	Compare Mode (5)	285
17.9.7	Gated Mode (6)	287
17.9.8	Capture/Compare Mode (7)	289
17.9.9	Dual-Edge Capture Mode (8)	291
17.9.10	Inactive Gated Mode (14)	291
17.10	Timer Registers	291
17.10.1	Register Details	292
18.	Watchdog Timer (WDT)	300
18.1	Instances	301
18.2	Usage	302
18.2.1	Using the WDT as a Long-Interval Timer	302
18.2.2	Using the WDT as a Long-Interval Wake-up Timer	302
18.3	WDT Protection Sequence	303
18.3.1	WDT Feed Sequence	303
18.3.2	WDT Enable Sequence	303
18.3.3	WDT Disable Sequence	303
18.4	WDT Events	303
18.4.1	WDT Early Reset	304
18.4.2	WDT Early Interrupt	305
18.4.3	WDT Late Reset	305
18.4.4	WDT Late Interrupt	306
18.5	Initializing the WDT	306
18.6	Resets	307
18.7	WDT Registers	307
18.7.1	Register Details	307
19.	Cyclic Redundancy Check (CRC)	312

19.1	<i>Instances</i>	312
19.2	<i>Usage</i>	312
19.3	<i>Polynomial Generation</i>	313
19.4	<i>Software CRC Calculations</i>	314
19.5	<i>DMA CRC Calculations</i>	315
19.6	<i>CRC Registers</i>	315
19.6.1	<i>Register Details</i>	316
20.	<i>AES</i>	318
20.1	<i>Instances</i>	318
20.2	<i>AES Key Storage</i>	318
20.3	<i>Encryption of 128-Bit Blocks of Data Using FIFO</i>	319
20.4	<i>Encryption of 128-Bit Blocks Using DMA</i>	319
20.5	<i>Encryption of Blocks Less Than 128 Bits</i>	321
20.6	<i>Decryption</i>	321
20.7	<i>Interrupt Events</i>	321
20.7.1	<i>Data Output FIFO Overrun</i>	322
20.7.2	<i>Key Zero</i>	322
20.7.3	<i>Key Change</i>	322
20.7.4	<i>Calculation Done</i>	322
20.8	<i>AES Registers</i>	322
20.8.1	<i>Register Details</i>	322
20.9	<i>AES_KEY Registers</i>	325
20.9.1	<i>AES_KEY Register Details</i>	325
21.	<i>ROM Bootloader</i>	327
21.1	<i>Instances</i>	327
21.2	<i>Bootloader Operating States</i>	327
21.2.1	<i>UNLOCKED</i>	328
21.2.2	<i>LOCKED</i>	328
21.2.3	<i>PERMLOCKED</i>	328
21.2.4	<i>CHALLENGE</i> (Secure Boot Versions Only)	328
21.3	<i>Creating and Loading the Motorola SREC File</i>	328
21.3.1	<i>Procedure for Devices Without the Secure Boot Feature</i>	329
21.3.2	<i>Procedure for Devices with the Secure Boot Feature</i>	329
21.4	<i>Bootloader Activation</i>	329
21.5	<i>Secure Boot Feature</i>	331
21.5.1	<i>Secure Boot</i>	331
21.5.2	<i>Secure Challenge/Response Authentication</i>	331
21.6	<i>Command Protocol</i>	332
21.7	<i>General Commands</i>	332
21.7.1	<i>General Command Details</i>	333
21.8	<i>Secure Commands</i>	343
21.8.1	<i>Secure Command Details</i>	343

21.9	<i>Challenge/Response Commands</i>	350
21.9.1	Challenge/Response Command Details	350
22.	Silicon Revision Differences	352
22.1	<i>Initial Silicon Revision B4</i>	352
23.	Revision History	353

Table of Figures

Figure 2-1: MAX32675C Block Diagram	24
Figure 3-1: Code Memory Mapping	25
Figure 3-2: Data Memory Mapping	26
Figure 3-3: USN Format	28
Figure 4-1: MAX32675C Clock Block Diagram	35
Figure 4-2: ERFO Load Capacitors	36
Figure 4-3: MAX32675C SLEEP Clock Control	39
Figure 4-4: MAX32675C DEEPSLEEP and BACKUP Clock Control	43
Figure 4-5: MAX32675C STORAGE Clock Control	45
Figure 7-1: Unique Serial Number Format	98
Figure 8-1: Locking the DAP to Make it Available for Unlock Later	108
Figure 8-2: Unlocking the DAP After Being Locked as in Figure 8-1	109
Figure 8-3: Locking the Debug Access Port Permanently	110
Figure 9-1: DMA Block-Chaining Flowchart	117
Figure 10-1: UART Block Diagram	127
Figure 10-2: UART Frame Structure	129
Figure 10-3: UART Interrupt Functional Diagram	130
Figure 10-4: Oversampling Example	132
Figure 10-5: UART Baud Rate Generation	133
Figure 10-6: LPUART Timing Generation	133
Figure 10-7: HFC Physical Connection	134
Figure 10-8: HFC Signaling for Transmitting to an External Receiver	135
Figure 11-1: I ² C Write Data Transfer	146
Figure 11-2: I ² C SCL Timing for Standard, Fast and Fast-Plus Modes	148
Figure 12-1: SPI Block Diagram	176
Figure 12-2: 4-Wire SPI Connection Diagram	177
Figure 12-3: Generic 3-Wire SPI Controller to Target Connection	178
Figure 12-4: Dual Mode SPI Connection Diagram	179
Figure 12-5: SCK Clock Rate Control	181
Figure 12-6: SPI Clock Polarity	181
Figure 12-7: Target Select Configuration Using SPIn_SSTIME Register	182
Figure 13-1: AFE Functional Diagram and Interface	195
Figure 13-2: AFE SPI Communications Diagram with CRC-5-USB Disabled	197
Figure 13-3: Information Block Address Offset of AFE Trim Values	198
Figure 14-1: MAX32675C HART Block Diagram	202
Figure 14-2: HART Waveforms Trapezoid and Sinusoid	203
Figure 15-1: MAX32675C ADC Block Diagram	210
Figure 15-2: Digital Programmable Gain Example	213
Figure 17-1: MAX32675C TimerA Output Functionality, Modes 0/1/3/5	269
Figure 17-2: MAX32675C TimerA Input Functionality, Modes 2/4/6/7/8/14	270
Figure 17-3: Timer I/O Signal Naming Conventions	271
Figure 17-4: One-Shot Mode Diagram	274

Figure 17-5: Continuous Mode Diagram.....	276
Figure 17-6: Counter Mode Diagram	279
Figure 17-7: PWM Mode Diagram	282
Figure 17-8: Capture Mode Diagram	284
Figure 17-9: Compare Mode Diagram	286
Figure 17-10: Gated Mode Diagram	288
Figure 17-11: Capture/Compare Mode Diagram.....	290
Figure 18-1: Windowed Watchdog Timer Block Diagram.....	301
Figure 18-2: WDT Early Interrupt and Reset Event Sequencing Details	304
Figure 18-3: WDT Late Interrupt and Reset Event Sequencing Details.....	305
Figure 20-1: AES KEY Storage.....	319
Figure 21-1: Combined Bootloader Flow	330

Table of Tables

Table 1-1: Field Access Definitions	21
Table 1-2: Example Registers.....	22
Table 1-3: Example Name 0 Register	22
Table 3-1: SRAM Configuration.....	28
Table 3-2: APB Peripheral Base Address Map.....	30
Table 4-1: Reset Sources and Effect on Oscillator Status	34
Table 4-2: Reset Sources and Effect on System Oscillator Selection and Prescaler	34
Table 4-3: Wake-Up Sources.....	37
Table 4-4: DEEPSLEEP Low-Power Peripheral Control Truth Table	40
Table 4-5: RAM Retention by Address Range in BACKUP, System Reset, Watchdog Reset, and External Reset	41
Table 4-6: MAX32675C Clock Source and Global Control Register Reset Effects	47
Table 4-7: MAX32675C Clock Source and Global Control Register Low-Power Mode Effects	47
Table 4-8: MAX32675C Peripheral and CPU Reset Effects	48
Table 4-9: MAX32675C Peripheral and CPU Low-Power Mode Effects	48
Table 4-10: ICC Registers	49
Table 4-11: ICC Cache Information Register	50
Table 4-12: ICC Memory Size Register	50
Table 4-13: ICC Cache Control Register	50
Table 4-14: ICC Invalidate Register	51
Table 4-15: Miscellaneous Control Registers.....	52
Table 4-16: Reset Control Register	52
Table 4-17: Low-Power Peripheral Control Register.....	52
Table 4-18: Clock Disable Register	53
Table 4-19: Power Sequencer and Always-On Domain Registers.....	54
Table 4-20: Low-Power Control Register	54
Table 4-21: GPIO0 Low-Power Wake-Up Status Flags	56
Table 4-22: GPIO0 Low-Power Wake-Up Enable Registers.....	57
Table 4-23: GPIO1 Low-Power Wake-Up Status Flags	57
Table 4-24: GPIO1 Low-Power Wake-Up Enable Registers.....	57
Table 4-25: Peripheral Low-Power Wake-Up Status Flags.....	57
Table 4-26: Peripheral Low-Power Wake-Up Enable Register.....	58
Table 4-27: RAM Shutdown Control Register	58
Table 4-28: General Purpose 0 Register	59
Table 4-29: General Purpose 1 Register	59
Table 4-30: Global Control Registers	59
Table 4-31: System Control Register.....	60
Table 4-32: Reset Register 0	61
Table 4-33: System Clock Control Register	62
Table 4-34: Power Management Register	63
Table 4-35: Peripheral Clock Divisor Register	65
Table 4-36: Peripheral Clock Disable Register 0	65
Table 4-37: Memory Clock Control Register	67
Table 4-38: Memory Zeroization Control Register	68
Table 4-39: System Status Flag Register	68
Table 4-40: Reset Register 1	69
Table 4-41: Peripheral Clock Disable Register 1	70
Table 4-42: Event Enable Register	71
Table 4-43: Revision Register.....	71
Table 4-44: System Status Interrupt Enable Register	71
Table 4-45: Error Correction Coding Error Detected Register	71

Table 4-46: Error Correction Coding Correctable Error Detected Register	72
Table 4-47: Error Correction Coding Interrupt Enable Register.....	72
Table 4-48: Error Correction Coding Address Register	73
Table 4-49: Error Correction Coding Enable Registers.....	74
Table 4-50: Error Correction Coding Enable Register	74
Table 4-51: System Initialization Registers	74
Table 4-52: System Initialization Error Status Register.....	75
Table 4-53: System Initialization Error Address Register.....	75
Table 4-54: Function Control Registers.....	75
Table 4-55: Function Control 0 Register	75
Table 4-56: Automatic Calibration 0 Register	76
Table 4-57: Automatic Calibration 1 Register	76
Table 4-58: Automatic Calibration 2 Register	76
Table 5-1: MAX32675C Interrupt Vector Table	77
Table 6-1: GPIO Pin Count	80
Table 6-2: MAX32675C Input Mode Configuration Summary	82
Table 6-3: Standard GPIO Drive Strength Selection.....	83
Table 6-4: GPIO with I ² C AF Drive Strength Selection.....	83
Table 6-5: MAX32670 GPIO Mode and AF Selection	83
Table 6-6: MAX32675C GPIO Interrupt Enable Settings for Each Supported Operating Mode.....	84
Table 6-7: MAX32675C GPIO Port Interrupt Vector Mapping	84
Table 6-8: GPIO Wakeup Interrupt Vector.....	85
Table 6-9: GPIO Registers	85
Table 6-10: GPIO AF 0 Select Register	87
Table 6-11: GPIO Port n Configuration Enable Atomic Set Bit 0 Register	87
Table 6-12: GPIO Port n Configuration Enable Atomic Clear Bit 0 Register.....	87
Table 6-13: GPIO Port n Output Enable Register	88
Table 6-14: GPIO Port n Output Enable Atomic Set Register	88
Table 6-15: GPIO Port n Output Enable Atomic Clear Register	88
Table 6-16: GPIO Port n Output Register.....	88
Table 6-17: GPIO Port n Output Atomic Set Register	89
Table 6-18: GPIO Port n Output Atomic Clear Register	89
Table 6-19: GPIO Port n Input Register.....	89
Table 6-20: GPIO Port n Interrupt Mode Register	89
Table 6-21: GPIO Port n Interrupt Polarity Register.....	90
Table 6-22: GPIO Port n Input Enable Register	90
Table 6-23: GPIO Port n Interrupt Enable Registers	90
Table 6-24: GPIO Port n Interrupt Enable Atomic Set Register	91
Table 6-25: GPIO Port n Interrupt Enable Atomic Clear Register	91
Table 6-26: GPIO Interrupt Status Register	91
Table 6-27: GPIO Port n Interrupt Clear Register.....	91
Table 6-28: GPIO Port n Wake-Up Enable Register	91
Table 6-29: GPIO Port n Wake-Up Enable Atomic Set Register	92
Table 6-30: GPIO Port n Wake-Up Enable Atomic Clear Register	92
Table 6-31: GPIO Port n Interrupt Dual Edge Mode Register	92
Table 6-32: GPIO Port n Pad Control 0 Register	92
Table 6-33: GPIO Port n Pad Control 1 Register	93
Table 6-34: GPIO Port n Configuration Enable Bit 1 Register	93
Table 6-35: GPIO Port n Configuration Enable Atomic Set Bit 1 Register	93
Table 6-36: GPIO Port n Configuration Enable Atomic Clear Bit 1 Register	94
Table 6-37: GPIO Port n Configuration Enable Bit 2 Register	94
Table 6-38: GPIO Port n Configuration Enable Atomic Set Bit 2 Register	94
Table 6-39: GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	94

Table 6-40: GPIO Port n Input Hysteresis Enable Register.....	95
Table 6-41: GPIO Port n Slew Rate Enable Register.....	95
Table 6-42: GPIO Port n Output Drive Strength Bit 0 Register	95
Table 6-43: GPIO Port n Output Drive Strength Bit 1 Register	96
Table 6-44: GPIO Port n Pulldown/Pullup Strength Select Register	96
Table 6-45: GPIO Port n Voltage Select Register	96
Table 7-1: MAX32675C Internal Flash Memory Organization	97
Table 7-2: Flash Controller Registers	101
Table 7-3: Flash Controller Address Pointer Register	101
Table 7-4: Flash Controller Clock Divisor Register	101
Table 7-5: Flash Controller Control Register	102
Table 7-6: Flash Controller Interrupt Register	103
Table 7-7: Flash Controller ECC Data Register	104
Table 7-8: Flash Controller Data 0 Register	104
Table 7-9: Flash Controller Data Register 1	105
Table 7-10: Flash Controller Data Register 2	105
Table 7-11: Flash Controller Data Register 3	105
Table 7-12: Flash Controller Access Control Register	105
Table 7-13: Flash Controller Write/Erase Lock Register 0	105
Table 7-14: Flash Controller Write/Erase Lock Register 1	105
Table 7-15: Flash Controller Read Lock Register 0.....	106
Table 7-16: Flash Controller Read Lock Register 1.....	106
Table 8-1: MAX32675C DAP Instances.....	107
Table 9-1: MAX32675C DMA and Channel Instances	111
Table 9-2: MAX32675C DMA Source and Destination by Peripheral.....	113
Table 9-3: Data Movement from Source to DMA FIFO.....	114
Table 9-4: Data Movement from the DMA FIFO to Destination.....	114
Table 9-5: DMA Channel Timeout Configuration.....	118
Table 9-6: DMA Registers	119
Table 9-7: DMA Interrupt Enable Register.....	119
Table 9-8: DMA Interrupt Enable Register.....	119
Table 9-9: Standard DMA Channel 0 to Channel 7 Register Summary	120
Table 9-10: DMA Channel Registers	120
Table 9-11: DMA Channel n Control Register	120
Table 9-12: DMA Status Register	122
Table 9-13: DMA Channel n Source Register	123
Table 9-14: DMA Channel n Destination Register	124
Table 9-15: DMA Channel n Count Register	124
Table 9-16: DMA Channel n Source Reload Register	124
Table 9-17: DMA Channel n Destination Reload Register	124
Table 9-18: DMA Channel n Count Reload Register	124
Table 10-1: MAX32675C UART Instances	128
Table 10-2: MAX32675C Interrupt Events	130
Table 10-3: Frame Error Detection for Standard UARTs and LPUART	131
Table 10-4: Frame Error Detection for LPUARTs with $UARTn_CTRL.fdm = 1$ and $UARTn_CTRL.dpfe_en = 1$	131
Table 10-5: UART Registers.....	137
Table 10-6: UART Control Register	137
Table 10-7: UART Status Register	139
Table 10-8: UART Interrupt Enable Register	140
Table 10-9: UART Interrupt Flag Register	140
Table 10-10: UART Clock Divisor Register.....	140
Table 10-11: UART Oversampling Control Register	141
Table 10-12: UART Transmit FIFO Register	141

Table 10-13: UART Pin Control Register	141
Table 10-14: UART Data Register	141
Table 10-15: UART DMA Register	142
Table 10-16: UART Wake-up Enable	142
Table 10-17: UART Wake-up Flag Register	143
Table 11-1: MAX32675C I ² C Peripheral Pins	144
Table 11-2: I ² C Bus Terminology	145
Table 11-3: I ² C Target Address Format	148
Table 11-4: I ² C Registers	162
Table 11-5: I ² C Control Register	162
Table 11-6: I ² C Status Register	164
Table 11-7: I ² C Interrupt Flag 0 Register	164
Table 11-8: I ² C Interrupt Enable 0 Register	167
Table 11-9: I ² C Interrupt Flag 1 Register	168
Table 11-10: I ² C Interrupt Enable 1 Register	168
Table 11-11: I ² C FIFO Length Register	169
Table 11-12: I ² C Receive Control 0 Register	169
Table 11-13: I ² C Receive Control 1 Register	170
Table 11-14: I ² C Transmit Control 0 Register	170
Table 11-15: I ² C Transmit Control 1 Register	171
Table 11-16: I ² C Data Register	172
Table 11-17: I ² C Controller Control Register	172
Table 11-18: I ² C SCL Low Control Register	173
Table 11-19: I ² C SCL High Control Register	173
Table 11-20: I ² C Hs-Mode Clock Control Register	173
Table 11-21: I ² C Timeout Register	174
Table 11-22: I ² C Target Address 0 Register	174
Table 11-23: I ² C DMA Register	174
Table 12-1: MAX32675C SPI Instances	176
Table 12-2: Four-Wire Format Signals	177
Table 12-3: Three-Wire Format Signals	178
Table 12-4: SPI Modes Clock Phase and Polarity Operation	182
Table 12-5: SPI Registers	183
Table 12-6: SPI FIFO32 Register	184
Table 12-7: SPI 16-bit FIFO Register	184
Table 12-8: SPI 8-bit FIFO Register	184
Table 12-9: SPI Control 0 Register	184
Table 12-10: SPI Control 1 Register	186
Table 12-11: SPI Control 2 Register	186
Table 12-12: SPI Target Select Timing Register	187
Table 12-13: SPI Controller Clock Configuration Registers	188
Table 12-14: SPI DMA Control Registers	189
Table 12-15: SPI Interrupt Status Flags Registers	190
Table 12-16: SPI Interrupt Enable Registers	191
Table 12-17: SPI Wakeup Status Flags Registers	192
Table 12-18: SPI Wakeup Enable Registers	192
Table 12-19: SPI Target Select Timing Registers	192
Table 13-1: MAX32675C AFE Instance	194
Table 13-2: MAX32675C SPI0 Pins Used for Communication with the AFE	194
Table 13-3: AFE Peripheral Register Table Convention	196
Table 13-4: Register Address Byte	196
Table 13-5: AFE Registers	199
Table 13-6: AFE System Control Register	199

Table 14-1: MAX32675C HART Modem Instances	201
Table 14-2: HART Modem Registers	204
Table 14-3: HART Control Register	204
Table 14-4: HART Receive-Transmit Control Register.....	205
Table 14-5: HART Receive Control Extension 1 Register.....	206
Table 14-6: HART Receive Control Extension 2 Register.....	206
Table 14-7: HART Receive Bit-Detect/Demodulation Threshold Register	207
Table 14-8: HART Receive Carrier Detect Up Threshold Register.....	207
Table 14-9: HART Receive Carrier Detect Down Threshold Register	207
Table 14-10: HART Receive Carrier Detect DOUT Threshold Register.....	207
Table 14-11: HART Transmit Mark-Space Count Values Register	208
Table 14-12: HART Status Register	208
Table 14-13: HART Trim Register	208
Table 14-14: HART Test Mode Register	208
Table 15-1: MAX32675C 16-/24-bit ADC with PGA Instances	209
Table 15-2: Gain Calibration Codes.....	216
Table 15-3: Offset Calibration Codes	216
Table 15-4: Self-Calibration Example	217
Table 15-5: Self-Calibration Example.....	217
Table 15-6: System Offset Calibration Example.....	218
Table 15-7: System Gain Calibration Example	219
Table 15-8: Conversion Data Formats	221
Table 15-9: AFE_ADC_n_FILTER.linef = 0b00 Data Rate and Filter Rejection Settings	222
Table 15-10: AFE_ADC_n_FILTER.linef = 0b01 Data Rate and Filter Rejection Settings	222
Table 15-11: AFE_ADC_n_FILTER.linef = 0b10 Data Rate and Filter Rejection Settings	222
Table 15-12: AFE_ADC_n_FILTER.linef = 0b11 Data Rate and Filter Rejection Settings	223
Table 15-13: Populated Sequencing Buffer Example	224
Table 15-14: 16-24-Bit Delta-Sigma ADC with PGA Registers	227
Table 15-15: Power-Down Register	230
Table 15-16: Start Conversion Register	230
Table 15-17: Sequencer Start Register	231
Table 15-18: Calibration Start Register	231
Table 15-19: GPIO0 (ADC0_RDY) Control Register	232
Table 15-20: GPIO1 (ADC1_RDY) Control Register	233
Table 15-21: GPIO Conversion Register.....	233
Table 15-22: GPIO Sequence Address Register.....	233
Table 15-23: Filter Register	234
Table 15-24: Control Register	234
Table 15-25: Source Register	235
Table 15-26: Mux Control 0 Register	237
Table 15-27: Mux Control 1 Register	238
Table 15-28: Mux Control 2 Register	239
Table 15-29: PGA Register	240
Table 15-30: Wait Extend Register	240
Table 15-31: Wait Start Register.....	240
Table 15-32: Part ID Register	241
Table 15-33: System Calibration Select Register	241
Table 15-34: System Offset A Register	242
Table 15-35: System Offset B Register.....	243
Table 15-36: System Gain A Register	243
Table 15-37: System Gain B Register	243
Table 15-38: Self-Calibration Offset Register.....	244
Table 15-39: Self-Gain 1x Register	244

Table 15-40: Self-Gain 2x Register	244
Table 15-41: Self-Gain 4x Register	244
Table 15-42: Self-Gain 8x Register	244
Table 15-43: Self-Gain 16x Register	244
Table 15-44: Self-Gain 32x Register	245
Table 15-45: Self-Gain 64x Register	245
Table 15-46: Self-Gain 128x Register	245
Table 15-47: Lower Threshold 0 Register	245
Table 15-48: Lower Threshold 1 Register	245
Table 15-49: Lower Threshold 2 Register	246
Table 15-50: Lower Threshold 3 Register	246
Table 15-51: Lower Threshold 4 Register	246
Table 15-52: Lower Threshold 5 Register	246
Table 15-53: Lower Threshold 6 Register	247
Table 15-54: Lower Threshold 7 Register	247
Table 15-55: Upper Threshold 0 Register	247
Table 15-56: Upper Threshold 1 Register	247
Table 15-57: Upper Threshold 2 Register	248
Table 15-58: Upper Threshold 3 Register	248
Table 15-59: Upper Threshold 4 Register	248
Table 15-60: Upper Threshold 5 Register	248
Table 15-61: Upper Threshold 6 Register	249
Table 15-62: Upper Threshold 7 Register	249
Table 15-63: Data 0 Register	249
Table 15-64: Data 1 Register	249
Table 15-65: Data 2 Register	249
Table 15-66: Data 3 Register	250
Table 15-67: Data 4 Register	250
Table 15-68: Data 5 Register	250
Table 15-69: Data 6 Register	250
Table 15-70: Data 7 Register	250
Table 15-71: Status Register	250
Table 15-72: Status Interrupt Enable Register	253
Table 15-73: Sequencer 0 to 25 Registers	255
Table 15-74: Sequencer 26 to 52 Registers	256
Table 15-75: Sequencer Address Register	257
Table 15-76: ADC Trim Unlock Register	257
Table 15-77: ADC Trim 0 Register	257
Table 15-78: ADC Trim 1 Register	257
Table 15-79: Analog Trim 2 Register	257
Table 16-1: DAC Instances	258
Table 16-2: DAC Reference Selection	258
Table 16-3: DAC Power Settings	259
Table 16-4: DAC Registers	260
Table 16-5: DAC Control Register	260
Table 16-6: DAC Rate Register	262
Table 16-7: DAC Status Register	262
Table 16-8: DAC Trim Register	263
Table 16-9: DAC Voltage Reference Control Register	263
Table 16-10: DAC FIFO Register	264
Table 16-11: DAC Voltage Reference Trim Register	264
Table 17-1: MAX32675C TMR/LPTMR	266
Table 17-2: MAX32675C TMR/LPTMR Instances Capture Events	266

Table 17-3: TimerA/TimerB 32-Bit Field Allocations.....	267
Table 17-4: MAX32675C Low-Power Timer Pin Configuration for DEEPSLEEP and BACKUP.....	270
Table 17-5: MAX32675C Low-Power Timer Wake-up Events.....	271
Table 17-6: MAX32675C Operating Mode Signals for Timer 0, 1, 2, and 3	272
Table 17-7: MAX32675C Operating Mode Signals for Low-Power Timer 0 and 1	272
Table 17-8: Timer Registers	291
Table 17-9: Timer Count Register	292
Table 17-10: Timer Compare Register	292
Table 17-11: Timer PWM Register	292
Table 17-12: Timer Interrupt Register	292
Table 17-13: Timer Control 0 Register	293
Table 17-14: Timer Non-Overlapping Compare Register.....	296
Table 17-15: Timer Control 1 Register	296
Table 17-16: Timer Wake-up Status Register	298
Table 18-1: MAX32675C WDT Instances Summary	301
Table 18-2: WDT Event Summary	304
Table 18-3: WDT Registers.....	307
Table 18-4: WDT Control Register	307
Table 18-5: WDT Reset Register	310
Table 18-6: WDT Clock Source Select Register	311
Table 18-7: WDT Count Register.....	311
Table 19-1: MAX32675C CRC Instances	312
Table 19-2: Organization of Calculated Result in the CRC_VAL.value Field.....	313
Table 19-3: Common CRC Polynomials.....	313
Table 19-4: CRC Registers	315
Table 19-5: CRC Control Register	316
Table 19-6: CRC 8-Bit Data Input Register	316
Table 19-7: CRC 16-Bit Data Input Register	316
Table 19-8: CRC 32-Bit Data Input Register	317
Table 19-9: CRC Polynomial Register	317
Table 19-10: CRC Value Register.....	317
Table 20-1: Interrupt Events	321
Table 20-2: AES Registers.....	322
Table 20-3: AES Control Register	322
Table 20-4: AES Status Register	323
Table 20-5: AES Interrupt Flag Register	323
Table 20-6: AES Interrupt Enable Register.....	324
Table 20-7: AES FIFO Register	324
Table 20-8: AES_KEY Registers.....	325
Table 20-9: AES Key 0 Register	325
Table 20-10: AES Key 1 Register	325
Table 20-11: AES Key 2 Register	325
Table 20-12: AES Key 3 Register	326
Table 20-13: AES Key 4 Register	326
Table 20-14: AES Key 5 Register	326
Table 20-15: AES Key 6 Register	326
Table 20-16: AES Key 7 Register	326
Table 21-1: MAX32675C Bootloader Instances	327
Table 21-2: Bootloader Operating States and Prompts.....	327
Table 21-3: CHALLENGE Command Summary	331
Table 21-4: General Command Summary.....	332
Table 21-5: P – Page Erase	334
Table 21-6: V – Verify.....	335

Table 21-7: LOCK – Lock Device	336
Table 21-8: PLOCK – Permanent Lock	337
Table 21-9: UNLOCK – Unlock Device	338
Table 21-10: H – Check Device	339
Table 21-11: I – Get ID	340
Table 21-12: S – Status	341
Table 21-13: Q – Quit	342
Table 21-14: Secure Command Summary	343
Table 21-15: LK – Load Application Key	343
Table 21-16: LK – Load Challenge Key	344
Table 21-17: VK – Verify Application Key	345
Table 21-18: VC – Verify Challenge Key	346
Table 21-19: AK – Activate Application Key	347
Table 21-20: AC – Activate Challenge Key	348
Table 21-21: WL – Write Code Length	349
Table 21-22: Challenge/Response Command Summary	350
Table 21-23: GC – Get Challenge	350
Table 21-24: SR – Send Response	351

Table of Equations

Equation 4-1: System Clock Scaling	33
Equation 4-2: AHB Clock	33
Equation 4-3: APB Clock.....	33
Equation 4-4: AoD Clock (AOD_CLK).....	33
Equation 4-5: Load Capacitance Calculation.....	37
Equation 7-1: FLC Clock Frequency.....	97
Equation 10-1: UART Transmit FIFO Half-Empty Condition.....	132
Equation 10-2: UART Clock Divisor Formula (UARTn_CTRL.fdm = 0)	133
Equation 10-3: LPUART Clock Divisor Formula for UARTn_CTRL.fdm = 1.....	134
Equation 11-1: I ² C Clock Frequency.....	147
Equation 11-2: I ² C Clock High Time Calculation.....	147
Equation 11-3: I ² C Clock Low Time Calculation	147
Equation 11-4: I ² C Timeout Maximum.....	160
Equation 11-5: I ² C Timeout Minimum	161
Equation 11-6: DMA Burst Size Calculation for I ² C Transmit.....	161
Equation 11-7: DMA Burst Size Calculation for I ² C Receive.....	161
Equation 12-1: SPI Peripheral Clock.....	180
Equation 12-2: SCK High Time	181
Equation 12-3: SCK Low Time	181
Equation 17-1: Timer Peripheral Clock Equation.....	267
Equation 17-2: One-Shot Mode Timer Period	273
Equation 17-3: Continuous Mode Timer Period	275
Equation 17-4: Counter Mode Maximum Clock Frequency.....	277
Equation 17-5: Counter Mode Timer Input Transitions.....	278
Equation 17-6: Timer PWM Period	281
Equation 17-7: Timer PWM Output High Time Ratio with Polarity 0	281
Equation 17-8: Timer PWM Output High Time Ratio with Polarity 1	281
Equation 17-9: Capture Mode Elapsed Time Calculation in Seconds	283
Equation 17-10: Capture Mode Elapsed Time Calculation in Seconds	285
Equation 17-11: Compare Mode Timer Period.....	285
Equation 17-12: Capture Mode Elapsed Time	289

1. Introduction

For ordering information, mechanical and electrical characteristics for the MAX32675C family of devices please refer to the data sheet. For information on the Arm® Cortex®-M4 with FPU core, please refer to the [Arm Cortex-M4 Processor Technical Reference Manual](#).

1.1 Related Documentation

The MAX32675C data sheet and errata are available from the Analog Devices, Inc. website, <http://www.analog.com>.

1.2 Document Conventions

1.2.1 Number Notations

Notation	Description
0xNN	Hexadecimal (Base 16) numbers are preceded by the prefix 0x.
0bNN	Binary (Base 2) numbers are preceded by the prefix 0b.
NN	Decimal (Base 10) numbers are represented using no additional prefix or suffix.
V[X:Y]	Bit field representation of a register, field, or value (V) covering Bit X to Bit Y.
Bit N	Bits are numbered in little-endian format; that is, the least significant bit of a number is referred to as Bit 0.
[0xNNNN]	An address offset from a base address is shown in bracket form.

1.2.2 Register and Field Access Definitions

All the fields that are accessible by user software have distinct access capabilities. Each register table contained in this user guide has an access type defined for each field. The definition of each field access type is presented in [Table 1-1](#).

Table 1-1: Field Access Definitions

Access Type	Definition
RO	Reserved This access type is reserved for static fields. Reads of this field return the reset value. Writes are ignored.
DNM	Reserved. Do Not Modify Software must first read this field and write the same value whenever writing to this register.
R	Read Only Reads of this field return a value. Writes to the field do not affect device operation.
W	Write Only Reads of this field return indeterminate values. Writes to the field change the field's state to the value written and can affect device operation.
R/W	Unrestricted Read/Write Reads of this field return a value. Writes to the field change the field's state to the value written and can affect device operation.
RC	Read to Clear Reading this field clears the field to 0. Writes to the field do not affect device operation.
RS	Read to Set Reading this field sets the field to 1. Writes to the field do not affect device operation.
R/W00	Read/Write 0 Only Writing 0 to this field set the field to 0. Writing 1 to the field does not affect device operation.

Access Type	Definition
R/W1O	Read/Write 1 Only Writing 1 to this field sets the field to 1. Writing 0 to the field does not affect device operation.
R/W1C	Read/Write 1 to Clear Writing 1 to this field clears this field to 0. Writing 0 to the field does not affect device operation.
R/W0S	Read/Write 0 to Set Writing 0 to this field sets this field to 1. Writing 1 to the field does not affect device operation.

1.2.3 Register Lists

Each peripheral includes a table listing all of the peripheral's registers. The register table includes the offset, register name, and description of each register. The offset shown in the table must be added to the peripheral's base address in [Table 3-2](#) to get the register's absolute address.

Table 1-2: Example Registers

Offset	Register Name	Description
[0x0000]	REG_NAME0	Name 0 Register

1.2.4 Register Detail Tables

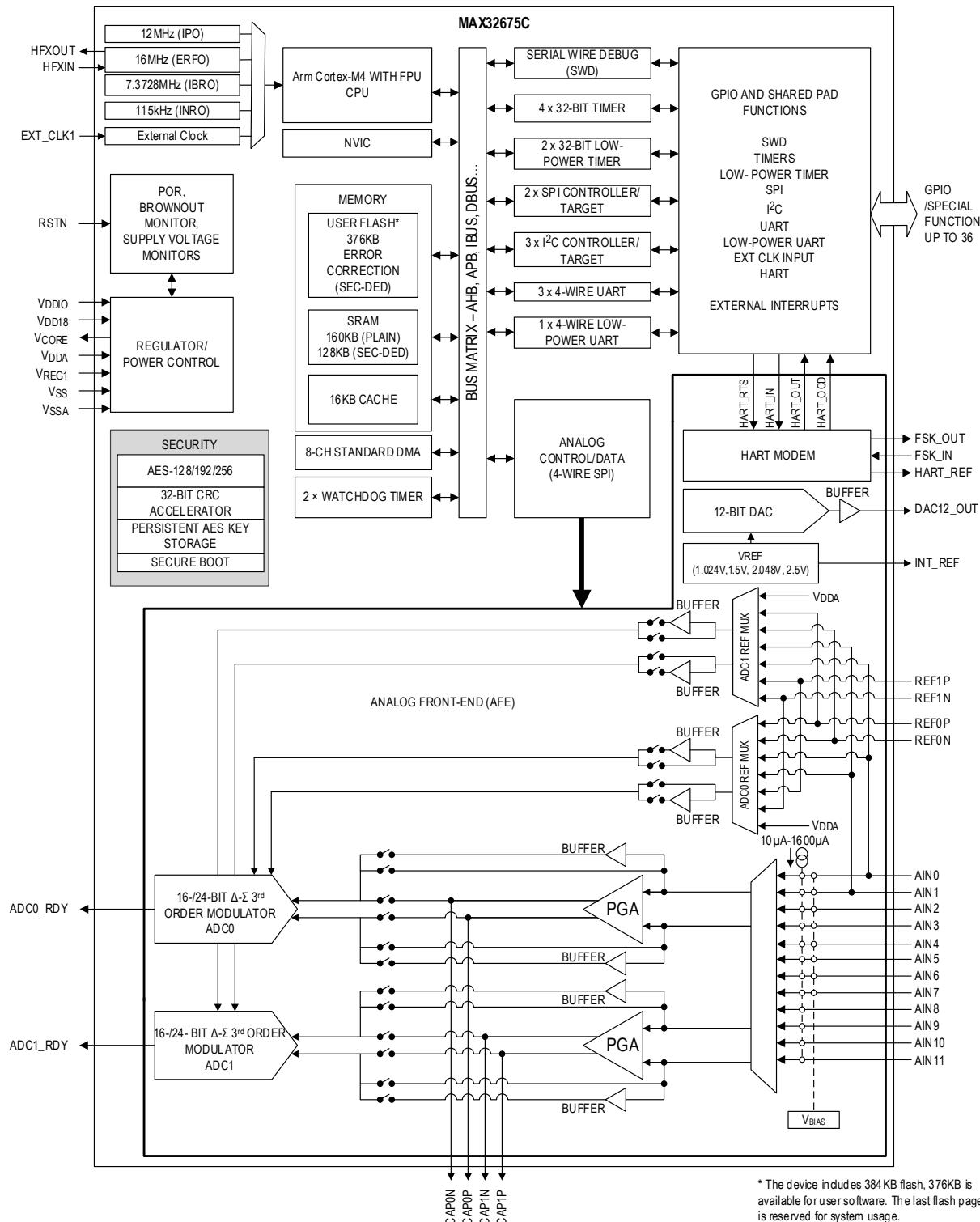
Each register in a peripheral includes a detailed register table, as shown in [Table 1-3](#). The first row of the register detail table includes the register's description, the register's name, and the register's offset from the base peripheral address. The second row of the table is the header for the bit fields represented in the register. The third and subsequent rows of the table include the bit or bit range, the field name, the bit's or field's access, the reset value, and a description of the field. All registers are 32 bits unless specified otherwise. Reserved bits and fields are shown as **Reserved** in the description column. See [Table 1-1](#) for a list of all access types for each bit and field.

Table 1-3: Example Name 0 Register

Name 0			REG_NAME0		[0x0000]
Bits	Field	Access	Reset	Description	
31:16	-	RO	-	Reserved	
15:0	field_name	R/W	0	Field name description Description of <i>field_name</i> .	

2. Overview

The MAX32675C is a highly integrated, mixed-signal, ultra-low-power microcontroller for industrial applications and is especially suitable for 4-20mA loop-powered sensors and transmitters. It is based on an ultra-low-power Arm® Cortex®-M4 with Floating Point Unit (FPU) and includes 376KB of user flash and 160KB of SRAM. Error correction coding (ECC), capable of single error correction, double error detection (SEC-DED), is implemented over the entire flash, SRAM, and cache to ensure ultra-reliable code execution for demanding applications. An analog front end (AFE) with an integrated, low-power HART modem enables the bidirectional transfer of digital data over a current loop with industrial sensors for configuration and diagnostics. The AFE also provides two 12-channel delta-sigma ($\Delta\Sigma$) ADCs with features and specifications optimized for precision sensor measurement. Each $\Delta\Sigma$ ADC can digitize external analog signals as well as system temperature. A PGA with gains of 1x to 128x precedes each ADC. ADC outputs can be optionally converted on the fly from integer to single-precision floating-point format. A 12-bit DAC is also included. The device also provides security features including an AES engine and persistent AES key storage.

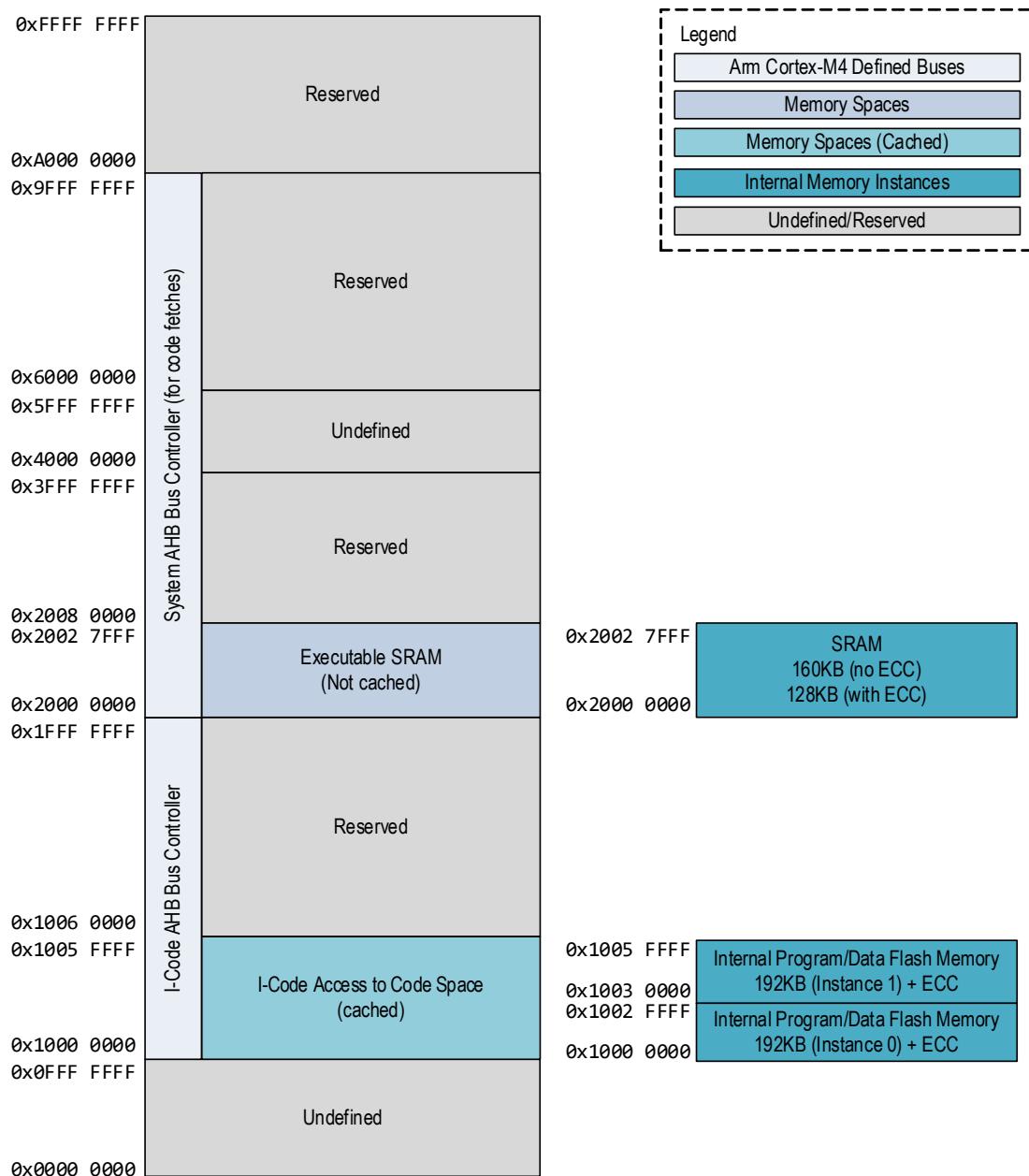

The high-level block diagram for the MAX32675C is shown in [Figure 2-1](#).

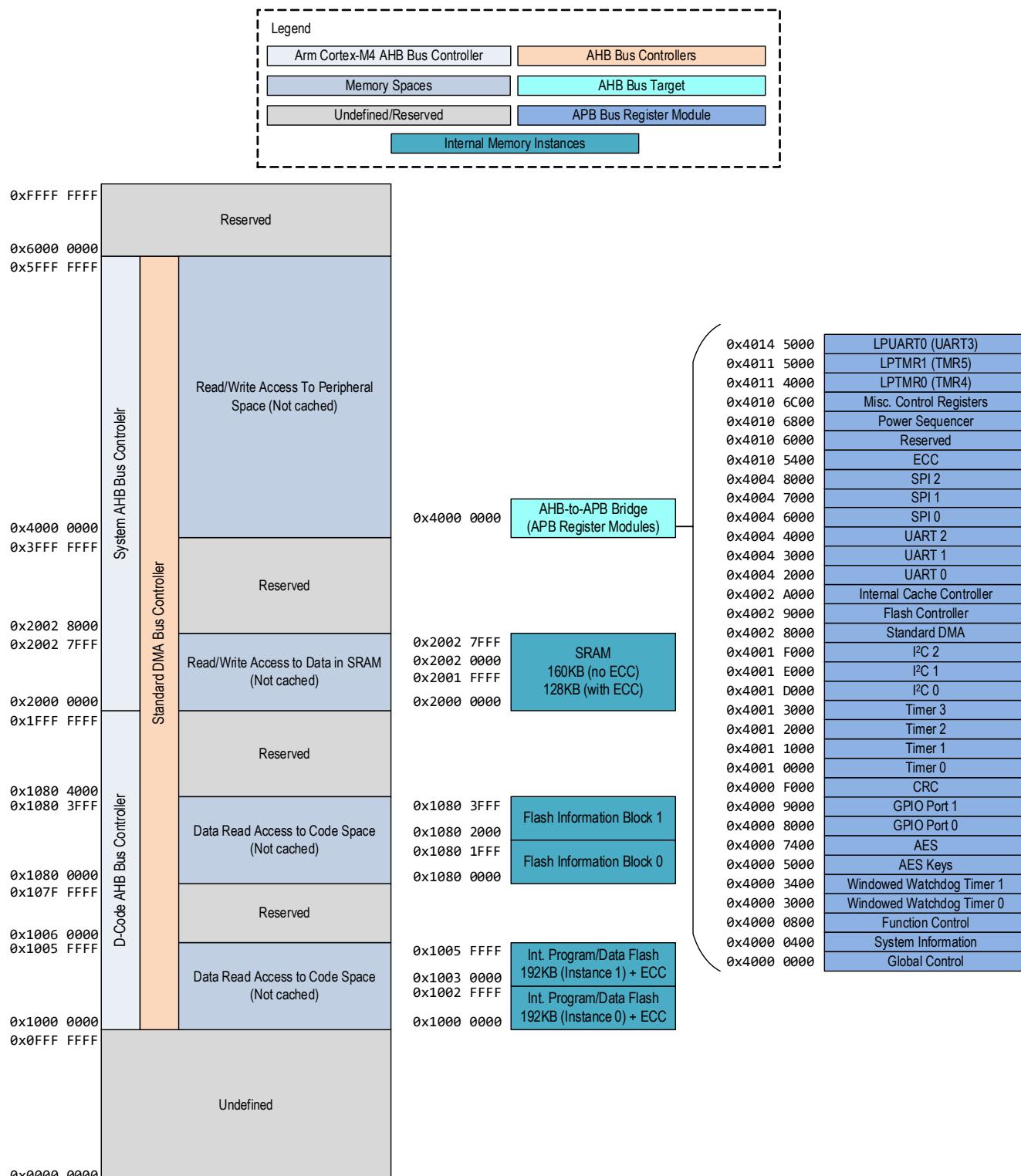
Arm is a registered trademark and registered service mark of Arm Limited.

Cortex is a registered trademark of Arm Limited.

2.1 Block Diagram

Figure 2-1: MAX32675C Block Diagram


3. Memory, Register Mapping, and Access


3.1 Memory, Register Mapping, and Access Overview

The Arm Cortex-M4 architecture defines a standard memory space for unified code and data access. This memory space is addressed in units of single bytes but is most typically accessed in 32-bit (4 byte) units. It may also be accessed, depending on the implementation, in 8-bit (1 byte) or 16-bit (2 byte) widths. The total range of the memory space is 32 bits wide (4GB addressable total), from addresses 0x0000 0000 to 0xFFFF FFFF.

However, it is important to note that the architectural definition does not require the entire 4GB memory range to be populated with addressable memory instances.

Figure 3-1: Code Memory Mapping

Figure 3-2: Data Memory Mapping

3.2 Device Memory Regions and Instances

Several standard memory regions are defined for the Arm Cortex-M4 architecture. The use of many of these is optional for the system integrator. At a minimum, the MAX32675C must contain some code and data memory for application code and variable/stack use, as well as certain components which are part of the instantiated core. This section details physical memory instances on the MAX32675C (including internal flash memory and SRAM instances) that are accessible as standalone memory regions using either the AHB or APB bus matrix. Memory areas which are only accessible via FIFO interfaces, or memory areas consisting of only a few registers for a specific peripheral, are not covered here.

3.2.1 Code Space

The code space area of memory is designed to contain the primary memory used for code execution by the device. This memory area is defined from byte address range 0x0000 0000 to 0x1FFF FFFF (0.5GB maximum). Two different standard core bus controllers are used by the Cortex-M4 core and Arm debugger to access this memory area. The I-Code AHB bus controller is used for instruction decode fetching from code memory, while the D-Code AHB bus controller is used for data fetches from code memory. This is arranged so that data fetches avoid interfering with instruction execution.

The MAX32675C code memory mapping is illustrated in [Figure 3-1](#). The code space memory area contains the main internal flash memory, which holds most of the instruction code that will be executed on the device. The internal flash memory is mapped into both code and data space from 0x1000 0000 to 0x1005 FFFF. It is partitioned as two 192KB blocks of usable flash plus extra flash storage for Error Correction Coding (ECC) check bits. This additional storage is not user accessible, even when ECC is disabled.

Note: The last page of flash (address 0x1005 E000 to 0x1005 FFFF) is reserved and cannot be used by software.

Note: ECC is enabled by default for SRAM, cache, and flash memory after a POR, system reset, watchdog reset, and exit from BACKUP and STORAGE.

This program memory area must also contain the default system vector table and the initial settings for all system exception handlers and interrupt handlers. The reset vector for the device is 0x0000 0000. After execution of ROM code that is not user accessible, execution is transferred to location 0x1000 0000.

The code space memory on the MAX32675C also contains the mapping for the flash information block, from 0x1080 0000 to 0x1080 3FFF. However, this mapping is generally only present during Analog Devices production test; it is disabled once the information block has been loaded with valid data and the info block lockout option has been set. This memory is accessible for data reads only and cannot be used for code execution. The flash information block is user read only accessible and contains the USN.

3.2.2 Instruction Cache Memory

This internal flash memory instruction cache controller (ICC) is 16,384 Bytes in size and is used to cache instructions fetched using the I-Code bus, including instructions fetched from the internal flash memory. This instruction cache controller is referred to as ICC throughout this document.

3.2.3 Information Block Flash Memory

The information block 0 is a separate flash instance of 16KB used to store trim settings (option configuration and analog trim) as well as other nonvolatile device-specific information. The information block 0 also contains the unique serial number (USN). The USN is a 104 bit field shown in [Figure 3-3](#).

Figure 3-3: USN Format

Address	Bit Position																																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0x10800000	USN bits 16 - 0																																
0x10800004	x	USN bits 47-17																															
0x10800008	USN bits 64 - 48																																
0x1080000C	x	USN bits 95 - 65																															
0x10800010	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		
	USN bits 103 - 96																																

Read the USN by reading from the addresses shown in [Figure 3-3](#).

3.2.4 SRAM Space

The SRAM area of memory is intended to contain the primary SRAM data memory of the device and is defined from byte address range 0x2000 0000 to 0x3FFF FFFF (0.5GB maximum). This memory can be used for general purpose variable and data storage, code execution, and the Arm Cortex-M4 stack.

The MAX32675C data memory mapping is illustrated in [Figure 3-2](#) and the SRAM configuration is defined in [Table 3-1](#). This memory area contains the main system SRAM. The size of the internal SRAM is 160KB when not using ECC. Its address range is 0x2000 0000 to 0x2002 7FFF. If ECC is enabled, the SRAM size decreases to 128KB. The address range with ECC enabled is 0x2000 0000 to 0x2001 FFFF.

Note: ECC is enabled by default for SRAM, cache, and flash memory after a POR, system reset, watchdog reset, and exit from BACKUP and STORAGE.

The entirety of the SRAM memory space on the MAX32675C is contained within the dedicated Arm Cortex-M4 SRAM bit-banding region from 0x2000 0000 to 0x200F FFFF (1MB maximum for bit-banding). This means that the CPU can access the entire SRAM either using standard byte/word/doubleword access or using bit-banding operations. The bit-banding mechanism allows any single bit of any given SRAM byte address location to be set, cleared, or read individually by reading from or writing to a corresponding doubleword (32-bit wide) location in the bit-banding alias area.

The alias area for the SRAM bit-banding is located beginning at 0x2200 0000 and is a total of 32MB maximum, which allows the entire 160KB bit banding area to be accessed. Each 32-bit (4 byte aligned) address location in the bit-banding alias area translates into a single bit access (read or write) in the bit-banding primary area. Reading from the location performs a single bit read, while writing either a 1 or 0 to the location performs a single bit set or clear.

Note: The Arm Cortex-M4 core translates the access in the bit-banding alias area into the appropriate read cycle (for a single bit read) or a read-modify-write cycle (for a single bit set or clear) of the bit-banding primary area. This means that bit-banding is a core function (i.e., not a function of the SRAM memory interface layer or the AHB bus layer), and thus is only applicable to accesses generated by the core itself. Reads/writes to the bit-banding alias area by other (non-Arm-core) bus controllers does not trigger a bit-banding operation and will instead result in an AHB bus error.

The SRAM area on the MAX32675C can be used to contain executable code. Code stored in the SRAM is accessed directly for execution (using the system bus) and is not cached. The SRAM is also where the Arm Cortex-M4 stack must be located, as it is the only general-purpose SRAM memory on the device. A valid stack location inside the SRAM must be set by the system exception table (which is, by default, stored at the beginning of the internal flash memory).

The MAX32675C specific AHB bus controllers can access the SRAM to use as general storage or working space.

Table 3-1: SRAM Configuration

System RAM Block #	Size	Start Address	End Address	ECC SRAM Complement
sysram0	16KB	0x2000 0000	0x2000 3FFF	sysram4
sysram1	16KB	0x2000 4000	0x2000 7FFF	sysram5
sysram2	32KB	0x2000 8000	0x2000 FFFF	sysram6

System RAM Block #	Size	Start Address	End Address	ECC SRAM Complement
sysram3	64KB	0x2001 0000	0x2001 FFFF	sysram7
sysram4	4KB	0x2002 0000	0x2002 0FFF	—
sysram5	4KB	0x2002 1000	0x2002 1FFF	—
sysram6	8KB	0x2001 2000	0x2002 3FFF	—
sysram7	16KB	0x2002 4000	0x2002 7FFF	—

3.2.5 AES Key and Working Space Memory

The AES key memory and working space for AES operations (including input and output parameters) are in a dedicated register file memory tied to the AES engine block. This AES memory is mapped into AHB space for rapid firmware access.

3.2.6 Peripheral Space

The peripheral space area of memory is intended for mapping of control registers, internal buffers/working space, and other features needed for the firmware control of non-core peripherals. It is defined from byte address range 0x4000 0000 to 0x5FFF FFFF (0.5GB maximum). On the MAX32675C, all device-specific module registers are mapped to this memory area, as well as any local memory buffers or FIFOs which are required by modules.

As with the SRAM region, there is a dedicated 1MB area at the bottom of this memory region (from 0x4000 0000 to 0x400F FFFF) that is used for bit-banding operations by the Arm core. Four-byte-aligned read/write operations in the peripheral bit-banding alias area (32MB in length, from 0x4200 0000 to 0x43FF FFFF) are translated by the core into read/mask/shift or read/modify/write operation sequences to the appropriate byte location in the bit-banding area.

Note: The bit-banding operation within peripheral memory space is, like bit-banding function in SRAM space, a core remapping function. As such, it is only applicable to operations performed directly by the Arm core. If another memory bus controller accesses the peripheral bit-banding alias region, the bit-banding remapping operation will not take place. In this case, the bit-banding alias region will appear to be a non-implemented memory area (causing an AHB bus error).

On the MAX32675C, access to the region that contains most peripheral registers (0x4000 0000 to 0x400F FFFF) goes from the AHB bus through an AHB-to-APB bridge. This allows the peripheral modules to operate on the lower power APB bus matrix. This also ensures that peripherals with slower response times do not tie up bandwidth on the AHB bus, which must necessarily have a faster response time since it handles main application instruction and data fetching.

3.2.7 External RAM Space

The external RAM space area of memory is intended for use in mapping off-chip external memory and is defined from byte address range 0x6000 0000 to 0x9FFF FFFF (1GB maximum). The MAX32675C does not implement this memory area.

3.2.8 External Device Space

The external device space area of memory is intended for use in mapping off-chip device control functions onto the AHB bus. This memory space is defined from byte address range 0xA000 0000 to 0xDFFF FFFF (1GB maximum). The MAX32675C does not implement this memory area.

3.2.9 System Area (Private Peripheral Bus)

The system area (private peripheral bus) memory space contains register areas for functions that are only accessible by the Arm core itself (and the Arm debugger, in certain instances). It is defined from byte address range 0xE000 0000 to 0xE00F FFFF. This APB bus is restricted and can only be accessed by the Arm core and core-internal functions. It cannot be accessed by other modules which implement AHB memory controllers, such as the DMA interface.

In addition to being restricted to the core, application code is only allowed to access this area when running in the privileged execution mode (as opposed to the standard user thread execution mode). This helps ensure that critical system settings controlled in this area are not altered inadvertently or by errant code that should not have access to this area.

Core functions controlled by registers mapped to this area include the SysTick timer, debug and tracing functions, the NVIC (interrupt handler) controller, and the Flash Breakpoint controller.

3.2.10 System Area (Vendor Defined)

The system area (vendor defined) memory space is reserved for vendor (system integrator) specific functions that are not handled by another memory area. It is defined from byte address range 0xE010 0000 to 0xFFFF FFFF. The MAX32675C does not implement this memory region.

3.3 AHB Interfaces

This section details memory accessibility on the AHB and the organization of AHB controller and target instances.

3.3.1 Core AHB Interfaces

3.3.1.1 I-Code

This AHB controller is used by the Arm core for instruction fetching from memory instances located in code space from byte addresses 0x0000 0000 to 0x1FFF FFFF. This bus controller is used to fetch instructions from the internal flash memory.

Instructions fetched by this bus controller are returned by the instruction cache, which in turn triggers a cache line fill cycle to fetch instructions from the internal flash memory when a cache miss occurs.

3.3.1.2 D-Code

This AHB controller is used by the Arm core for data fetches from memory instances located in code space from byte addresses 0x0000 0000 to 0x1FFF FFFF. This bus controller has access to the internal flash memory and the information block.

3.3.1.3 System

This AHB controller is used by the Arm core for all instruction fetches and data read and write operations involving the SRAM data cache. The APB mapped peripherals (through the AHB-to-APB bridge) and AHB mapped peripheral and memory areas are also accessed using this bus controller.

3.3.2 AHB Controller

3.3.2.1 Standard DMA

The standard DMA bus controller has access to all off-core memory areas accessible by the system bus. It does not have access to the Arm Private Peripheral Bus area.

3.4 Peripheral Register Map

3.4.1 APB Peripheral Base Address Map

Table 3-2 contains the base address for each of the APB mapped peripherals. The base address for a given peripheral is the start of the register map for the peripheral. Thus, for a peripheral, the address for a register within the peripheral is defined as the APB peripheral base address plus the register's offset.

Table 3-2: APB Peripheral Base Address Map

Peripheral Register Name	Register Prefix	APB Base Address	APB End Address
Global Control	GCR_	0x4000 0000	0x4000 03FF
System Interface	SIR_	0x4000 0400	0x4000 07FF
Function Control	FCR_	0x4000 0800	0x4000 0BFF
Watchdog Timer 0	WDTO_	0x4000 3000	0x4000 33FF
Watchdog Timer 1	WDT1_	0x4000 3400	0x4000 37FF

Peripheral Register Name	Register Prefix	APB Base Address	APB End Address
AES Keys	AES_KEYS_	0x4000 5000	0x4000 53FF
AES	AES_	0x4000 7400	0x4000 77FF
GPIO Port 0	GPIO0_	0x4000 8000	0x4000 8FFF
GPIO Port 1	GPIO1_	0x4000 9000	0x4000 9FFF
CRC	CRC_	0x4000 F000	0x4000 FFFF
Timer 0	TMRO_	0x4001 0000	0x4001 0FFF
Timer 1	TMR1_	0x4001 1000	0x4001 1FFF
Timer 2	TMR2_	0x4001 2000	0x4001 2FFF
Timer 3	TMR3_	0x4001 3000	0x4001 3FFF
I ² C 0	I2C0_	0x4001 D000	0x4001 DFFF
I ² C 1	I2C1_	0x4001 E000	0x4001 EFFF
I ² C 2	I2C2_	0x4001 F000	0x4001 FFFF
Standard DMA	DMA_	0x4002 8000	0x4002 8FFF
Flash Controller 0	FLC0_	0x4002 9000	0x4002 93FF
Internal-Cache Controller	ICC_	0x4002 A000	0x4002 A3FF
UART 0	UART0_	0x4004 2000	0x4004 2FFF
UART 1	UART1_	0x4004 3000	0x4004 3FFF
UART 2	UART2_	0x4004 4000	0x4004 4FFF
SPI 0	SPI0_	0x4004 6000	0x4004 6FFF
SPI 1	SPI1_	0x4004 7000	0x4004 7FFF
SPI 2	SPI2_	0x4004 8000	0x4004 8FFF
ECC	ECC_	0x4010 5400	0x4010 57FF
Power Sequencer	PWRSEQ_	0x4010 6800	0x4010 6BFF
Miscellaneous Control	MCR_	0x4010 6C00	0x4010 6FFF
Timer 4 (Low-Power Timer 0)	TMR4_	0x4011 4000	0x4011 4FFF
Timer 5 (Low-Power Timer 1)	TMR5_	0x4011 5000	0x4011 5FFF
UART 3 (Low-Power UART 0)	UART3_	0x4014 5000	0x4014 5FFF

3.5 Error Correction Coding (ECC) Module

This device features an ECC module which helps ensures data integrity by detecting and correcting bit corruption of memory arrays. More specific, this feature is Single Error Correcting, Double Error Detecting (SEC-DED). It corrects any single bit flip, detects 2-bit errors, and features a transparent zero wait state operation for reads.

The ECC works by creating check bits for all data written to memory. These check bits are then stored along with the data. During a read, both the data and check bits are used to determine if one or more bits have become corrupt. If a single bit has been corrupted this can be corrected. If two bits have been corrupted, it will be detected, but not corrected.

If only one bit is determined to be corrupt, reads will contain the “corrected” value. Reading memory does not correct the errored value stored at the read memory location. It is up to the application firmware to determine the appropriate time and method to write the correct data to memory. It is strongly recommended that the software corrects the memory as soon as possible to minimize the chance of a second bit from becoming corrupt, resulting in data loss. Since ECC error checking only occurs during a “read” operation, it is recommended that the application periodically “reads” critical memory so that errors can be identified and corrected.

Note: An ECC error occurs when reading from blank/erased flash memory. Until the flash is programmed with valid data, the ECC check bits are not set.

Note: ECC is enabled by default for SRAM, cache, and flash memory after a POR, system reset, watchdog reset, and exit from BACKUP and STORAGE.

3.5.1 SRAM

To integrate the ECC SEC-DED module into a RAM, there must be a secondary RAM instance to store the check bits. In the case of a 32-bit wide RAM, 7 check bits are needed. The secondary check bit RAM can hold the 7 check bits in each byte, therefore needs $\frac{1}{4}$ the number of words as the RAM itself. Also, the address sent to the check bit RAM is divided by 4 to map the 32-bit data words to 8-bit check bit addresses.

For example, a 32-bit by 8192 word RAM would need a 32-bit by 2048 word sized secondary RAM instance. When ECC is enabled, each system RAM module requires an appropriately sized secondary RAM. See [Table 3-1](#) for the ECC SRAM complement for each of the primary system RAM.

Note: ECC is enabled by default for SRAM, cache, and flash memory after a POR, system reset, watchdog reset, and exit from BACKUP and STORAGE.

3.5.2 Flash

The flash implements the ECC SEC-DED by including an additional 9 check bits for every 128 data bits. These additional bits do not appear in the device's memory map making the additional bits inaccessible by the user. Reads from and writes to the flash memory behave the same whether ECC is enabled or not. However, it is recommended to always write the flash in 128-bit blocks when ECC is enabled. With ECC enabled, writing 32 bits to the flash will set the check bits for the full 128-bit word. Since the check bits are also stored in flash, another 32-bit write into the same 128-bit word will fail because the device will be unable to update the check bits.

Note: An ECC error occurs when reading from blank/erased flash memory. Until the flash is programmed with valid data, the ECC check bits are not set.

Note: ECC is enabled by default for SRAM, cache, and flash memory after a POR, system reset, watchdog reset, and exit from BACKUP and STORAGE.

3.5.3 Cache

Any type of ECC error (single or double) is treated as a cache miss. There are separate ECC check bits for both the data RAM and tag RAM inside the cache.

Note: ECC is enabled by default for SRAM, cache, and flash memory after a POR, system reset, watchdog reset, and exit from BACKUP and STORAGE.

3.5.4 Limitations

Any read from non-initialized memory could trigger an ECC error since the random check bits will most likely not match the random data bits. Writing the memory to all zeroes at bootup can prevent this at the expense of the time required.

4. System, Power, Clocks, Reset

Different peripherals and subsystems use several clocks. These clocks are highly configurable by software, allowing developers to select the combination of application performance and power savings required for the target systems. In addition, support for selectable core operating voltage is provided, and the internal primary oscillator (IPO) frequency is scaled based on the specific core operating voltage range selected.

The selected system oscillator (SYS_OSC) is the clock source for most internal blocks. Select SYS_OSC from the following clock sources:

- 12MHz Internal Primary Oscillator (IPO)
- 7.3728MHz Internal Baud Rate Oscillator (IBRO)
- 115kHz Internal Nanoring Oscillator (INRO)
- 16MHz External RF Crystal Oscillator (ERFO)
- Up to 8MHz External Square-Wave Clock (EXT_CLK1)

4.1 Oscillator Sources and Clock Switching

The selected SYS_OSC is the input to the system oscillator prescaler to generate the system clock (SYS_CLK). The system oscillator prescaler divides SYS_OSC by a prescaler using the [GCR_CLKCTRL.sysclk_div](#) field as shown in [Equation 4-1](#).

Equation 4-1: System Clock Scaling

$$SYS_CLK = \frac{SYS_OSC}{2^{GCR_CLKCTRL.sysclk_div}}$$

Note: GCR_CLKCTRL.sysclk_div is selectable from 0 to 7, resulting in divisors of 1, 2, 4, 8, 16, 32, 64, or 128.

SYS_CLK drives the Arm Cortex-M4 with FPU core and is used to generate the following internal clocks as shown below:

Equation 4-2: AHB Clock

$$HCLK = SYS_CLK$$

Equation 4-3: APB Clock

$$PCLK = SYS_CLK/2$$

Equation 4-4: AoD Clock (AOD_CLK)

$$AOD_CLK = \frac{PCLK}{4 \times 2^{GCR_PCLKDIV.aon_clkdiv}}$$

Note: GCR_PCLKDIV.aon_clkdiv is selectable from 0 to 3 for divisors of 1, 2, 4, or 8.

All oscillators are reset to their POR reset default state during a POR, system reset, or watchdog reset. Oscillator settings are not reset during a soft reset or peripheral reset. [Table 4-1](#) shows each oscillator's enabled state for each type of reset source. [Table 4-2](#) details each reset source's effect on the system clock selection and the system clock prescaler settings.

CAUTION: When switching the SYS_OSC or modifying the SYS_OSC prescaler ([GCR_CLKCTRL.sysclk_div](#)), any device peripherals using SYS_CLK, APB clock, or AHB clock become unstable. The software should understand that all peripherals should be disabled before switching SYS_OSC or touching the SYS_OSC prescaler.

Table 4-1: Reset Sources and Effect on Oscillator Status

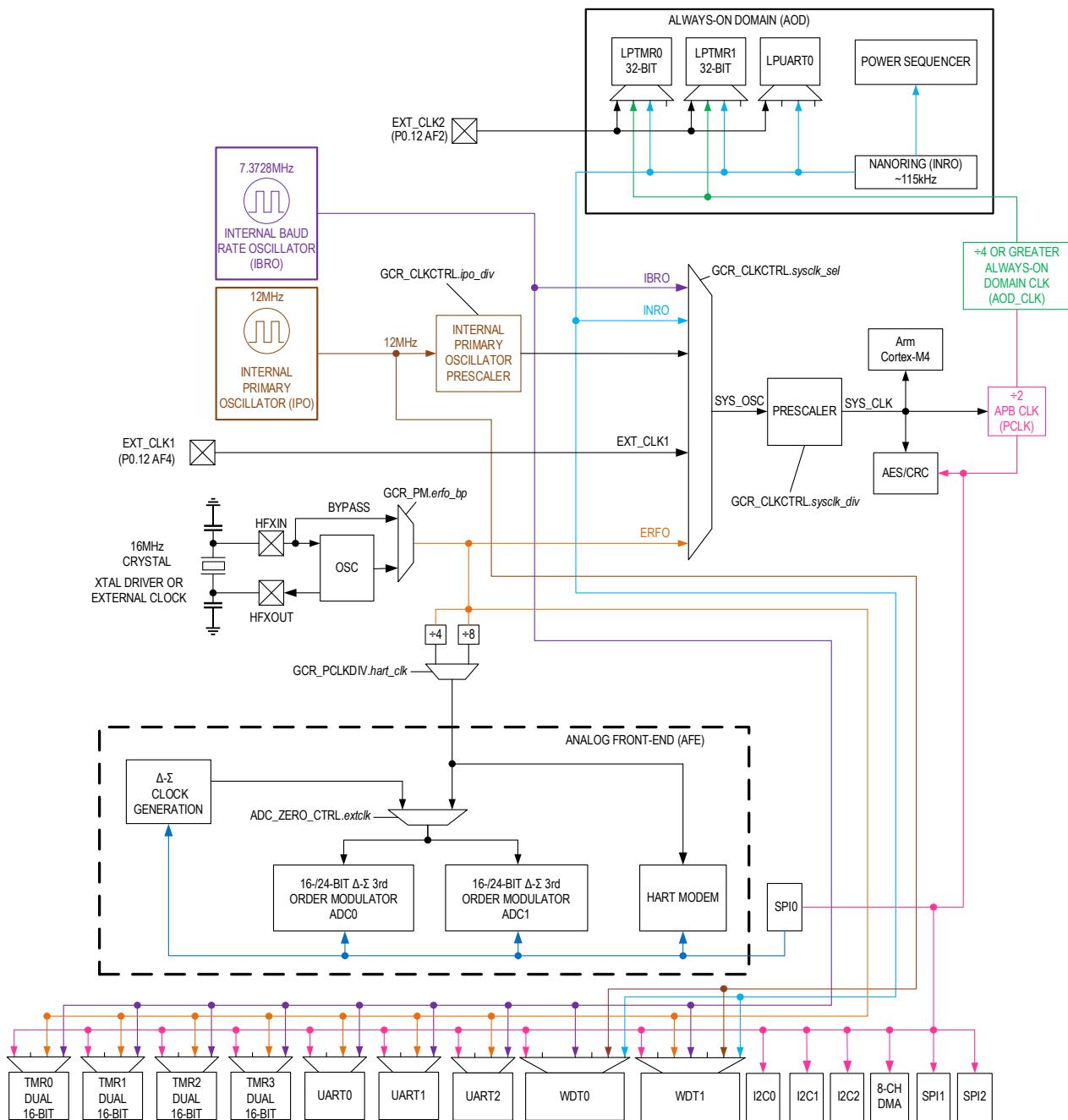

Oscillator	Reset Source				
	POR	System	Watchdog	Soft	Peripheral
IPO	Off	Off	Off	Retains State	Retains State
IBRO	On	On	On	Retains State	Retains State
INRO	Enabled	Enabled	Enabled	Enabled	Enabled

Table 4-2: Reset Sources and Effect on System Oscillator Selection and Prescaler

Clock Field	Reset Source				
	POR	System	Watchdog	Soft	Peripheral
System Oscillator <i>GCR_CLKCTRL.sysclk_sel</i>	5	5	5	Retains State	Retains State
System Clock Prescaler <i>GCR_CLKCTRL.sysclk_div</i>	0	0	0	Retains State	Retains State

Figure 4-1 shows a high-level diagram of the MAX32675C clock tree.

Figure 4-1: MAX32675C Clock Block Diagram

4.1.1 *Oscillator Implementation*

Following a POR or a system reset, the SYS_OSC defaults to the IBRO and the INRO is also enabled. Before using any oscillator, the desired oscillator must first be enabled by setting the oscillator's enable bit in the [GCR_CLKCTRL](#) register. Once an oscillator's enable bit is set, the oscillator's ready bit must read 1 before attempting to use the oscillator as a system oscillator source. The oscillator ready status flags are contained in the [GCR_CLKCTRL](#) register.

Once the corresponding oscillator ready bit is set, the oscillator can then be selected as SYS_OSC by configuring the clock source select field ([GCR_CLKCTRL.sysclk_sel](#)).

Anytime software changes SYS_OSC by changing [GCR_CLKCTRL.sysclk_sel](#), the clock ready bit [GCR_CLKCTRL.sysclk_rdy](#) is automatically cleared to indicate that a SYS_OSC switchover is in progress. When the switchover is complete, [GCR_CLKCTRL.sysclk_rdy](#) is set to 1 by hardware indicating the oscillator selected is ready for use. Immediately before entering any low-power mode, the application must enable any oscillator needed during the low-power mode.

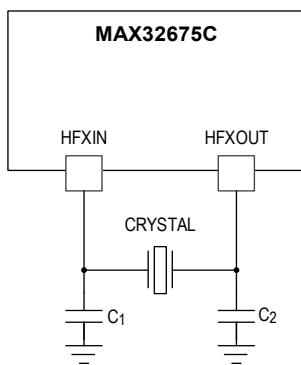
4.1.2 *12MHz Internal Primary Oscillator (IPO)*

This oscillator can be selected as SYS_OSC. The IPO is the fastest oscillator and draws the most power.

The IPO can be selected as SYS_OSC using the following steps:

1. Enable the IPO by setting [GCR_CLKCTRL.ipo_en](#) to 1.
2. Wait until the [GCR_CLKCTRL.ipo_rdy](#) field reads 1, indicating the IPO is operating.
3. Set [GCR_CLKCTRL.sysclk_sel](#) to 4.
4. Wait until the [GCR_CLKCTRL.sysclk_rdy](#) field reads 1. The IPO is now operating as the SYS_OSC.

4.1.3 *16MHz External Radio Frequency Oscillator (ERFO)*


This oscillator can be selected as SYS_OSC. It is important to use the correct capacitor values on the PCB when connecting the crystal as described in [Calculating the Crystal Load Capacitor](#). This oscillator is disabled by default at power-up.

Follow the steps below to use the ERFO as the system oscillator.

1. Enable the ERFO by setting [GCR_CLKCTRL.erfo_en](#) to 1.
2. Wait until [GCR_CLKCTRL.erfo_rdy](#) is set, indicating the ERFO is operating.
3. Set [GCR_CLKCTRL.sysclk_sel](#) to 2 to select the ERFO as the SYS_OSC.
4. Wait until [GCR_CLKCTRL.sysclk_rdy](#) is set to 1.

4.1.3.1 *Calculating the Crystal Load Capacitor*

Figure 4-2: ERFO Load Capacitors

Equation 4-5: Load Capacitance Calculation

$$C_L = \frac{C1 \times C2}{(C1 + C2)} + C_{STRAY}$$

where:

C_L = the crystal capacitance

C_{STRAY} = the capacitance of the pins and the parasitics of the board.

Calculate the values of C_1 and C_2 using the following steps:

1. The crystal load, C_L , as specified in the device data sheet electrical characteristics table, must be 12pF. See the spec External RF Oscillator in the data sheet. Therefore, the total capacitance seen by the crystal must equal C_L .
2. Assume $C_1 = C_2$, [Equation 4-5](#) can be rewritten as:

$$C_1 = C_2 = 2 \times (C_L - C_{STRAY})$$
3. The device pin capacitance of the HFXOUT and HFXIN pins, respectively is 4pF each as given in the device data sheet parameter C_{IO} . Assume the circuit board stray capacitance is 0.5pF, resulting in $C_{STRAY} = 4.5\text{pF}$.
4. Solve for C_1 and C_2 :

$$C_1 = C_2 = 2 \times (12\text{pF} - 4.5\text{pF}) = 15\text{pF}$$

Checking the clock frequency accuracy on each new board design using a frequency counter is recommended. Measure the output frequency by toggling a GPIO pin with the ERFO set as the system oscillator. Adjust the load capacitance as required to adjust the crystal frequency.

4.1.4 7.3728MHz Internal Baud Rate Oscillator (IBRO)

The IBRO is a low-power internal oscillator that is the default SYS_OSC after a POR to reduce startup current. This clock can also optionally be used as a dedicated baud rate clock for the UARTs. The IBRO is useful if the SYS_OSC selected does not allow the targeted UART baud rate.

4.1.5 115kHz Ultra-Low-Power Internal Nanoring Oscillator (INRO)

The INRO is a low-power internal oscillator that can be selected as the SYS_OSC. This oscillator is enabled at power-up and cannot be disabled by software. The INRO is not an accurate clock source and may vary by more than $\pm 50\%$.

4.2 Operating Modes

The device provides five operating modes, four of which are defined as low-power modes:

- *ACTIVE*
- *Low-Power Modes*
 - ◆ *SLEEP*
 - ◆ *DEEPSLEEP*
 - ◆ *BACKUP*
 - ◆ *STORAGE*

Any low-power state can wake up to *ACTIVE* by a wake-up event shown in [Table 4-3](#).

Table 4-3: Wake-Up Sources

Low Power Operating Mode	Wake-Up Source
<i>SLEEP</i>	Interrupts (GPIO or any active peripheral), RSTN assertion.
<i>DEEPSLEEP</i>	Interrupts (GPIO), RSTN assertion, LPTMR0/1, and LPUART0.
<i>BACKUP</i>	Interrupts (GPIO), RSTN assertion, LPTMR0/1, and LPUART0..
<i>STORAGE</i>	Interrupts (GPIO), RSTN assertion.

4.2.1 ACTIVE

ACTIVE is the highest performance mode. All internal clocks, registers, memory, and peripherals are enabled. The CPU is running and executing software. All oscillators are available.

Dynamic clocking allows the software to selectively enable or disable clocks and power to individual peripherals, providing the optimal mix of high-performance and power conservation.

4.2.2 Low-Power Modes

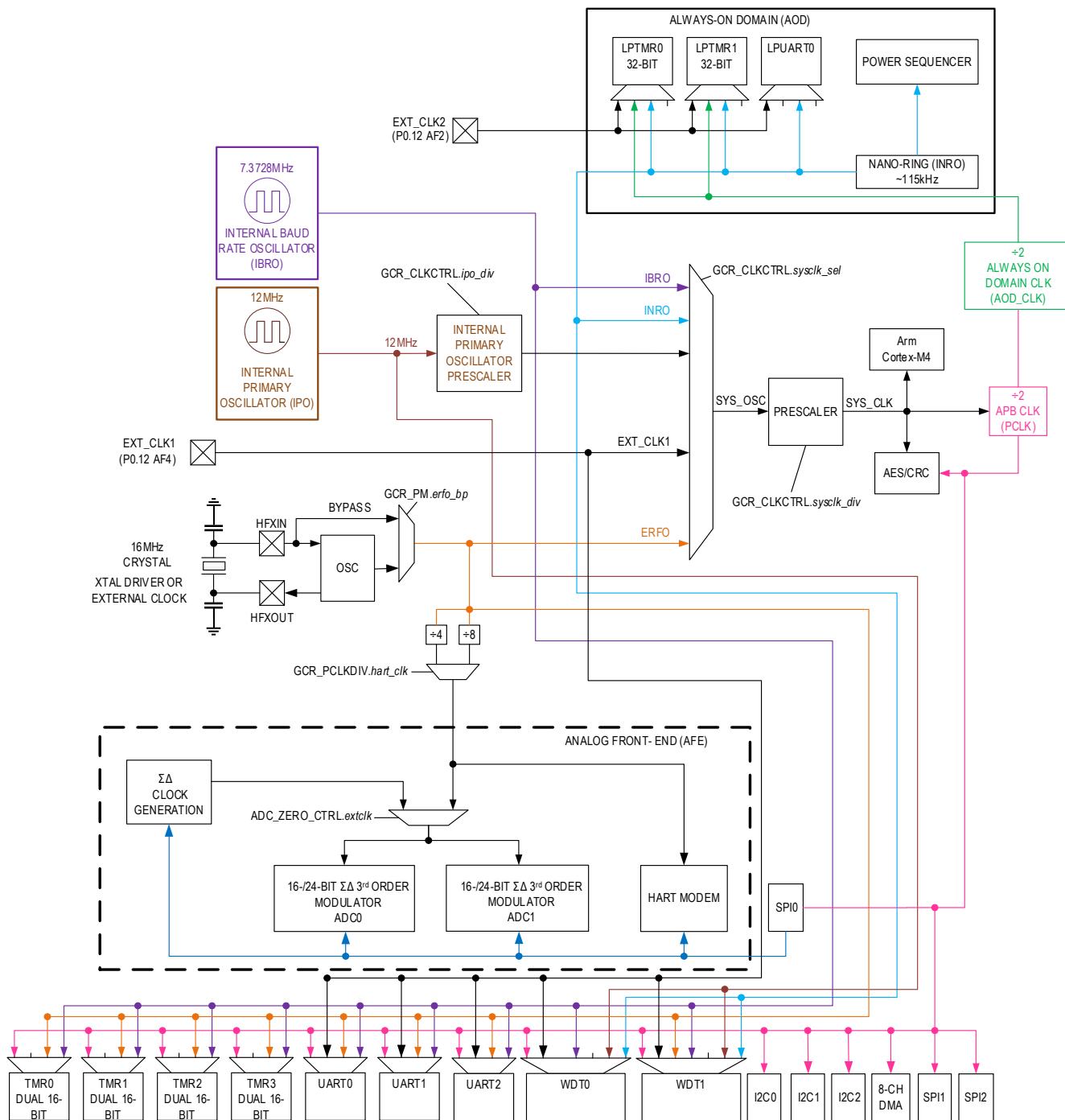
CAUTION: Software must ensure there are no flash writes or erase operations in progress before entering a low-power mode.

4.2.3 SLEEP

SLEEP is a low-power mode that suspends the CPU with a fast wake-up time to *ACTIVE*. It is like *ACTIVE*, except the CPU clock is disabled, which prevents the CPU from executing code. All oscillators remain active if enabled, and the always-on domain (AoD) and RAM retention are enabled.

The device returns to *ACTIVE* from any internal or external interrupt. The device status is as follows:

- The CM4 is sleeping.
- Standard DMA is available for use.
- All enabled peripherals are on unless explicitly disabled before entering *SLEEP*.


4.2.3.1 Entering SLEEP

Place the CM4 in *SLEEP* by performing the following steps:

1. Configure any desired wake-up functions. See [Table 4-3](#) for possible wake-up sources.
2. Clear the wake-up status registers by writing 0xFFFF FFFF to each of the following registers:
 - a. [*PWRSEQ_LPWKST0*](#)
 - b. [*PWRSEQ_LPWKST1*](#)
3. Clear the low-power peripheral and *BACKUP* wake-up status flags by writing 0x0001 001F to the [*PWRSEQ_LPPWKST*](#) register.
4. Set the [*PWRSEQ_LPCN.vcore_det_bypass*](#) bit to 1.
5. Set SCR.sleepdeep to 0.
6. Perform a wait for interrupt (WFI) or wait for event (WFE) instruction.

[Table 4-7](#) and [Table 4-9](#) show the effects that *SLEEP* has on the various clock sources. [Figure 4-3](#) shows the clocks available and blocks disabled during *SLEEP*.

Figure 4-3: MAX32675C SLEEP Clock Control

4.2.4 DEEPSLEEP

This mode places the CPU in a static, low-power state. All internal clocks, except the INRO, are gated off. SYS_OSC is gated off, so the two primary bus clocks PCLK and HCLK, are inactive. The CPU state is retained. The watchdog timers are inactive in this mode.

The low-power peripherals LPUART0, LPTMR0, and LPTMR1 can be enabled to operate in this mode. The clock source for these peripherals is selectable, but because the primary bus clocks PCLK and HCLK are gated off, the clock source choice is limited. See [Table 10-1](#) and [Table 17-1](#) for the available clock sources. These three low-power peripherals are disabled/enabled before entering DEEPSLEEP mode by setting/clearing the associated bit in the [MCR_CLKDIS](#) register, as shown in [Table 4-4](#).

Table 4-4: DEEPSLEEP Low-Power Peripheral Control Truth Table

Register Settings			Configuration
MCR_CLKDIS.lpuarto	MCR_CLKDIS.lptmr1	MCR_CLKDIS.lptmr0	
0	0	0	LPUART0, LPTMR1, and LPTMR0 enabled
x	x	1	LPUART0, LPTMR1, and LPTMR0 disabled
x	1	x	LPUART0, LPTMR1, and LPTMR0 disabled
1	x	x	LPUART0, LPTMR1, and LPTMR0 disabled

Note: The setting of any of the [MCR_CLKDIS](#) register bits before entering DEEPSLEEP/BACKUP causes all three of these low-power peripherals to be disabled.

Note: If LPUART0, LPTMR0, and LPTMR1 are enabled, all the outputs associated with these three peripherals are no longer be available as GPIO. The GPIO pins affected are P0.6, P0.7, P0.22, P0.23, P0.24, P0.25, P0.26, and P0.27.

All internal register contents and all RAM contents are preserved. The GPIO pins retain their state in this mode.

[Table 4-7](#) and [Table 4-9](#) show the effects that DEEPSLEEP has on the various clock sources.

[Figure 4-4](#) shows the clock control during DEEPSLEEP.

4.2.4.1 Entering DEEPSLEEP

Place the device in DEEPSLEEP by performing the following steps:

1. Configure any desired wake-up functions. See [Table 4-3](#) for possible wake-up sources.
2. Clear the wake-up status registers by writing 0xFFFF FFFF to each of the following registers:
 - a. [PWRSEQ_LPWKST0](#)
 - b. [PWRSEQ_LPWKST1](#)
3. Clear the low-power peripheral wake-up flags and the backup wake-up status flag by writing 0x0001 001F to the [PWRSEQ_LPPWKST](#) register.
4. Set the [PWRSEQ_LPCN.vcore_det_bypass](#) bit to 1.
5. Set SCR.sleepdeep bit to 1.
6. Perform a WFI or WFE instruction.

4.2.5 BACKUP

This mode maintains the system RAM contents. The device status in *BACKUP* is as follows:

- The CM4 is powered off.
- *sysram0* through *sysram3* can be independently configured to be state retained, as shown in *Table 4-5*.
- The low-power peripherals (LPUART0, LPUART1, and LPTMR0) can be configured for operation and used as a wake-up source.
- All other peripherals are powered off.
- All power sequencer registers retain their state, including the *PWRSEQ_GPO* and *PWRSEQ_GP1* registers.
- The following oscillators are powered down:
 - ◆ IPO
 - ◆ ISO
 - ◆ IBRO
 - ◆ ERFO
- INRO is on.

Table 4-5: RAM Retention by Address Range in BACKUP, System Reset, Watchdog Reset, and External Reset

System RAM Block	RAM Retention Enable Field	Address Range Retention	Amount of RAM Retained
<i>sysram0</i>	<i>PWRSEQ_LPCN.ram0ret_en</i>	N/A	0KB
<i>sysram1</i>	<i>PWRSEQ_LPCN.ram1ret_en</i>	0x2000 4000 – 0x2000 7FFF	16KB
<i>sysram2</i>	<i>PWRSEQ_LPCN.ram2ret_en</i>	0x2000 8000 – 0x2000 FFFF	32KB
<i>sysram3</i>	<i>PWRSEQ_LPCN.ram3ret_en</i>	0x2001 0000 – 0x2001 FFFF	64KB
<i>sysram4</i>	<i>PWRSEQ_LPCN.ram0ret_en</i>	0x2002 0000 – 0x2002 0FFF	4KB
<i>sysram5</i>	<i>PWRSEQ_LPCN.ram1ret_en</i>	0x2002 1000 – 0x2002 1FFF	4KB
<i>sysram6</i>	<i>PWRSEQ_LPCN.ram2ret_en</i>	0x2001 2000 – 0x2002 3FFF	8KB
<i>sysram7</i>	<i>PWRSEQ_LPCN.ram2ret_en</i>	0x2002 4000 – 0x2002 7FFF	16KB

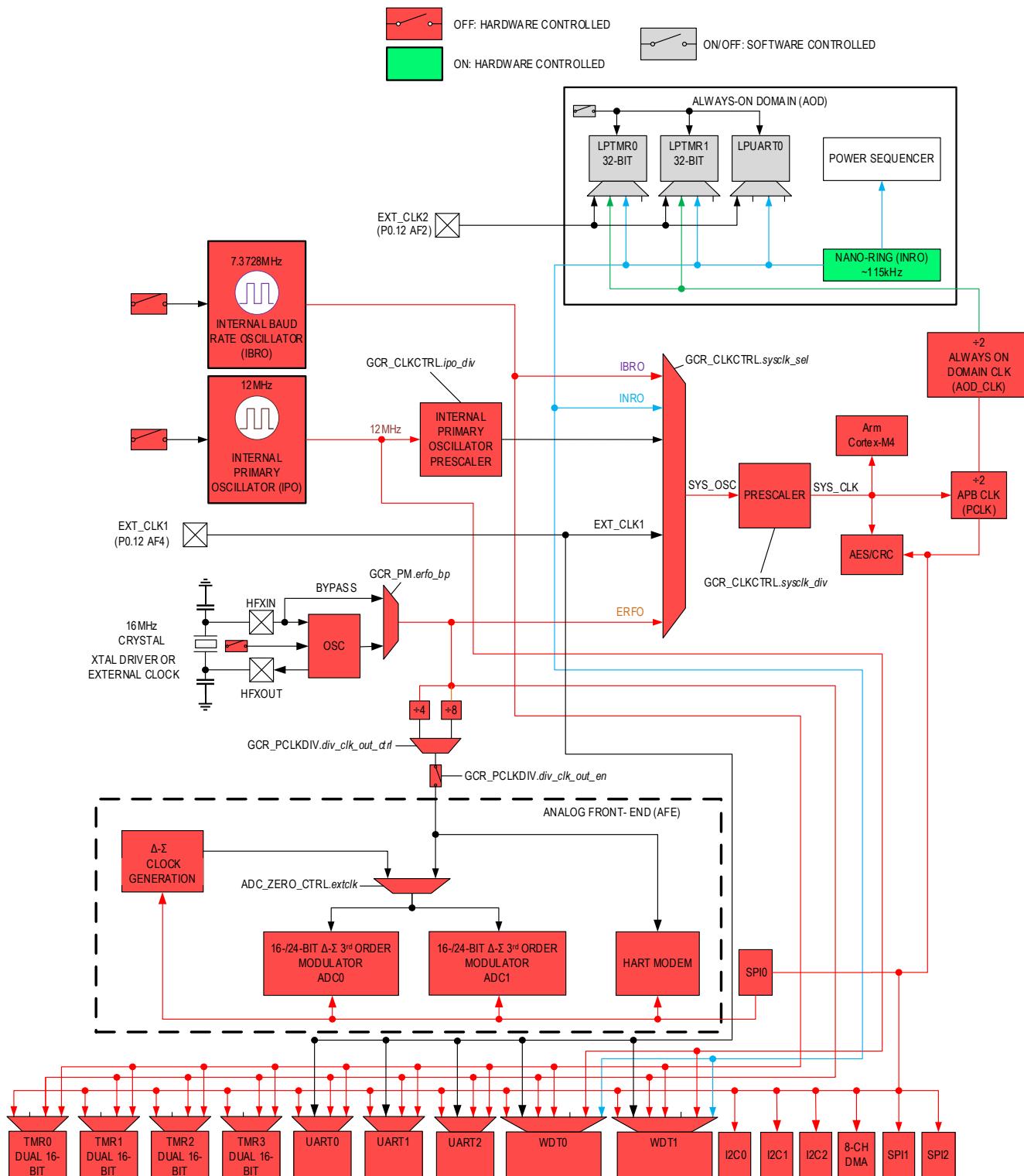
Note: On parts with SCPBL, invoking the SCPBL invalidates all RAM contents.

This mode places the CPU in a static, low-power state. SYS_OSC is gated off, so PCLK and HCLK are inactive. The CPU state is not maintained.

The low-power peripherals LPUART0, LPTMR0, and LPTMR1 can be enabled to operate in this mode. The clock source for these peripherals is selectable, but because the primary bus clocks PCLK and HCLK are gated off, the clock source choice is limited to the INRO. These three low-power peripherals are disabled/enabled before entering *BACKUP* by setting/clearing the associated bit in the *MCR_CLKDIS* register, as shown in *Table 4-4*.

The AoD and RAM retention can optionally be set to automatically disable (and clear) themselves when entering this mode. RAM can be optionally retained. The amount of RAM retained is controlled by setting the *PWRSEQ_LPCN.ram3ret_en*, *PWRSEQ_LPCN.ram2ret_en*, *PWRSEQ_LPCN.ram1ret_en*, and *PWRSEQ_LPCN.ram0ret_en* register bits.

Table 4-7 and *Table 4-9* show *BACKUP*'s effects on the various clock sources.


Figure 4-4 shows the clock control during *BACKUP*.

4.2.5.1 *Entering BACKUP*

Place the device in *BACKUP* by performing the following steps:

1. Configure any desired wake-up functions. See [Table 4-3](#) for possible wake-up sources.
2. Configure the desired RAM retention. See [Table 4-5](#) for details.
3. Clear the wake-up status registers by writing 0xFFFF FFFF to each of the following registers:
 - a. [PWRSEQ_LPWKST0](#)
 - b. [PWRSEQ_LPWKST1](#)
4. Clear the low-power peripheral wake-up flags and backup wake-up status flag by writing 0x0001 001F to the [PWRSEQ_LPPWKST](#) register.
5. Set the [PWRSEQ_LPCN.vcore_det_bypass](#) bit to 1.
6. Set [GCR_PM.mode](#) to 4 (*BACKUP*).
7. When the device wakes from *BACKUP*, it resumes operation from the reset vector.

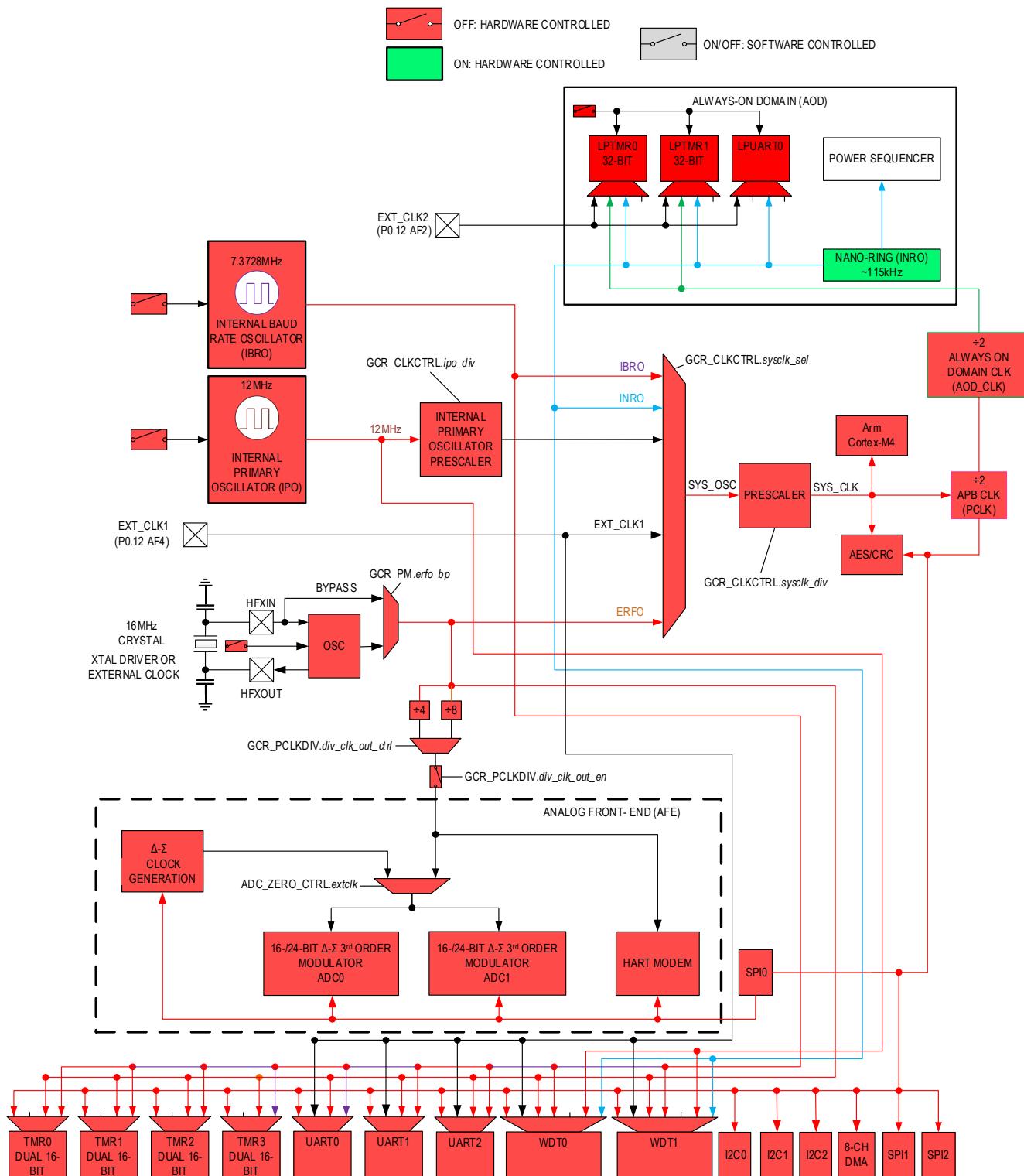
Figure 4-4: MAX32675C DEEPSLEEP and BACKUP Clock Control

4.2.6 STORAGE

This mode is similar to *BACKUP* with the following exceptions:

- No SRAM can be retained.
- LPUART0, LPTMRO, and LPTMR1 are disabled.

Table 4-7 and *Table 4-9* show the effects that *STORAGE* has on the various clock sources.


Figure 4-5 shows the clock control during *STORAGE*.

4.2.6.1 Entering STORAGE

Place the device in *STORAGE* by performing the following steps:

1. Configure any desired wake-up functions. See *Table 4-3* for possible wake-up sources.
2. Clear the wake-up status registers by writing 0xFFFF FFFF to each of the following registers:
 - a. *PWRSEQ_LPWKST0*
 - b. *PWRSEQ_LPWKST1*
3. Clear the low-power peripheral wake-up flags and the backup wake-up status flag by writing 0x0001 001F to the *PWRSEQ_LPPWKST* register.
4. Set the *PWRSEQ_LPCN.vcore_det_bypass* bit to 1.
5. Set the *PWRSEQ_LPCN.storage_en* bit to 1.
6. Set *GCR_PM.mode* to 4 (*BACKUP*).
7. When the device wakes from *STORAGE*, it resumes operation from the reset vector.

Figure 4-5: MAX32675C STORAGE Clock Control

4.3 Shutdown State

Shutdown state is not a low-power mode. Instead, it is intended to zeroize all volatile memory in the device.

In the shutdown state, internal power, including the AoD, is gated off. There is no data or register retention. Power is removed from the RAM, effectively zeroizing the RAM contents in this mode. All wake-up sources, wake-up logic, and interrupts are disabled. The device only exits this state through a POR, which reinitializes the device.

Setting [*GCR_PM.mode*](#) to 7 results in the device immediately entering shutdown state.

4.4 Device Resets

Four device resets are available:

- Peripheral Reset
- Soft Reset
- System Reset (includes external and watchdog resets)
- Power-On Reset (POR)

On completion of any reset cycle, HCLK and PCLK are operational, the CPU core receives clocks and power, and the device is in *ACTIVE*. Program execution begins at the reset vector address on completion of a system reset or POR. Contents of the AoD are reset only upon power cycling V_{DD} and V_{CORE} . Soft reset and peripheral reset do not reset the Arm core and do not reset the program counter.

Each of the on-chip peripherals can also be reset to their POR default state using the two reset registers, [*GCR_RST0*](#) and [*GCR_RST1*](#).

Table 4-6, *Table 4-7*, *Table 4-8*, and *Table 4-9* show the effects on the system of the four reset types and the five power modes.

Table 4-6: MAX32675C Clock Source and Global Control Register Reset Effects

	Peripheral Reset ⁴	Soft Reset ⁴	System Reset ⁴	POR
GCR	-	-	Reset	Reset
INRO	On	On	On	On
IBRO	-	-	On	On
ERFO	-	-	Off	Off
IPO	-	-	Off	Off
SYS_CLK	On	On	On ²	On ²
CPU Clock	On	On	On	On

Table key:

SW = Controlled by software
 On = Enabled by hardware (Cannot be disabled)
 Off = Disabled by hardware (Cannot be enabled)
 - = No Effect

R = Restored to previous ACTIVE setting when exiting DEEPSLEEP; restored to system reset state when exiting BACKUP or STORAGE.

1: AoD is only reset upon power cycling V_{DD} and V_{CORE}.
 2: On a system reset or POR, the IBRO is automatically selected as the SYS_OSC.
 3: A system reset occurs when exiting BACKUP or STORAGE. The system reset does not affect the low-power peripherals.
 4: Peripheral, soft, and system resets are initiated by software through the [GCR_RST0](#) register. System reset can also be triggered by the RSTN device pin or watchdog reset.

Table 4-7: MAX32675C Clock Source and Global Control Register Low-Power Mode Effects

	ACTIVE	SLEEP	DEEPSLEEP	BACKUP ³	STORAGE
GCR	R	-	-	-	-
INRO	On	On	On	On	On
IBRO	R	-	Off	Off	Off
ERFO	R	-	Off	Off	Off
IPO	R	-	Off	Off	Off
SYS_CLK	On	On	Off	Off	Off
CPU Clock	On	Off	Off	Off	Off

Table key:

SW = Controlled by software
 On = Enabled by hardware (Cannot be disabled)
 Off = Disabled by hardware (Cannot be enabled)
 - = No Effect

R = Restored to previous ACTIVE setting when exiting DEEPSLEEP; restored to system reset state when exiting BACKUP or STORAGE.

1: AoD is only reset upon power cycling V_{DD} and V_{CORE}.
 2: On a system reset or POR, the IBRO is automatically selected as the SYS_OSC.
 3: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
 4: Peripheral, soft, and system resets are initiated by software through the [GCR_RST0](#) register. System reset can also be triggered by the RSTN device pin or watchdog reset.

Table 4-8: MAX32675C Peripheral and CPU Reset Effects

	Peripheral Reset ⁴	Soft Reset ⁴	System Reset ⁴	POR
CPU	-	-	Reset	Reset
WDT0/1	-	-	Reset	Reset
GPIO	-	Reset	Reset	Reset
Low-Power Peripherals	Reset	Reset	Reset	Reset
Other Peripherals	Reset	Reset	Reset	Reset
Always-On Domain¹	-	-	-	Reset
RAM Retention	-	-	-	Reset

Table key:

- SW = Controlled by software
- On = Enabled by hardware (Cannot be disabled)
- Off = Disabled by hardware (Cannot be enabled)
- = No Effect

1: AoD is only reset upon power cycling V_{DD} and V_{CORE}.
 2: On a system reset or POR, the IBRO is automatically selected as SYS_OSC.
 3: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
 4: Peripheral, soft, and system resets are initiated by software through the [GCR_RST0](#) register. System reset can also be triggered by the RSTN device pin or watchdog reset.

Table 4-9: MAX32675C Peripheral and CPU Low-Power Mode Effects

	ACTIVE	SLEEP	DEEPSLEEP	BACKUP ³	STORAGE
CPU	R	Off	Off	Off	Off
WDT0/1	R	-	Off	Off	Off
GPIO	R	-	-	-	-
Low-Power Peripherals	SW	SW	SW	SW	Off
Other Peripherals	R	-	Off	Off	Off
Always-On Domain¹	-	-	-	-	-
RAM Retention	-	-	On	SW	Off

Table key:

- SW = Controlled by software
- On = Enabled by hardware (Cannot be disabled)
- Off = Disabled by hardware (Cannot be enabled)
- = No Effect

R = Restored to previous ACTIVE setting when exiting DEEPSLEEP; restored to system reset state when exiting BACKUP or STORAGE.

1: AoD is only reset upon power cycling V_{DD} and V_{CORE}.
 2: On a system reset or POR, the IBRO is automatically selected as SYS_OSC.
 3: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
 4: Peripheral, soft, and system resets are initiated by software through the [GCR_RST0](#) register. System reset can also be triggered by the RSTN device pin or watchdog reset.

4.4.1 Peripheral Reset

As shown in [Table 4-6](#) and [Table 4-8](#), a peripheral reset performs a reset for all peripherals except the GPIO and watchdog timers. The CPU retains its state. The AoD, RAM retention, and GCR, including the clock configuration, are unaffected.

To start a peripheral reset, set [GCR_RST0.periph](#) = 1. The reset is completed immediately upon setting [GCR_RST0.periph](#) = 1.

4.4.2 Soft Reset

As shown in [Table 4-6](#) and [Table 4-8](#), a soft reset is the same as a peripheral reset except that it also resets the GPIO to the POR state.

To perform a soft reset, set [*GCR_RST0.soft*](#) = 1. The reset is completed immediately upon setting [*GCR_RST0.soft*](#) = 1.

4.4.3 System Reset

As shown in [*Table 4-6*](#) and [*Table 4-8*](#), a system reset is the same as a soft reset, except it also resets all GCR, resetting the clocks to their default state. In addition, the CPU state is reset, as well as the watchdog timers. The AoD and RAM are unaffected. Software execution starts at the reset vector.

An external reset and watchdog timer reset event initiates a system reset. To perform a system reset from the software, set [*GCR_RST0.sys*](#) = 1.

CAUTION: GPIO are not reset on a peripheral, soft, or system reset.

4.4.4 Power-On Reset (POR)

As shown in [*Table 4-6*](#) and [*Table 4-8*](#), a POR resets everything in the device to its default state. Software execution starts at the reset vector.

4.5 Unified Internal Cache Controller (ICC)

ICC is the cache controller for the internal flash memory for code and data fetches. The ICC includes a line buffer, tag RAM, and a 16KB two-way set-associative data RAM.

4.5.1 Enabling ICC

Perform the following steps to enable the ICC:

1. Invalidate the flash by writing 1 to the [*ICC_INVALIDATE*](#) register.
2. Set [*ICC_CTRL.en*](#) to 1.
3. Read [*ICC_CTRL.rdy*](#) until it returns 1.

4.5.2 Disabling ICC

Disable the ICC by setting [*ICC_CTRL.en*](#) to 0.

4.5.3 Invalidating and Flushing the ICC Cache

Set the [*ICC_INVALIDATE*](#) register to 1 to invalidate the ICC cache and force a cache flush. Read the [*ICC_CTRL.rdy*](#) field until it returns 1 to determine when the flush is completed.

4.5.4 ICC Registers

See [*Table 3-2*](#) for the base address of this peripheral/module. See [*Table 1-1*](#) for an explanation of each field's read and write access. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 4-10: ICC Registers

Offset	Register Name	Description
[0x0000]	<i>ICCn_INFO</i>	<i>Cache ID Register</i>
[0x0004]	<i>ICCn_SZ</i>	<i>Cache Memory Size Register</i>
[0x0100]	<i>ICCn_CTRL</i>	Internal Cache Control Register
[0x0700]	<i>ICCn_INVALIDATE</i>	Internal Cache Controller Invalidate Register

4.5.5 Register Details

Table 4-11: ICC Cache Information Register

ICC Cache Information			ICCn_INFO		[0x0000]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15:10	id	R	*	Cache ID This field returns the ID for this cache instance.	
9:6	partnum	R	*	Cache Part Number This field returns the part number indicator for this cache instance.	
5:0	relnum	R	*	Cache Release Number Returns the release number for this cache instance.	

Table 4-12: ICC Memory Size Register

ICC Memory Size			ICCn_SZ		[0x0004]
Bits	Field	Access	Reset	Description	
31:16	mem	R	*	Addressable Memory Size This field indicates the size of addressable memory by this cache controller instance in 128KB units.	
15:0	cch	R	*	Cache Size This field returns the size of the cache RAM in 1KB units. 16: Cache RAM.	

Table 4-13: ICC Cache Control Register

ICC Cache Control			ICCn_CTRL		[0x0100]
Bits	Field	Access	Reset	Description	
31:17	-	R/W	-	Reserved	
16	rdy	R	1	Ready This field is cleared by hardware anytime the cache as a whole is invalidated (including a POR). Hardware automatically sets this field to 1 when the invalidate operation is complete, and the cache is ready. 0: Cache invalidation in process. 1: Cache is ready. <i>Note: While this field reads 0, the cache is bypassed, and reads come directly from the line fill buffer.</i>	
15:1	-	R/W	-	Reserved	
0	en	R/W	0	Cache Enable Set this field to 1 to enable the cache. Setting this field to 0 invalidates the cache contents, and the line fill buffer handles reads. 0: Disabled. 1: Enabled.	

Table 4-14: ICC Invalidate Register

ICC Invalidate			ICCn_INVALIDATE		[0x0700]
Bits	Field	Access	Reset	Description	
31:0	invalid	W	0	Invalidate Writing any value to this register invalidates the cache.	

4.6 RAM Memory Management

This device has many features for managing the on-chip RAM. The on-chip RAM includes data RAM, internal cache.

4.6.1 On-Chip Cache Management

The internal cache controller fetches code from the flash memory. The cache can be enabled, disabled, and zeroized, and the cache clock can be disabled by placing it in Light Sleep. See the [Unified Internal Cache](#) Controller section for details.

4.6.2 RAM Zeroization

The GCR Memory Zeroize register, [GCR_MEMZ](#), allows clearing memory for software or security reasons. Zeroization writes all zeros to the specified memory.

The following RAMs can be zeroized:

- Internal System RAM
 - ◆ The entire system RAM can be zeroized by setting the [GCR_MEMZ.ram](#) field to 1.
- ICC 16KB Cache
 - ◆ Write 1 to [GCR_MEMZ.icc0](#)

4.6.3 RAM Low-Power Modes

RAM low-power modes and shutdown are controlled on a bank basis. The system RAM banks are shown with corresponding bank sizes and base addresses in [Table 3-1](#).

4.6.4 RAM LIGHTSLEEP

RAM can be placed in a low-power mode, referred to as *LIGHTSLEEP*, using the memory clock control register, [GCR_MEMCTRL](#). *LIGHTSLEEP* gates off the clock to the RAM and makes the RAM unavailable for read and write operations while memory contents are retained, thus reducing power consumption. *LIGHTSLEEP* is available for the four primary system RAM blocks and the corresponding check RAM blocks, the ECC RAM block, and the ICC RAM block.

4.6.5 RAM Shutdown

Each primary system RAM and its corresponding check RAM can individually be shut down, further reducing the device's power consumption. Shutting down a memory gates off the clock, removes power, invalidates (destroys) the memory contents, and results in a POR of the memory when it is enabled. RAM shutdown is configured using the [PWRSEQ_LPMEMSD](#) register.

Note: Shutting down a primary system RAM also shuts down the corresponding check RAM even if ECC is not enabled for the system RAM.

4.7 Miscellaneous Control Registers

This set of control register set provides reset and clock control for the AoD peripherals LPTMRO and LPTMR1. See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 4-15: Miscellaneous Control Registers

Offset	Register Name	Description
[0x0004]	MCR_RST	Reset Control Register
[0x0010]	MCR_LPPIOCTRL	Low-Power Peripheral Control Register
[0x0024]	MCR_CLKDIS	Clock Disable Register

4.7.1 Registers Details

Table 4-16: Reset Control Register

Reset Control		MCR_RST		[0x0004]
Bits	Field	Access	Reset	Description
31:3	-	RO	0	Reserved
2	lpuart0	R/W1O	0	LPUART0 Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>Note: See the Device Resets section for additional information.</i>
1	lptmr1	R/W1O	0	LPTMR1 Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>Note: See the Device Resets section for additional information.</i>
0	lptmr0	R/W1O	0	LPTMRO Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>Note: See the Device Resets section for additional information.</i>

Table 4-17: Low-Power Peripheral Control Register

Low-Power Peripheral Control		MCR_LPPIOCTRL		[0x0010]
Bits	Field	Access	Reset	Description
31:8	-	RO	0	Reserved
7	lpuart0_rts	R/W	0	LPUART0 RTS Enable If the LPUART0 peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.
6	lpuart0_cts	R/W	0	LPUART0 CTS Enable If the LPUART0 peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.
5	lpuart0_tx	R/W	0	LPUART0 Transmit Enable If the LPUART0 peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.

Low-Power Peripheral Control				MCR_LPPIOCTRL	[0x0010]
Bits	Field	Access	Reset	Description	
4	lpuart0_rx	R/W	0	LPUART0 Receive Enable If the LPUART0 peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
3	lptmr1_o	R/W	0	LPTMR1 Output Enable If the LPTMR1 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
2	lptmr1_i	R/W	0	LPTMR1 Input Enable If the LPTMR1 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
1	lptmr0_o	R/W	0	LPTMR0 Output Enable If the LPTMR0 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
0	lptmr0_i	R/W	0	LPTMR0 Input Enable If the LPTMR0 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	

Table 4-18: Clock Disable Register

Clock Disable				MCR_CLKDIS	[0x0024]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	lpuart0	R/W	1	LPUART0 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. For <i>DEEPSLEEP</i> and <i>BACKUP</i> operation, see the <i>DEEPSLEEP</i> . 0: Enabled 1: Disable	
1	lptmr1	R/W	1	LPTMR1 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
0	lptmr0	R/W	1	LPTMR0 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	

4.8 Power Sequencer and Always-On Domain Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Note: The PWRSEQ registers are reset only on a POR. System reset, soft reset, and peripheral reset do not affect the PWRSEQ register values.

Table 4-19: Power Sequencer and Always-On Domain Registers

Offset	Register Name	Description
[0x0000]	PWRSEQ_LPCN	Low-Power Control Register
[0x0004]	PWRSEQ_LPWKST0	GPIO0 Low-Power Wake-Up Status Flags Register
[0x0008]	PWRSEQ_LPWKENO	GPIO0 Low-Power Wake-Up Enable Register
[0x000C]	PWRSEQ_LPWKST1	GPIO1 Low-Power Wake-Up Status Flags Register
[0x0010]	PWRSEQ_LPWKEN1	GPIO1 Low-Power Wake-Up Enable Register
[0x0030]	PWRSEQ_LPPWKST	Peripheral Low-Power Wake-Up Status Flags Register
[0x0034]	PWRSEQ_LPPWKEN	Peripheral Low-Power Wake-Up Enable Register
[0x0040]	PWRSEQ_LPMEMSD	RAM Shutdown Control Register
[0x0048]	PWRSEQ_GPO	General Purpose 0 Register
[0x004C]	PWRSEQ_GP1	General Purpose 1 Register

4.8.1 Register Details

Table 4-20: Low-Power Control Register

Low-Power Control			PWRSEQ_LPCN		[0x0000]
Bits	Field	Access	Reset	Description	
31	-	RO	0	Reserved	
30:29	-	DNM	0	Reserved. Do Not Modify	
28	inro_en	R/W	0	INRO Low-Power Mode Control This bit allows control of the INRO for low-power modes. 0: Power Sequencer controls the INRO. 1: The INRO is enabled in <i>ALL</i> low-power modes. <i>Note: If PWRSEQ_LPCN.storage_en is 1, this field is ignored and INRO is powered off.</i>	
27:26	-	RO	0	Reserved	
25	porvddmon_dis	DNM	0	V_{DDIO} Supply POR Monitor Disable Setting this field to 1 disables the V _{DDIO} supply monitor in all operating modes. 0: Enabled. 1: Disabled.	
24:23	-	RO	0	Reserved	
22	vddamon_dis	DNM	0	V_{DDA} Analog Supply Power Monitor Disable Set this field to 1 to disable the V _{DDA} supply monitor. 0: Enabled. 1: Disabled.	
21	-	RO	0	Reserved	
20	vcoremon_dis	DNM	0	Reserved, Do Not Modify	
19:18	-	RO	0	Reserved	
17	vcore_ext	DNM	0	Reserved, Do Not Modify	
16	ldo_dis	DNM	*	Reserved, Do Not Modify	
15:13	-	RO	0	Reserved	

Low-Power Control				PWRSEQ_LPCN	[0x0000]
Bits	Field	Access	Reset	Description	
12	vcorepor_dis	R/W	1	V_{CORE} POR Disable for DEEPSLEEP and BACKUP Setting this bit to 1 blocks the POR signal to the core when the device is in <i>DEEPSLEEP</i> or <i>BACKUP</i> operation. Disconnecting the POR signal from the core during <i>DEEPSLEEP</i> and <i>BACKUP</i> prevents the core from detecting a POR event while the device is in <i>DEEPSLEEP</i> or <i>BACKUP</i> . 0: POR signal is connected to the core during <i>DEEPSLEEP</i> and <i>BACKUP</i> . 1: POR signal is not connected to the core during <i>DEEPSLEEP</i> and <i>BACKUP</i> .	
11	bg_dis	R/W	1	Bandgap Disable for DEEPSLEEP and BACKUP Setting this field to 1 disables the Bandgap during <i>DEEPSLEEP</i> and <i>BACKUP</i> . 0: Enabled. 1: Disabled.	
10	fastwk_en	R/W	0	Fast Wake-Up Enable for DEEPSLEEP Set to 1 to enable fast wake-up from <i>DEEPSLEEP</i> . When enabled, the system exits <i>DEEPSLEEP</i> faster by: <ul style="list-style-type: none"> • Bypassing the INRO warmup. • Reducing the warmup time for the internal LDO. • Code execution resumes at the next instruction after the entry to <i>DEEPSLEEP</i>. 0: Disabled. 1: Enabled.	
9	storage_en	R/W	0	STORAGE Enable 0: Disabled. 1: Enabled. <i>Note: Setting this bit causes the device to enter STORAGE when setting GCR_PM.mode to BACKUP.</i>	
8	retreg_en	R/W	1	RAM Retention Regulator Enable for BACKUP This field selects the source used to retain the RAM contents during <i>BACKUP</i> operation. Setting this field to 0 sets the V _{DD} supply for RAM retention during <i>BACKUP</i> and disables the RAM retention regulator. 0: RAM retention regulator disabled. The V _{DD} supply is used to retain the state of the internal SRAM as configured by the PWRSEQ_LPCN.ram0ret_en , PWRSEQ_LPCN.ram1ret_en , PWRSEQ_LPCN.ram2ret_en , and PWRSEQ_LPCN.ram3ret_en fields. 1: RAM retention regulator enabled. RAM retention in <i>BACKUP</i> is configured with the PWRSEQ_LPCN.ram0ret_en , PWRSEQ_LPCN.ram1ret_en , PWRSEQ_LPCN.ram2ret_en , and PWRSEQ_LPCN.ram3ret_en fields.	
7	-	R/W	0	Reserved	
6	vcore_det_bypass	R/W	0	Bypass V_{CORE} External Supply Detection Set this field to 1 if the system runs from a single supply only and V _{CORE} is not connected to an external supply. Bypassing the hardware detection of an external supply on V _{CORE} enables a faster wake-up time. 0: Enabled. 1: Disabled.	
5:4	ovr	DNM	0	Reserved, Do Not Modify	

Low-Power Control				PWRSEQ_LPCN	[0x0000]
Bits	Field	Access	Reset	Description	
3	ram3ret_en	R/W	0	Sysram3 and Sysram7 Data Retention Enable for BACKUP Set this field to 1 to enable data retention for sysram3 and sysram7. See Table 3-1 for system RAM configuration. 0: Disabled. 1: Enabled. <i>Note: This field is used in conjunction with PWRSEQ_LPCN.retreg_en to control RAM retention.</i>	
2	ram2ret_en	R/W	0	Sysram2 and Sysram6 Data Retention Enable for BACKUP Set this field to 1 to enable data retention for sysram2 and sysram6. See Table 3-1 for system RAM configuration. 0: Disabled. 1: Enabled. <i>Note: This field is used in conjunction with PWRSEQ_LPCN.retreg_en to control RAM retention.</i>	
1	ram1ret_en	R/W	0	Sysram1 and Sysram5 Data Retention Enable for BACKUP Set this field to 1 to enable data retention for sysram1 and sysram5. See Table 3-1 for system RAM configuration. 0: Disabled. 1: Enabled. <i>Note: This field is used in conjunction with PWRSEQ_LPCN.retreg_en to control RAM retention.</i>	
0	ram0ret_en	R/W	0	Sysram0 and Sysram4 Data Retention Enable for BACKUP Set this field to 1 to enable data retention for sysram0 and sysram4. See Table 3-1 for system RAM configuration. 0: Disabled. 1: Enabled. <i>Note: This field is used in conjunction with PWRSEQ_LPCN.retreg_en to control RAM retention.</i> <i>Note: Sysram0 is used by the bootloader on exit from BACKUP and is not retained.</i>	

Table 4-21: GPIO0 Low-Power Wake-Up Status Flags

GPIO0 Low-Power Wake-Up Status Flags				PWRSEQ_LPWKST0	[0x0004]
Bits	Field	Access	Reset	Description	
31:0	st	R/W1C	0	GPIO0 Pin Wake-Up Status Flag Whenever a GPIO pin, in any power mode, transitions from low-to-high or high-to-low, the corresponding bit in this register is set. The device transitions from a low-power mode to <i>ACTIVE</i> if the corresponding interrupt enable bit is set in PWRSEQ_LPWKENO . This register should be cleared before entering any low-power mode. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 4-22: GPIO0 Low-Power Wake-Up Enable Registers

GPIO0 Low-Power Wake-Up Enable			PWRSEQ_LPWKENO		[0x0008]
Bits	Field	Access	Reset	Description	
31:0	en	R/W	0	GPIO0 Pin Wake-Up Interrupt Enable Setting a bit in this register causes an interrupt to be generated and wakes up the device from any low-power mode to <i>ACTIVE</i> if the corresponding bit in the PWRSEQ_LPWKST0 register is set. Bits corresponding to unimplemented GPIO are ignored. <i>Note: To enable the device to wake up from a low-power mode on a GPIO pin transition, first set the GPIO wake-up enable register bit GCR_PM.gpio_we = 1.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 4-23: GPIO1 Low-Power Wake-Up Status Flags

GPIO1 Low-Power Wake-Up Status Flags			PWRSEQ_LPWKST1		[0x000C]
Bits	Field	Access	Reset	Description	
31:0	st	R/W	0	GPIO1 Pin Wake-Up Status Flag Whenever a GPIO1 pin, in any power mode, transitions from low-to-high or high-to-low, the corresponding bit in this register is set. The device transitions from any low-power mode to <i>ACTIVE</i> if the corresponding interrupt enable bit is set in PWRSEQ_LPWKEN1 . This register should be cleared before entering any low-power mode. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 4-24: GPIO1 Low-Power Wake-Up Enable Registers

GPIO1 Low-Power Wake-Up Enable			PWRSEQ_LPWKEN1		[0x0010]
Bits	Field	Access	Reset	Description	
31:0	en	R/W	0	GPIO1 Pin Wake-Up Interrupt Enable Setting a bit in this register causes an interrupt to be generated and wakes up the device from any low-power mode to <i>ACTIVE</i> if the corresponding bit in the PWRSEQ_LPWKST1 register is set. Bits corresponding to unimplemented GPIO are ignored. <i>Note: To enable the device to wake up from a low-power mode on a GPIO pin transition, first set the GPIO Wake-up enable register bit GCR_PM.gpio_we = 1.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 4-25: Peripheral Low-Power Wake-Up Status Flags

Peripheral Low-Power Wake-Up Status Flags			PWRSEQ_LPPWKST		[0x0030]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	Ipuart0	R/W1C	0	LPUART0 Wake-up Flag This field is set when this peripheral causes the CPU to wake to <i>ACTIVE</i> . 0: Normal operation. 1: Wake-up event detected. <i>Note: If the corresponding bit in PWRSEQ_LPPWKEN register is set, the event generates an interrupt to wake up the device from a low-power mode.</i>	

Peripheral Low-Power Wake-Up Status Flags				PWRSEQ_LPPWKST	[0x0030]
Bits	Field	Access	Reset	Description	
1	lptmr1	R/W1C	0	LPTMR1 Wake-up Flag This field is set when this peripheral causes the CPU to wake to <i>ACTIVE</i> . 0: Normal operation. 1: Wake-up event detected. <i>Note: If the corresponding bit in PWRSEQ_LPPWKEN register is set, the event generates an interrupt to wake up the device from a low-power mode.</i>	
0	lptmr0	R/W1C	0	LPTMR0 Wake-up Flag This field is set when this peripheral causes the CPU to wake to <i>ACTIVE</i> . 0: Normal operation. 1: Wake-up event detected. <i>Note: If the corresponding bit in the PWRSEQ_LPPWKEN register is set, the event generates an interrupt to wake up the device from a low-power mode when PWRSEQ_LPCN.bg_dis is cleared to 0.</i>	

Table 4-26: Peripheral Low-Power Wake-Up Enable Register

Peripheral Low-Power Wake-Up Enable				PWRSEQ_LPPWKEN	[0x0034]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	lpuart0	R/W	0	LPUART0 Wake-up Enable Setting this bit enables an interrupt and wake-up the device from any low-power mode when PWRSEQ_LPPWKST.lpuart0 does not equal 0. 0: Disabled. 1: Enabled.	
1	lptmr1	R/W	0	LPTMR1 Wake-up Enable Setting this bit enables an interrupt and wake-up the device from any low-power mode when PWRSEQ_LPPWKST.lptmr1 does not equal 0. 0: Disabled. 1: Enabled.	
0	lptmr0	R/W	0	LPTMR0 Wake-up Enable Setting this bit enables an interrupt and wake-up the device from any low-power mode when PWRSEQ_LPPWKST.lptmr0 does not equal 0. 0: Disabled. 1: Enabled.	

Table 4-27: RAM Shutdown Control Register

RAM Shutdown Control				PWRSEQ_LPMEMSD	[0x0040]
Bits	Field	Access	Reset	Description	
31:4	-	RO	0	Reserved	
3	ram3	R/W	0	Sysram3 and Sysram7 Shut Down Set this field to 1 to shut down the power on the specified RAMs. Powering down the memory destroys its contents. See Table 3-1 for system RAM configuration. 0: Enabled. 1: Shut down. <i>Note: See GCR_MEMCTRL register for retention mode power settings.</i>	

RAM Shutdown Control				PWRSEQ_LPMEMSD	[0x0040]
Bits	Field	Access	Reset	Description	
2	ram2	R/W	0	Sysram2 and Sysram6 Shut Down Set this field to 1 to shut down the power on the specified RAMs. Powering down the memory destroys its contents. See Table 3-1 for system RAM configuration. 0: Enabled. 1: Shut down. <i>Note: See GCR_MEMCTRL register for retention mode power settings.</i>	
1	ram1	R/W	0	Sysram1 and Sysram5 Shut Down Set this field to 1 to shut down the power on the specified RAMs. Powering down the memory destroys its contents. See Table 3-1 for system RAM configuration. 0: Enabled. 1: Shut down. <i>Note: See GCR_MEMCTRL register for retention mode power settings.</i>	
0	ram0	R/W	0	Sysram0 and Sysram4 Shut Down Set this field to 1 to shut down the power on the specified RAMs. Powering down the memory destroys its contents. See Table 3-1 for system RAM configuration. 0: Enabled. 1: Shut down. <i>Note: See GCR_MEMCTRL register for retention mode power settings.</i>	

Table 4-28: General Purpose 0 Register

General Purpose 0				PWRSEQ_GPO	[0x0048]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	General Purpose Field The software can use this register as a general-purpose register, and the contents are retained during <i>SLEEP</i> , <i>DEEPSLEEP</i> , and <i>BACKUP</i> .	

Table 4-29: General Purpose 1 Register

General Purpose 1				PWRSEQ_GP1	[0x004C]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	General Purpose Field The software can use this register as a general-purpose register, and the contents are retained during <i>SLEEP</i> , <i>DEEPSLEEP</i> , and <i>BACKUP</i> .	

4.9 Global Control Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field.

Note: The Global Control Registers are only reset on a system reset or POR. A soft reset or peripheral reset does not affect these registers.

Table 4-30: Global Control Registers

Offset	Register Name	Description
[0x0000]	GCR_SYSCTRL	System Control Register

Offset	Register Name	Description
[0x0004]	<i>GCR_RST0</i>	Reset Register 0
[0x0008]	<i>GCR_CLKCTRL</i>	Clock Control Register
[0x000C]	<i>GCR_PM</i>	Power Management Register
[0x0018]	<i>GCR_PCLKDIV</i>	Peripheral Clocks Divisor
[0x0024]	<i>GCR_PCLKDIS0</i>	Peripheral Clocks Disable 0
[0x0028]	<i>GCR_MEMCTRL</i>	Memory Clock Control
[0x002C]	<i>GCR_MEMZ</i>	Memory Zeroize Register
[0x0040]	<i>GCR_SYSST</i>	System Status Flags
[0x0044]	<i>GCR_RST1</i>	Reset Register 1
[0x0048]	<i>GCR_PCLKDIS1</i>	Peripheral Clocks Disable 1
[0x004C]	<i>GCR_EVENTEN</i>	Event Enable Register
[0x0050]	<i>GCR_REVISION</i>	Revision Register
[0x0054]	<i>GCR_SYSIE</i>	<i>System Status Interrupt Enable</i>
[0x0064]	<i>GCR_ECCERR</i>	<i>Error Correction Coding Error Register</i>
[0x0068]	<i>GCR_ECCDED</i>	<i>Error Correction Coding Correctable Error Detected</i>
[0x006C]	<i>GCR_ECCIE</i>	<i>Error Correction Coding Interrupt Enable Register</i>
[0x0070]	<i>GCR_ECCADDR</i>	<i>Error Correction Coding Error Address Register</i>

4.9.1 Register Details

Table 4-31: System Control Register

System Control			GCR_SYSCTRL		[0x0000]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15	chkres	R	0	ROM Checksum Calculation Pass/Fail This bit is only valid after the ROM checksum is complete and hardware sets <i>GCR_SYSCTRL.cchk</i> to 0. 0: Pass. 1: Fail.	
14	swd_dis	R	0	Serial Wire Debug Disable This bit indicates the status of the SWD. 0: SWD enabled. 1: SWD disabled.	
13	cchk	R/W	0	Calculate ROM Checksum This bit is self-clearing when the ROM checksum calculation is complete, and the result is available at bit <i>GCR_SYSCTRL.chkres</i> . Writing a 0 has no effect. 0: No operation. 1: Start ROM checksum calculation.	
12	romdone	R	1	ROM Start Code Status Reserved. Do Not Modify.	
11:7	-	DNM	0	Reserved, Do Not Modify	
6	icc0_flush	RO	0	ICC Cache Flush Use <i>ICC_INVALIDATE</i> to invalidate and flush the cache.	

System Control			GCR_SYSCTRL		[0x0000]
Bits	Field	Access	Reset	Description	
5	fpu_dis	R/W	0	Floating Point Unit Disable 0: Enabled. 1: Disabled.	
4:3	-	RO	0	Reserved	
2:1	sbusarb	R/W	1	System Bus Arbitration Scheme 0: Fixed burst. 1: Round-robin. 2: Reserved. 3: Reserved.	
0	-	RO	0	Reserved	

Table 4-32: Reset Register 0

Reset 0			GCR_RST0		[0x0004]
Bits	Field	Access	Reset	Description	
31	sys	R/W	0	System Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>See the Device Resets section for additional information.</i>	
30	periph	R/W	0	Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>Note: Watchdog timers, GPIO ports, the AoD, RAM retention, and the general control registers (GCR) are unaffected. See the Device Resets section for additional information.</i>	
29	soft	R/W	0	Soft Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>See the Device Resets section for additional information.</i>	
28	uart2	R/W	0	UART2 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
27:17	-	RO	0	Reserved	
16	i2c0	R/W	0	I2C0 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
15	spi2	RO	0	SPI2 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
14	spi1	R/W	0	SPI1 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
13	spi0	R/W	0	SPI0 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. <i>Note: SPI0 is internally connected to the AFE.</i>	
12	uart1	R/W	0	UART1 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
11	uart0	R/W	0	UART0 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
10:9	-	RO	0	Reserved	
8	tmr3	R/W	0	TMR3 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	

Reset 0				GCR_RST0	[0x0004]
Bits	Field	Access	Reset	Description	
7	tmr2	R/W	0	TMR2 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
6	tmr1	R/W	0	TMR1 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
5	tmr0	R/W	0	TMRO Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
4	-	RO	-	Reserved	
3	gpio1	R/W	0	GPIO1 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
2	gpio0	R/W	0	GPIO0 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
1	wdt0	R/W	0	Watchdog Timer 0 Peripheral Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	
0	dma	R/W	0	DMA Access Block Reset Write 1 to reset. This field is cleared by hardware when the reset is complete.	

Table 4-33: System Clock Control Register

System Clock Control				GCR_CLKCTRL	[0x0008]
Bits	Field	Access	Reset	Description	
31	extclk_rdy	R	1	External Clock Ready This bit field is set when the signal on the P0.12 device pin, driven by an external clock, is ready. 0: Not ready or not enabled. 1: External clock is ready.	
30	-	RO	1	Reserved	
29	inro_rdy		0	Internal Nano-Ring Oscillator (INRO) Ready Status 0: Not ready or not enabled. 1: Oscillator ready.	
28	ibro_rdy	R	0	Internal Baud Rate Oscillator (IBRO) Ready Status 0: Not ready or not enabled. 1: Oscillator ready.	
27	ipo_rdy	R	0	Internal Primary Oscillator (IPO) Ready Status 0: Not ready or not enabled. 1: Oscillator ready.	
26:25	-	RO	0	Reserved	
24	erfo_rdy	R	0	ERFO Ready Status 0: Not ready or not enabled. 1: Oscillator ready.	
23:22	-	RO	0	Reserved	
21	ibro_vs	DNM	0	Reserved, Do Not Modify	
20	ibro_en	R/W	1	IBRO Enable 0: Disabled. 1: Enabled. and ready when GCR_CLKCTRL.ibro_rdy = 1.	

System Clock Control			GCR_CLKCTRL		[0x0008]
Bits	Field	Access	Reset	Description	
19	ipo_en	R/W	0	IPO Enable 0: Disabled. 1: Enabled, and ready when GCR_CLKCTRL.ipo_rdy = 1.	
18:17	-	DNM	0	Reserved, Do Not Modify.	
16	erfo_en	R/W	0	ERFO Enable 0: Disabled. 1: Enabled, and ready when GCR_CLKCTRL.erfo_rdy = 1.	
15:14	ipo_div	R/W	0	IPO Prescaler Divides the IPO clock before it is selected as SYS_OSC. 0: Divide by 1. 1: Divide by 2. 2: Divide by 4. 3: Divide by 8.	
13	sysclk_rdy	R	0	SYS_OSC Select Ready When SYS_OSC is changed by modifying GCR_CLKCTRL.sysclk_sel there is a delay until the switchover is complete. This bit is cleared until the switchover is complete. 0: Switch to new clock source not yet complete. 1: SYS_OSC is the clock source selected in GCR_CLKCTRL.sysclk_sel .	
12	-	RO	0	Reserved	
11:9	sysclk_sel	R/W	5	System Oscillator Source Select Selects the system oscillator (SYS_OSC) source used to generate the system clock (SYS_CLK). Modifying this field clears GCR_CLKCTRL.sysclk_rdy immediately. 0: Reserved. 1: Reserved. 2: ERFO. 3: INRO. 4: IPO. 5: IBRO. 6: Reserved. 7: External Clock, P0.12, AF4.	
8:6	sysclk_div	R/W	0	System Oscillator Prescaler Sets the divider for generating SYS_CLK from the selected SYS_OSC. See Equation 4-1 for details.	
5:0	-	DNM	8	Reserved, Do Not Modify	

Table 4-34: Power Management Register

Power Management			GCR_PM		[0x000C]
Bits	Field	Access	Reset	Description	
31:21	-	RO	0	Reserved	
20	erfo_bp	R/W	0	ERFO Bypass This bit is set to 0 on a POR and is not affected by other resets. 0: The clock source is a crystal oscillator, driving the crystal connected between HFXIN and HFXOUT pins. 1: The clock source is a square wave and is driven into the HFXIN pin.	
19:18	-	RO	0	Reserved	

Power Management				GCR_PM	[0x000C]
Bits	Field	Access	Reset	Description	
17	ibro_pd	DNM	1	IBRO Power Down in DEEPSLEEP This field must be set to 1 before entering DEEPSLEEP.	
16	ipo_pd	DNM	1	IPO Power Down in DEEPSLEEP This field powers off the IPO in DEEPSLEEP. This field must be set to 1 before entering DEEPSLEEP.	
15:13	-	RO	0	Reserved	
12	erfo_pd	R/W	1	ERFO Power Down in DEEPSLEEP This field powers off the ERFO in DEEPSLEEP.	
11:9	-	RO	0	Reserved	
8	lpuart0_we	R/W	0	LPUART0 Wake-Up Enable Set this field to 1 to enable LPUART0 as a wake-up source. LPUART0 wakes the device from SLEEP, DEEPSLEEP, or BACKUP low-power modes. 0: Disabled. 1: Enabled.	
7	lptmr1_we	R/W	0	LPTMR1 Wake-up Enable Set this field to 1 to enable LPTMR1 as a wake-up source. LPTMR1 wakes the device from SLEEP, DEEPSLEEP, or BACKUP low-power modes. 0: Disabled. 1: Enabled.	
6	lptmr0_we	R/W	0	LPTMR0 Wake-Up Enable Set this field to 1 to enable LPTMR0 as a wake-up source. LPTMR0 wakes the device from SLEEP, DEEPSLEEP, and BACKUP. 0: Disabled. 1: Enabled.	
5	-	RO	0	Reserved	
4	gpio_we	R/W	0	GPIO Wake-Up Enable Set this field to 1 to enable all GPIO pins as potential wake-up sources. Any GPIO configured for wake-up wakes the device from SLEEP, DEEPSLEEP, BACKUP, and STORAGE. 0: Disabled. 1: Enabled.	
3	-	RO	0	Reserved	
2:0	mode	R/W	0	Operating Mode 0: ACTIVE. 1: Reserved. 2: Reserved. 3: Reserved. 4: BACKUP. 5: Reserved. 6: Reserved. 7: Shutdown	

Table 4-35: Peripheral Clock Divisor Register

Peripheral Clocks Divisor			GCR_PCLKDIV		[0x0018]
Bits	Field	Access	Reset	Description	
31:17	-	RO	-	Reserved	
16	div_clk_out_en	R/W	0	HART Clock Output Enable Set this field to 1 to enable the HART clock. 0: Disabled. 1: Enabled. <i>Note: This field enables the HART clock in combination with the GCR_PCLKDIV.div_clk_out_ctrl field. If the GCR_PCLKDIV.div_clk_out_ctrl field is 0, the value of this field has no effect.</i>	
15:14	div_clk_out_ctrl	R/W	0	HART Clock Frequency Select Set this field to the desired HART clock source. Setting this field to 0 disables the HART clock. The HART clock frequency should be set to 4MHz. 0b00: HART clock output disabled. 0b01: Reserved. 0b10: $\frac{ERFO}{4}$ 0b11: $\frac{ERFO}{8}$ <i>Note: When this field is set to a non-zero value the output enable field, GCR_PCLKDIV.div_clk_out_en, must be set to 1 to enable the HART clock output signal.</i>	
13:2	-	RO	-	Reserved	
1:0	aon_clkdiv	R/W	0	AoD Clock Divider This field configures the frequency of the AoD clock. See the Oscillator Sources and Clock Switching section for details.	

Table 4-36: Peripheral Clock Disable Register 0

Peripheral Clock Disable 0			GCR_PCLKDIS0		[0x0024]
Bits	Field	Access	Reset	Description	
31:29	-	RO	1	Reserved	
28	i2c1	R/W	1	I²C1 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
27:19	-	RO	1	Reserved	
18	tmr3	R/W	1	TMR3 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
17	tmr2	R/W	1	TMR2 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	

Peripheral Clock Disable 0				GCR_PCLKDIS0	[0x0024]
Bits	Field	Access	Reset	Description	
16	tmr1	R/W	1	TMR1 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
15	tmr0	R/W	1	TMRO Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
14	-	RO	1	Reserved	
13	i2c0	R/W	1	I2C0 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
12:11	-	RO	1	Reserved	
10	uart1	R/W	1	UART1 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
9	uart0	R/W	1	UART0 Clock Disable Disabling a clock peripheral disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
8	spi2	R/W	1	SPI2 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
7	spi1	R/W	1	SPI1 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
6	spi0	R/W	1	SPI0 Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled. <i>Note: SPI0 is internally connected to the AFE. This field must be set to 0 to communicate with the AFE.</i>	

Peripheral Clock Disable 0				GCR_PCLKDIS0	[0x0024]
Bits	Field	Access	Reset	Description	
5	dma	R/W	1	DMA Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
4:2	-	RO	1	Reserved	
1	gpio1	R/W	1	GPIO1 Port and Pad Logic Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	
0	gpio0	R/W	1	GPIO0 Port and Pad Logic Clock Disable Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. 0: Enabled. 1: Disabled.	

Table 4-37: Memory Clock Control Register

Memory Clock Control				GCR_MEMCTRL	[0x0028]
Bits	Field	Access	Reset	Description	
31:14	-	RO	0	Reserved	
13	romls_en	R/W	0	ROM LIGHTSLEEP Enable Data is unavailable for read and write operations in <i>LIGHTSLEEP</i> . 0: Disabled. 1: Enabled.	
12	icc0ls_en	R/W	0	ICC LIGHTSLEEP Enable Data is unavailable for read and write operations in <i>LIGHTSLEEP</i> but is retained. 0: Disabled. 1: Enabled.	
11	ram3ls_en	R/W	0	Sysram3 and Sysram7 LIGHTSLEEP Enable Data is unavailable for read and write operations in <i>LIGHTSLEEP</i> but is retained. 0: Disabled. 1: Enabled. <i>Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for base address and size information.</i>	
10	ram2ls_en	R/W	0	Sysram2 and Sysram6 LIGHTSLEEP Enable Data is unavailable for read and write operations in <i>LIGHTSLEEP</i> but is retained. 0: Disabled. 1: Enabled. <i>Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for base address and size information.</i>	

Memory Clock Control				GCR_MEMCTRL	[0x0028]
Bits	Field	Access	Reset	Description	
9	ram1ls_en	R/W	0	Sysram1 and Sysram5 LIGHTSLEEP Enable Data is unavailable for read and write operations in <i>LIGHTSLEEP</i> but is retained. 0: Disabled. 1: Enabled. <i>Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for base address and size information.</i>	
8	ram0ls_en	R/W	0	Sysram0 and Sysram4 LIGHTSLEEP Enable Data is unavailable for read and write operations in <i>LIGHTSLEEP</i> but is retained. 0: Disabled. 1: Enabled. <i>Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for base address and size information.</i>	
7:5	-	RO	0	Reserved	
4	ramws_en		1	System RAM Wait State Enable 0: No wait state. 1: Wait state enabled.	
3	-	RO	0	Reserved	
2:0	fws	R/W	5	Program Flash Wait States This field sets the number of wait-state SYS_OSC cycles per flash code read access. 0-7: Number of flash code access wait states.	

Table 4-38: Memory Zeroization Control Register

Memory Zeroization Control				GCR_MEMZ	[0x002C]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	icc0	R/W	0	ICC Data and Tag Zeroization Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
1	ramcb	R/W	0	System RAM Check Bit Block Zeroization Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
0	ram	R/W	0	System RAM Zeroization Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	

Table 4-39: System Status Flag Register

System Status Flag				GCR_SYSST	[0x0040]
Bits	Field	Access	Reset	Description	
31:1	-	RO	0	Reserved	

System Status Flag			GCR_SYST		[0x0040]
Bits	Field	Access	Reset	Description	
0	icelock	R	0	Arm ICE Lock Status Flag 0: Arm ICE is enabled (unlocked). 1: Arm ICE is disabled (locked).	

Table 4-40: Reset Register 1

Reset 1			GCR_RST1		[0x0044]
Bits	Field	Access	Reset	Description	
31:26	-	RO	0	Reserved	
25	afe	R/W	0	AFE Reset Write 1 to initiate the operation. P0.22 is connected internally to the AFE reset pin. The AFE reset is active low. Setting this field to 1 automatically drives P0.22 low. The 0: Operation complete. 1: Operation in progress.	
24:18	-	RO	0	Reserved	
17	i2c2	R/W	0	I2C2 Peripheral Reset Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
16:15	-	R/W	0	Reserved	
14	ac	R/W	0	Auto Calibration Block Reset Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
13:11	-	R/W	-	Reserved	
10	aes	R/W	0	AES Block Reset Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
9	crc	R/W	0	CRC Block Reset Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
8	wdt1	R/W	0	Watchdog Timer 1 Peripheral Reset Write 1 to initiate the operation. 0: Operation complete. 1: Operation in progress.	
7:1	-	RO	0	Reserved	
0	i2c1	R/W	0	I²C1 Peripheral Reset Write 1 to initiate the operation. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.	

Table 4-41: Peripheral Clock Disable Register 1

Peripheral Clock Disable 1			GCR_PCLKDIS1		[0x0048]
Bits	Field	Access	Reset	Description	
31:22	-	RO	1	Reserved	
21	i2c2	R/W	1	I2C2 Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
20:16	-	RO	1	Reserved	
15	aes	R/W	1	AES Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
14	crc	R/W	1	CRC Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
13:12	-	RO	1	Reserved	
11	icco	R/W	0	ICC Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
10:6	-	RO	1	Reserved	
5	wwdt1	R/W	1	Watchdog Timer 1 Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
4	wwdt0	R/W	1	Watchdog Timer 0 Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
3:2	-	RO	1	Reserved	
1	uart2	R/W	1	UART2 Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled. 1: Disabled.	
0	-	RO	1	Reserved	

Table 4-42: Event Enable Register

Event Enable			GCR_EVENTEN		[0x004C]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	tx	R/W	0	Transmit Event (TXEV) On Send Event (SEV) Enable When set, a SEV instruction causes a TXEV event from the CPU. 0: Disabled. 1: Enabled.	
1	rx	R/W	0	Receive Event (RXEV) Event Enable Set this field to 1 to enable the generation of an RXEV event to wake the CPU from a WFE sleep state. 0: Disabled. 1: Enabled.	
0	dma	R/W	0	CPU DMA Count-to-Zero (CTZ) Wake-Up Enable Allows a DMA CTZ event to generate an RXEV to wake up the CPU from a low-power mode entered using a WFE instruction. 0: Disabled. 1: Enabled.	

Table 4-43: Revision Register

Revision			GCR_REVISION		[0x0050]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15:0	revision	R	0x03B4	Device Revision This field returns the chip revision ID as a packed BCD. 0x03B4: B4 revision.	

Table 4-44: System Status Interrupt Enable Register

System Status Interrupt Enable			GCR_SYSIE		[0x0054]
Bits	Field	Access	Reset	Description	
31:1	-	RO	*	Reserved	
0	iceunlock	R/W	0	Arm ICE Unlocked Interrupt Enable Set this field to 1 to generate an interrupt if the GCR_SYSST.iceclock field is set. 0: Disabled. 1: Enabled.	

Table 4-45: Error Correction Coding Error Detected Register

ECC Correctable Error Detected			GCR_ECCERR		[0x0064]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	flash	W1C	0	Flash ECC Error Detected Write to 1 to clear the flag. <i>Note: An ECC error occurs when reading from blank/erased flash memory. Until the flash is programmed with valid data, the ECC check bits are not set.</i> 0: No error. 1: Error.	

ECC Correctable Error Detected			GCR_ECCERR		[0x0064]
Bits	Field	Access	Reset	Description	
1	icc0	W1C	0	Internal Cache ECC Error Detected Write to 1 to clear the flag. 0: No error. 1: Error.	
0	ram	W1C	0	System RAM ECC Error Detected Write to 1 to clear the flag. 0: No error. 1: Error.	

Table 4-46: Error Correction Coding Correctable Error Detected Register

ECC Correctable Error Detected			GCR_ECCCED		[0x0068]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	flash	R/W1C	0	Flash Correctable ECC Error Detected When set, this field indicates that there is a single correctable error in the flash bank. Write to 1 to clear the flag. 0: No error. 1: Correctable error.	
1	icc0	R/W1C	0	Internal Cache Correctable ECC Error Detected When cleared, this indicates that there is a single correctable error in the internal cache. Write to 1 to clear the flag. 0: No error. 1: Correctable error.	
0	ram	R/W1C	0	System RAM Correctable ECC Error Detected When set, this field indicates that there is a single correctable error in the RAM block. Write to 1 to clear the flag. 0: No error 1: Correctable error.	

Table 4-47: Error Correction Coding Interrupt Enable Register

ECC Interrupt Enable			GCR_ECCIE		[0x006C]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved.	
2	flash	R/W	0	Flash ECC Error Interrupt Enable 0: Disabled. 1: Enabled.	
1	icc0	R/W	0	Internal Cache ECC Error Interrupt Enable 0: Disabled. 1: Enabled.	
0	ram	R/W	0	System RAM ECC Error Interrupt Enable 0: Disabled. 1: Enabled.	

Table 4-48: Error Correction Coding Address Register

ECC Address			GCR_ECCADDR		[0x0070]
Bits	Field	Access	Reset	Description	
31	tagramerr	R	0	ECC Error Address/Tag RAM Error Data depends on which block has reported the error. If system RAM or flash, then this bit(s) represents the bit(s) of the read's AMBA address, which produced the error. If the error is from one of the caches, then this bit is set as shown below: 0: No error. 1: Tag Error. The error is in the tag RAM.	
30	tagrambank	R	0	ECC Error Address/Tag RAM Error Bank Data depends on which block has reported the error. If system RAM or flash, this bit(s) represents the bit(s) of the read's AMBA address, which produced the error. If the error is from one of the caches, then this bit is set as shown below: 0: Error is in tag RAM bank 0. 1: Error is in tag RAM bank 1.	
29:16	tagramaddr	R	0	ECC Error Address/Tag RAM Error Address Data depends on which block has reported the error. If system RAM or flash, this bit(s) represents the bit(s) of the read's AMBA address, which produced the error. If the error is from one of the caches, then this bit is set as shown below: [TAG ADDRESS]: Represents the tag RAM address.	
15	dataramerr	R	0	ECC Error Address/Data RAM Error Address Data depends on which block has reported the error. If system RAM or flash, this bit(s) represents the bit(s) of the read's AMBA address, which produced the error. If the error is from one of the caches, then this bit is set as shown below: 0: No error 1: Data RAM error. The error is in the data RAM.	
14	datarambank	R	0	ECC Error Address/Data RAM Error Bank Data depends on which block has reported the error. If system RAM or flash, this bit(s) represents the bit(s) of the read's AMBA address, which produced the error. If the error is from one of the caches, then this bit is set as shown below: 0: Error is in data RAM bank 0. 1: Error is in data RAM bank 1.	
13:0	dataramaddr	R	0	ECC Error Address/TAG RAM Error Address Data depends on which block has reported the error. If system RAM or flash, this bit(s) represents the bit(s) of the read's AMBA address, which produced the error. If the error is from one of the caches, then this bit is set as shown below: [DATA ADDRESS]: Represents the data RAM error address.	

4.10 Error Correction Coding Enable Register

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 4-49: Error Correction Coding Enable Registers

Offset	Register Name	Description
[0x0008]	ECC_EN	<i>Error Correction Coding Enable</i>

4.10.1 Register Details

Table 4-50: Error Correction Coding Enable Register

ECC Enable			ECC_EN		[0x0008]
Bits	Name	Access	Reset	Description	
31:11	-	RO	0	Reserved	
10	flash	R/W	1	Flash ECC Enable Flash ECC is enabled after POR, system reset, watchdog reset, and exit from BACKUP and STORAGE. 0: Disabled. 1: Enabled.	
9	icc0	R/W	1	Internal Cache ECC Enable Cache ECC is enabled after POR, system reset, watchdog reset, and exit from BACKUP and STORAGE. 0: Disabled. 1: Enabled.	
8	ram	R/W	1	System RAM ECC Enable RAM ECC is enabled after POR, system reset, watchdog reset, and exit from BACKUP and STORAGE. 0: Disabled. 1: Enabled.	
7:0	-	RO	0	Reserved	

4.11 System Initialization Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 4-51: System Initialization Registers

Offset	Register Name	Description
[0x0000]	SIR_SIR_STATUS	<i>System Initialization Error Status Register</i>
[0x0004]	SIR_SIR_ADDR	<i>System Initialization Error Address Register</i>

4.11.1 Register Details

Table 4-52: System Initialization Error Status Register

System Initialization Error Status			SIR_SIR_STATUS		[0x0000]
Bits	Name	Access	Reset	Description	
31:2	-	RO	0	Reserved	
1	cfg_err	R	*	Configuration Error Flag This field is set by hardware during reset if an error in the device configuration is detected. 0: Configuration valid. 1: Configuration invalid. <i>Note: If this field reads 1, a device error has occurred. Contact Analog Devices, Inc. technical support for additional assistance providing the address contained in SIR_SIR_ADDR.addr.</i>	
0	cfg_valid	R	*	Configuration Valid Flag This field is set to 1 by hardware during reset if the device configuration is valid. 0: Configuration invalid. 1: Configuration valid. <i>Note: If this field reads 0, the device configuration is invalid, and a device error has occurred. Contact Analog Devices technical support for additional assistance.</i>	

Table 4-53: System Initialization Error Address Register

System Initialization Error Address			SIR_SIR_ADDR		[0x0004]
Bits	Name	Access	Reset	Description	
31:0	addr	R	0	Configuration Error Address If the SIR_SIR_STATUS.cfg_err field is set to 1, the value in this register is the address of the configuration failure.	

4.12 Function Control Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 4-54: Function Control Registers

Offset	Register Name	Description
[0x0000]	FCR_FCTRL0	Function Control Register 0
[0x0004]	FCR_AUTOCAL0	Automatic Calibration 0 Register
[0x0008]	FCR_AUTOCAL1	Automatic Calibration 1 Register
[0x000C]	FCR_AUTOCAL2	Automatic Calibration 2 Register

4.12.1 Register Details

Table 4-55: Function Control 0 Register

Function Control 0			FCR_FCTRL0		[0x0000]
Bits	Field	Access	Reset	Description	
31:26	-	RO	0	Reserved	

Function Control 0			FCR_FCTRL0		[0x0000]
Bits	Field	Access	Reset	Description	
25	i2c2_scl_filter_en	R/W	0	I2C2 SCL Glitch Filter Enable 0: Disabled. 1: Enabled.	
24	i2c2_sda_filter_en	R/W	0	I2C2 SDA Glitch Filter Enable 0: Disabled. 1: Enabled.	
23	i2c1_scl_filter_en	R/W	0	I2C1 SCL Glitch Filter Enable 0: Disabled. 1: Enabled.	
22	i2c1_sda_filter_en	R/W	0	I2C1 SDA Glitch Filter Enable 0: Disabled. 1: Enabled.	
21	i2c0_scl_filter_en	R/W	0	I2C0 SCL Glitch Filter Enable 0: Disabled. 1: Enabled.	
20	i2c0_sda_filter_en	R/W	0	I2C0 SDA Glitch Filter Enable 0: Disabled. 1: Enabled.	
19:3	-	RO	0	Reserved	
2:0	erfo_range_sel	R/W	0	ERFO Frequency Range Select Set these bits to reflect the crystal frequency connected to the HFXOUT and HFXIN device pins. 0: < 22.5MHz. 1: 22.5MHz to 24.5MHz. 2: 24.5MHz to 26.3MHz. 3: 26.3MHz to 28.0MHz. 4: 28.0MHz to 29.6MHz. 5: 29.6MHz to 31.1MHz. 6: 31.1MHz to 32.6MHz. 7: Reserved.	

Table 4-56: Automatic Calibration 0 Register

Function Control 1			FCR_AUTOCAL0		[0x0004]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 4-57: Automatic Calibration 1 Register

Function Control 2			FCR_AUTOCAL1		[0x0008]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 4-58: Automatic Calibration 2 Register

Function Control 3			FCR_AUTOCAL2		[0x000C]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

5. Interrupts and Exceptions

Interrupts and exceptions are managed by the Arm Cortex-M4 with FPU Nested Vector Interrupt Controller (NVIC). The NVIC handles the interrupts, exceptions, priorities and masking. *Table 5-1* details the MAX32675C interrupt vector table and describes each exception and interrupt.

5.1 Features

- 8 programmable priority levels
- Nested exception and interrupt support
- Interrupt masking

5.2 Interrupt Vector Table

Table 5-1 lists the interrupt and exception table for the MAX32675C. There are 115 interrupt entries for the MAX32675C, including reserved for future use interrupt placeholders. Including the 15 system exceptions for the Arm Cortex-M4 with FPU, the total number of entries is 130.

Table 5-1: MAX32675C Interrupt Vector Table

Exception/Interrupt Number	Offset	Name	Description
1	[0x0004]	Reset_IRQn	Reset
2	[0x0008]	NonMaskableInt_IRQn	Non-Maskable Interrupt
3	[0x000C]	HardFault_IRQn	Hard Fault
4	[0x0010]	MemoryManagement_IRQn	Memory Management Fault
5	[0x0014]	BusFault_IRQn	Bus Fault
6	[0x0018]	UsageFault_IRQn	Usage Fault
7:10	[0x001C]-[0x0028]	-	Reserved
11	[0x002C]	SVCall_IRQn	Supervisor Call Exception
12	[0x0030]	DebugMonitor_IRQn	Debug Monitor Exception
13	[0x0034]	-	Reserved
14	[0x0038]	PendSV_IRQn	Request Pending for System Service
15	[0x003C]	SysTick_IRQn	System Tick Timer
16	[0x0040]	PF_IRQn	Power Fail Interrupt
17	[0x0044]	WDTO_IRQn	Windowed Watchdog Timer 0 Interrupt
18:20	[0x0048]:[0x0050]	-	Reserved
21	[0x0054]	TMR0_IRQn	Timer 0 Interrupt
22	[0x0058]	TMR1_IRQn	Timer 1 Interrupt
23	[0x005C]	TMR2_IRQn	Timer 2 Interrupt
24	[0x0060]	TMR3_IRQn	Timer 3 Interrupt
25	[0x0064]	TMR4_IRQn	Timer 4 (Low-Power Timer 0) Interrupt
26	[0x0068]	TMR5_IRQn	Timer 5 (Low-Power Timer 1) Interrupt
27:28	[0x006C]:[0x0070]	-	Reserved
29	[0x0074]	I2C0_IRQn	I ² C Port 0 Interrupt
30	[0x0078]	UART0_IRQn	UART Port 0 Interrupt
31	[0x007C]	UART1_IRQn	UART Port 1 Interrupt

Exception/Interrupt Number	Offset	Name	Description
32	[0x0080]	SPI0_IRQn	SPI Port 0 Interrupt
33	[0x0084]	SPI1_IRQn	SPI Port 1 Interrupt
34	[0x0088]	SPI2_IRQn	SPI Port 2 Interrupt
35:38	[0x008C]:[0x0098]	-	Reserved
39	[0x009C]	FLC0_IRQn	Flash Controller 0 Interrupt
40	[0x00A0]	GPIO0_IRQn	GPIO Port 0 Interrupt
41	[0x00A4]	GPIO1_IRQn	GPIO Port 1 Interrupt
42:43	[0x00A8]:[0x00AC]	-	Reserved
44	[0x00B0]	DMA0_IRQn	DMA0 Interrupt
45	[0x00B4]	DMA1_IRQn	DMA1 Interrupt
46	[0x00B8]	DMA2_IRQn	DMA2 Interrupt
47	[0x00BC]	DMA3_IRQn	DMA3 Interrupt
48:49	[0x00C0]:[0x00C4]	-	Reserved
50	[0x00C8]	UART2_IRQn	UART Port 2 Interrupt
51	[0x00CC]	-	Reserved
52	[0x00D0]	I2C1_IRQn	I ² C Port 1 Interrupt
53:69	[0x00D4]:[0x0114]	-	Reserved
70	[0x0118]	GPIOAKE_IRQn	GPIO Wake-Up Interrupt
71:72	[0x011C]:[0x0120]	-	Reserved
73	[0x0124]	WDT1_IRQn	Windowed Watchdog Timer 1 Interrupt
74:77	[0x0128]:[0x0134]	-	Reserved
78	[0x0138]	I2C2_IRQn	I ² C Port 2 Interrupt
79:83	[0x013C]:[0x014C]	-	Reserved
84	[0x0150]	DMA4_IRQn	DMA4 Interrupt
85	[0x0154]	DMA5_IRQn	DMA5 Interrupt
86	[0x0158]	DMA6_IRQn	DMA6 Interrupt
87	[0x015C]	DMA7_IRQn	DMA7 Interrupt
88:97	[0x0160]:[0x0184]	-	Reserved
98	[0x0188]	ECC_IRQn	Error Correction Coding Block Interrupt
99:112	[0x018C]:[0x01C0]	-	Reserved
113	[0x01C4]	AES_IRQn	AES Block Interrupt
114	[0x01C8]	CRC_IRQn	CRC Block Interrupt
115	[0x01CC]	-	Reserved

6. General-Purpose I/O (GPIO) and Alternate Function (AF) Pins

The GPIO pins share an individually controlled I/O mode and an AF mode. Configuring a pin for an AF supersedes its use as a controlled GPIO. However, the input data is always readable using the GPIO input register, [GPIO_n_IN](#), if the GPIO input is enabled.

Multiplexing between the AF and the I/O function is often static in an application, set at initialization, and dedicated as either an AF or GPIO. The software must manage dynamic multiplexing between AF1, AF2, AF3, AF4, and I/O mode. The software must manage the AF and GPIO to ensure each is set up properly when switching from a peripheral to the I/O function. Refer to the device data sheet electrical characteristics table for information on the GPIO pin behavior based on the configurations described in this document.

In GPIO mode, each I/O pin supports interrupt functionality that can be independently enabled and configured as a level triggered interrupt, a rising edge, a falling edge, or both rising and falling edge interrupt. All GPIO on the same 32-bit GPIO port share the same interrupt vector. Not all GPIO pins are available on all packages.

Note: The register set used to control the GPIO are identical across multiple Analog Devices microcontrollers. However, the behavior of several registers varies depending on the specific device. The behavior of the registers should not be assumed to be the same from one device to a different device. Specifically the registers [GPIO_n_PADCTRL0](#), [GPIO_n_PADCTRL1](#), [GPIO_n_HSEN](#), [GPIO_n_SRSEL](#), [GPIO_n_DS0](#), [GPIO_n_DS1](#), and [GPIO_n_VSSEL](#) are device dependent in their usage.

The GPIO are all bidirectional digital I/O that include:

- Input mode features:
 - ◆ Standard CMOS or Schmitt hysteresis.
 - ◆ Input data from the input data register ([GPIO_n_IN](#)) or to a peripheral (AF).
 - ◆ Input state selectable for high-impedance or weak pullup/pulldown.
- Output mode features:
 - ◆ Output data from the output data register ([GPIO_n_OUT](#)) in GPIO mode.
 - ◆ Output data driven from peripheral if an AF is selected.
 - ◆ Standard GPIO:
 - Four drive strength modes.
 - Slow or fast slew rate selection.
- Selectable weak pullup resistor, weak pulldown resistor, or tri-state mode for standard GPIO pins.
- Selectable weak pulldown or tri-state mode for GPIO pins with I²C as an AF.
- Wake from low-power modes on rising edge, falling edge, or both on the I/O pins.

6.1 Instances

Table 6-1 shows the number of GPIO available on each IC package. Some packages and part numbers do not implement all bits of a 32-bit GPIO port. Register fields corresponding to unimplemented GPIO contain indeterminate values and should not be modified.

Table 6-1: GPIO Pin Count

Package	GPIO	Pins
72-LGA	GPIO1[12:1] GPIO0[31:23] GPIO0[21] GPIO0[19:12] GPIO0[9:6] GPIO0[5:2] (Internal Only) GPIO0[1:0]	Refer to the device data sheet for details

Note: Refer to the device data sheet for a description of the alternate functions for each GPIO port pin.

Note: MAX32675C does not support the selectable GPIO voltage supply feature.

6.2 Configuration

6.2.1 Peripheral Clock Enable

The GPIO ports are disabled by default on a reset. Using a GPIO pin requires enabling the peripheral clock for the port. Enable GPIO0 by setting .gpio0 to [GCR_PCLKDIS0 gpio0](#) to 0 and enable [GCR_PCLKDIS0 gpio1](#) to 0 to enable GPIO1.

6.2.2 Power-On-Reset Configuration

SWD is enabled by default after POR by hardware. See the [ROM Bootloader](#) section for exceptions.

Note: To use the SWD pins in I/O mode set the SWD disable field to 0 ([GCR_SYSCTRL.swd_dis](#) = 0).

Following a POR event the SWD pins (P0.0 and P0.1) are configured as follows:

- GPIO mode enabled.
 - ◆ [GPIOn_EN0\[pin\]](#) = 1.
 - ◆ [GPIOn_EN1\[pin\]](#) = 0.
 - ◆ [GPIOn_EN2\[pin\]](#) = 0.
- Input mode enabled.
 - ◆ [GPIOn_INEN\[pin\]](#) = 1.
- High-impedance mode.
 - ◆ [GPIOn_PADCTRL1](#) = 0
 - ◆ [GPIOn_PS\[pin\]](#) = 0.
- Output mode disabled.
 - ◆ [GPIOn_OUTEN\[pin\]](#) = 0.

P0.2 has the following POR configuration:

- GPIO enabled.
 - ◆ *GPIO_n.EN0*[pin] = 1.
 - ◆ *GPIO_n.EN1*[pin] = 0.
 - ◆ *GPIO_n.EN2*[pin] = 0.
- Input mode disabled.
 - ◆ *GPIO_n.INEN*[pin] = 0.
- High-impedance mode.
 - ◆ *GPIO_n.PADCTRL1* = 0
 - ◆ *GPIO_n.PS*[pin] = 0.
- Output mode disabled.
 - ◆ *GPIO_n.OUTEN*[pin] = 0.

P0.3, P0.4, P0.5, and P0.10 have the following POR configuration:

- GPIO enabled.
 - ◆ *GPIO_n.EN0*[pin] = 1.
 - ◆ *GPIO_n.EN1*[pin] = 0.
 - ◆ *GPIO_n.EN2*[pin] = 0.
- Input mode disabled.
 - ◆ *GPIO_n.INEN*[pin] = 0.
- Weak pulldown enabled.
 - ◆ *GPIO_n.PADCTRL1* = 1
 - ◆ *GPIO_n.PS*[pin] = 0.
- Output mode disabled.
 - ◆ *GPIO_n.OUTEN*[pin] = 0.

Note: P0.10 is used for the HART clock.

All other pins have the following configuration after a POR:

- GPIO enabled.
 - ◆ *GPIO_n.EN0*[pin] = 1.
 - ◆ *GPIO_n.EN1*[pin] = 0.
 - ◆ *GPIO_n.EN2*[pin] = 0.
- Input mode enabled.
 - ◆ *GPIO_n.INEN*[pin] = 1.
- High-impedance mode.
 - ◆ *GPIO_n.PADCTRL1* = 0
 - ◆ *GPIO_n.PS*[pin] = 0.
- Output mode disabled.
 - ◆ *GPIO_n.OUTEN*[pin] = 0.
- Interrupt disabled.
 - ◆ *GPIO_n.INTEN*[pin] = 0.

The following pins have permanent settings that can not be modified by software:

1. P0.22: Interrupt disabled, output only. This pin is connected internally to the AFE reset input.

6.2.3 Input mode configuration

Perform the following steps to configure a pin or pins for input mode:

1. Enable the pin for input mode by setting [GPIO_n.INEN](#)[*pin*] to 1.
2. Set the pin for I/O mode:
 - a. [GPIO_n.ENO](#)[*pin*] = 1.
 - b. [GPIO_n.EN1](#)[*pin*] = 0.
 - c. [GPIO_n.EN2](#)[*pin*] = 0.
3. Configure the pin for pullup, pulldown, or high-impedance mode. See [Table 6-2](#) for pullup and pulldown selection.
 - a. GPIO pins with I²C as an AF only support high-impedance or a weak pullup resistor.
4. Read the input state of the pin using the [GPIO_n.IN](#)[*pin*] field.

A summary of the configuration of the input mode is shown in [Table 6-2](#).

Table 6-2: MAX32675C Input Mode Configuration Summary

Input Mode	Pullup/Pulldown Enable GPIO_n.PADCTRL0 [<i>pin</i>] BITWISE OR GPIO_n.PADCTRL1 [<i>pin</i>]	Pullup/Pulldown Select GPIO_n.PS [<i>pin</i>]
High impedance	0	N/A
Weak pullup to V _{DD}	1	1
Weak pulldown to V _{SS}	1	0

Note: Refer to the device data sheet electrical characteristics table for the value of resistors.

Note: See [GPIO_n.PADCTRL1](#) for reset default for each GPIO port.

6.2.4 Output Mode Configuration

Perform the following steps to configure a pin for output mode:

1. Enable the pin by setting the [GPIO_n.INEN](#)[*pin*] to 1.
2. Set the pin for I/O mode:
 - a. [GPIO_n.ENO](#)[*pin*] = 1.
 - b. [GPIO_n.EN1](#)[*pin*] = 0.
 - c. [GPIO_n.EN2](#)[*pin*] = 0.
3. Set the output drive strength using the [GPIO_n.DS1](#)[*pin*] and [GPIO_n.DS0](#)[*pin*] bits.
 - a. See the [GPIO Drive Strength](#) section for configuration details and the modes supported.
 - b. Refer to the device data sheet for the electrical characteristics for the drive strength modes.
4. Enable the output buffer for the pin by setting [GPIO_n.OUTEN.en](#)[*pin*] to 1.
5. Set the output high or low using the [GPIO_n.OUT](#)[*pin*] bit.

6.2.5 GPIO Drive Strength

Each I/O pin supports multiple selections for drive strength. Standard GPIO pins are configured for the supported modes using the [GPIO_n.DS1](#) and [GPIO_n.DS0](#) registers, as shown in [Table 6-3](#). Each of the bits within these registers represents the configuration of a single pin on the GPIO port. For example, [GPIO0_DS.str\[25\]](#), [GPIO0_DS1.str\[25\]](#) both represent configuration for device pin P0.25. The drive strength currents shown are targets only. Refer to the device data sheet Electrical Characteristics table for details of the V_{OL_GPIO} , V_{OH_GPIO} , V_{OL_I2C} , and V_{OH_I2C} parameters.

Table 6-3: Standard GPIO Drive Strength Selection

Drive Strength $V_{DD} = 1.71V$	<i>GPIOn_DS1</i> [pin]	<i>GPIOn_DS0</i> [pin]
1mA	0	0
4mA	0	1
2mA	1	0
6mA	1	1

For GPIO with I²C as an AF, [Table 6-4](#) shows the drive strength setting options.

Table 6-4: GPIO with I²C AF Drive Strength Selection

Drive Strength $V_{DD} = 1.71V$	<i>GPIOn_DS0</i> [pin]
2mA	0
10mA	1

6.2.6 Alternate Function Usage

[Table 6-5](#) shows the bit settings for the *GPIOn_EN2* and *GPIOn_EN1* fields to configure the function of the GPIO port pins for a desired alternate function. For example, *GPIO0_EN1.[25]*, and *GPIO0_EN2.[25]* all represent configuration for device pin P0.25.

Note: Each AF is independently selectable. Mixing functions assigned to AF1, AF2, AF3, or AF4 is supported if all the peripheral's required functions are enabled.

Table 6-5: MAX32670 GPIO Mode and AF Selection

Alternate Function Selection	<i>GPIOn_EN2</i> [pin]	<i>GPIOn_EN1</i> [pin]
AF1	0	0
AF2	0	1
AF3	1	0
AF4	1	1

Most GPIO support one or more alternate functions selected with the GPIO configuration enable bits shown in [Table 6-5](#). The bits that select the AF must only be changed while the pin is in one of the I/O modes (*GPIOn_EN0* = 1). The following steps describe how to configure a pin for alternate function usage.

1. Enable the pin by setting the *GPIOn_INEN*[pin] to 1.
2. Set the pin to I/O mode by setting *GPIOn_EN0*[pin] to 1.
 - a. This step is important to prevent selection of unintended alternate functions during configuration.
3. For UART AF pins, set the pin to weak pullup enabled. See [Table 6-2](#) for pullup selection.
4. Set *GPIOn_EN2*[pin] and *GPIOn_EN1*[pin] to the values for the desired alternate function, as shown in [Table 6-5](#).
5. Set *GPIOn_EN0*[pin] to 0 to enable the alternate function.

6.3 Configuring GPIO Interrupts and Wake

Each GPIO supports external interrupt events when the GPIO is configured for I/O mode, and the input mode is enabled. The interrupts are peripheral controlled if the GPIO is configured as a peripheral AF. GPIO interrupts can be independently

enabled for any number of GPIO on each GPIO port. All implemented pins of a GPIO port have a single assigned/shared interrupt vector.

The following procedure details the steps for enabling Active mode interrupt events for a GPIO pin:

1. Disable interrupts by setting the *GPIO_n_INTEN*[*pin*] field to 0. This prevents any new interrupts on the pin from triggering but does not clear previously triggered (pending) interrupts. The application can disable all interrupts for GPIO by writing 0 to *GPIO_n_INTEN*[31:0]. To maintain previously enabled interrupts, read the *GPIO_n_INTEN* register and save the value before setting the register to 0.
2. Clear pending interrupts by writing 1 to the *GPIO_n_INTFL_CLR*[*pin*] bit.
3. Set *GPIO_n_INTMODE*[*pin*] to select either level (0) or edge-triggered (1) interrupts.
 - a. For level triggered interrupts, the interrupt triggers on an input high or low.
 - i. *GPIO_n_INTPOL*[*pin*] = 1: Input high triggers interrupt.
 - ii. *GPIO_n_INTPOL*[*pin*] = 0: Input low triggers interrupt.
 - b. For edge-triggered interrupts, the interrupt triggers on an edge event.
 - i. *GPIO_n_INTPOL*[*pin*] = 0: Input rising edge triggers interrupt.
 - ii. *GPIO_n_INTPOL*[*pin*] = 1: Input falling edge triggers interrupt.
 - iii. Optionally set *GPIO_n_DUALEDGE*[*pin*] to 1 to trigger on both the rising and falling edges of the input signal.
4. Set *GPIO_n_INTEN*[*pin*] to 1 to enable the interrupt for the pin.

6.3.1 GPIO Interrupt Handling

Each GPIO port is assigned its own dedicated interrupt vector, as shown in *Table 6-7*. Complete the following steps to handle GPIO interrupts using a software interrupt vector handler:

1. Read the *GPIO_n_INTFL* register to determine the GPIO pin that triggered the interrupt.
2. Complete interrupt tasks associated with the interrupt source pin as required by the application.
3. Clear the interrupt flag in the *GPIO_n_INTFL* register by writing 1 to the *GPIO_n_INTFL_CLR*[*pin*] bit position that triggered the interrupt. If multiple bits are set in the *GPIO_n_INTFL* register, all of the corresponding bits should be cleared.
4. Return from the interrupt vector handler.

Table 6-6 shows the registers and interrupt handler for standard GPIO interrupts for each supported operating mode.

Table 6-6: MAX32675C GPIO Interrupt Enable Settings for Each Supported Operating Mode

Operating Mode	<i>GPIO_n_INTEN</i>	Interrupt Handler
ACTIVE	X	GPIO0_IRQn GPIO1_IRQn
SLEEP	X	GPIO0_IRQn GPIO1_IRQn

Note: Wake from DEEPSLEEP, BACKUP, and STORAGE is only supported using the GPIOWAKE interrupt.

Table 6-7: MAX32675C GPIO Port Interrupt Vector Mapping

GPIO Wake Interrupt Source	GPIO Interrupt Status Register	Device Specific Interrupt Vector Number	GPIO Interrupt Vector
GPIO0	GPIO0_INTFL	40	GPIO0_IRQn
GPIO1	GPIO1_INTFL	41	GPIO1_IRQn

6.3.2 Using GPIO for Wake-Up from Low-Power Modes

Standard GPIO interrupts wake the device from *SLEEP* and *DEEPSLEEP*. Additionally, wake from *DEEPSLEEP*, *BACKUP*, and *STORAGE* are supported for GPIO using the **GPIOWAKE** feature. **GPIOWAKE** allows wake from low-power modes from external edge-triggered interrupts on the GPIO ports. Level triggered interrupts are not supported for wake-up because the system clock must be active to detect levels.

6.3.3 Using GPIOWAKE for Wake-Up from All Power Modes

For wake-up interrupts on the GPIO, a single interrupt vector, **GPIOWAKE_IRQn**, is assigned for all the GPIO pins. When the wake-up event occurs, the application software must interrogate the [PWRSEQ_LPWKST0](#) and [PWRSEQ_LPWKST1](#) registers to determine which GPIO0 port pin caused the interrupt.

Table 6-8: GPIO Wakeup Interrupt Vector

GPIO Wake Interrupt Source	GPIO Wake Interrupt Status Register	Device Specific Interrupt Vector Number	GPIO Wake-up Interrupt Vector
GPIO0	GPIOn_INTFL	70	GPIOWAKE_IRQn
GPIO1	GPIOn_INTFL	70	GPIOWAKE_IRQn

Enable **GPIOWAKE** interrupts for all power modes (*ACTIVE*, *SLEEP*, *DEEPSLEEP*, and *BACKUP*) from an external GPIO event by completing the following steps:

1. Clear pending interrupt flags by writing 0xFFFF FFFF to the [PWRSEQ_LPWKST0](#) and [PWRSEQ_LPWKST1](#) registers.
2. Set up a **GPIOWAKE_IRQn** interrupt handler.
3. Enable the **GPIOWAKE** for each desired GPIO0 pin by setting [PWRSEQ_LPWKENO](#)[*pin*] to 1 and GPIO1 by setting [PWRSEQ_LPWKEN1](#)[*pin*] to 1.
4. Configure the power manager to use the GPIO as a wake-up source by writing 1 to the [GCR_PM](#).*gpio_we* field.
5. Enter the desired low-power mode. See [Low-Power Modes](#) for details.
6. When a wakeup event occurs, if an I/O caused the wake up, the pin's corresponding bit is set in the [PWRSEQ_LPWKST0](#) register for GPIO0 and [PWRSEQ_LPWKST1](#) register for GPIO1.

6.4 GPIO Registers

See [Table 3-2](#) for the base address of this peripheral/module. If multiple instances of the peripheral are provided, each instance has its own independent set of the registers, shown in [Table 6-9](#). Register names for a specific instance are defined by replacing “n” with the instance number. As an example, a register **PERIPHERALn_CTRL** resolves to **PERIPHERAL0_CTRL** and **PERIPHERAL1_CTRL** for instances 0 and 1, respectively. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 6-9: GPIO Registers

Offset	Register Name	Description
[0x0000]	GPIOn_ENO	GPIO Port n Configuration Enable Bit 0 Register
[0x0004]	GPIOn_ENO_SET	GPIO Port n Configuration Enable Atomic Set Bit 0 Register
[0x0008]	GPIOn_ENO_CLR	GPIO Port n Configuration Enable Atomic Clear Bit 0 Register
[0x000C]	GPIOn_OUTEN	GPIO Port n Output Enable Register
[0x0010]	GPIOn_OUTEN_SET	GPIO Port n Output Enable Atomic Set Register
[0x0014]	GPIOn_OUTEN_CLR	GPIO Port n Output Enable Atomic Clear Register
[0x0018]	GPIOn_OUT	GPIO Port n Output Register
[0x001C]	GPIOn_OUT_SET	GPIO Port n Output Atomic Set Register

Offset	Register Name	Description
[0x0020]	<i>GPIO_n_OUT_CLR</i>	GPIO Port n Output Atomic Clear Register
[0x0024]	<i>GPIO_n_IN</i>	GPIO Port n Input Register
[0x0028]	<i>GPIO_n_INTMODE</i>	GPIO Port n Interrupt Mode Register
[0x002C]	<i>GPIO_n_INTPOL</i>	GPIO Port n Interrupt Polarity Register
[0x0030]	<i>GPIO_n_INEN</i>	GPIO Port n Input Enable Register
[0x0034]	<i>GPIO_n_INTEN</i>	GPIO Port n Interrupt Enable Register
[0x0038]	<i>GPIO_n_INTEN_SET</i>	GPIO Port n Interrupt Enable Atomic Set Register
[0x003C]	<i>GPIO_n_INTEN_CLR</i>	GPIO Port n Interrupt Enable Atomic Clear Register
[0x0040]	<i>GPIO_n_INTFL</i>	GPIO Port n Interrupt Status Register
[0x0048]	<i>GPIO_n_INTFL_CLR</i>	GPIO Port n Interrupt Clear Register
[0x004C]	<i>GPIO_n_WKEN</i>	GPIO Port n Wake-Up Enable Register
[0x0050]	<i>GPIO_n_WKEN_SET</i>	GPIO Port n Wake-Up Enable Atomic Set Register
[0x0054]	<i>GPIO_n_WKEN_CLR</i>	GPIO Port n Wake-Up Enable Atomic Clear Register
[0x005C]	<i>GPIO_n_DUALEDGE</i>	GPIO Port n Interrupt Dual Edge Mode Register
[0x0060]	<i>GPIO_n_PADCTRL0</i>	GPIO Port n Pad Control 0 Register
[0x0064]	<i>GPIO_n_PADCTRL1</i>	GPIO Port n Pad Control 1 Register
[0x0068]	<i>GPIO_n_EN1</i>	GPIO Port n Configuration Enable Bit 1 Register
[0x006C]	<i>GPIO_n_EN1_SET</i>	GPIO Port n Configuration Enable Atomic Set Bit 1 Register
[0x0070]	<i>GPIO_n_EN1_CLR</i>	GPIO Port n Configuration Enable Atomic Clear Bit 1 Register
[0x0074]	<i>GPIO_n_EN2</i>	GPIO Port n Configuration Enable Bit 2 Register
[0x0078]	<i>GPIO_n_EN2_SET</i>	GPIO Port n Configuration Enable Atomic Set Bit 2 Register
[0x007C]	<i>GPIO_n_EN2_CLR</i>	GPIO Port n Configuration Enable Atomic Clear Bit 2 Register
[0x00A8]	<i>GPIO_n_HYSEN</i>	GPIO Port n Input Hysteresis Enable Register
[0x00AC]	<i>GPIO_n_SRSEL</i>	GPIO Port n Slew Rate Select Register
[0x00B0]	<i>GPIO_n_DS0</i>	GPIO Port n Drive Strength Select 0 Register
[0x00B4]	<i>GPIO_n_DS1</i>	GPIO Port n Drive Strength Select 1 Register
[0x00B8]	<i>GPIO_n_PS</i>	GPIO Port n Pullup/Pulldown Enable Register
[0x00C0]	<i>GPIO_n_VSSEL</i>	GPIO Port n Voltage Select Register

6.4.1 Register Details

Table 6-10: GPIO AF 0 Select Register

GPIO AF 0 Select			GPIOOn_EN0		[0x0000]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	*	GPIO Configuration Enable Bit 0 These bits, in conjunction with bits in GPIOOn_EN1 and GPIOOn_EN2 configure the corresponding device pin for digital I/O or an AF mode. This field can be modified directly by writing to this register or indirectly through GPIOOn_EN0_SET or GPIOOn_EN0_CLR . See Alternate Function Usage for details on this register's usage. 0: Alternate function mode selected. 1: I/O mode. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> <i>Note: This register setting does not affect input and interrupt functionality of the associated pin.</i> * GPIO0_EN0 reset value is 0xFFFF FFFC. * GPIO1_EN0 reset value is 0x0000 1FFF.	

Table 6-11: GPIO Port n Configuration Enable Atomic Set Bit 0 Register

GPIO Port n Configuration Enable Atomic Set Bit 0				GPIOOn_EN0_SET	[0x0004]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Configuration Enable Atomic Set Bit 0 Setting a bit in this field sets the corresponding bit in the GPIOOn_EN0 register. 0: No effect. 1: Corresponding bit in GPIOOn_EN0 register set to 1. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-12: GPIO Port n Configuration Enable Atomic Clear Bit 0 Register

GPIO Port n Configuration Enable Atomic Clear Bit 0				GPIOOn_EN0_CLR	[0x0008]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Configuration Enable Atomic Clear Bit 0 Setting a bit in this field clears the corresponding bits in the GPIOOn_EN0 register. 0: No effect. 1: Corresponding bits in GPIOOn_EN0 register cleared to 0. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-13: GPIO Port n Output Enable Register

GPIO Port n Output Enable			GPIOOn_OUTEN		[0x000C]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Output Enable Setting a bit in this field enables the output driver for the corresponding GPIO pin. A bit can be enabled directly by writing to this register or indirectly through GPIOOn_OUTEN_SET or GPIOOn_OUTEN_CLR . 0: Disabled. 1: Enabled. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-14: GPIO Port n Output Enable Atomic Set Register

GPIO Port n Output Enable Atomic Set			GPIOOn_OUTEN_SET		[0x0010]
Bits	Field	Access	Reset	Description	
31:0	-	R/W10	0	GPIO Output Enable Atomic Set Setting a bit in this field sets the corresponding bit in the GPIOOn_OUTEN register. 0: No effect. 1: Corresponding bits in GPIOOn_OUTEN set to 1. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-15: GPIO Port n Output Enable Atomic Clear Register

GPIO Port n Output Enable Atomic Clear			GPIOOn_OUTEN_CLR		[0x0014]
Bits	Field	Access	Reset	Description	
31:0	-	R/W10	0	GPIO Output Enable Atomic Clear Setting a bit in this field clears the corresponding bits in the GPIOOn_OUTEN register. 0: No effect. 1: Corresponding bits in GPIOOn_OUTEN cleared to 0. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-16: GPIO Port n Output Register

GPIO Port n Output			GPIOOn_OUT		[0x0018]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Output Level Setting a bit in this field sets the corresponding output pin to a high state. Clearing a bit in this field clears the corresponding output pin to a low state. 0: Drive the corresponding output pin low (logic 0). 1: Drive the corresponding output pin high (logic 1). <i>Note: This bit is ignored if the corresponding bit position in the GPIOOn_OUTEN register is not set or if the pin is configured for an AF.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-17: GPIO Port n Output Atomic Set Register

GPIO Port n Output Atomic Set			GPIO _n _OUT_SET		[0x001C]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Output Atomic Set Setting a bit in this field sets the corresponding bits in the GPIO_n_OUT register. 0: No effect. 1: Corresponding bits in GPIO_n_OUTEN set to 1. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-18: GPIO Port n Output Atomic Clear Register

GPIO Port n Output Atomic Clear			GPIO _n _OUT_CLR		[0x0020]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Output Atomic Clear Setting a bit in this field clears the corresponding bits in the GPIO_n_OUT register. 0: No effect. 1: Corresponding bits in GPIO_n_OUTEN cleared to 0. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-19: GPIO Port n Input Register

GPIO Port n Input			GPIO _n _IN		[0x0024]
Bits	Field	Access	Reset	Description	
31:0	-	R	0	GPIO Input Level Read the state of the corresponding input pin. The input state is always readable for a pin regardless of the pin's configuration as an output or AF. 0: Input pin low (logic 0). 1: Input pin high (logic 1). <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-20: GPIO Port n Interrupt Mode Register

GPIO Port n Interrupt Mode			GPIO _n _INTMODE		[0x0028]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Interrupt Mode Setting a bit in this field sets edge-triggered interrupts for corresponding GPIO pin. Clearing a bit in this field sets level triggered interrupt for corresponding GPIO pin. 0: Level triggered interrupt. 1: Edge triggered interrupt. <i>Note: This bit has no effect unless the corresponding bit in the GPIO_n_INEN register is set.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-21: GPIO Port n Interrupt Polarity Register

GPIO Port n Interrupt Polarity				GPIOOn_INTPOL	[0x002C]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Interrupt Polarity Interrupt polarity selection bit for the corresponding GPIO. Level triggered mode (GPIOOn_INTMODE .[pin]= 0): 0: Input low (logic 0) triggers interrupt. 1: Input high (logic 1) triggers interrupt. Edge-triggered mode (GPIOOn_INTMODE .[pin]= 1): 0: Falling edge triggers interrupt. 1: Rising edge triggers interrupt. <i>Note: This bit has no effect unless the corresponding bit in the GPIOOn_INEN register is set.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-22: GPIO Port n Input Enable Register

GPIO Port n Input Enable				GPIOOn_INEN	[0x0030]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	*	GPIO Input Enable Setting a bit in this field connects the corresponding input pad to the specified input pin for reading the pin state using the GPIOOn_IN register. 0: Input not connected. 1: Input pin connected. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> * GPIO0_INEN reset value is 0xFFFF FBC3 * GPIO1_INEN reset value is 0x0000 1FFF	

Table 6-23: GPIO Port n Interrupt Enable Registers

GPIO Port n Interrupt Enable				GPIOOn_INTEN	[0x0034]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Interrupt Enable Setting a bit in this field enables the interrupt for the corresponding GPIO pin. 0: Disabled. 1: Enabled. <i>Note: Disabling a GPIO interrupt does not clear pending interrupts for the associated pin. Use the GPIOOn_INTFL_CLR register to clear pending interrupts.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-24: GPIO Port n Interrupt Enable Atomic Set Register

GPIO Port Interrupt Enable Atomic Set			GPIO _n _INTEN_SET		[0x0038]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Interrupt Enable Atomic Set Setting a bit in this field sets the corresponding bits in the GPIO_n_INTEN register. 0: No effect. 1: Corresponding bits in GPIO_n_INTEN register set to 1. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-25: GPIO Port n Interrupt Enable Atomic Clear Register

GPIO Port Interrupt Enable Atomic Clear			GPIO _n _INTEN_CLR		[0x003C]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Interrupt Enable Atomic Clear Setting a bit in this field clears the corresponding bits in the GPIO_n_INTEN register. 0: No effect. 1: Corresponding bits in GPIO_n_INTEN register cleared to 0. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-26: GPIO Interrupt Status Register

GPIO Interrupt Status			GPIO _n _INTFL		[0x0040]
Bits	Field	Access	Reset	Description	
31:0	-	R	0	GPIO Interrupt Status An interrupt is pending for the associated GPIO pin when this bit reads 1. 0: No interrupt pending for associated GPIO pin. 1: GPIO interrupt pending for associated GPIO pin. <i>Note: Write a 1 to the corresponding bit in the GPIO_n_INTFL_CLR register to clear the interrupt pending status flag.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-27: GPIO Port n Interrupt Clear Register

GPIO Port Interrupt Clear			GPIO _n _INTFL_CLR		[0x0048]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1C	0	GPIO Interrupt Clear Setting a bit in this field clears the associated interrupt status (GPIO_n_INTFL). 0: No effect on the associated GPIO_n_INTFL flag. 1: Clear the associated interrupt pending flag in the GPIO_n_INTFL register. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-28: GPIO Port n Wake-Up Enable Register

GPIO Port n Wake-Up Enable			GPIO _n _WKEN		[0x004C]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 6-29: GPIO Port n Wake-Up Enable Atomic Set Register

GPIO Port Wake-Up Enable Atomic Set			GPIO _n _WKEN_SET		[0x0050]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 6-30: GPIO Port n Wake-Up Enable Atomic Clear Register

GPIO Port Wake-Up Enable Atomic Clear			GPIO _n _WKEN_CLR		[0x0054]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 6-31: GPIO Port n Interrupt Dual Edge Mode Register

GPIO Port n Interrupt Dual Edge Mode			GPIO _n _DUALEDGE		[0x005C]
Bits	Field	Access	Reset	Description	
31:0	en	R/W	0	GPIO Interrupt Dual-Edge Mode Select Setting a bit in this field selects dual edge mode triggered interrupts (rising and falling edge-triggered) on the corresponding GPIO port device pin. The associated GPIO_n_INTMODE bit must be set to edge-triggered. When enabled, the associated polarity (GPIO_n_INTPOL) setting has no effect. 0: Disabled. 1: Enabled. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-32: GPIO Port n Pad Control 0 Register

GPIO Port n Pad Control 0			GPIO _n _PADCTRL0		[0x0060]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO0 Pullup/Pulldown Enable Setting a bit in this field enables the weak pullup or pulldown resistor on the corresponding GPIO port device pin. The selection for pullup or pulldown resistor is set using the GPIO_n_PS register. CAUTION: This field is OR'd with the corresponding bit field of GPIO_n_PADCTRL1 . 0: High impedance. 1: Pullup/Pulldown resistor connected. <i>Note: This field is applied even if the input is disabled (GPIO_n_INEN[pin] = 0).</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> <i>Note: GPIO with I²C as an AF do not support a weak pullup resistor. Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet electrical characteristics table for details regarding which I/O pins support I²C functionality. If the corresponding GPIO with I²C as an AF bit in the GPIO_n_PS register is set to 1, setting the same bit in this register has no effect.</i>	

Table 6-33: GPIO Port n Pad Control 1 Register

GPIO Port n Pad Control 1			GPIOOn_PADCTRL1		[0x0064]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	*	GPIO0 Pullup/Pulldown Enable Setting a bit in this field enables the weak pullup or pulldown resistor on the corresponding GPIO port device pin. The selection for pullup or pulldown resistor is set using the GPIOOn_PS register. CAUTION: This field is OR'd with the corresponding bit field of GPIOOn_PADCTRL0 . 0: High impedance. 1: Pullup/Pulldown resistor connected. <i>Note: This field is applied even if the input is disabled (GPIOOn_INEN[pin] = 0).</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> <i>Note: GPIO with I²C as an AF do not support a weak pullup resistor. Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet electrical characteristics table for details regarding which I/O pins support I²C functionality. If the corresponding GPIO with I²C as an AF bit in the GPIOOn_PS register is set to 1, setting the same bit in this register has no effect.</i>	

Table 6-34: GPIO Port n Configuration Enable Bit 1 Register

GPIO Port n Enable Bit 1			GPIOOn_EN1		[0x0068]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO AF 1 Mode Select These bits, in conjunction with bits in GPIOOn_EN0 and GPIOOn_EN2 configure the corresponding device pin for digital I/O or an AF mode. This field can be modified directly by writing to this register or indirectly through GPIOOn_EN1_SET or GPIOOn_EN1_CLR . See Alternate Function Usage for details on this register's usage. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> <i>Note: This register setting does not affect input and interrupt functionality of the associated pin.</i>	

Table 6-35: GPIO Port n Configuration Enable Atomic Set Bit 1 Register

GPIO Port n Enable Atomic Set Bit 1			GPIOOn_EN1_SET		[0x006C]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Configuration Enable Atomic Set Bit 1 Setting a bit in this field sets the corresponding bits in the GPIOOn_EN1 register. 0: No effect. 1: Corresponding bits in GPIOOn_EN1 register set to 1. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-36: GPIO Port n Configuration Enable Atomic Clear Bit 1 Register

GPIO Port n Enable Atomic Clear Bit 1				GPIO _n _EN1_CLR	[0x0070]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO Configuration Enable Atomic Clear Bit 1 Setting a bit in this field clears the corresponding bits in the GPIO_n_EN1 register. 0: No effect. 1: Corresponding bits in GPIO_n_EN1 register cleared to 0. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-37: GPIO Port n Configuration Enable Bit 2 Register

GPIO Port n Enable Bit 2				GPIO _n _EN2	[0x0074]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Configuration Enable Bit 2 These bits, in conjunction with bits in GPIO_n_EN0 and GPIO_n_EN1 configure the corresponding device pin for digital I/O or an AF mode. This field can be modified directly by writing to this register or indirectly through GPIO_n_EN2_SET or GPIO_n_EN2_CLR . See Alternate Function Usage for details on this register's usage. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> <i>Note: This register setting does not affect input and interrupt functionality of the associated pin.</i>	

Table 6-38: GPIO Port n Configuration Enable Atomic Set Bit 2 Register

GPIO Port n Configuration Enable Atomic Set Bit 2				GPIO _n _EN2_SET	[0x0078]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO AF Select Atomic Set Bit 2 Setting a bit in this field sets the corresponding bits in the GPIO_n_EN2 register. 0: No effect. 1: Corresponding bits in GPIO_n_EN2 register set to 1. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-39: GPIO Port n Configuration Enable Atomic Clear Bit 2 Register

GPIO Port n Configuration Enable Atomic Clear Bit 2				GPIO _n _EN2_CLR	[0x007C]
Bits	Field	Access	Reset	Description	
31:0	-	R/W1O	0	GPIO AF Select Atomic Clear Bit 2 Setting a bit in this field clears the corresponding bits in the GPIO_n_EN2 register. 0: No effect. 1: Corresponding bits in GPIO_n_EN2 register cleared to 0. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-40: GPIO Port n Input Hysteresis Enable Register

GPIO Port n Input Hysteresis Enable			GPIOOn_HYSEN		[0x00A8]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Input Hysteresis Enable Setting a bit in this field enables a Schmitt input to introduce hysteresis for better noise immunity on the corresponding GPIO port device pin. 0: Disabled. 1: Enabled. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-41: GPIO Port n Slew Rate Enable Register

GPIO Port n Slew Rate Select			GPIOOn_SRSEL		[0x00AC]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Slew Rate Mode Setting a bit in this field enables the slow slew rate for the corresponding GPIO port device pin. Clearing a bit in this field enables fast slew rate for the corresponding GPIO port device pin. 0: Fast slew rate selected. 1: Slow slew rate selected. <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i> <i>Note: GPIO with I²C as an AF do not support Slew Rate Select. Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet electrical characteristics table for details regarding which I/O pins support I²C functionality.</i>	

Table 6-42: GPIO Port n Output Drive Strength Bit 0 Register

GPIO Port n Output Drive Strength Bit 0			GPIOOn_DSO		[0x00B0]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Drive Strength 0 Select The output drive strength supports four modes. The mode selection is set using the combination of the GPIOOn_DSO and GPIOOn_DS1 bits for the associated GPIO pin. See the GPIO Drive Strength section for the selection options on these I/O pins. <i>Note: GPIO with I²C as an AF only support two different drive strengths:</i> <i>Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet electrical characteristics table for details regarding which I/O pins support I²C functionality.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-43: GPIO Port n Output Drive Strength Bit 1 Register

GPIO Port n Output Drive Strength Bit 1			GPIOOn_DS1		[0x00B4]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Drive Strength 1 Select The output drive strength supports four modes. The mode selection is set using the combination of the GPIOOn_DS0 and GPIOOn_DS1 bits for the associated GPIO pin. See the GPIO Drive Strength section for details on the selection options. <i>Refer to the symbols V_{OL_GPIO} and V_{OH_GPIO} in the device data sheet electrical characteristics table for details of the drive strengths for these I/O pins.</i> <i>Note: GPIO with I²C as an AF only support two different drive strengths and do not use any bits in this register for drive strength selection. See GPIOOn_DS0 for details of the two different drive strength settings.</i> <i>Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet electrical characteristics table for details regarding which I/O pins support I²C functionality.</i> <i>Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.</i>	

Table 6-44: GPIO Port n Pulldown/Pullup Strength Select Register

GPIO Port n Pulldown/Pullup Strength Select			GPIOOn_PS		[0x00B8]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	Pullup/Pulldown Resistor Select Setting a bit in this field selects a weak pullup resistor for the corresponding GPIO port device pin. Clearing a bit in this field selects weak pulldown resistor for the corresponding GPIO port device pin. The GPIOOn_PADCTRL0 or GPIOOn_PADCTRL1 must be configured to enable this pull resistor selection. 0: Pulldown resistor selected. 1: Pullup resistor selected. <i>Note: GPIO with I²C as an AF do not support a weak pullup resistor. As such, the bits in this register that control GPIO with I²C as an AF should always be set to 0.</i> <i>Note: Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet electrical characteristics table for details regarding which I/O pins support I²C functionality. See GPIOOn_PADCTRL0 and GPIOOn_PADCTRL1.</i>	

Table 6-45: GPIO Port n Voltage Select Register

GPIO Port n Voltage Select			GPIOOn_VSEL		[0x00C0]
Bits	Field	Access	Reset	Description	
31:0	-	DNM	0	Reserved. Do Not Modify.	

7. Flash Controller (FLC)

The MAX32675C Flash Controller manages read, write, and erase accesses to the internal flash. It provides the following features:

- Up to 384KB total internal flash memory.
 - ◆ Page 48 is used by the bootloader and cannot be used for application software storage.
- 8,192 bytes per page.
- 2,048 words by 128 bits per page.
- 128-bit data reads and writes.
- Page erase and mass erase support.
- Write protection.

7.1 Instances

The device provides one instance of the flash controller. The flash is programmable through the serial wire debug interface (in-system) or directly with user software (in-application).

Table 7-1 shows the start address and end address of internal flash memory.

Table 7-1: MAX32675C Internal Flash Memory Organization

Instance Number	Page Number	Size (per page)	Logical Start Address	Logical End Address	Physical Start Address	Physical End Address
FLC	1	8,192	0x1000 0000	0x1000 1FFF	0x0000 0000	0x0000 1FFF
	2	8,192	0x1000 2000	0x1000 3FFF	0x0000 2000	0x0000 3FFF
	3	8,192	0x1000 4000	0x1000 5FFF	0x0000 4000	0x0000 5FFF
	4	8,192	0x1000 6000	0x1000 7FFF	0x0000 6000	0x0000 7FFF

	47	8,192	0x1005 C000	0x1005 DFFF	0x0005 C000	0x0005 DFFF
	48	Reserved	0x1005 E000	0x1005 FFFF	0x0005 E000	0x0005 FFFF

7.2 Usage

The flash controller manages write and erase operations for internal flash memory and provides a lock mechanism to prevent unintentional writes to the internal flash. In-application and in-system programming, page erase and mass erase operations are supported.

7.2.1 Clock Configuration

The FLC requires a 1MHz clock for write and erase operations. Use the FLC clock divisor to generate $f_{FLC_CLK} = 1MHz$, as shown in *Equation 7-1*. For the IBRO as the system clock, the *FLC_CLKDIV.clkdiv* should be set to either 7 or 8.

CAUTION: Before performing a flash write or erase operation verify the *FLC_CLKDIV.clkdiv* field is set to the correct value.

Equation 7-1: FLC Clock Frequency

$$f_{FLC_CLK} = \frac{f_{SYS_CLK}}{FLC_CLKDIV.clkdiv} = 1MHz$$

7.2.2 Lock Protection

A locking mechanism prevents accidental memory writes and erases. All writes and erase operations require the *FLC_CTRL.unlock* field to be set to 0x2 before starting the operation. Writing any other value to this field, *FLC_CTRL.unlock*, locks the flash controller.

*Note: If a write, page erase, or mass erase operation is started, and the unlock code was not set to 0x2, the flash controller hardware sets the access fail flag, *FLC_INTR.af*, to indicate an access violation occurred.*

7.2.3 Flash Write Width

The FLC supports write widths of 128-bits only. The target address bits *FLC_ADDR*[3:0] are ignored, resulting in 128-bit alignment.

7.2.4 Flash Information Block

The MAX32675C includes a flash information block. Flash information block 0 is a locked page used to store the device's USN, trim settings (option configuration and analog trim), and other nonvolatile device-specific information. The USN is a 104-bit field stored from address 0x1080 0000 through 0x1080 0017. See *Figure 7-1* for the USN mapping. Read the USN using the flash controller to unlock the information block and perform a read of addresses 0x1080 0000 through address 0x1080 0017.

Figure 7-1: Unique Serial Number Format

		Bit Position																																
		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Address	0x1080_0000	USN bits 16 - 0																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0x1080_0004	0	USN bits 47-17																															
	0x1080_0008	USN bits 64 - 48																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	0x1080_000C	0	USN bits 95 - 65																															
	0x1080_0010	0	0	0	0	0	0	0	0	0	USN bits 103 - 96								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0x1080_0014	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

7.2.4.1 Unlocking the Flash Information Block

Reads of the flash information block are locked after reset. It is necessary to unlock the information block to read the USN or the AFE trim values. It is important to re-lock the information block once the desired data is read. Perform the following steps to unlock the information block:

1. Write the value 0x1234 to the *FLC_ACTRL* register to ensure the information block is locked
2. Write the unlock sequence:
 - a. *FLC_ACTRL* = 0x3A7F5CA3.
 - b. *FLC_ACTRL* = 0xA1E34F20.
 - c. *FLC_ACTRL* = 0x9608B2C1.
3. Read the USN or the AFE trim registers as required.
4. Relock the information block by writing 0x1234 to the *FLC_ACTRL* register.

7.2.5 Flash Write

Writes to a flash location are only successful if the targeted location is already in its erased state. Perform the following steps to write to a flash memory instance:

1. If desired, enable flash controller interrupts by setting the `FLC_INTR.afie` and `FLC_INTR.doneie` bits.
2. Read the `FLC_CTRL.pend` bit until it returns 0.
3. Configure the `FLC_CLKDIV.clkdiv` field to achieve a 1MHz flash clock based on the current `SYS_CLK` frequency.
4. Set the `FLC_ADDR` register to a valid target physical address. See [Table 7-1](#) for valid physical addresses for each flash bank. Set `FLC_ADDR` to zero to ensure the write is 128-bit aligned.
5. Set `FLC_DATA[3]`, `FLC_DATA[2]`, `FLC_DATA[1]`, and `FLC_DATA[0]` to the data to write.
 - a. `FLC_DATA[3]` is the most significant word, and `FLC_DATA[0]` is the least significant word.
 - i. Each word of the data to write follows the little-endian format, where the least significant byte of the word is stored at the lowest-numbered byte, and the most significant byte is stored at the highest-numbered byte.
6. Set the `FLC_CTRL.unlock` field to 2 to unlock the flash instance.
7. Set the `FLC_CTRL.wr` field to 1.
 - a. The hardware automatically clears this field when the write operation is complete.
8. The `FLC_INTR.done` field is set to 1 by the hardware when the write completes and an interrupt is generated if the `FLC_INTR.doneie` field is set to 1.
 - a. If an error occurred, the `FLC_INTR.af` field is set to 1 by the hardware and an interrupt is generated if the `FLC_INTR.afie` field is set to 1.
9. Set the `FLC_CTRL.unlock` field to any value other than 2 to relock the flash.

Note: Code execution can occur within the same flash instance as targeted programming.

Note: If the ICC is enabled, either disable it before writing to the flash or flush it after writing to the flash.

CAUTION: Software must ensure there are no flash writes or erase operations in progress before entering a low-power mode.

7.2.6 Page Erase

CAUTION: Care must be taken to not erase the page from which the application software is currently executing.

Perform the following to erase a page of a flash memory instance:

1. If desired, enable flash controller interrupts by setting the `FLC_INTR.afe` and `FLC_INTR.doneie` bits.
2. Read the `FLC_CTRL.pend` bit until it returns 0.
3. Configure `FLC_CLKDIV.clkdiv` to match the APB clock frequency. (ME18: to match `SYS_CLK` frequency)
4. Set the `FLC_ADDR` register to an address within the target page to be erased. `FLC_ADDR[12:0]` are ignored by the FLC to ensure the address is page aligned.
5. Set `FLC_CTRL.unlock` to 2 to unlock the flash instance.
6. Set `FLC_CTRL.erase_code` to 0x55 for page erase.
7. Set `FLC_CTRL.pge` to 1 to start the page erase operation.
8. The `FLC_CTRL.pend` bit is set by the flash controller while the page erase is in progress, and the `FLC_CTRL.pge` and `FLC_CTRL.pend` are cleared by the flash controller when the page erase is complete.
9. `FLC_INTR.done` is set by the hardware when the page erase completes and if an error occurred, the `FLC_INTR.af` flag is set. These bits generate a flash interrupt if the interrupt enable bits are set.
10. Set `FLC_CTRL.unlock` to any value other than 0x2 to relock the flash instance.

Note: If the ICC is enabled, either disable it before erasing a page or flush it after erasing the page.

CAUTION: Software must ensure there are no flash writes or erase operations in progress before entering a low-power mode.

7.2.7 Mass Erase

CAUTION: Care must be taken to not erase the flash from which application code is currently executing.

Mass erase clears the internal flash memory on an instance basis. Perform the following steps to mass erase a single flash memory instance:

1. Read the `FLC_CTRL.pend` bit until it returns 0.
2. Configure `FLC_CLKDIV.clkdiv` to match the `SYS_CLK` frequency.
3. Set `FLC_CTRL.unlock` to 2 to unlock the internal flash.
4. Set `FLC_CTRL.erase_code` to 0xAA for mass erase.
5. Set `FLC_CTRL.me` to 1 to start the mass erase operation.
6. The `FLC_CTRL.pend` bit is set by the flash controller while the mass erase is in progress and the `FLC_CTRL.me` and `FLC_CTRL.pend` are cleared by the flash controller when the mass erase is complete.
7. `FLC_INTR.done` is set by the flash controller when the mass erase completes and if an error occurred, the `FLC_INTR.af` flag is set. These bits generate a flash interrupt if enabled.
8. Set `FLC_CTRL.unlock` to any value other than 0x2 to re-lock the flash instance.

7.3 Flash Error Correction Coding

The FLC ECC data register `FLC_ECCDATA` stores the ECC bits from the last flash instance read memory location. The register contains 9 bits of ECC data of the even 128-bit flash memory location `FLC_ECCDATA.even` and 9 bits of ECC data of the 128-bit odd flash memory location `FLC_ECCDATA.odd`. These 9-bit ECC data fields are dynamic and are valid only immediately after each location read and represent the ECC for 256 bits of flash. The 128-bit even location of this even/odd pair is

matched with the 128-bit odd location of the lower-valued memory address. In case of ECC error from internal flash memory read cycles, the [*FLC_ECCDATA*](#) can be used in conjunction with [*GCR_ECCIE*](#) to debug the ECC failure.

Note: An ECC error occurs when reading from blank/erased flash memory. Until the flash is programmed with valid data, the ECC check bits are not set.

7.4 FLC Registers

See [*Table 3-2*](#) for the base address of this peripheral/module. See [*Table 1-1*](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Note: The FLC registers are reset only on a POR. System reset, soft reset, and peripheral reset do not affect the FLC register values.

Table 7-2: Flash Controller Registers

Offset	Register Name	Description
[0x0000]	<i>FLCn_ADDR</i>	Flash Controller Address Pointer Register
[0x0004]	<i>FLCn_CLKDIV</i>	Flash Controller Clock Divisor Register
[0x0008]	<i>FLCn_CTRL</i>	Flash Controller Control Register
[0x0024]	<i>FLCn_INTR</i>	Flash Controller Interrupt Register
[0x0028]	<i>FLCn_ECCDATA</i>	Flash Controller Error Correction Code Data
[0x0030]	<i>FLCn_DATA[0]</i>	Flash Controller Data Register 0
[0x0034]	<i>FLCn_DATA[1]</i>	Flash Controller Data Register 1
[0x0038]	<i>FLCn_DATA[2]</i>	Flash Controller Data Register 2
[0x003C]	<i>FLCn_DATA[3]</i>	Flash Controller Data Register 3
[0x0040]	<i>FLCn_ACTRL</i>	Flash Controller Access Control
[0x0080]	<i>FLCn_WELR0</i>	Flash Controller Write/Erase Lock Register 0
[0x0088]	<i>FLCn_WELR1</i>	Flash Controller Write/Erase Lock Register 1
[0x0090]	<i>FLCn_RLRO</i>	Flash Controller Read Lock Register 0
[0x0098]	<i>FLCn_RLR1</i>	Flash Controller Read Lock Register 1

7.4.1 Register Details

Table 7-3: Flash Controller Address Pointer Register

Flash Controller Address Pointer			FLCn_ADDR	[0x0000]
Bits	Name	Access	Reset	Description
31:0	addr	R/W	0x1000 0000	Flash Address This field contains the target address for a write operation. A valid internal flash memory address is required for all write operations.

Table 7-4: Flash Controller Clock Divisor Register

Flash Controller Clock Divisor Register			FLCn_CLKDIV	[0x0004]
Bits	Name	Access	Reset	Description
31:8	-	RO	-	Reserved

Flash Controller Clock Divisor Register			FLCn_CLKDIV		[0x0004]
Bits	Name	Access	Reset	Description	
7:0	clkdiv	R/W	0x64	Flash Controller Clock Divisor <i>IMPORTANT: This field must be set to either 7 or 8 for the IBRO as the system clock before programming flash either in-system or using JTAG.</i> The APB clock is divided by the value in this field to generate the FLCn peripheral clock, f_{FLCn_CLK} . The FLCn peripheral clock must equal 1MHz. The default on all forms of reset is 0x64 and must be updated to achieve a flash clock of $f_{FLC_CLK} = 1\text{MHz}$. The FLCn peripheral clock is only used during erase and program functions and not during read functions. See section Clock Configuration for details.	

Table 7-5: Flash Controller Control Register

Flash Controller Control Register			FLCn_CTRL		[0x0008]
Bits	Name	Access	Reset	Description	
31:28	unlock	R/W	0	Flash Unlock Write the unlock code, 2, before any flash write or erase operation to unlock the Flash. Writing any other value to this field locks the internal flash. 2: Flash unlock code.	
27:26	-	RO	-	Reserved	
25	lve	R/W	0	Low Voltage Enable This field must be set to 1. 0: Low voltage operation disabled. 1: Low voltage operation enabled.	
24	pend	RO	0	Flash Busy Flag When this field is set, writes to all flash registers except the FLC_INTR register are ignored by the Flash Controller. This bit is cleared by hardware once the flash becomes accessible. <i>Note: If the Flash Controller is busy (FLC_CTRL.pend = 1), reads, writes and erase operations are not allowed and result in an access failure (FLC_INTR.af = 1).</i> 0: Flash idle. 1: Flash busy.	
23:16	-	RO	0	Reserved	
15:8	erase_code	R/W	0	Erase Code Prior to an erase operation this field must be set to 0x55 for a page erase or 0xAA for a mass erase. The flash must be unlocked before setting the erase code. This field is automatically cleared after the erase operation is complete. 0x00: Erase disabled. 0x55: Page erase code. 0xAA: Enable mass erase.	
4	width	R/W	0	Data Width Select This field sets the data width of a write to the flash page. The Flash Controller supports either 32-bit writes, or 128-bit writes. 0: 128-bit transactions (FLC_DATA[3] , FLC_DATA[2] , FLC_DATA[1] , FLC_DATA[0]). 1: 32-bit transactions (FLC_DATA[0] only).	
3	-	RO	0	Reserved	

Flash Controller Control Register			FLCn_CTRL		[0x0008]
Bits	Name	Access	Reset	Description	
2	pge	R/W1	0	Page Erase Write a 1 to this field to initiate a page erase at the address in FLC_ADDR.addr . The flash must be unlocked before attempting a page erase, see FLC_CTRL.unlock for details. The flash controller hardware clears this bit when a page erase operation is complete. 0: No page erase operation in process or page erase is complete. 1: Write a 1 to initiate a page erase. If this field reads 1, a page erase operation is in progress.	
1	me	R/W1	0	Mass Erase Write a 1 to this field to initiate a mass erase of the internal flash memory. The flash must be unlocked before attempting a mass erase, see FLC_CTRL.unlock for details. The flash controller hardware clears this bit when the mass erase operation completes. 0: No operation. 1: Initiate mass erase.	
0	wr	R/W10	0	Write If this field reads 0, no write operation is pending for the flash. To initiate a write operation, set this bit to 1 and the flash controller writes to the address set in the FLC_ADDR register. 0: No write operation in process or write operation complete. 1: Write 1 to initiate a write operation. If this field reads 1, a write operation is in progress. <i>Note: This field is protected and cannot be set to 0 by application software.</i>	

Table 7-6: Flash Controller Interrupt Register

Flash Controller Interrupt Register			FLCn_INTR		[0x0024]
Bits	Name	Access	Reset	Description	
31:11	-	RO	0	Reserved	
10	prot_ie	R/W	0	Protection Interrupt Enable Set this bit to 1 to enable interrupts on flash protection failures. 0: Disabled. 1: Enabled.	
9	afie	R/W	0	Flash Access Fail Interrupt Enable Set this bit to 1 to enable interrupts on flash access failures. 0: Disabled. 1: Enabled.	
8	doneie	R/W	0	Flash Operation Complete Interrupt Enable Set this bit to 1 to enable interrupts on flash operations complete. 0: Disabled. 1: Enabled.	
7:6	-	RO	0	Reserved	
5	prot_area_prot_err	R/W00	0	Protection Error This field is set to 1 if a protection error occurs. 0: Normal operation. 1: Error occurred.	

Flash Controller Interrupt Register			FLCn_INTR		[0x0024]
Bits	Name	Access	Reset	Description	
4	page_er_prot_err	R/W00	0	Page Protection Error This field is set to 1 if a page protection error occurs. 0: Normal operation. 1: Error occurred.	
3	mass_er_prot_err	R/W00	0	Mass Erase Protection Error This field is set to 1 if a mass erase is attempted and a page is write locked. 0: Normal operation. 1: Error occurred.	
2	prog_prot_err	R/W00	0	Page Program Protection Error This field is set to 1 if a page program is attempted and the page is write locked. 0: Normal operation. 1: Error occurred.	
1	af	R/W00	0	Flash Access Fail Interrupt Flag This bit is set when an attempt is made to write or erase the flash while the flash is busy or locked. Only hardware can set this bit to 1. Writing a 1 to this bit has no effect. This bit is cleared by writing a 0. 0: Normal operation. 1: Access failure occurred.	
0	done	R/W00	0	Flash Operation Complete Interrupt Flag This flag is automatically set by hardware after a flash write or erase operation completes. 0: Operation not complete or not in process. 1: Flash operation complete.	

Table 7-7: Flash Controller ECC Data Register

Flash Controller ECC Data			FLCn_ECCDATA		[0x0028]
Bits	Name	Access	Reset	Description	
31:25	-	RO	0	Reserved	
24:16	odd	R	0	Error Correction Code Odd Data 9-bit ECC data recorded from the last flash read memory location of odd address of the even/odd pair of 128-bit flash memory content.	
15:9	-	RO	0	Reserved	
8:0	even	R	0	Error Correction Code Even Data 9-bit ECC data recorded from the last flash read memory location of even address of the even/odd pair of 128-bit flash memory content.	

Table 7-8: Flash Controller Data 0 Register

Flash Controller Data 0			FLCn_DATA[0]		[0x0030]
Bits	Name	Access	Reset	Description	
31:0	data	R/W	0	Flash Data 0 Flash data for bits 31:0.	

Table 7-9: Flash Controller Data Register 1

Flash Controller Data 1			FLCn_DATA[1]		[0x0034]
Bits	Name	Access	Reset	Description	
31:0	data	R/W	0	Flash Data 1 Flash data for bits 63:32.	

Table 7-10: Flash Controller Data Register 2

Flash Controller Data 2			FLCn_DATA[2]		[0x0038]
Bits	Name	Access	Reset	Description	
31:0	data	R/W	0	Flash Data 2 Flash data for bits 95:64.	

Table 7-11: Flash Controller Data Register 3

Flash Controller Data 3			FLCn_DATA[3]		[0x003C]
Bits	Name	Access	Reset	Description	
31:0	data	R/W	0	Flash Data 3 Flash data for bits 127:96.	

Table 7-12: Flash Controller Access Control Register

Flash Controller Access Control			FLCn_ACTRL		[0x0040]
Bits	Name	Access	Reset	Description	
31:0	actrl	R/W	0	Access Control When this register is written with the access control sequence, the information block can be accessed. See Information Block Flash Memory for details.	

Table 7-13: Flash Controller Write/Erase Lock Register 0

Flash Controller Write/Erase Lock 0			FLCn_WELR0		[0x0080]
Bits	Name	Access	Reset	Description	
31:0	welr0	R/W1C	0xFFFF FFFF	Flash Write/Lock Bit Each bit in this register maps to a page of the internal flash. FLC_WELR0[0] maps to page 1 of the flash and FLC_WELR0[31] maps to page 32. Each flash page is 8,192 bytes. Write a 0 to a bit position in this register and the corresponding page of flash is immediately locked. The page protection can only be unlocked by an external reset or a POR. 0: The corresponding page of flash is write protected. 1: The corresponding page of flash is <i>not</i> write protected.	

Table 7-14. Flash Controller Write/Erase Lock Register 1

Flash Controller Write/Erase Lock 1			FLCn_WELR1		[0x0088]
Bits	Name	Access	Reset	Description	
31:16	-	DNM	0xFFFF	Reserved	

Flash Controller Write/Erase Lock 1			FLCn_WELR1	[0x0088]
Bits	Name	Access	Reset	Description
15:0	welr1	R/W	0xFFFF	<p>Each bit in this register maps to a page of the internal flash. <i>FLC_WELR1</i>[0] maps to page 33 of the flash and <i>FLC_WELR1</i>[15] maps to page 28. Each flash page is 8,192 bytes. Write a 0 to a bit position in this register and the corresponding page of flash is immediately locked. The page protection can only be unlocked by an external reset or a POR.</p> <p>0: The corresponding page of flash is write protected. 1: The corresponding page of flash is <i>not</i> write protected.</p>

Table 7-15: Flash Controller Read Lock Register 0

Flash Controller Read Lock 0			FLCn_RLRO	[0x0090]
Bits	Name	Access	Reset	Description
31:0	rlr0	R/W1C	0xFFFF FFFF	<p>Read Lock Bit</p> <p>Each bit in this register maps to a page of the internal flash. <i>FLC_RLRO</i>[0] maps to page 1 of the flash and <i>FLC_RLRO</i>[31] maps to page 32 of flash. Each flash page is 8,192 bytes. Write a 0 to a bit position in this register and the corresponding page of flash is immediately read protected. The page's read protection can only be unlocked by an external reset or a POR.</p> <p>0: The corresponding flash page is read protected. 1: The corresponding flash page is <i>not</i> read protected.</p>

Table 7-16: Flash Controller Read Lock Register 1

Flash Controller Read Lock 1			FLCn_RLR1	[0x0098]
Bits	Name	Access	Reset	Description
31:16	-	DNM	0xFFFF	Reserved
15:0	rlr1	R/W1C	0xFFFF	<p>Read Lock Bit</p> <p>Each bit in this register maps to a page of the internal flash. <i>FLC_RLR1</i>[0] maps to page 33 of the flash and <i>FLC_RLR1</i>[15] maps to page 48 of flash. Each flash page is 8,192 bytes. Write a 0 to a bit position in this register and the corresponding page of flash is immediately read protected. The page's read protection can only be unlocked by an external reset or a POR.</p> <p>0: The corresponding flash page is read protected. 1: The corresponding flash page is <i>not</i> read protected.</p>

8. Debug Access Port (DAP)

The device provides an Arm DAP that supports debugging during application development. The DAP enables an external debugger to access the device. The DAP is a standard Arm CoreSight™ serial wire debug port and uses a two-pin serial interface (SWDCLK and SWDIO) to communicate.

8.1 Instances

The DAP interface communicates through the serial wire debug (SWD), shown in *Table 8-1*.

Table 8-1: MAX32675C DAP Instances

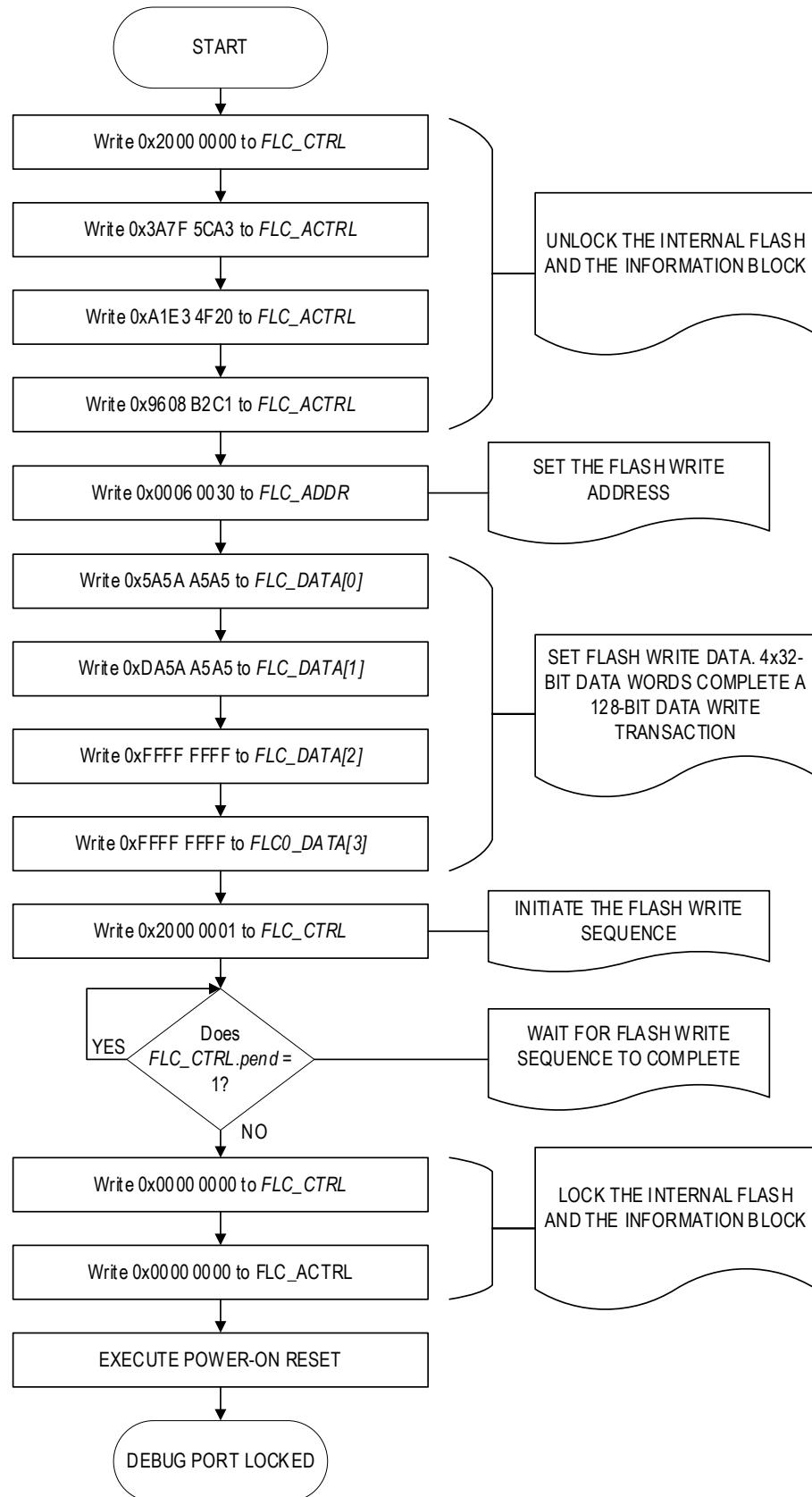
Pin	Alternate Function	SWD Signal
P0.0	AF1	SWDIO
P0.1	AF1	SWDCLK

IMPORTANT: This `FLC_CLKDIV.clkdiv` field must be set to 7 or 8 before programming the flash using the JTAG interface.

8.2 Access Control

The DAP is enabled after every POR to allow debugging during development. The interface can be disabled in software by setting the `GCR_SYSCTRL.swd_dis` field to 1. The `GCR_SYSCTRL.swd_dis` field clears to 0 again, re-enabling the DAP after a POR. Parts with a customer-accessible DAP should disable the DAP in a final customer product.

8.2.1 Locking the DAP


There are two options for locking out the debug access port. Option 1 locks the DAP and makes it available to be unlocked later. This is a one-time-only process. The DAP port cannot be relocked. Option 2 locks the DAP permanently.

8.2.1.1 Option 1

To lock the DAP and make it available to be unlocked later (one time only), follow the flow chart in *Figure 8-1*.

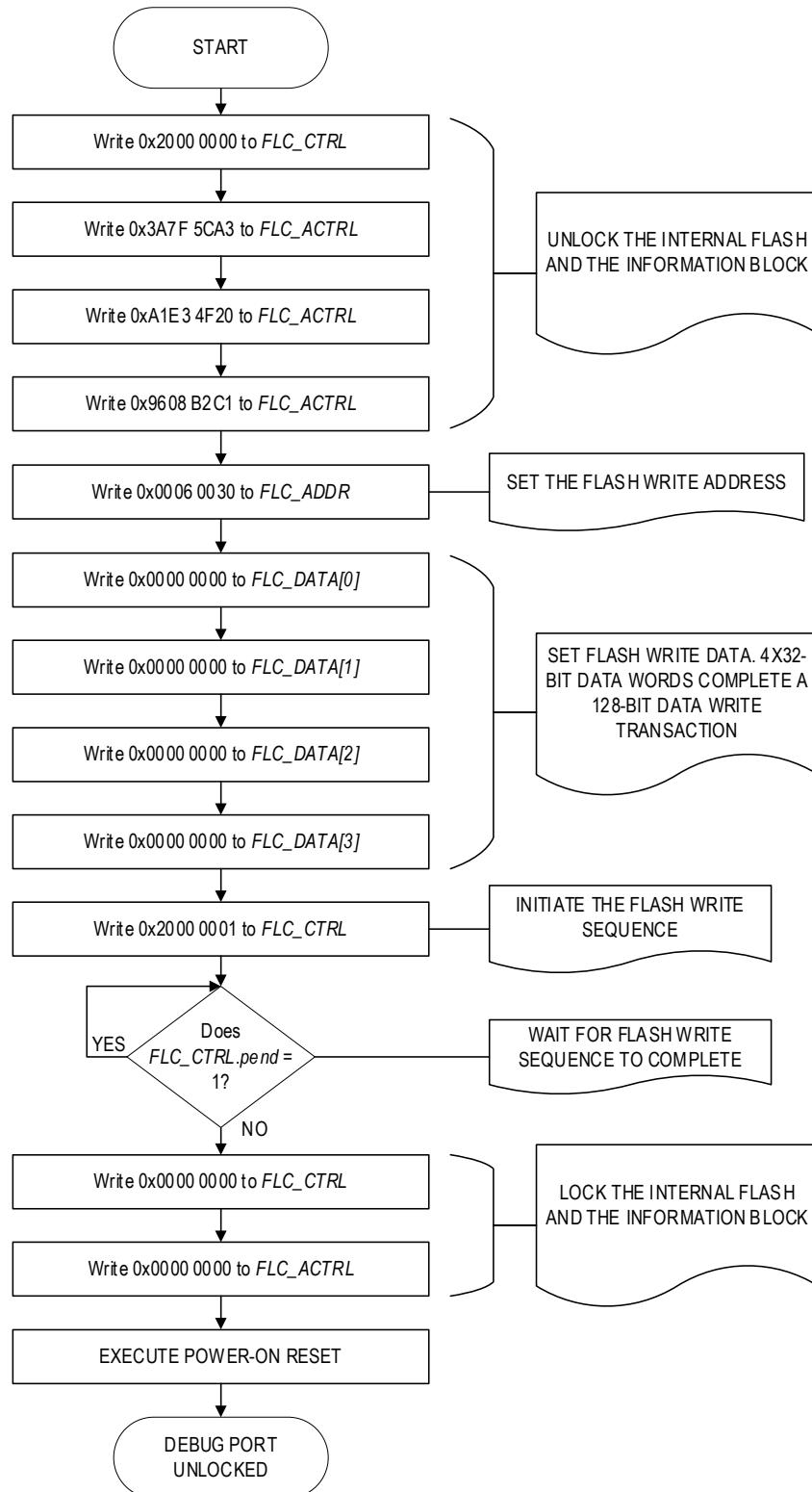
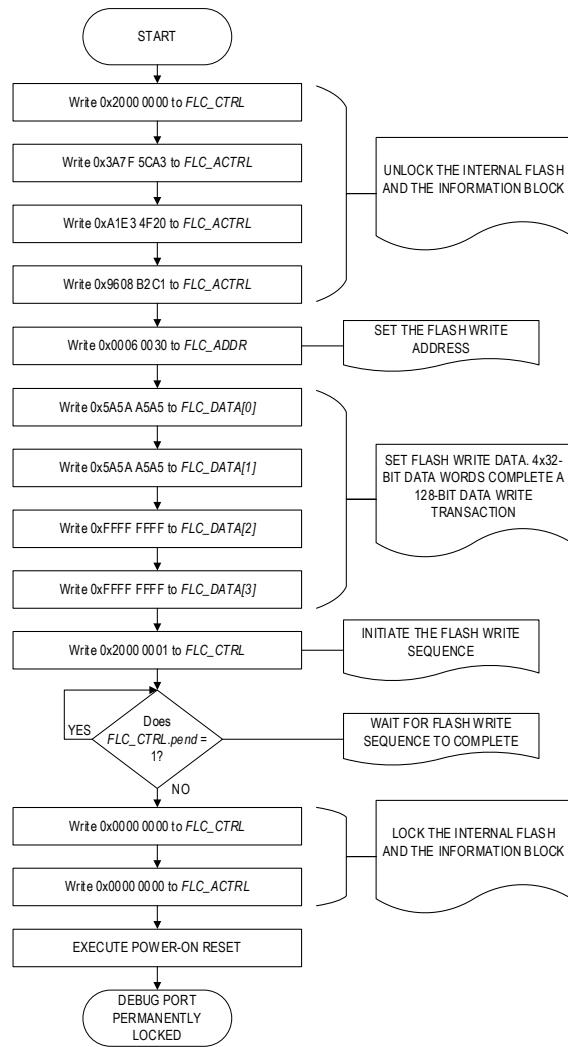

CoreSight is a registered trademark of Arm Limited.

Figure 8-1: Locking the DAP to Make it Available for Unlock Later

To unlock the DAP after it has been locked using the flow chart of [Figure 8-1](#), follow the flow chart in [Figure 8-2](#).


Figure 8-2: Unlocking the DAP After Being Locked as in Figure 8-1

8.2.1.2 Option 2

To lock the DAP permanently, follow the flow chart in [Figure 8-3](#).

Figure 8-3: Locking the Debug Access Port Permanently

8.3 Pin Configuration

Instances of SWD signals in GPIO and alternate function matrices are for determining which GPIO pins are associated with a signal. It is not necessary to configure the default SWD pins for an alternate function to use the DAP following a POR.

9. Standard Direct Memory Access (DMA)

The standard DMA is a hardware feature that provides the ability to perform high-speed, block memory transfers of data independent of an Arm core. All DMA transactions consist of burst read from the source into the internal DMA FIFO followed by a burst write from the internal DMA FIFO to the destination.

DMA transfers are one of three types:

- From a receive FIFO to a SRAM address.
- From memory to a transmit FIFO.
- From memory to memory.

The DMA supports multiple channels. Each channel provides the following features:

- Full 32-bit source and destination addresses with 24-bit (16 Mbytes) address increment capability.
- Ability to chain DMA buffers when a count-to-zero (CTZ) condition occurs.
- Up to 16 Mbytes for each DMA transfer.
- 8 x 32 byte transmit and receive FIFO.
- Programmable channel timeout period.
- Programmable burst size.
- Programmable priority.
- Interrupt upon CTZ.
- Abort on error.

9.1 Instances

There is one instance of the DMA, generically referred to as DMA. Each instance provides 8 channels, generically referred to as DMA_CHn. Each instance of the DMA has a set of interrupt registers common to all its channels, and a set of registers unique to each channel instance.

Table 9-1: MAX32675C DMA and Channel Instances

DMA Instance	DMA_CHn Channel Instance
DMA	DMA_CH0
	DMA_CH1
	DMA_CH2
	DMA_CH3
	DMA_CH4
	DMA_CH5
	DMA_CH6
	DMA_CH7

9.2 DMA Channel Operation (DMA_CH)

9.2.1 DMA Channel Arbitration and DMA Bursts

DMA contains an internal arbiter that allows enabled channels to access the AHB and move data. Once a channel is programmed and enabled, it generates a request to the arbiter immediately (for memory-to-memory DMA) or whenever its associated peripheral requests DMA (for memory-to-peripheral or peripheral-to-memory DMA).

Granting is done based on priority—a higher priority request is always granted. Within a given priority level, requests are granted on a round-robin basis. The *DMA_CHn_CTRL.pri* field determines the DMA channel priority.

When a channel's request is granted, it runs a DMA transfer. The arbiter grants requests to a single channel at a time. Once the DMA transfer completes, the channel relinquishes its grant.

A DMA channel is enabled using the *DMA_CHn_CTRL.en* bit.

When disabling a channel, poll the *DMA_CHn_STATUS.status* bit to determine if the channel is truly disabled. In general, *DMA_CHn_STATUS.status* follows the setting of the *DMA_CHn_CTRL.en* bit. However, the *DMA_CHn_STATUS.status* bit is automatically cleared under the following conditions:

- Bus error (cleared immediately)
- CTZ when the *DMA_CHn_CTRL.rlden* = 0 (cleared at the end of the AHB R/W burst)
- *DMA_CHn_CTRL.en* bit transitions to 0 (cleared at the end of the AHB R/W burst)

Whenever *DMA_CHn_STATUS.status* transitions from 1 to 0, the corresponding *DMA_CHn_CTRL.en* bit is also cleared. If an active channel is disabled during an AHB read/write burst, the current burst continues until completed.

Only an error condition can interrupt an ongoing data transfer.

9.2.2 DMA Source and Destination Addressing

The source and destination for DMA transfers are dictated by the request select dedicated to the peripheral instance. The *DMA_CHn_CTRL.request* field dictates the source and destination for a channel's DMA transfer as shown in *Table 9-2*. The *DMA_CHn_SRC* and *DMA_CHn_DST* registers hold the source and destination memory addresses, depending on the specific operation.

The *DMA_CHn_CTRL.srcinc* field is ignored when the DMA source is a peripheral memory, and the *DMA_CHn_CTRL.dstinc* field is ignored when the DMA destination is a peripheral memory.

Table 9-2: MAX32675C DMA Source and Destination by Peripheral

DMA_CHn_CTRL.request	Peripheral	DMA Source	DMA Destination
0x00	Memory-to-Memory	<i>DMA_CHn_SRC</i>	<i>DMA_CHn_DST</i>
0x01	SPI0	SPI0 Receive FIFO	<i>DMA_CHn_DST</i>
0x02	SPI1	SPI1 Receive FIFO	<i>DMA_CHn_DST</i>
0x03	Reserved		
0x04	UART0	UART0 Receive FIFO	<i>DMA_CHn_DST</i>
0x05:0x06	Reserved	-	-
0x07	I2C0	I2C0 Receive FIFO	<i>DMA_CHn_DST</i>
0x08:0x09	Reserved	-	-
0x0A	I2C2	I2C2 Receive FIFO	<i>DMA_CHn_DST</i>
0x0B:0x0D	Reserved	-	-
0x0E	UART2	UART2 Receive FIFO	<i>DMA_CHn_DST</i>
0x0F	Reserved	-	-
0x10	AES	AES Receive FIFO	<i>DMA_CHn_DST</i>
0x11:0x1D	Reserved	-	-
0x1E	I ² S	I ² S Receive FIFO	<i>DMA_CHn_DST</i>
0x1F:0x20	Reserved	-	-
0x21	SPI0	<i>DMA_CHn_SRC</i>	SPI0 Transmit FIFO
0x22	SPI1	<i>DMA_CHn_SRC</i>	SPI1 Transmit FIFO
0x23	Reserved	-	-
0x24	UART0	<i>DMA_CHn_SRC</i>	UART0 Transmit FIFO
0x25:0x26	Reserved	-	-
0x27	I2C0	<i>DMA_CHn_SRC</i>	I2C0 Transmit FIFO
0x28:0x29	Reserved	-	-
0x2A	I2C2	<i>DMA_CHn_SRC</i>	I2C2 Transmit FIFO
0x2B	Reserved	-	-
0x2C	CRC	<i>DMA_CHn_SRC</i>	CRC
0x2D	Reserved	-	-
0x2E	UART2	<i>DMA_CHn_SRC</i>	UART2 Transmit FIFO
0x2F	Reserved	-	-
0x30	AES	<i>DMA_CHn_SRC</i>	AES Transmit FIFO
0x31:0x3D	Reserved	-	-
0x3E	I ² S	<i>DMA_CHn_SRC</i>	I ² S Transmit FIFO
0x3F	Reserved	-	-

9.2.3 Data Movement from Source to DMA

Table 9-3 shows the fields that control the burst movement of data into the DMA FIFO. The source is a peripheral or memory.

Table 9-3: Data Movement from Source to DMA FIFO

Register/Field	Description	Comments
<i>DMA_CHn_SRC</i>	Source address	If the increment enable is set, this increments on every read cycle of the burst. This field is ignored when the DMA source is a peripheral.
<i>DMA_CHn_CNT</i>	Number of bytes to transfer before a CTZ condition occurs	This register is decremented on each read of the burst.
<i>DMA_CHn_CTRL.burst_size</i>	Burst size (1-32)	This maximum number of bytes moved during the burst read.
<i>DMA_CHn_CTRL.sr cwd</i>	Source width	This determines the maximum data width used during each read of the AHB burst (byte, two bytes, or four bytes). The actual AHB width might be less if <i>DMA_CHn_CNT</i> is not great enough to supply all the needed bytes.
<i>DMA_CHn_CTRL.sr inc</i>	Source increment enable	Increments <i>DMA_CHn_SRC</i> . This field is ignored when the DMA source is a peripheral.

9.2.4 Data Movement from DMA to Destination

Table 9-4 shows the fields that control the burst movement of data out of the DMA FIFO. The destination is a peripheral or memory.

Table 9-4: Data Movement from the DMA FIFO to Destination

Register/Field	Description	Comments
<i>DMA_CHn_DST</i>	Destination address	If the increment enable is set, this increments on every write cycle of the burst. This field is ignored when the DMA destination is a peripheral.
<i>DMA_CHn_CTRL.burst_size</i>	Burst size (1-32)	The maximum number of bytes moved during a single AHB read/write burst.
<i>DMA_CHn_CTRL.dst cwd</i>	Destination width	This determines the maximum data width used during each write of the AHB burst (one byte, two bytes, or four bytes).
<i>DMA_CHn_CTRL.dst inc</i>	Destination increment enable	Increments <i>DMA_CHn_DST</i> . This field is ignored when the DMA destination is a peripheral.

9.3 Usage

Use the following procedure to perform a DMA transfer from a peripheral's receive FIFO to memory, from memory to a peripheral's transmit FIFO, or from memory to memory.

1. Ensure `DMA_CHn_CTRL.en`, `DMA_CHn_CTRL.rlden` = 0, and `DMA_CHn_STATUS.ctz_if` = 0.
2. If using memory for the destination of the DMA transfer, configure `DMA_CHn_DST` register to the starting address of the destination in memory.
3. If using memory for the source of the DMA transfer, configure the `DMA_CHn_SRC` register to the starting address of the source in memory.
4. Write the number of bytes to transfer to the `DMA_CHn_CNT` register.
5. Configure the following `DMA_CHn_CTRL` register fields in one or more instructions. Do not set `DMA_CHn_CTRL.en` to 1 or `DMA_CHn_CTRL.rlden` to 1 in this step:
 - a. Configure `DMA_CHn_CTRL.request` to select the transfer operation associated with the DMA channel.
 - b. Configure `DMA_CHn_CTRL.burst_size` for the desired burst size.
 - c. Configure `DMA_CHn_CTRL.pri` to set the channel priority relative to other DMA channels.
 - d. Configure `DMA_CHn_CTRL.dstwd` to dictate the number of bytes written in each transaction.
 - e. If desired, set `DMA_CHn_CTRL.dstinc` to 1 to enable automatic incrementing of the `DMA_CHn_DST` register upon every AHB transaction.
 - f. Configure `DMA_CHn_CTRL.srcwd` to dictate the number of bytes read in each transaction.
 - g. If desired, set `DMA_CHn_CTRL.srcinc` to 1 to enable automatic incrementing of the `DMA_CHn_DST` register upon every AHB transaction.
 - h. If desired, set `DMA_CHn_CTRL.dis_ie` = 1 to generate an interrupt when the channel becomes disabled. The channel becomes disabled when the DMA transfer completes or a bus error occurs.
 - i. If desired, set `DMA_CHn_CTRL.ctz_ie` 1 to generate an interrupt when the `DMA_CHn_CNT` register is decremented to zero.
 - j. If using the reload feature, configure the reload registers to set the destination, source, and count for the following DMA transaction.
 - 1) Load the `DMA_CHn_SRCRLD` register with the source address reload value.
 - 2) Load the `DMA_CHn_DSTRLD` register with the destination address reload value.
 - 3) Load the `DMA_CHn_CNTRLRD` register with the count reload value.
 - k. If desired, enable the channel timeout feature described in [Channel Timeout Detect](#). Clear `DMA_CHn_CTRL.to_per` to 0 to disable the channel timeout feature.
6. Set `DMA_CHn_CTRL.rlden` and `DMA_CHn_CTRL.en` to 1 simultaneously to enable the reload and start the transfer.
 - a. $|DMA_CHn_CTRL| = 0x03$
7. Wait for the interrupt flag to become 1 to indicate the completion of the DMA transfer.

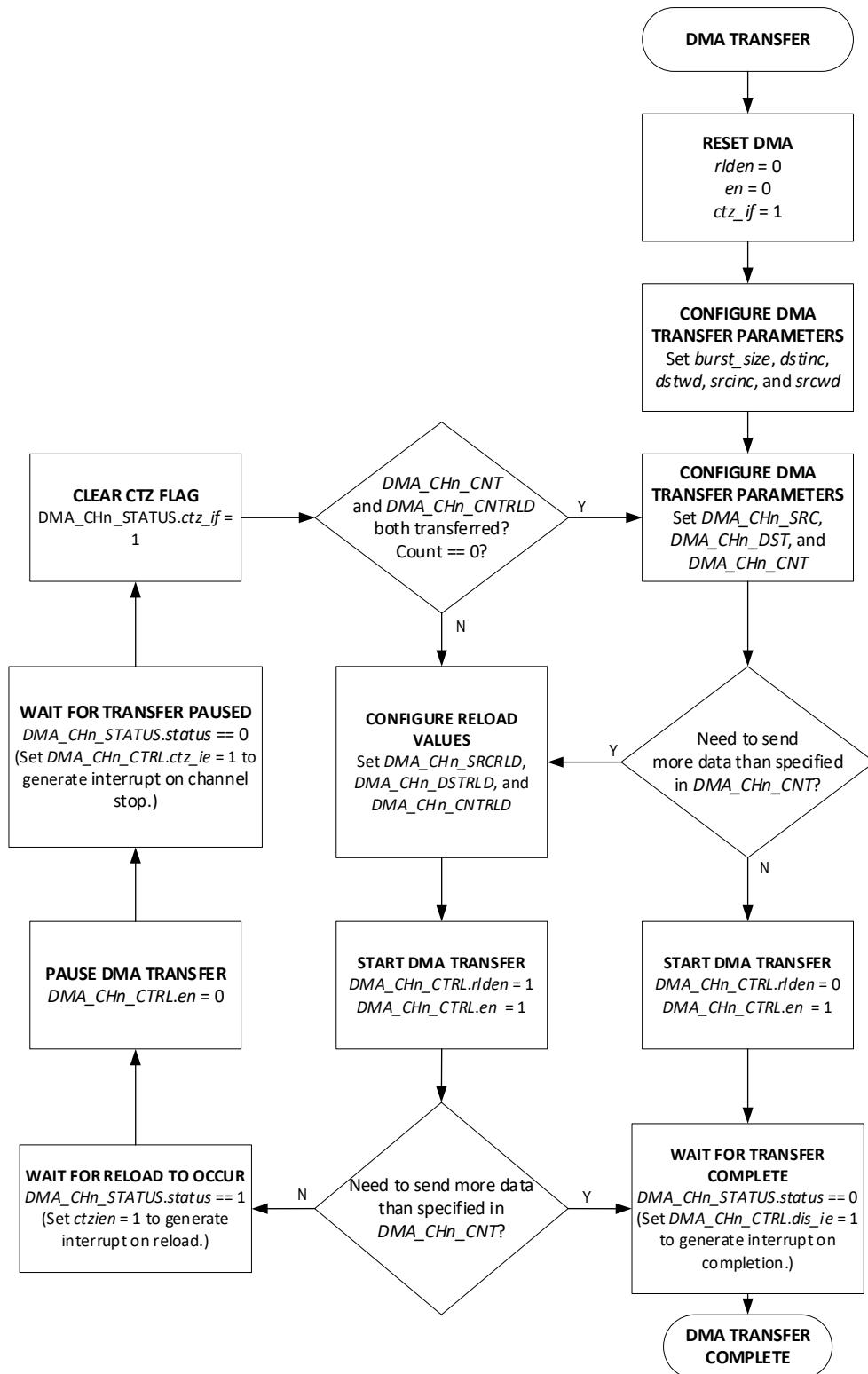
9.4 Count-To-Zero (CTZ) Condition

When an AHB channel burst completes, a CTZ condition exists if [DMA_CHn_CNT](#) is decremented to 0.

At this point, there are two possible responses depending on the value of the [DMA_CHn_CTRL.rlden](#):

- If [DMA_CHn_CTRL.rlden](#) = 1
 - ◆ The [DMA_CHn_SRC](#), [DMA_CHn_DST](#), and [DMA_CHn_CNT](#) registers are loaded from the reload registers, and the channel remains active and continues operating using the newly-loaded address/count values and the previously programmed configuration values.
- If [DMA_CHn_CTRL.rlden](#) = 0
 - ◆ The channel is disabled, and [DMA_CHn_STATUS.status](#) is cleared.

9.5 Chaining Buffers


Chaining buffers reduce the DMA ISR response time and allow DMA to service requests without intermediate processing from the CPU. [Figure 9-1](#) shows the procedure for generating a DMA transfer using one or more chain buffers.

- Configure the following reload registers to configure a channel for chaining:
 - ◆ [DMA_CHn_CTRL](#)
 - ◆ [DMA_CHn_SRC](#)
 - ◆ [DMA_CHn_DST](#)
 - ◆ [DMA_CHn_CNT](#)
 - ◆ [DMA_CHn_SRCRLD](#)
 - ◆ [DMA_CHn_DSTRLD](#)
 - ◆ [DMA_CHn_CNTRLRD](#)

Writing to any register while a channel is disabled is supported, but there are certain restrictions when a channel is enabled. The [DMA_CHn_STATUS.status](#) bit indicates whether the channel is enabled or not. Because an active channel might be in the middle of an AHB read/write burst, do not write to the [DMA_CHn_SRC](#), [DMA_CHn_DST](#), or [DMA_CHn_CNT](#) registers while a channel is active ([DMA_CHn_STATUS.status](#) = 1). To disable any DMA channel, clear the [DMA_INTEN.ch<n>](#) bit. Then, poll the [DMA_CHn_STATUS.status](#) bit to verify that the channel is disabled.

Note: The [DMA_CHn_CTRL.rlden](#) and [DMA_CHn_CTRL.en](#) fields must not be set before all buffer chaining initialization is complete. The last operation in the initialization must be to set both the [DMA_CHn_CTRL.rlden](#) and [DMA_CHn_CTRL.en](#) bits simultaneously to start the DMA operation

Figure 9-1: DMA Block-Chaining Flowchart

9.6 DMA Interrupts

Enable interrupts for each channel by setting $DMA_INTEN.ch< n >$. When an interrupt for a channel is pending, the corresponding $DMA_INTFL.ch< n > = 1$. Set the corresponding enable bit to cause an interrupt when the flag is set.

A channel interrupt ($DMA_CHn_STATUS.ipend = 1$) is caused by:

- $DMA_CHn_CTRL.ctz_ie = 1$
 - ◆ If enabled all CTZ occurrences set the $DMA_CHn_STATUS.ipend$ bit.
- $DMA_CHn_CTRL.dis_ie = 1$
 - ◆ If enabled, any clearing of the $DMA_CHn_STATUS.status$ bit sets the $DMA_CHn_STATUS.ipend$ bit. Examine the DMA_CHn_STATUS register to determine which reasons caused the disable. The $DMA_CHn_CTRL.dis_ie$ bit also enables the $DMA_CHn_STATUS.to_if$ bit. The $DMA_CHn_STATUS.to_if$ bit does not clear the $DMA_CHn_STATUS.status$ bit.

To clear the channel interrupt, write 1 to the cause of the interrupt (the $DMA_CHn_STATUS.ctz_if$, $DMA_CHn_STATUS.rld_if$, $DMA_CHn_STATUS.bus_err$, or $DMA_CHn_STATUS.to_if$ bits).

When running in normal mode without buffer chaining ($DMA_CHn_CTRL.rlden = 0$), set the $DMA_CHn_CTRL.dis_ie$ bit only. An interrupt is generated upon DMA completion or an error condition (bus error or timeout error).

When running in buffer chaining mode ($DMA_CHn_CTRL.rlden = 1$), set both the $DMA_CHn_CTRL.dis_ie$ and $DMA_CHn_CTRL.ctz_ie$ bits. The CTZ interrupts occur on completion of each DMA (count reaches zero and reload occurs). The setting of $DMA_CHn_CTRL.dis_ie$ ensures that an error condition generates an interrupt. If $DMA_CHn_CTRL.ctz_ie = 0$, then the only interrupt occurs when the DMA completes and $DMA_CHn_CTRL.rlden = 0$ (final DMA).

9.7 Channel Timeout Detect

Each channel can optionally generate an interrupt when its associated peripheral does not request a transfer in a user-configurable period. When the timeout start conditions are met, an internal 10-bit counter begins incrementing at a frequency determined by the AHB clock, $DMA_CHn_CTRL.to_clkdiv$, and $DMA_CHn_CTRL.to_per$ shown in [Table 9-5: DMA Channel Timeout Configuration](#). A channel timeout event is generated if the timer is not reset by one of the events listed below before the timeout period expires.

Table 9-5: DMA Channel Timeout Configuration

$DMA_CHn_CTRL.to_clkdiv$	Timeout Period (μs)
0	Channel timeout disabled
1	$\frac{2^8 * [Value\ from\ DMA_CHn_CTRL.to_per]}{f_{HCLK}}$
2	$\frac{2^{16} * [Value\ from\ DMA_CHn_CTRL.to_per]}{f_{HCLK}}$
3	$\frac{2^{24} * [Value\ from\ DMA_CHn_CTRL.to_per]}{f_{HCLK}}$

The start of the timeout period is controlled by $DMA_CHn_CTRL.to_wait$:

- If $DMA_CHn_CTRL.to_wait = 0$, the timer begins counting immediately after $DMA_CHn_CTRL.to_per$ is configured to a value other than 0x0.
- If $DMA_CHn_CTRL.to_wait = 1$, the timer begins counting when the first DMA request is received from the peripheral.

The timer is reset whenever:

- The DMA request line programmed for the channel is activated.
- The channel is disabled for any reason ([DMA_CHn_STATUS.status](#) = 0).

If the timeout timer period expires, hardware sets [DMA_CHn_STATUS.to_if](#) = 1 to indicate a channel timeout event has occurred. A channel timeout does not disable the DMA channel.

9.8 Memory-to-Memory DMA

Memory-to-memory transfers are processed as if the request is always active. This means that the DMA channel generates an almost constant request for the bus until its transfer is complete. For this reason, assign a lower priority to channels executing memory-to-memory transfers to prevent starvation of other DMA channels.

9.9 DMA Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 9-6: DMA Registers

Offset	Register Name	Description
[0x0000]	DMA_INTEN	DMA Interrupt Enable register
[0x0004]	DMA_INTFL	DMA Interrupt Status register

9.9.1 Register Details

Table 9-7: DMA Interrupt Enable Register

DMA Interrupt Enable			DMA_INTEN		[0x0000]
Bits	Field	Access	Reset	Description	
31:0	ch<n>	R/W	0	DMA Channel <i>n</i> Interrupt Enable Each bit in this field enables the corresponding channel interrupt <i>m</i> in DMA_INTFL . Register bits associated with unimplemented channels should not be changed from their default reset value. 0: Disabled. 1: Enabled.	

Table 9-8: DMA Interrupt Enable Register

DMA Interrupt Enable			DMA_INTFL		[0x0004]
Bits	Field	Access	Reset	Description	
31:0	ch<n>	RO	0	DMA Channel <i>n</i> Interrupt Flag Each bit in this field represents an interrupt for the corresponding channel interrupt <i>m</i> . To clear an interrupt, clear the corresponding active interrupt bit in the DMA_CHn_STATUS register. An interrupt bit in this field is set only if the corresponding interrupt enable field is set in the DMA_INTEN register. Register bits associated with unimplemented channels should be ignored. 0: No interrupt. 1: Interrupt pending.	

9.10 DMA Channel Register Summary

Table 9-9: Standard DMA Channel 0 to Channel 7 Register Summary

Offset	DMA Channel	Description
[0x0100]	DMA_CH0	DMA Channel 0
[0x0120]	DMA_CH1	DMA Channel 1
[0x0140]	DMA_CH2	DMA Channel 2
[0x0160]	DMA_CH3	DMA Channel 3
[0x0180]	DMA_CH4	DMA Channel 4
[0x0200]	DMA_CH5	DMA Channel 5
[0x0220]	DMA_CH6	DMA Channel 6
[0x0240]	DMA_CH7	DMA Channel 7

9.11 DMA Channel Registers

See [Table 3-2](#) for the base address of this peripheral/module. If multiple instances of the peripheral are provided, each instance has its own independent set of the registers shown in [Table 9-10](#). Register names for a specific instance are defined by replacing “n” with the instance number. As an example, a register PERIPHERALn_CTRL resolves to PERIPHERAL0_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 9-10: DMA Channel Registers

Offset	Register Name	Description
[0x0000]	DMA_CHn_CTRL	DMA Channel n Control Register
[0x0004]	DMA_CHn_STATUS	DMA Channel n Status Register
[0x0008]	DMA_CHn_SRC	DMA Channel n Source Register
[0x000C]	DMA_CHn_DST	DMA Channel n Destination Register
[0x0010]	DMA_CHn_CNT	DMA Channel n Count Register
[0x0014]	DMA_CHn_SRCRLD	DMA Channel n Source Reload Register
[0x0018]	DMA_CHn_DSTRLD	DMA Channel n Destination Reload Register
[0x001C]	DMA_CHn_CNTRLRD	DMA Channel n Count Reload Register

9.11.1 Register Details

Table 9-11: DMA Channel n Control Register

DMA Channel n Control			DMA_CHn_CTRL	[0x0100]
Bits	Field	Access	Reset	Description
31	ctz_ie	R/W	0	CTZ Interrupt Enable 0: Disabled. 1: Enabled. DMA_INFL.ch<n>.ipend is set to 1 whenever a CTZ event occurs.
30	dis_ie	R/W	0	Channel Disable Interrupt Enable 0: Disabled. 1: Enabled. DMA_INFL.ch<n>.ipend bit is set to 1 whenever DMA_CHn_STATUS.status changes from 1 to 0.
29	-	RO	0	Reserved

DMA Channel <i>n</i> Control			DMA_CHn_CTRL	[0x0100]
Bits	Field	Access	Reset	Description
28:24	burst_size	R/W	0	Burst Size The number of bytes transferred into and out of the DMA FIFO in a single burst. 0: 1 byte. 1: 2 bytes. 2: 3 bytes. ... 31: 32 bytes.
23	-	RO	0	Reserved
22	dstinc	R/W	0	Destination Increment Enable This bit enables the automatic increment of the DMA_CHn_DST register upon every AHB transaction. This bit is ignored for a DMA transmit to peripherals. 0: Disabled. 1: Enabled.
21:20	dstwd	R/W	0	Destination Width Indicates the width of each AHB transaction to the destination peripheral or memory (the actual width might be less than this if there are insufficient bytes in the DMA FIFO for the full width). 0: 1 byte. 1: 2 bytes. 2: 4 bytes. 3: Reserved.
19	-	RO	0	Reserved
18	srcinc	R/W	0	Source Increment on AHB Transaction Enable This bit enables the automatic increment of the DMA_CHn_SRC register upon every AHB transaction. This bit is ignored for a DMA receive from peripherals. 0: Disabled. 1: Enabled.
17:16	srcwd	R/W	0	Source Width Indicates the width of each AHB transaction from the source peripheral or memory. The actual width might be less than this if the DMA_CHn_CNT register indicates a smaller value. 0: 1 byte. 1: 2 bytes. 2: 4 bytes. 3: Reserved.
15:14	to_clkdiv	R/W	0	Timeout Timer Clock Pre-Scale Select Selects the Pre-Scale divider for the timer clock input. 0: Timer disabled. 1: $\frac{f_{HCLK}}{2^8}$ 2: $\frac{f_{HCLK}}{2^{16}}$ 3: $\frac{f_{HCLK}}{2^{24}}$

DMA Channel <i>n</i> Control			DMA_CHn_CTRL		[0x0100]
Bits	Field	Access	Reset	Description	
13:11	to_per	R/W	0	Timeout Period Select Selects the number of pre-scaled clocks seen by the channel timer before a timeout condition is generated. The value is approximate because of synchronization delays between timers 0: 3 – 4. 1: 7 – 8. 2: 15 – 16. 3: 31 – 32. 4: 63 – 64. 5: 127 – 128. 6: 255 – 256. 7: 511 – 512.	
10	to_wait	R/W	0	Request DMA Timeout Timer Wait Enable 0: Start timer immediately when enabled. 1: Delay timer start until after the first DMA transaction occurs.	
9:4	request	R/W	0	Request Select Selects the source and destination for the transfer as shown in Table 9-2 .	
3:2	pri	R/W	0	Channel Priority Sets the priority of the channel relative to other channels of DMA. Channels of the same priority are serviced in a round-robin fashion. 0: Highest priority. 1: ... 2: ... 3: Lowest priority.	
1	rlden	R/W	0	Reload Enable Setting this bit to 1 allows reloading the DMA_CHn_SRC , DMA_CHn_DST , and DMA_CHn_CNT registers with their corresponding reload registers upon CTZ. CAUTION: For startup of buffer chaining, this field and the DMA_CHn_CTRL.en bits must be set simultaneously with a single write to the DMA_CHn_CTRL register.	
0	en	R/W	0	Channel Enable This bit is automatically cleared when DMA_CHn_STATUS.status changes from 1 to 0. 0: Disabled. 1: Enabled.	

Table 9-12: DMA Status Register

DMA Channel <i>n</i> Status			DMA_CHn_STATUS		[0x0104]
Bits	Field	Access	Reset	Description	
31:7	-	DNM	0	Reserved, Do Not Modify	
6	to_if	R/W1C	0	Timeout Interrupt Flag Timeout. Write 1 to clear. 0: No timeout. 1: A channel timeout has occurred.	
5	-	RO	0	Reserved	

DMA Channel <i>n</i> Status			DMA_CHn_STATUS		[0x0104]
Bits	Field	Access	Reset	Description	
4	bus_err	R/W1C	0	Bus Error If this bit reads 1, an AHB abort occurred and the channel was disabled by hardware. Write 1 to clear. 0: No error found. 1: An AHB bus error occurred.	
3	rld_if	R/W1C	0	Reload Interrupt Flag Reload. Write 1 to clear. 0: Reload has not occurred. 1: Reload occurred.	
2	ctz_if	R/W1C	0	CTZ Interrupt Flag Write 1 to clear. 0: CTZ has not occurred. 1: CTZ has occurred.	
1	ipend	RO	0	Channel Interrupt Pending 0: No interrupt. 1: Interrupt pending.	
0	status	RO	0	Channel Status This bit indicates when it is safe to change the configuration, address, and count registers for the channel. Whenever this bit is cleared by hardware, the DMA_CHn_CTRL.en bit is also cleared. 0: Disabled. 1: Enabled.	

Table 9-13: DMA Channel *n* Source Register

DMA Channel <i>n</i> Source			DMA_CHn_SRC		[0x0108]
Bits	Field	Access	Reset	Description	
31:0	addr	R/W	0	Source Device Address For peripheral transfers, the actual address field is either ignored or forced to zero because peripherals only have one location to read/write data based on the request select chosen. If DMA_CHn_CTRL.srccinc = 1, then this register is incremented on each AHB transfer cycle by one, two, or four bytes depending on the data width. If DMA_CHn_CTRL.srccinc = 0, this register remains constant. If a CTZ condition occurs while DMA_CHn_CTRL.rlden = 1, then this register is reloaded with the contents of the DMA_CHn_SRCRLD register.	

Table 9-14: DMA Channel *n* Destination Register

DMA Channel <i>n</i> Destination			DMA_CHn_DST		[0x010C]
Bits	Field	Access	Reset	Description	
31:0	addr	R/W	0	Destination Device Address For peripheral transfers, the actual address field is either ignored or forced to zero because peripherals only have one location to read/write data based on the request select chosen. If DMA_CHn_CTRL.dstinc = 1, then this register is incremented on every AHB transfer cycle by one, two, or four bytes depending on the data width. If a CTZ condition occurs while DMA_CHn_CTRL.rlden = 1, then this register is reloaded with the contents of the DMA_CHn_DSTRLD register.	

Table 9-15: DMA Channel *n* Count Register

DMA Channel <i>n</i> Count			DMA_CHn_CNT		[0x0110]
Bits	Field	Access	Reset	Description	
31:24	-	RO	0	Reserved	
23:0	cnt	R/W	0	DMA Counter Load this register with the number of bytes to transfer. This field decreases on every AHB access to the DMA FIFO. The decrement is one, two, or four bytes depending on the data width. When the counter reaches 0, a CTZ condition is triggered. If a CTZ condition occurs while DMA_CHn_CTRL.rlden = 1, then this register is reloaded with the contents of the DMA_CHn_CNTRLD register.	

Table 9-16: DMA Channel *n* Source Reload Register

DMA Channel <i>n</i> Source Reload			DMA_CHn_SRCRLD		[0x0114]
Bits	Field	Access	Reset	Description	
31	-	RO	0	Reserved	
30:0	addr	R/W	0	Source Address Reload Value If DMA_CHn_CTRL.rlden = 1, then the value of this register is loaded into DMA_CHn_SRC upon a CTZ condition.	

Table 9-17: DMA Channel *n* Destination Reload Register

DMA Channel <i>n</i> Destination Reload			DMA_CHn_DSTRLD		[0x0118]
Bits	Field	Access	Reset	Description	
31	-	RO	0	Reserved	
30:0	addr	R/W	0	Destination Address Reload Value If DMA_CHn_CTRL.rlden = 1, then the value of this register is loaded into DMA_CHn_DST upon a CTZ condition.	

Table 9-18: DMA Channel *n* Count Reload Register

DMA Channel <i>n</i> Count Reload			DMA_CHn_CNTRLD		[0x011C]
Bits	Field	Access	Reset	Description	
31	-	DNM	0	Reserved, Do Not Modify	
30:24	-	RO	0	Reserved	

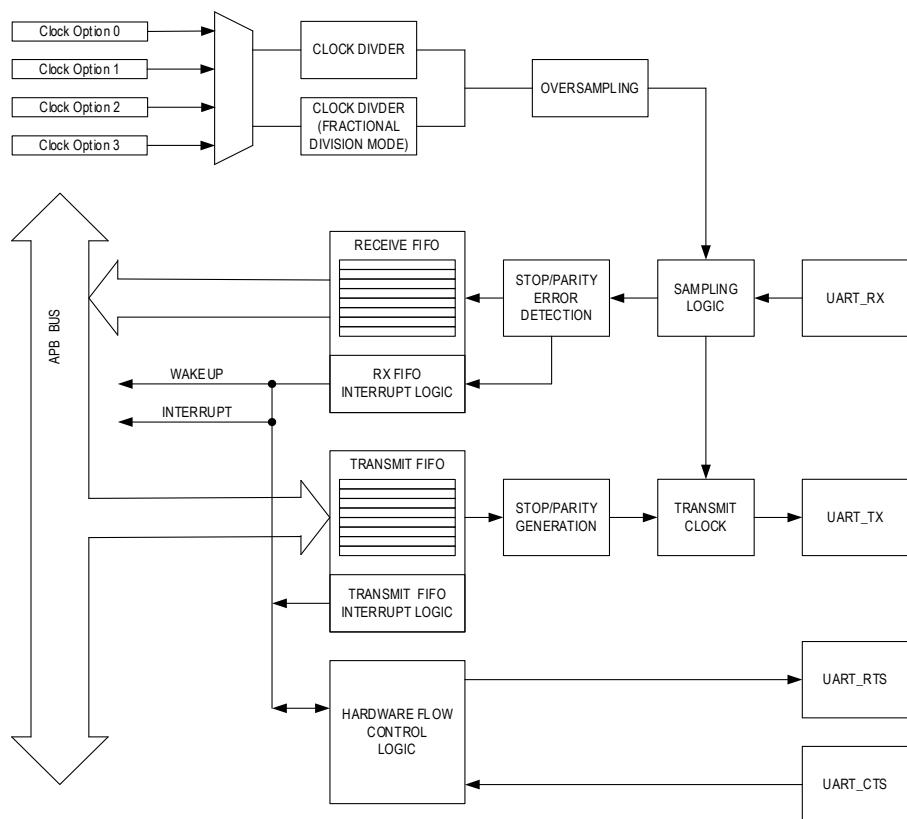
DMA Channel <i>n</i> Count Reload			DMA_CHn_CNTRLD		[0x011C]
Bits	Field	Access	Reset	Description	
23:0	cnt	R/W	0	Count Reload Value. If DMA_CHn_CTRL.en = 1, then the value of this register is loaded into DMA_CHn_CNT upon a CTZ condition.	

10. Universal Asynchronous Receiver/Transmitter (UART)

The UART and the low-power universal asynchronous receiver/transmitter (LPUART) interfaces communicate with external devices using industry-standard serial communications protocols. The UARTs are full-duplex serial ports. Each UART instance is independently configurable unless using a shared external clock source.

The LPUART is a version of the peripheral that can receive characters at up to 9600 baud while in low-power modes. The hardware loads valid received characters into the receive FIFO and wakes the device when an enabled interrupt condition occurs.

The peripheral provides the following features:


- Flexible baud rate generation for standard UART instances.
- Programmable character size of 5 to 8 bits.
- Stop bit settings of 1, 1.5, or 2 bits.
- Parity settings of even, odd, mark (always 1), space (always 0), and no parity.
- Automatic parity error detection with selectable parity bias.
- Automatic frame error detection.
- Separate 8-byte transmit and receive FIFOs.
- Flexible interrupt conditions.
- Hardware flow control (HFC) using ready-to-send (RTS) and clear-to-send (CTS) pins.
- Separate DMA channels for transmit and receive.
 - ◆ DMA support is available in *ACTIVE* and *SLEEP*.

LPUART instances provide these additional features:

- Receive characters in *SLEEP*, *DEEPSLEEP*, and *BACKUP* at up to 9600 baud.
- Fractional baud rate divisor improves baud rate accuracy for 9600 and lower baud rates.
- Wake up from low-power modes to *ACTIVE* on multiple receive FIFO conditions.

[Figure 10-1](#) shows a high-level diagram of the UART peripheral.

Figure 10-1: UART Block Diagram

Note: See [Table 10-1](#) for the clock options supported by each UART instance.

10.1 Instances

Instances of the peripheral are shown in [Table 10-1](#). The standard UARTs and the LPUARTs are functionally similar; they are referred to as UART for common functionality. The LPUART instance supports fractional division mode (FDM) and is referenced as LPUART for feature-specific options.

AOD_CLK is a scaled version of PCLK described in the section [System, Power, Clocks, Reset](#).

A single external pin provides either the EXT_CLK1 source for the UART or the EXT_CLK2 external clock source for the LPUARTs. As a result, the external clock source cannot be selected by both a UART and LPUART simultaneously.

Table 10-1: MAX32675C UART Instances

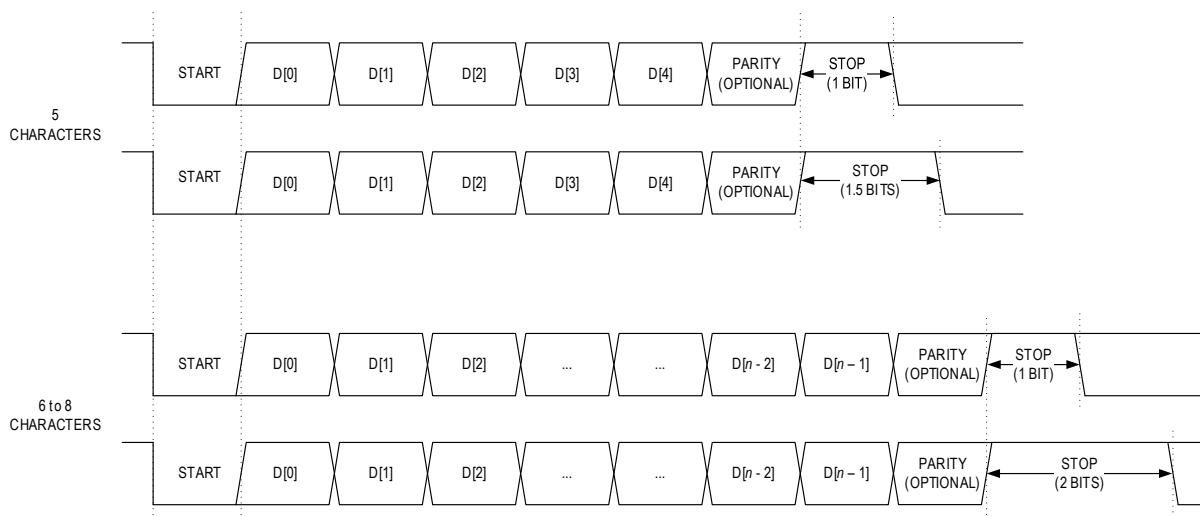
Instance	Register Access Name	Power Modes	Clock Option				HFC	Transmit FIFO Depth	Receive FIFO Depth	
			0	1	2	3				
UART0 ³	UART0	ACTIVE SLEEP	PCLK	EXT_CLK1	IBRO	ERFO	Yes	8	8	
UART1 ³	UART1									
UART2 ^{1,3}	UART2		AOD_CLK	EXT_CLK2	-	INRO ²	Yes			
LPUART0 ³	UART3	DEEPSLEEP BACKUP	N/A	EXT_CLK2						

1. UART2 cannot be used if HART is in use.
2. INRO accuracy varies up to $\pm 50\%$ across temperature and voltage. Baud rate accuracy must be taken into account when using INRO as the clock source.
3. The APB frequency must be greater than or equal to the UART/LPUART clock.

10.2 DMA

Each UART instance supports DMA for both transmit and receive; separate DMA channels can be connected to the receive and transmit FIFOs.

The UART DMA channels are configured using the UART DMA configuration register, [UARTn_DMA](#). Enable the receive FIFO DMA channel by setting [UARTn_DMA.rx_en](#) to 1 and enable the transmit FIFO DMA channel by setting [UARTn_DMA.tx_en](#) to 1. DMA transfers are automatically triggered by the hardware based on the number of bytes in the receive FIFO and transmit FIFO.


When DMA is enabled, the following describes the behavior of the DMA requests:

- A receive DMA request is asserted when the number of bytes in the receive FIFO transitions to be greater than or equal to the receive FIFO threshold.
- A transmit DMA request is asserted when the number of bytes in the transmit FIFO transitions to be less than the transmit FIFO threshold.

10.3 UART Frame

[Figure 10-2](#) shows the UART frame structure. Character sizes of 5 to 8 bits are configurable through the [UARTn_CTRL.char_size](#) field. Stop bits are configurable as 1 or 1.5 bits for 5-character frames and 1 or 2 stop bits for 6, 7, or 8-character frames. Parity support includes even, odd, mark, space, and none.

Figure 10-2: UART Frame Structure

10.4 FIFOs

Separate receive and transmit FIFOs are provided. The FIFOs are both accessed through the same [UARTn_FIFO.data](#) field. The current level of the transmit FIFO is read from [UARTn_STATUS.tx_lvl](#), and the receive FIFO current level is read from [UARTn_STATUS.rx_lvl](#). Data for character sizes less than 7 bits are right justified.

10.4.1 Transmit FIFO Operation

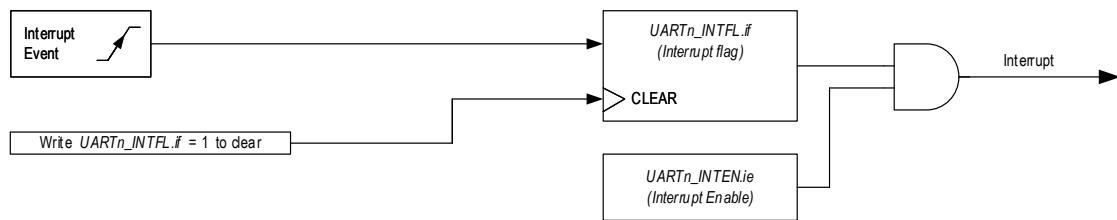
Writing data to the [UARTn_FIFO.data](#) field increments the transmit FIFO pointer, [UARTn_STATUS.tx_lvl](#), and loads the data into the transmit FIFO. The [UARTn_TXPEEK.data](#) register provides a feature that allows the software to "peek" at the current value of the write-only transmit FIFO without changing the [UARTn_STATUS.tx_lvl](#). Writes to the transmit FIFO are ignored while [UARTn_STATUS.tx_lvl](#) = C_TX_FIFO_DEPTH.

10.4.2 Receive FIFO Operation

Reads of the [UARTn_FIFO.data](#) field return the character values in the receive FIFO and decrement the [UARTn_STATUS.rx_lvl](#). An overrun event occurs if a valid frame, including parity, is detected while [UARTn_STATUS.rx_lvl](#) = C_RX_FIFO_DEPTH. When an overrun event occurs, the data is discarded by hardware.

A parity error event indicates that the value read from [UARTn_FIFO.data](#) contains a parity error.

10.4.3 Flushing


The FIFOs are flushed on the following conditions:

- Setting the [UARTn_CTRL.rx_flush](#) field to 1 flushes the receive FIFO by setting its pointer to 0.
- Setting the [UARTn_CTRL.tx_flush](#) field to 1 flushes the transmit FIFO by setting its pointer to 0.
- Setting the respective UART's reset field ([GCR_RST0](#)) to 1 flushes both the transmit and receive FIFO.

10.5 Interrupt Events

The peripheral generates interrupts for the events shown in [Table 10-2](#). Unless noted otherwise, each instance has its own set of interrupts and higher-level flag and enable fields, as shown in [Table 10-2](#)

Figure 10-3: UART Interrupt Functional Diagram

Some activity can set one or more event flags and cause more than one event. An event interrupt occurs if the corresponding interrupt enable is set. The interrupt flags, when set, must be cleared by the software by writing 1 to the corresponding interrupt flag field.

Table 10-2: MAX32675C Interrupt Events

Event	Interrupt Flag	Interrupt Enable
Frame Error	<i>UARTn_INT_FL.rx_ferr</i>	<i>UARTn_INT_EN.rx_ferr</i>
Parity Error	<i>UARTn_INT_FL.rx_par</i>	<i>UARTn_INT_EN.rx_par</i>
CTS Signal Change	<i>UARTn_INT_FL.cts_ev</i>	<i>UARTn_INT_EN.cts_ev</i>
Receive FIFO Overrun	<i>UARTn_INT_FL.rx_ov</i>	<i>UARTn_INT_EN.rx_ov</i>
Receive FIFO Threshold	<i>UARTn_INT_FL.rx_thd</i>	<i>UARTn_INT_EN.rx_thd</i>
Transmit FIFO Half-Empty	<i>UARTn_INT_FL.tx_he</i>	<i>UARTn_INT_EN.tx_he</i>
Transmit FIFO One Byte Remaining	<i>UARTn_INT_FL.tx_ob</i>	<i>UARTn_INT_EN.tx_ob</i>

10.5.1 Frame Error

A frame error is generated when the UART sampling circuitry detects an invalid bit. Each bit is sampled three times, as shown in [Figure 10-4](#), and can generate a frame error on the start bit, stop bit, data bits, and optionally the parity bit. When a frame error occurs, the data is discarded.

The frame error criteria are different based on the following:

- Standard UART and LPUART with FDM disabled
 - ◆ The start bit is sampled 3 times, and all samples must be 0, or a frame error is generated.
 - ◆ Each data bit is sampled, and 2 of the 3 samples must match, or a frame error is generated.
 - ◆ If parity is enabled, the parity bit is sampled 3 times, and all samples must match, or a frame error is generated.
 - ◆ The stop bit is sampled 3 times, and all samples must be 1, or a frame error is generated.
 - ◆ See [Table 10-3](#) for details
- LPUART with FDM enabled (*UARTn_CTRL.fdm* = 1) and data/parity edge detect enabled (*UARTn_CTRL.dpfe_en* = 1).
 - ◆ The start bit is sampled 3 times, and all samples must be 0, or a frame error is generated.
 - ◆ Each data bit is sampled 3 times, and all samples must match, or a frame error is generated.
 - ◆ If parity is enabled, the parity bit is sampled 3 times, and all samples must match, or a frame error is generated.
 - ◆ The stop bit is sampled 3 times, and all samples must be 1, or a frame error is generated.
 - ◆ See [Table 10-4](#) for details.

Table 10-3: Frame Error Detection for Standard UARTs and LPUART

<i>UARTn_CTRL</i> .par_en	<i>UARTn_CTRL</i> .par_md	<i>UARTn_CTRL</i> .par_eo	Start Samples	Data Samples	Parity Samples	Stop Samples
0	N/A	N/A			Not Present	
1	0	0	3 of 3 must be 0	2/3 must match	3/3 = 1 if even number "1" 3/3 = 0 if odd number "0"	3 of 3 must be 1
	0	1			3/3 = 1 if odd number "1" 3/3 = 0 if even number "0"	
	1	0			3/3 = 1 if even number "0" 3/3 = 0 if odd number "1"	
	1	1			3/3 = 1 if odd number "0" 3/3 = 0 if even number "1"	

Table 10-4: Frame Error Detection for LPUARTs with *UARTn_CTRL.fdm* = 1 and *UARTn_CTRL.dpfe_en* = 1

<i>UARTn_CTRL</i> .par_en	<i>UARTn_CTRL</i> .par_md	<i>UARTn_CTRL</i> .par_eo	Start Samples	Data Samples	Parity Samples	Stop Samples
0	N/A	N/A			Not Present	
1	0	0	3 of 3 must be 0	3 of 3 must match	3 of 3 = 1 if even number of 1s 3 of 3 = 0 if odd number 0s	3 of 3 must be 1
	0	1			3 of 3 = 1 if odd number 1s 3 of 3 = 0 if even number 0s	
	1	0			3 of 3 = 1 if even number 0s 3 of 3 = 0 if odd number 1s	
	1	1			3 of 3 = 1 if odd number 0s 3 of 3 = 0 if even number 1s	

10.5.2 Parity Error

Set *UARTn_CTRL.par_en* = 0 to enable parity checking of the received frame. If the calculated parity does not match the parity bit, then the corresponding interrupt flag is set. The data received is saved to the receive FIFO when a parity error occurs.

10.5.3 CTS Signal Change

A CTS signal change condition occurs if HFC is enabled, the UART baud clock is enabled, and the CTS pin changes state.

10.5.4 Overrun

An overrun condition occurs if a valid frame is received when the receive FIFO is full. The interrupt flag is set at the end of the stop bit, and the frame is discarded.

10.5.5 Receive FIFO Threshold

A receive FIFO threshold event occurs when a valid frame is received that causes the number of bytes to exceed the configured receive FIFO threshold *UARTn_CTRL.rx_thd_val*.

10.5.6 Transmit FIFO Half-Empty

The transmit FIFO half-empty event occurs when *UARTn_STATUS.tx_lvl* transitions from more than half-full to half-empty, as shown in *Equation 10-1*.

*Note: When this condition occurs, verify the number of bytes in the transmit FIFO (*UARTn_STATUS.tx_lvl*) before refilling.*

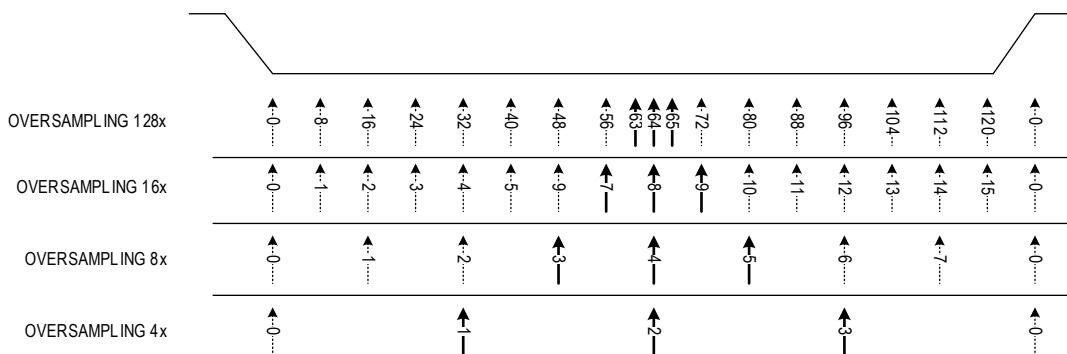
Equation 10-1: UART Transmit FIFO Half-Empty Condition

$$\left(\frac{C_TX_FIFO_DEPTH}{2} + 1 \right) \xrightarrow{\text{Transistions from}} \left(\frac{C_TX_FIFO_DEPTH}{2} \right)$$

10.5.7 Transmit FIFO One Byte Remaining

The transmit FIFO one byte remaining event occurs where there is one byte remaining in the transmit FIFO.

10.6 Inactive State


The following conditions result in the UART being inactive:

- When *UARTn_CTRL.bclken* = 0
- After setting *UARTn_CTRL.bclken* to 1 until *UARTn_CTRL.bclkrdy* = 1
- Any write to the *UARTn_CLKDIV.clkdiv* field while *UARTn_CTRL.bclken* = 1
- Any write to the *UARTn_OSR.osr* field when *UARTn_CTRL.bclken* = 1

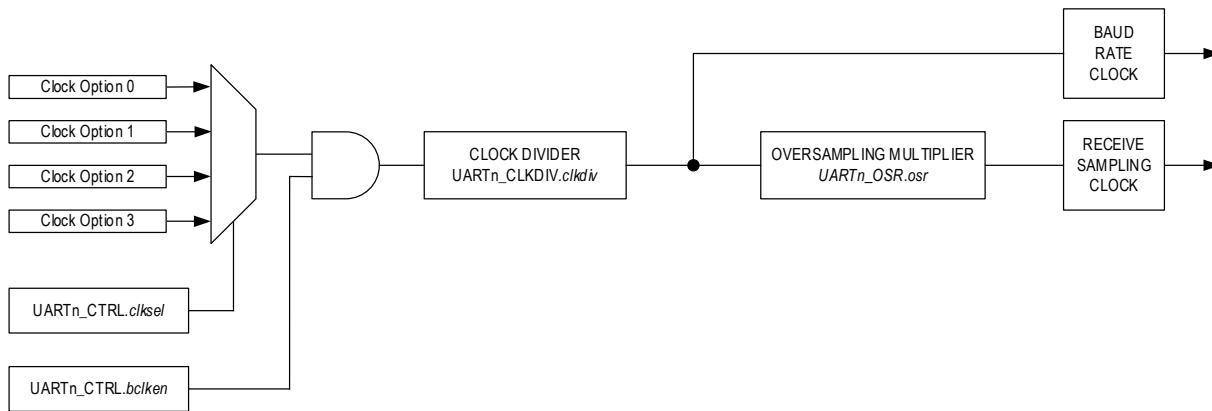
10.7 Receive Sampling

Each bit of a frame is oversampled to improve noise immunity. The oversampling rate (OSR) is configurable with the *UARTn_OSR.osr* field. In most cases, the bit is evaluated based on three samples at the midpoint of each bit time, as shown in *Figure 10-4*.

Figure 10-4: Oversampling Example

Whenever *UARTn_CLKDIV.clkdiv* < 16 (i.e., division rate less than 8.0), OSR is not used, and the oversampling rate is adjusted to full sampling by the hardware. In full sampling, the receive input is sampled on every clock cycle regardless of the OSR setting.

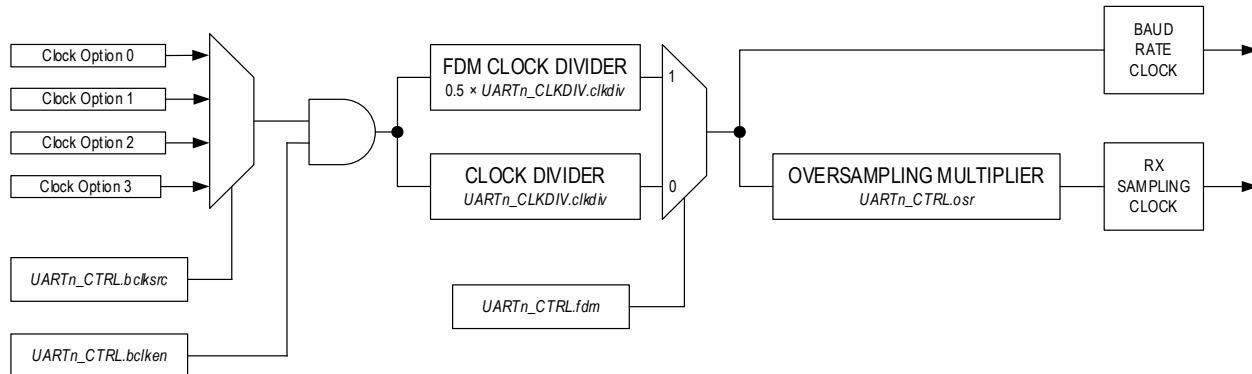
10.8 Baud Rate Generation


The baud rate is determined by the selected UART clock source and the value of the clock divisor. Multiple clock sources are available for each UART instance. See *Table 10-1* for available clock sources.

Note: Change the clock source only between data transfers to avoid corrupting an ongoing data transfer.

10.8.1 UART Clock Sources

Standard UART instances operate only in *ACTIVE* and *SLEEP*. Standard UART instances can only wake the device from *SLEEP*. *Figure 10-5* shows the baud rate generation path for standard UARTs.


Figure 10-5: UART Baud Rate Generation

10.8.2 LPUART Clock Sources

LPUART instances support FDM and are configurable for operation at 9600 and lower baud rates for operation in *SLEEP*, *DEEPSLEEP*, and *BACKUP*.

Figure 10-6: LPUART Timing Generation

10.8.3 Baud Rate Calculation

The transmit and receive circuits share a common baud rate clock: the selected UART clock source divided by the clock divisor. Instances that support FDM offer a 0.5 fractional clock division when enabled by setting *UARTn_CTRL.fdm* = 1. The FDM allows for greater accuracy when operating at low baud rates and finer granularity for the oversampling rate.

Use the following formula to calculate the *UARTn_CLKDIV.clkdiv* value based on the clock source, and desired baud rate, and integer or fractional divisor.

Equation 10-2: UART Clock Divisor Formula (*UARTn_CTRL.fdm* = 0)

$$UARTn_CLKDIV.clkdiv = \text{INT} \left[\frac{f_{UART_CLK}}{\text{Baud Rate}} \right]$$

if $f_{UART_CLK} \% \text{Baud rate} > \frac{\text{Baud rate}}{2}$ or $UARTn_CLKDIV.clkdiv = 0$, then $UARTn_CLKDIV.clkdiv + 1$

Equation 10-3: LPUART Clock Divisor Formula for [UARTn_CTRL.fdm](#) = 1

$$\text{UARTn_CLKDIV.clkdiv} = \text{INT} \left[\frac{f_{\text{UART_CLK}}}{\text{Baud Rate}} \right] \times 2$$

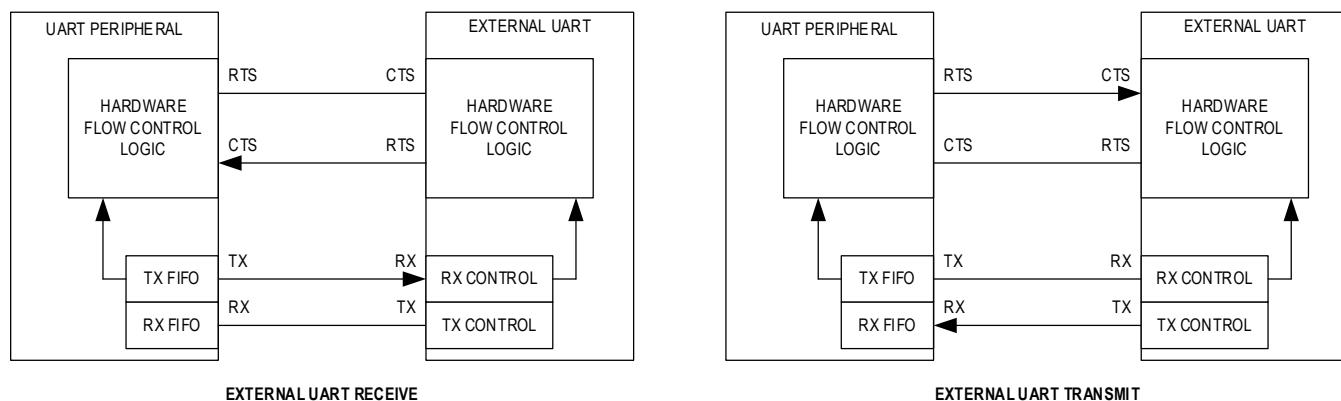
$$\text{if } f_{\text{UART_CLK}} \% \text{ Baud rate} > \frac{\text{Baud rate}}{2} \text{ or } \text{UARTn_CLKDIV.clkdiv} = 0, \text{ then } \text{UARTn_CLKDIV.clkdiv} + 1$$

For example, in a case where the UART clock is PCLK (50MHz), and the desired baud rate is 115,200bps:

$$\text{UARTn_CLKDIV.clkdiv} = \left(\frac{50,000,000}{115,200} \right) = 434$$

For a low-power UART with AOD_CLK (PCLK = 50MHz) selected as the clock source, the desired baud rate is 115,200bps, [GCR_PCLKDIV.aon_clkdiv](#) = 3, [UARTn_CTRL.fdm](#) = 0, and calculate the [UARTn_CLKDIV.clkdiv](#) field as follows:

$$\text{AOD_CLK} = \frac{50,000,000}{4 \times 2^3} = 1,562,500$$


$$\text{UARTn_CLKDIV.clkdiv} = \text{INT} \left[\frac{1,562,500}{115,200} \right] = 13$$

IMPORTANT: [UARTn_CLKDIV.clkdiv](#) must be greater than [UARTn_OSR.osr](#). In general, an [UARTn_OSR.osr](#) setting of 5 is sufficient for most applications.

10.9 Hardware Flow Control

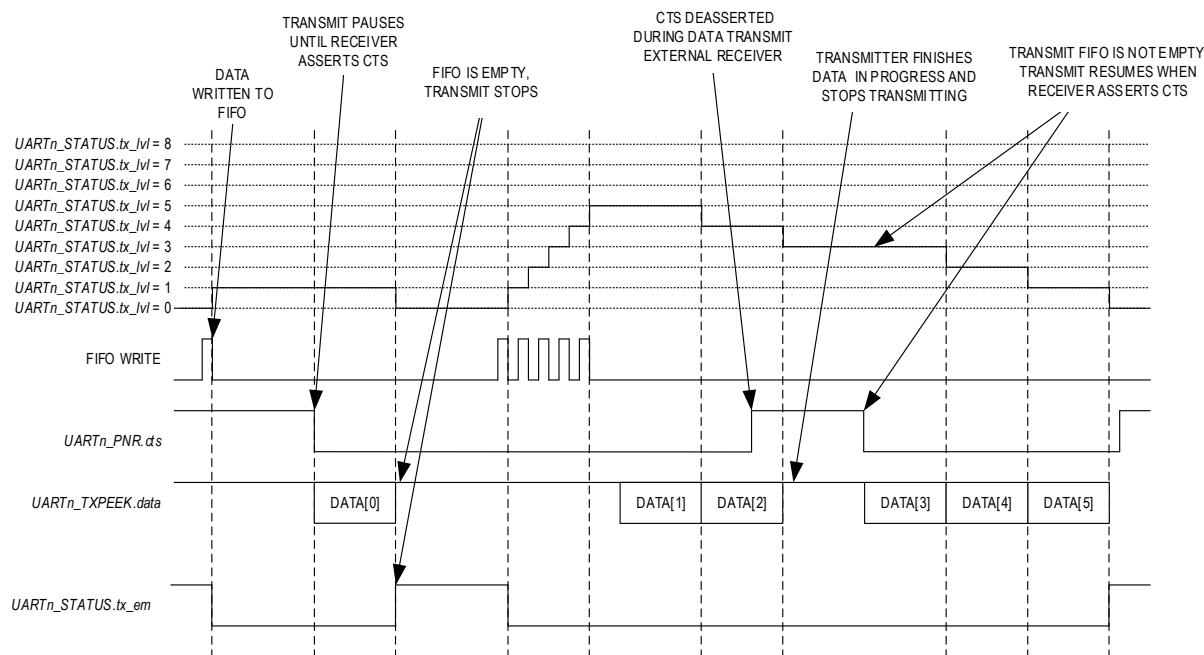
The optional HFC uses two additional pins, CTS and RTS, as a handshaking protocol to manage UART communications. For full-duplex operation, the RTS output pin on the peripheral is connected to the CTS input pin on the external UART, and the CTS input pin on the peripheral is connected to the RTS output pin on the external UART, as shown in [Figure 10-7](#).

Figure 10-7: HFC Physical Connection

A UART transmitter waits for the external device to assert its CTS pin in HFC operation. When CTS is asserted, the UART transmitter sends data to the external device. The external device keeps CTS asserted until it is unable to receive additional data, typically because the external device's receive FIFO is full. The external device then deasserts CTS until the device can receive more data. The external device then asserts CTS again, allowing additional data to be sent.

The peripheral hardware or software can fully automate HFC by directly monitoring the CTS input signal and controlling the RTS output signal.

10.9.1 Automated HFC


Setting `UARTn_CTRL.hfc_en` = 1 enables automated HFC. When automated HFC is enabled, the hardware manages the CTS and RTS signals. The deassertion of the RTS signal is configurable using the `UARTn_CTRL.rtsdc` field:

- `UARTn_CTRL.rtsdc` = 0: Deassert RTS when `UARTn_STATUS.rx_lvl` = `C_RX_FIFO_DEPTH`
- `UARTn_CTRL.rtsdc` = 1: Deassert RTS while `UARTn_STATUS.rx_lvl` \geq `UARTn_CTRL.rx_thd_val`

The transmitter continues to send data as long as the CTS signal is asserted and there is data in the transmit FIFO. If the receiver deasserts the CTS pin, the transmitter finishes transmitting the current character and then waits until the CTS pin state is asserted before continuing transmission. *Figure 10-8* shows the state of the CTS pin during a transmission under automated HFC.

Automated HFC does not generate interrupt events related to the state of the transmit FIFO or the receive FIFO. The software must handle FIFO management. See *Interrupt Events* for additional information.

Figure 10-8: HFC Signaling for Transmitting to an External Receiver

10.9.2 Software-Controlled HFC

Software-controlled HFC requires the software to manually control the RTS output pin and monitor the CTS input pin. To use the software-controlled HFC, disable the automated HFC by setting the `UARTn_CTRL.hfc_en` field to 1. Additionally, the software should enable CTS sampling (`UARTn_CTRL.cts_dis` = 0) if performing software-controlled HFC.

10.9.2.1 RTS/CTS Handling for Application-Controlled HFC

The software can manually monitor the CTS pin state by reading the field `UARTn_PNR.cts`. The software can manually set the state of the RTS output pin and read the current state of the RTS output pin using the field `UARTn_PNR.rts`. The software must manage the state of the RTS pin when performing software-controlled HFC.

Interrupt support for CTS input signal change events is supported even when automated HFC is disabled. The software can enable the CTS interrupt event by setting the `UARTn_INT_EN.cts_ev` field to 1. The hardware sets the CTS signal change

interrupt flag any time the CTS pin state changes. The software must clear this interrupt flag manually by writing 1 to the [`UARTn_INT_FL.cts_ev`](#) field.

Note: CTS pin state monitoring is disabled whenever the UART baud clock is disabled ([`UARTn_CTRL.bclken`](#) = 0). The software must enable CTS pin monitoring by setting the field [`UARTn_CTRL.cts_dis`](#) to 0 after enabling the baud clock if CTS pin state monitoring is required.

10.10 UART Registers

See [Table 3-2](#) for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own independent set of registers, shown in [Table 10-5](#). Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register PERIPHERALn_CTRL resolves to PERIPHERAL0_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

All registers and fields apply to both UART and LPUART instances unless specified otherwise.

Table 10-5: UART Registers

Offset	Register Name	Description
[0x0000]	UARTn_CTRL	UART Control Register
[0x0004]	UARTn_STATUS	UART Status Register
[0x0008]	UARTn_INT_EN	UART Interrupt Enable Register
[0x000C]	UARTn_INT_FL	UART Interrupt Flag Register
[0x0010]	UARTn_CLKDIV	UART Clock Divisor Register
[0x0014]	UARTn_OSR	UART Oversampling Control Register
[0x0018]	UARTn_TXPEEK	UART Transmit FIFO
[0x001C]	UARTn_PNR	UART Pin Control Register
[0x0020]	UARTn_FIFO	UART FIFO Data Register
[0x0030]	UARTn_DMA	UART DMA Control Register
[0x0034]	UARTn_WKEN	UART Wake-up Interrupt Enable Register
[0x0038]	UARTn_WKFL	UART Wake-up Interrupt Flag Register

10.10.1 Register Details

Table 10-6: UART Control Register

UART Control				UARTn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
31:23	-	DNM	0	Reserved	
22	desm	DNM	0	Reserved	
21	fdm	DNM	0	Reserved	
20	ucagm	DNM	0	Reserved	
19	bclkrdy	R	0	Baud Clock Ready 0: Baud clock not ready. 1: Baud clock ready.	
18	dpfe_en	RO	0	Data/Parity Bit Frame Error Detection Enable LPUART instances only. This field is reserved in standard UART instances. 0: Disable. Do not detect receive frame errors between the start bit and stop bit. 1: Enable. Detect frame errors when receive changes at the center of a bit time.	

UART Control				UARTn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
17:16	bclksrc	R/W	0	Baud Clock Source This field selects the baud clock source. See Table 10-1 for available clock options for each UART instance. <ul style="list-style-type: none"> 0: Clock option 0. 1: Clock option 1. 2: Clock option 2. 3: Clock option 3. 	
15	bclken	R/W	0	Baud Clock Enable 0: Disabled. 1: Enabled.	
14	rtsdc	R	0	HFC RTS Deassert Condition 0: Deassert RTS when the receive FIFO level = C_RX_FIFO_DEPTH (FIFO full). 1: Deassert RTS while the receive FIFO level >= UARTn_CTRL.rx_thd_val .	
13	hfc_en	R/W	0	HFC Enable 0: Disabled. 1: Enabled.	
12	stopbits	R/W	0	Number of Stop Bits 0: 1 stop bit. 1: 1.5 stop bits for 5-bit mode or 2 stop bits for 6/7/8-bit mode.	
11:10	char_size	R/W	0	Character Length 0: 5 bits. 1: 6 bits. 2: 7 bits. 3: 8 bits.	
9	rx_flush	R/W1O	0	Receive FIFO Flush Write 1 to flush the receive FIFO. This bit always reads 0. 0: Normal operation. 1: Flush FIFO.	
8	tx_flush	R/W1O	0	Transmit FIFO Flush Write 1 to flush the transmit FIFO. This bit always reads 0. 0: Normal operation. 1: Flush FIFO.	
7	cts_dis	R/W	1	CTS Sampling Disable 0: Enabled. 1: Disabled.	
6	par_md	R/W	0	Parity Value Select 0: Parity calculation is based on the number of 1 bits (mark). 1: Parity calculation is based on the number of 0 bits (space).	
5	par_eo	R/W	0	Parity Odd/Even Select 0: Even parity. 1: Odd parity.	
4	par_en	R/W	0	Transmit Parity Generation Enable 0: Parity transmission disabled. 1: Parity bit is calculated and transmitted after the last character bit.	

UART Control				UARTn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
3:0	rx_thd_val	R/W	0	Receive FIFO Threshold Valid settings are from 1 to C_RX_FIFO_DEPTH. 0: Reserved. 1: 1. 2: 2. 3: 3. 4: 4. 5: 5. 6: 6. 7: 7. 8: 8. 9 - 15: Reserved.	

Table 10-7: UART Status Register

UART Status				UARTn_STATUS	[0x0004]
Bits	Name	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15:12	tx_lvl	R	0	Transmit FIFO Level This field is the number of characters in the transmit FIFO. 0 - 8: Number of bytes in the transmit FIFO. 9 - 15: Reserved.	
11:8	rx_lvl	R	0	Receive FIFO Level This field is the number of characters in the receive FIFO. 0 - 8: Number of bytes in the receive FIFO. 9 - 15: Reserved.	
7	tx_full	R	0	Transmit FIFO Full 0: Not full. 1: Full.	
6	tx_em	R	1	Transmit FIFO Empty 0: Not empty. 1: Empty.	
5	rx_full	R	0	Receive FIFO Full 0: Not full. 1: Full.	
4	rx_em	R	1	Receive FIFO Empty 0: Not empty. 1: Empty.	
3:2	-	RO	0	Reserved	
1	rx_busy	R	0	Receive Busy 0: UART is not receiving a character. 1: UART is receiving a character.	
0	tx_busy	R	0	Transmit Busy 0: UART is not transmitting data. 1: UART is transmitting data.	

Table 10-8: UART Interrupt Enable Register

UART Interrupt Enable Register				UARTn_INT_EN	[0x0008]
Bits	Name	Access	Reset	Description	
31:7	-	RO	0	Reserved	
6	tx_he	R/W	0	Transmit FIFO Half-Empty Event Interrupt Enable 0: Disabled. 1: Enabled.	
5	tx_ob	R/W	0	Transmit FIFO One Byte Remaining Interrupt Enable 0: Disabled. 1: Enabled.	
4	rx_thd	R/W	0	Receive FIFO Threshold Event Interrupt Enable 0: Disabled. 1: Enabled.	
3	rx_ov	R/W	0	Receive FIFO Overrun Event Interrupt Enable 0: Disabled. 1: Enabled.	
2	cts_ev	R/W	0	CTS Signal Change Event Interrupt Enable 0: Disabled. 1: Enabled.	
1	rx_par	R/W	0	Receive Parity Event Interrupt Enable 0: Disabled. 1: Enabled.	
0	rx_ferr	R/W	0	Receive Frame Error Event Interrupt Enable 0: Disabled. 1: Enabled.	

Table 10-9: UART Interrupt Flag Register

UART Interrupt Flag				UARTn_INT_FL	[0x000C]
Bits	Name	Access	Reset	Description	
31:7	-	RO	0	Reserved	
6	tx_he	R/W1C	0	Transmit FIFO Half-Empty Interrupt Flag	
5	tx_ob	R/W1C	0	Transmit FIFO One Byte Remaining Interrupt Flag	
4	rx_thd	R/W1C	0	Receive FIFO Threshold Interrupt Flag	
3	rx_ov	R/W1C	0	Receive FIFO Overrun Interrupt Flag	
2	cts_ev	R/W1C	0	CTS Signal Change Interrupt Flag	
1	rx_par	R/W1C	0	Receive Parity Error Interrupt Flag	
0	rx_ferr	R/W1C	0	Receive Frame Error Interrupt Flag	

Table 10-10: UART Clock Divisor Register

UART Clock Divisor				UARTn_CLKDIV	[0x0010]
Bits	Name	Access	Reset	Description	
31:20	-	RO	0	Reserved	
19:0	clkdiv	R/W	0	Baud Rate Divisor This field sets the divisor to generate the baud tick from the baud clock. The oversampling rate must be no greater than this divisor. See Baud Rate Generation for information on how to use this field.	

Table 10-11: UART Oversampling Control Register

UART Oversampling Control				UARTn_OSR	[0x0014]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2:0	osr	RO	0	LPUART Over Sampling Rate For LPUART instances with FDM enabled (<i>UARTn_CTRL.fdm</i> = 1): 0: 8 x. 1: 12 x. 2: 16 x. 3: 20 x. 4: 24 x. 5: 28 x. 6: 32 x. 7: 36 x. For LPUART instances with FDM disabled (<i>UARTn_CTRL.fdm</i> = 0): 0: 128 x. 1: 64 x. 2: 32 x. 3: 16 x. 4: 8 x. 5: 4 x. 6 - 7: Reserved.	

Table 10-12: UART Transmit FIFO Register

UART Transmit FIFO				UARTn_TXPEEK	[0x0018]
Bits	Name	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7:0	data	RO	0	Transmit FIFO Data Read the transmit FIFO next data without affecting the contents of the transmit FIFO. If there are no entries in the transmit FIFO, this field reads 0. <i>Note: The parity bit is available from this field.</i>	

Table 10-13: UART Pin Control Register

UART Pin Control				UARTn_PNR	[0x001C]
Bits	Name	Access	Reset	Description	
31:2	-	RO	0	Reserved	
1	rts	R/W	1	RTS Pin Output State 0: RTS signal is driven to 0. 1: RTS signal is driven to 1.	
0	cts	RO	1	CTS Pin State This field returns the current sampled state of the GPIO associated with the CTS signal. 0: CTS state is 0. 1: CTS state is 1.	

Table 10-14: UART Data Register

UART Data				UARTn_FIFO	[0x0020]
Bits	Name	Access	Reset	Description	
31:9	-	RO	0	Reserved	

UART Data				UARTn_FIFO	[0x0020]
Bits	Name	Access	Reset	Description	
8	rx_par	R	0	Receive FIFO Byte Parity If the parity feature is disabled, this bit always reads 0. If a parity error occurred during the reception of the character at the output end of the receive FIFO (returned by reading the <i>UARTn_FIFO.data</i> field), this bit reads 1; otherwise, it reads 0.	
7:0	data	R/W	0	Transmit/Receive FIFO Data Writing to this field loads the next character into the transmit FIFO if the transmit FIFO is not full. Reading from this field returns the next character from the receive FIFO if the receive FIFO is not empty. If the receive FIFO is empty, the hardware returns 0. For character widths less than 8, the unused bit(s) are ignored when the transmit FIFO is loaded, and the unused high bit(s) read 0 on characters read from the receive FIFO.	

Table 10-15: UART DMA Register

UART DMA				UARTn_DMA	[0x0030]
Bits	Name	Access	Reset	Description	
31:10	-	RO	0	Reserved	
9	rx_en	0	0	Receive DMA Channel Enable 0: Disabled. 1: Enabled.	
8:5	rx_thd_val	0	0	Receive FIFO Level DMA Threshold If <i>UARTn_STATUS.rx_lvl</i> > <i>UARTn_DMA.rx_thd_val</i> , then the receive FIFO DMA interface sends a signal to the DMA indicating characters are available in the UART receive FIFO to transfer to memory.	
4	tx_en	R/W	0	Transmit DMA Channel Enable 0: Disabled. 1: Enabled.	
3:0	tx_thd_val	R/W	0	Transmit FIFO Level DMA Threshold If <i>UARTn_STATUS.tx_lvl</i> < <i>UARTn_DMA.tx_thd_val</i> , the transmit DMA channel sends a signal to the DMA indicating the UART transmit FIFO is ready to receive data from memory.	

Table 10-16: UART Wake-up Enable

UART Wake-up Enable				UARTn_WKEN	[0x0034]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	rx_thd	R/W	0	Receive FIFO Threshold Wake-up Event Enable 0: Disabled. 1: Enabled.	
1	rx_full	R/W	0	Receive FIFO Full Wake-up Event Enable 0: Disabled. 1: Enabled.	
0	rx_ne	R/W	0	Receive FIFO Not Empty Wake-up Event Enable 0: Disabled. 1: Enabled.	

Table 10-17: UART Wake-up Flag Register

UART Wake-up Flag			UARTn_WKFL		[0x0038]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	rx_thd	R/W	0	Receive FIFO Threshold Wake-up Event 0: Disabled. 1: Enabled.	
1	rx_full	R/W	0	Receive FIFO Full Wake-up Event 0: Disabled. 1: Enabled.	
0	rx_ne	R/W	0	Receive FIFO Not Empty Wake-up Event 0: Disabled. 1: Enabled.	

11. I²C Controller/Target Serial Communications Peripheral

The I²C peripherals can be configured as either an I²C controller or an I²C target at standard data rates. For simplicity, I2Cn is used throughout this section to refer to any of the I²C peripherals.

For detailed information on I²C bus operation, refer to Analog Devices Application Note 4024 "SPI/I²C Bus Lines Control Multiple Peripherals" at <https://www.analog.com/en/resources/app-notes/spi2c-bus-lines-control-multiple-peripherals.html>.

11.1 I²C Controller/Target Features

Each I²C controller/target is compliant with the I²C Bus Specification and includes the following features:

- Communicates through a serial data bus (SDA) and a serial clock line (SCL).
- Operates as either a controller or target device as a transmitter or receiver.
- Supports I²C Standard Mode, Fast Mode, Fast Mode Plus, and High Speed (Hs) Mode.
- Transfers data at rates up to:
 - ◆ 100kbps in Standard Mode.
 - ◆ 400kbps in Fast Mode.
 - ◆ 1Mbps in Fast Mode Plus.
- Supports multicontroller systems, including support for arbitration and clock synchronization for Standard Mode, Fast Mode, and Fast Mode Plus.
- Supports 7- and 10-bit addressing.
- Supports RESTART condition.
- Supports clock stretching.
- Provides transfer status interrupts and flags.
- Provides DMA data transfer support.
- Supports I²C timing parameters fully controllable through software.
- Provides glitch filter and Schmitt trigger hysteresis on SDA and SCL.
- Provides control, status, and interrupt events for maximum flexibility.
- Provides independent 8-byte receive FIFO and 8-byte transmit FIFO.
- Provides transmit FIFO preloading.
- Provides programmable interrupt threshold levels for the transmit and receive FIFO.

11.2 Instances

The three instances of the peripheral are shown in *Table 11-1*. The table lists the alternate function names of the SDA and SCL signals for each of the I²C peripherals.

Table 11-1: MAX32675C I²C Peripheral Pins

I ² C Instance	Alternate Function y = Alternate Function Number (A = AF1, B = AF2, C = AF2, D = AF3, E = AF4)*
I2C0	I2C0y_SCL
	I2C0y_SDA
I2C1	I2C0y_SCL
	I2C0y_SDA
I2C2	I2C2y_SCL
	I2C2y_SDA

* Refer to the device's data sheet pin description table for alternate function mapping to pin numbers.

11.3 I²C Overview

11.3.1 I²C Bus Terminology

Table 11-2 contains terms and definitions used in this chapter for the I²C bus terminology.

Table 11-2: I²C Bus Terminology

Term	Definition
Transmitter	The device sending data on the bus.
Receiver	The device receiving data from the bus.
Controller	The device that initiates a transfer, generates the clock signal, and terminates a transfer.
Target	The device addressed by a controller.
Multicontroller	More than one controller can attempt to control the bus simultaneously without corrupting the message.
Arbitration	Procedure to ensure that, if more than one controller simultaneously tries to control the bus, only one can do so, and the resulting message is not corrupted.
Synchronization	The procedure to synchronize the clock signals of two or more devices.
Clock Stretching	When a target device holds SCL low to pause a transfer until it is ready. Clock stretching is an optional feature according to the I ² C specification; thus, a controller does not have to support target clock stretching if none of the targets in the system are capable of clock stretching.

11.3.2 I²C Transfer Protocol Operation

The I²C protocol operates over a two-wire bus: a clock circuit (SCL) and a data circuit (SDA). I²C is a half-duplex protocol: only one device is allowed to transmit on the bus at a time.

Each transfer is initiated when the bus controller sends a START or repeated START condition, followed by the I²C target address of the targeted target device plus a read/write bit. The controller can transmit data to the target (a 'write' operation) or receive data from the target (a 'read' operation). Information is sent most-significant bit (MSB) first. Following the target address, the controller indicates a read or write operation and then exchanges data with the addressed target. An acknowledge bit is sent by the receiving device after each byte is transferred. When all necessary data bytes are transferred, a STOP or RESTART condition is sent by the bus controller to indicate the end of the transaction. After the STOP condition is sent, the bus is idle and ready for the next transaction. After a RESTART condition is sent, the same controller begins a new transmission. The number of bytes that can be transmitted per transfer is unrestricted.

11.3.3 START and STOP Conditions

A START condition occurs when a bus controller pulls SDA from high to low while SCL is high, and a STOP condition occurs when a bus controller allows SDA to be pulled from low to high while SCL is high. Because these are unique conditions that cannot occur during normal data transfer, they are used to denote the beginning and end of the data transfer.

11.3.4 Controller Operation

I²C transmit and receive data transfer operations occur through the *I2Cn_FIFO* register. Writes to the register load the transmit FIFO and reads of the register return data from the receive FIFO. If a target sends a NACK in response to a write operation, the I²C controller generates an interrupt. The I²C controller can be configured to issue a STOP condition to free the bus.

The receive FIFO contains the received data. If the receive FIFO is full or the transmit FIFO is empty, the I²C controller stops the clock to allow time to read bytes from the receive FIFO or load bytes into the transmit FIFO.

11.3.5 Acknowledge and Not Acknowledge

An acknowledge bit (ACK) is generated by the receiver, whether I²C controller or target, after every byte received by pulling SDA low. The ACK bit is how the receiver tells the transmitter that the byte was successfully received, and another byte might be sent.

A Not Acknowledge (NACK) occurs if the receiver does not generate an ACK when the transmitter releases SDA. A NACK is generated by allowing SDA to float high during the acknowledge time slot. The I²C controller can then either generate a STOP condition to abort the transfer or generate a repeated START condition (i.e., send a START condition without an intervening STOP condition) to start a new transfer.

A receiver can generate a NACK after a byte transfer if any of the following conditions occur:

- No receiver is present on the bus with the transmitted address. In that case, no device responds with an acknowledge signal.
- The receiver cannot receive or transmit because it is busy and is not ready to start communication with the controller.
- During the transfer, the receiver receives data or commands it does not understand.
- During the transfer, the receiver is unable to receive any more data.
- If an I²C controller has requested data from a target, it signals the target to stop transmitting by sending a NACK following the last byte it requires.

11.3.6 Bit Transfer Process

Both SDA and SCL circuits are open-drain, bidirectional circuits. Each requires an external pullup resistor that ensures each circuit is high when idle. The I²C specification states that during data transfer, the SDA line can change state only when SCL is low and that SDA is stable and able to be read when SCL is high, as shown in *Figure 11-1*.

Figure 11-1: I²C Write Data Transfer

An example of an I²C data transfer is as follows:

1. A bus controller indicates a data transfer to a target with a START condition.
2. The controller then transmits one byte with a 7-bit target address and a single read-write bit: a zero for a write or a one for a read.
3. During the next SCL clock following the read-write bit, the controller releases SDA. During this clock period, the addressed target responds with an ACK by pulling SDA low.
4. The controller senses the ACK condition and begins transferring data. If reading from the target, it floats SDA and allows the target to drive SDA to send data. After each byte, the controller drives SDA low to acknowledge the byte. If writing to the target, the controller drives data on the SDA circuit for each of the eight bits of the byte and then floats SDA during the ninth bit to allow the target to reply with the ACK indication.
5. After the last byte is transferred, the controller indicates the transfer is complete by generating a STOP condition. A STOP condition is generated when the controller pulls SDA from low to high while SCL is high.

11.4 Configuration and Usage

11.4.1 SCL and SDA Bus Drivers

SCL and SDA are open-drain signals. In this device, once the I²C peripheral is enabled and the proper GPIO alternate function is selected, the corresponding pad circuits are automatically configured as open-drain outputs.

11.4.2 SCL Clock Configurations

The SCL frequency depends on the values of the I²C peripheral clock and the values of the external pullup resistor and trace capacitance on the SCL clock line.

Note: An external RC load on the SCL line affects the target SCL frequency calculation.

11.4.3 SCL Clock Generation for Standard, Fast and Fast-Plus Modes

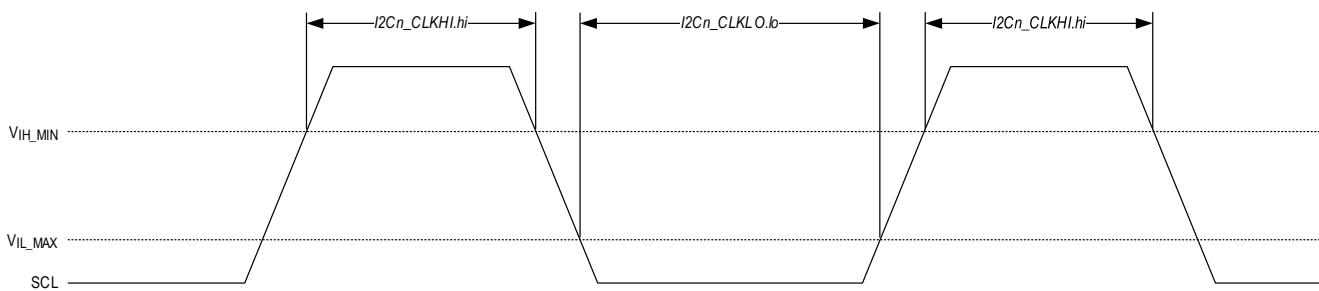
The controller generates the I²C clock on the SCL line. When operating as a controller, the software must configure the *I2Cn_CLKHI* and *I2Cn_CLKLO* registers for the desired I²C operating frequency.

The SCL high time is configured in the I²C Clock High Time register field *I2Cn_CLKHI.hi* using [Equation 11-2](#). The SCL low time is configured in the I²C Clock Low Time register field *I2Cn_CLKLO.lo* using [Equation 11-3](#). Each of these fields is 8 bits. The I²C frequency value is shown in [Equation 11-1](#).

Equation 11-1: I²C Clock Frequency

$$f_{I2C_CLK} = \frac{1}{t_{I2C_CLK}} \text{ is either } f_{PCLK} \text{ or } f_{IBRO}$$

Equation 11-2: I²C Clock High Time Calculation


$$t_{SCL_HI} = t_{I2C_CLK} \times (I2Cn_CLKHI.hi + 1)$$

Equation 11-3: I²C Clock Low Time Calculation

$$t_{SCL_LO} = t_{I2C_CLK} \times (I2Cn_CLKLO.lo + 1)$$

[Figure 11-2](#) shows the association between the SCL clock low and high times for Standard Mode, Fast Mode, and Fast Mode Plus I²C frequencies.

Figure 11-2: I²C SCL Timing for Standard, Fast and Fast-Plus Modes

During synchronization, external controllers or external targets can drive SCL simultaneously. This affects the SCL duty cycle. By monitoring SCL, the controller determines if an external controller or target is holding SCL low. In either case, the controller waits until SCL is high before starting to count the number of SCL high cycles. Similarly, if an external controller pulls SCL low before the controller has finished counting SCL high cycles, the controller starts counting SCL low cycles and releases SCL once the time period, [I2Cn_CLKLO.lo](#), has expired.

Because the controller does not start counting the high/low time until the input buffer detects the new value, the actual clock behavior is based on many factors, including bus loading, other devices on the bus holding SCL low, and the filter delay time of this device.

11.4.4 Controller Mode Addressing

After a START condition, the I²C target address byte is transmitted by the hardware. The I²C target address is composed of a target address followed by a read/write bit.

Table 11-3: I²C Target Address Format

Target Address Bits	R/W Bit	Description
0000	000	0 General Call Address
0000	000	1 START Condition
0000	001	x CBUS Address
0000	010	x Reserved for different bus format
0000	011	x Reserved for future purposes
0000	1xx	x Hs-mode controller code
1111	1xx	x Reserved for future purposes
1111	0xx	x 10-bit target addressing

In 7-bit addressing mode, the controller sends one address byte. First, to address a 7-bit address target, clear the [I2Cn_MSTCTRL.ex_addr_en](#) field to 0, then write the address to the transmit FIFO formatted as follows, where A_n is address A6:A0.

Controller writing to target: 7-bit address : [A6 A5 A4 A3 A2 A1 A0 0]

Controller reading from target: 7-bit address : [A6 A5 A4 A3 A2 A1 A0 1]

In 10-bit addressing mode ([I2Cn_MSTCTRL.ex_addr_en](#) = 1), the first byte the controller sends is the 10-bit target Address byte that includes the first two bits of the 10-bit address, followed by a 0 for the R/W bit. That is followed by a second byte representing the remainder of the 10-bit address. If the operation is a write, this is followed by data bytes to be written to the target. If the operation is a read, it is followed by a repeated START. The software then writes the 10-bit address again with a 1 for the R/W bit. This I²C then starts receiving data from the target device.

11.4.5 Controller Mode Operation

The peripheral operates in controller mode when controller mode enable (*I2Cn_CTRL.mst_mode*) is set to 1. To initiate a transfer, the controller generates a START condition by setting *I2Cn_MSTCTRL.start* = 1. If the bus is busy, it does not generate a START condition until the bus is available.

A controller can communicate with multiple target devices without relinquishing the bus. Instead of generating a STOP condition after communicating with the first target, the controller generates a Repeated START condition, or RESTART, by setting *I2Cn_MSTCTRL.restart* = 1. If a transaction is in progress, the peripheral finishes the transaction before generating a RESTART. The peripheral then transmits the target address stored in the transmit FIFO. The *I2Cn_MSTCTRL.restart* bit is automatically cleared to 0 as soon as the controller begins a RESTART condition.

I2Cn_MSTCTRL.start is automatically cleared to 0 after the controller has completed a transaction and sent a STOP condition.

The controller can also generate a STOP condition by setting *I2Cn_MSTCTRL.stop* = 1.

If both START and RESTART conditions are enabled simultaneously, a START condition is generated first. Then, at the end of the first transaction, a RESTART condition is generated.

If both RESTART and STOP conditions are enabled simultaneously, a STOP condition is not generated. Instead, a RESTART condition is generated. After the RESTART condition is generated, both bits are cleared.

If START, RESTART, and STOP are all enabled simultaneously, a START condition is first generated. At the end of the first transaction, a RESTART condition is generated. The *I2Cn_MSTCTRL.stop* bit is cleared and ignored.

A target cannot generate START, RESTART, or STOP conditions. Therefore, when controller mode is disabled, the *I2Cn_MSTCTRL.start*, *I2Cn_MSTCTRL.restart*, and *I2Cn_MSTCTRL.stop* bits are all cleared to 0.

For controller mode operation, the following registers should only be configured when either:

1. The I²C peripheral is disabled,
or
2. The I²C bus is guaranteed to be idle/free.

If this peripheral is the only controller on the bus, then changing the registers outside of a transaction (*I2Cn_MSTCTRL.start* = 0) satisfies this requirement:

- *I2Cn_CTRL.mst_mode*
- *I2Cn_CTRL.irxm_en*
- *I2Cn_CTRL.hs_en*
- *I2Cn_RXCTRL1.cnt*
- *I2Cn_MSTCTRL.ex_addr_en*
- *I2Cn_CLKLO.lo*
- *I2Cn_CLKHI.hi*
- *I2Cn_HSCLK.lo*
- *I2Cn_HSCLK.hi*

In contrast to the above set of register fields, the register fields below can be safely (re)programmed at any time:

- All interrupt flags and interrupt enable bits
- *I2Cn_TXCTRL0.thd_val*
- *I2Cn_RXCTRL0.thd_lvl*
- *I2Cn_TIMEOUT.scl_to_val*
- *I2Cn_DMA.rx_en*
- *I2Cn_DMA.tx_en*
- *I2Cn_FIFO.data*

- *I2Cn_MSTCTRL.start*
- *I2Cn_MSTCTRL.restart*
- *I2Cn_MSTCTRL.stop*

11.4.5.1 I²C Controller Mode Receiver Operation

When in controller mode, initiating a controller receiver operation begins with the following sequence:

1. Write the number of data bytes to receive to the I²C receive count field (*I2Cn_RXCTRL1.cnt*).
2. Write the I²C target address byte to the *I2Cn_FIFO* register with the R/W bit set to 1.
3. Send a START condition by setting *I2Cn_MSTCTRL.start* = 1.
4. The target address is transmitted by the controller from the *I2Cn_FIFO* register.
5. The I²C controller receives an ACK from the target, and the controller sets the address ACK interrupt flag (*I2Cn_INTFLO.addr_ack* = 1).
6. The I²C controller receives data from the target and automatically ACKs each byte. The software must retrieve this data by reading the *I2Cn_FIFO* register.
7. Once *I2Cn_RXCTRL1.cnt* data bytes are received, the I²C controller sends a NACK to the target and sets the Transfer Done Interrupt Status Flag (*I2Cn_INTFLO.done* = 1).
8. If *I2Cn_MSTCTRL.restart* or *I2Cn_MSTCTRL.stop* is set, then the I²C controller sends a repeated START or STOP, respectively.

11.4.5.2 I²C Controller Mode Transmitter Operation

When in controller mode, initiating a controller transmitter operation begins with the following sequence:

1. Write the I²C target address byte to the *I2Cn_FIFO* register with the R/W bit set to 0.
2. Write the desired data bytes to the *I2Cn_FIFO* register, up to the size of the transmit FIFO. (e.g., If the transmit FIFO size is 8 bytes, the software can write one address byte and seven data bytes before starting the transaction.)
3. Send a START condition by setting *I2Cn_MSTCTRL.start* = 1.
4. The controller transmits the target address byte written to the *I2Cn_FIFO* register.
5. The I²C controller receives an ACK from the target, and the controller sets the address ACK interrupt flag (*I2Cn_INTFLO.addr_ack* = 1).
6. The *I2Cn_FIFO* register data bytes are transmitted on the SDA line.
 - a. The I²C controller receives an ACK from the target after each data byte.
 - b. As the transfer proceeds, the software should refill the transmit FIFO by writing to the *I2Cn_FIFO* register as needed.
 - c. If the transmit FIFO goes empty during this process, the controller pauses at the beginning of the byte and waits for the software to either write more data or instruct the controller to send a RESTART or STOP condition.
7. Once the software writes all the desired bytes to the *I2Cn_FIFO* register; the software should set either *I2Cn_MSTCTRL.restart* or *I2Cn_MSTCTRL.stop*.
8. Once the controller sends all the remaining bytes and empties the transmit FIFO, it sets *I2Cn_INTFLO.done* and proceeds to send out either a RESTART condition if *I2Cn_MSTCTRL.restart* is set or a STOP condition if *I2Cn_MSTCTRL.stop* is set.

11.4.5.3 I²C Multicontroller Operation

The I²C protocol supports multiple controllers on the same bus. When the bus is free, two (or more) controllers might try to initiate communication simultaneously. This is a valid bus condition. If this occurs and the two controllers want to transmit different data and/or address different targets, only one controller can remain in controller mode and complete its

transaction. The other controller must back off the transmission and wait until the bus is idle. This process by which the winning controller is determined is called bus arbitration.

The controller compares the data being transmitted on SDA to the value observed on SDA to determine which controller wins the arbitration for each address or data bit. If a controller attempts to transmit a 1 on SDA (i.e., the controller lets SDA float) but senses a 0 instead, then that controller loses arbitration, and the other controller that sent a zero continues with the transaction. The losing controller cedes the bus by switching off its SDA and SCL drivers.

Note: This arbitration scheme works with any number of bus controllers: if more than two controllers begin transmitting simultaneously, the arbitration continues as each controller cedes the bus until only one controller remains transmitting. Data is not corrupted because as soon as each controller realizes it has lost the arbitration, it stops transmitting on SDA, leaving the following data bits sent on SDA intact.

If the I²C controller peripheral detects it has lost the arbitration, it stops generating SCL; sets *I2Cn_INTF0 arb_err*; sets *I2Cn_INTF0.tx_lockout*, flushing any remaining data in the transmit FIFO; and clears *I2Cn_MSTCTRL.start*, *I2Cn_MSTCTRL.restart*, and *I2Cn_MSTCTRL.stop* to 0. As long as the peripheral is not addressed by the winning controller, the I²C peripheral stays in controller mode (*I2Cn_CTRL.mst_mode* = 1). If, *at any time*, another controller addresses this peripheral using the address programmed in the *I2Cn_SLAVE* register, then the I²C peripheral clears *I2Cn_CTRL.mst_mode* to 0 and begins responding as a target. This can even occur during the same address transmission during which the peripheral lost arbitration.

*Note: Arbitration loss is considered an error condition, and like the other error conditions, sets *I2Cn_INTF0.tx_lockout*. Therefore, after an arbitration loss, the software needs to clear *I2Cn_INTF0.tx_lockout* and reload the transmit FIFO.*

Also, in a multicontroller environment, the software does *not* need to wait for the bus to become free before attempting to start a transaction (writing 1 to *I2Cn_MSTCTRL.start*). If the bus is free when *I2Cn_MSTCTRL.start* is set to 1, the transaction begins immediately. If, instead, the bus is busy, then the peripheral:

1. Waits for the other controller to complete the transaction(s) by sending a STOP,
2. Counts out the bus free time using $t_{BUF} = t_{SCL_LO}$ (see *Equation 11-3*), and then
3. Sends a START condition and begins transmitting the target address byte(s) in the transmit FIFO, followed by the rest of the transfer.

The I²C controller peripheral is compliant with all bus arbitration and clock synchronization requirements of the I²C specification; this operation is automatic, and no additional programming is required.

11.4.6 Target Mode Operation

When in target mode, the I²C peripheral operates as a target device on the I²C bus and responds to an external controller's requests to transmit or receive data. To configure the I²C peripheral as a target, write the *I2Cn_CTRL.mst_mode* bit to zero.

The controller drives the I²C clock on the bus, so the SCL device pin is driven by the external controller, and

I2Cn_STATUS.mst_busy remains a zero. The desired target address must be set by writing to the *I2Cn_SLAVE* register.

For target mode operation, the following register fields should be configured with the I²C peripheral disabled:

- *I2Cn_CTRL.mst_mode* = 0 for target operation.
- I²C target address:
 - ◆ Set the target addresses by programming the *I2Cn_SLAVE.addr* field to the desired address for the device on the bus.
 - ◆ For extended addresses, set the *I2Cn_SLAVE.ext_addr_en* to 1 for 10-bit addressing or 0 for 7-bit addressing.
- *I2Cn_CTRL.gc_addr_en*
- *I2Cn_CTRL.irxm_en*
 - ◆ The recommended value for this field is 0. *Note that a setting of 1 is incompatible with target mode operation with clock stretching disabled (I2Cn_CTRL.clkstr_dis = 1).*
- *I2Cn_CTRL.clkstr_dis*
- *I2Cn_CTRL.hs_en*
- *I2Cn_RXCTRL0.dnr*
 - ◆ SMBus/PMBus applications should set this to 0, while other applications should set this to 1.
- *I2Cn_TXCTRL0.nack_flush_dis*
- *I2Cn_TXCTRL0.rd_addr_flush_dis*
- *I2Cn_TXCTRL0.wr_addr_flush_dis*
- *I2Cn_TXCTRL0.gc_addr_flush_dis*
- *I2Cn_TXCTRL0.preload_mode*
 - ◆ The recommended value is 0 for applications that can tolerate target clock stretching (*I2Cn_CTRL.clkstr_dis* = 0).
 - ◆ The recommended value is 1 for applications that do not allow target clock stretching (*I2Cn_CTRL.clkstr_dis* = 1).
- *I2Cn_CLKHI.hi*
 - ◆ Applies to target mode when clock stretching is enabled (*I2Cn_CTRL.clkstr_dis* = 0)
 - This is used to satisfy $t_{SU;DAT}$ after clock stretching; program it so that the value defined by *Equation 11-2* is $\geq t_{SU;DAT(\min)}$.

In contrast to the above register fields, the following register fields can be safely (re)programmed at any time:

- All interrupt flags and interrupt enables.
- *I2Cn_TXCTRL0.thd_val* and *I2Cn_RXCTRL0.thd_lvl*
 - ◆ Transmit and receive FIFO threshold levels.
- *I2Cn_TXCTRL0.tx_ready_mode*
 - ◆ Transmit ready (can only be cleared by hardware).
- *I2Cn_TIMEOUT.scl_to_val*
 - ◆ Timeout control.
- *I2Cn_DMA.rx_en* and *I2Cn_DMA.tx_en*
 - ◆ Transmit and receive DMA enables.
- *I2Cn_FIFO.data*
 - ◆ FIFO access register.

11.4.6.1 Target Transmitter

The device operates as a target transmitter when the received address matches the device target address with the R/W bit set to 1. The controller is then reading from the device target. There are two main modes of target transmitter operation: just-in-time mode and preload mode.

11.4.6.1.1 Just-in-Time Target Transmitter

In just-in-time mode, the software waits to write the transmit data to the transmit FIFO until after the controller addresses it for a READ transaction, just in time, to send the data to the controller. This allows the software to defer the determination of what data should be sent until the time of the address match. For example, the transmit data could be based on an immediately preceding I²C write transaction that requests a certain block of data to be sent. The data could represent the latest, most up-to-date value of a sensor reading. Clock stretching *must* be enabled (*I2Cn_CTRL.clkstr_dis* = 0) for just-in-time mode operation.

Program flow for target transmit operation in just-in-time mode is as follows:

1. With `I2Cn_CTRL.en` = 0, initialize all relevant registers, including:
 - a. Set the `I2Cn_SLAVE.addr` field with the desired I²C target addresses.
 - b. Set the `I2Cn_SLAVE.ext_addr_en` field for either 7-bit or 10-bit addressing.
 - c. Just-in-time mode specific settings:
 - i) `I2Cn_CTRL.clkstr_dis` = 0
 - ii) `I2Cn_TXCTRL0[5:2]` = 0x8
 - iii) `I2Cn_TXCTRL0.preload_mode` = 0.
 - e. Program `I2Cn_CLKHI.hi` and `I2Cn_HSCLK.hi` with appropriate values satisfying $t_{SU;DAT}$ (and HS $t_{SU;DAT}$).
2. The software sets `I2Cn_CTRL.en` = 1.
 - a. The controller is now listening for its address. For either a transmit (R/W = 1) or receive (R/W = 0) operation, the peripheral responds to its address with an ACK.
 - b. When the address match occurs, the hardware sets `I2Cn_INTFLO.addr_match` and `I2Cn_INTFLO.tx_lockout`.
3. The software waits for `I2Cn_INTFLO.addr_match` to read 1, either through polling the interrupt flag or setting `I2Cn_INTENO.addr_match` to interrupt the CPU.
4. After reading `I2Cn_INTFLO.addr_match` = 1, the software reads `I2Cn_CTRL.read` to determine whether the transaction is a transmit (read = 1) or receive (read = 0) operation. In this case, assume read = 1, indicating transmit.
 - a. The hardware holds SCL low until the software clears `I2Cn_INTFLO.tx_lockout` and loads data into the FIFO.
5. The software clears `I2Cn_INTFLO.addr_match` and `I2Cn_INTFLO.tx_lockout`. Now that `I2Cn_INTFLO.tx_lockout` is 0, the software can begin loading the transmit data into `I2Cn_FIFO`.
6. As soon as there is data in the FIFO, the hardware releases SCL (after counting out `I2Cn_CLKHI.hi`) and sends out the data on the bus.
7. While the controller keeps requesting data and sending ACKs, `I2Cn_INTFLO.done` remains 0, and the software should continue to monitor the transmit FIFO and refill it as needed.
 - a. The FIFO level can be monitored synchronously through the transmit FIFO status/interrupt flags or asynchronously by setting `I2Cn_TXCTRL0.thd_val` and setting the `I2Cn_INTENO.tx_thd` interrupt.
 - b. If the transmit FIFO ever empties during the transaction, the hardware starts clock stretching and waits for it to be refilled.
8. The controller ends the transaction by sending a NACK. Once this happens, the `I2Cn_INTFLO.done` interrupt flag is set, and the software can stop monitoring the transmit FIFO.
 - a. If the software needs to know how many data bytes were transmitted to the controller, it should check the transmit FIFO level as soon as `I2Cn_INTFLO.done` = 1 and use it to determine how many data bytes were successfully sent.

Note: Any data remaining in the transmit FIFO is discarded before the next transmit operation; it is NOT necessary for the software to manually flush the transmit FIFO.
9. The transaction is complete. The software should clear the `I2Cn_INTFLO.done` interrupt flag and clear the `I2Cn_INTFLO.tx_thd` interrupt flag. Return to step 3, waiting on an address match.

11.4.6.1.2 Preload Mode Target Transmit

The other mode of operation for target transmit is preload mode. In this mode, it is assumed that the software knows before the transmit operation what data it should send to the controller. This data is then "preloaded" into the transmit FIFO. Once the address match occurs, this data can be sent out without any software intervention. Preload mode can be used with clock stretching either enabled or disabled, but it is the only option if clock stretching must be disabled.

To use target transmit preload mode:

1. With *I2Cn_CTRL.en* = 0, initialize all relevant registers, including:
 - a. Set the *I2Cn_SLAVE.addr* field with the desired I²C target addresses.
 - b. Set the *I2Cn_SLAVE.ext_addr_en* field for either 7-bit or 10-bit addressing.
 - c. Preload mode specific settings:
 - i) *I2Cn_CTRL.clkstr_dis* = 1
 - ii) *I2Cn_TXCTRL0[5:2]* = 0xF
 - iii) *I2Cn_TXCTRL0.preload_mode* = 1.
2. The software sets *I2Cn_CTRL.en* = 1.
 - a. Even though the controller is enabled, it does not ACK an address match with R/W equal to 1 until the software sets the *I2Cn_TXCTRL1.preload_rdy* field to 1.
3. The software prepares for the transmit operation by loading data into the transmit FIFO, enabling DMA, setting *I2Cn_TXCTRL0.thd_val*, and setting *I2Cn_INTENO.tx_thd* interrupt, etc.
 - a. If clock stretching is disabled, an empty transmit FIFO during the transmit operation causes a transmit underrun error. Therefore, the software should take any necessary steps to avoid an underrun *before* setting *I2Cn_TXCTRL1.preload_rdy* = 1.
 - b. If clock stretching is enabled, then an empty transmit FIFO does not cause a transmit underrun error. However, it is recommended to follow the same preparation steps to minimize the amount of time spent clock stretching, which lets the transaction complete as quickly as possible.
4. Once the software has prepared for the transmit operation; it sets *I2Cn_TXCTRL1.preload_rdy* = 1.
 - a. The controller is now fully enabled and responds with an ACK to an address match.
 - b. The hardware sets *I2Cn_INTFL0.addr_match* when an address match occurs. *I2Cn_INTFL0.tx_lockout* is NOT set to 1 and remains 0.
5. The software waits for *I2Cn_INTFL0.addr_match* = 1, either through polling the interrupt flag or by setting *I2Cn_INTENO.addr_match* to generate an interrupt when the event occurs.
6. After seeing *I2Cn_INTFL0.addr_match* = 1, the software reads *I2Cn_CTRL.read* to determine if the transaction is a transmit (read = 1) or receive (read = 0) operation. In this case, assume *I2Cn_CTRL.read*, indicating a transmit.
 - a. The hardware begins sending out the data that is preloaded into the transmit FIFO.
 - b. Once the first data byte is sent, the hardware automatically clears *I2Cn_TXCTRL1.preload_rdy* to 0.
7. While the controller keeps requesting data and sending ACKs, *I2Cn_INTFL0.done* remains 0, and the software should continue to monitor the transmit FIFO and refill it as needed.
 - a. The FIFO level can be monitored synchronously through the transmit FIFO status/interrupt flags or asynchronously by setting *I2Cn_TXCTRL0.thd_val* and setting *I2Cn_INTENO.tx_thd* interrupt.
 - b. If clock stretching is disabled and the transmit FIFO empties during the transaction, the hardware sets *I2Cn_INTFL1.tx_un* = 1 and sends 0xFF for all following data bytes requested by the controller.
8. The controller ends the transaction by sending a NACK, causing the hardware to set the *I2Cn_INTFL0.done* interrupt flag.
 - a. If the transmit FIFO empties simultaneously that the controller indicates the transaction is complete by sending a NACK, this is not considered an underrun event *I2Cn_INTFL1.tx_un* flag remains 0.
 - b. If the software needs to know how many data bytes are transmitted to the controller, check the transmit FIFO level when the *I2Cn_INTFL0.done* flag is set to 1.
9. The transaction is complete, the software should "clean up," which includes clearing *I2Cn_INTFL0.done*. Return to step 3 and prepare for the next transaction.
 - a. Any data remaining in the transmit FIFO is not discarded; it is reused for the next transmit operation.
 - i) If this is not desired, the software can flush the transmit FIFO. Flush the transmit and receive FIFOs by writing 0 to *I2Cn_CTRL.en* and the writing 1 to *I2Cn_CTRL.en*.

Once a target starts transmitting from the *I2Cn_FIFO*, detecting an out of sequence STOP, START, or RESTART conditions terminates the current transaction. When a transaction is terminated due to an out of sequence error, *I2Cn_INTFLO.start_err* or *I2Cn_INTFLO.stop_err* is set to 1.

If the transmit FIFO is not ready (*I2Cn_TXCTRL1.preload_rdy* = 0) and the I²C controller receives a data read request from the controller, the hardware automatically sends a NACK at the end of the first address byte. The setting of the do not respond field is ignored by the hardware in this case because the only opportunity to send a NACK for an I²C read transaction is after the address byte.

11.4.6.2 Target Receivers

The device operates as a target receiver when the received address matches the device target address with the R/W bit set to 0. The external controller is writing to the target.

Program flow for a receive operation is as follows:

1. With *I2Cn_CTRL.en* = 0, initialize all relevant registers, including:
 - a. Set the *I2Cn_SLAVE.addr* field with the desired I²C target addresses.
 - b. Set the *I2Cn_SLAVE.ext_addr_en* field for either 7-bit or 10-bit addressing.
2. Set *I2Cn_CTRL.en* = 1.
 - a. If an address match with the R/W bit equal to zero occurs, and the receive FIFO is empty, the peripheral responds with an ACK, and the *I2Cn_INTFLO.addr_match* flag is set.
 - b. If the receive FIFO is not empty, then depending on the value of *I2Cn_RXCTRL0.dnr*, the peripheral NACKs either the address byte (*I2Cn_RXCTRL0.dnr* = 1) or the first data byte (*I2Cn_RXCTRL0.dnr* = 0).
3. Wait for *I2Cn_INTFLO.addr_match* = 1, either by polling or by enabling the *wr_addr_match* interrupt. Once a successful address match occurs, the hardware sets *I2Cn_INTFLO.addr_match* = 1.
4. Read *I2Cn_CTRL.read* to determine if the transaction is a transmit (*I2Cn_CTRL.read* = 1) or a receive (*I2Cn_CTRL.read* = 0) operation. In this case, assume *I2Cn_CTRL.read* = 0, indicating receive. The device begins receiving data into the receive FIFO.
5. Clear *I2Cn_INTFLO.addr_match*, and while the controller keeps sending data, *I2Cn_INTFLO.done* remains 0, and the software should continue to monitor the receive FIFO and empty it as needed.
 - a. The FIFO level can be monitored synchronously through the receive FIFO status/interrupt flags or asynchronously by setting *I2Cn_RXCTRL0.thd_lv* and enabling the *I2Cn_INTFLO.rx_thd* interrupt.
 - b. If the receive FIFO ever fills up during the transaction, then the hardware sets *I2Cn_INTFLO.rx_ov* and then either:
 - i. If *I2Cn_CTRL.clkstr_dis* = 0, start clock stretching and wait until the software reads from the receive FIFO, or
 - ii. If *I2Cn_CTRL.clkstr_dis* = 1, respond to the controller with a NACK, and the last byte is discarded.
6. The controller ends the transaction by sending a RESTART or STOP. Once this happens, the *I2Cn_INTFLO.done* interrupt flag is set, and the software can stop monitoring the receive FIFO.
7. Once a target starts receiving into its receive FIFO, detection of an out of sequence STOP, START, or RESTART condition releases the I²C bus to the Idle state, and the hardware sets the *I2Cn_INTFLO.start_err* field or *I2Cn_INTFLO.stop_err* field to 1 based on the specific condition.

If the software has not emptied the data in the receive FIFO from the previous transaction by the time a controller addresses it for another write (i.e., receive) transaction, then the controller does *not* participate in the transaction, and no additional data is written into the FIFO. Although a NACK is sent to the controller, the software can control if the NACK is sent with the initial address match or sent at the end of the first data byte. Setting *I2Cn_RXCTRL0.dnr* to 1 chooses the former while setting *I2Cn_RXCTRL0.dnr* to 0 chooses the latter.

11.4.7 Interrupt Sources

The I²C controller has a very flexible interrupt generator that generates an interrupt signal to the interrupt controller on any of several events. On recognizing the I²C interrupt, the software determines the cause of the interrupt by reading the I²C interrupt flags registers [I2Cn_INTFL0](#) and [I2Cn_INTFL1](#). Interrupts can be generated for the following events:

- Transaction Complete (controller/target).
- Address NACK received from target (controller).
- Data NACK received from target (controller).
- Lost arbitration (controller).
- Transaction timeout (controller/target).
- FIFO is empty, not empty, or full to a configurable threshold level (controller/target).
- Transmit FIFO locked out because it is being flushed (controller/target)
- Out of sequence START and STOP conditions (controller/target).
- Sent a NACK to an external controller because the transmit or receive FIFO was not ready (target).
- Address ACK or NACK received (controller).
- Incoming address match (target)
- Transmit underflow or receive overflow (target).

Interrupts for each event can be enabled or disabled by setting or clearing the corresponding bit in the [I2Cn_INTENO](#) or [I2Cn_INTEN1](#) interrupt enable register.

Note: Disabling the interrupt does not prevent the corresponding flag from being set by the hardware but does prevent an interrupt when the interrupt flag is set.

Note: Before enabling an interrupt, the status of the corresponding interrupt flag should be checked and, if necessary, serviced or cleared, preventing a previous interrupt event from interfering with a new I²C communications session.

11.4.8 Transmit FIFO and Receive FIFO

There are separate transmit and receive FIFOs. Both are accessed using the FIFO data register [I2Cn_FIFO](#). Writes to this register enqueue data into the transmit FIFO. Writes to a full transmit FIFO has no effect. Reads from [I2Cn_FIFO](#) dequeue data from the receive FIFO. Writes to a full transmit FIFO has no effect and reads from an empty receive FIFO return 0xFF.

The transmit and receive FIFO only read or write one byte at a time. Transactions greater than 8 bits can still be performed, however. A 16- or 32-bit write to the transmit FIFO stores just the lowest 8 bits of the write data. A 16- or 32-bit read from the receive FIFO has the valid data in the lowest 8 bits and zeros in the upper bits. In any case, the transmit and receive FIFOs only accept 8 bits at a time for either read or write.

To offload work from the CPU, the DMA can read and write to each FIFO. See [DMA Control](#) for more information on configuring the DMA.

During a receive transaction (which during controller operation is a READ, and during target operation is a WRITE), received bytes are automatically written to the receive FIFO. The software should monitor the receive FIFO level and unload data from it as needed by reading [I2Cn_FIFO](#). If the receive FIFO becomes full during a controller mode transaction, then the hardware sets the [I2Cn_INTFL1.rx_ov](#) the [I2Cn_INTFL1.rx_ov](#) bit, and one of two things occur depending on the value of [I2Cn_CTRL.clkstr_dis](#):

- If clock stretching is enabled ([I2Cn_CTRL.clkstr_dis](#) = 0), then the hardware stretches the clock until the software makes space available in the receive FIFO by reading [I2Cn_FIFO](#). Once space is available, the hardware moves the

data byte from the shift register into the receive FIFO, the SCL device pin is released, and the controller is free to continue the transaction.

- If clock stretching is disabled ([*I2Cn_CTRL.clkstr_dis*](#) = 1), the hardware responds to the controller with a NACK, and the data byte is lost. The controller can return the bus to idle with a STOP condition or start a new transaction with a RESTART condition.

During a transmit transaction (which during controller operation is a WRITE, and during target operation is a READ), either the software or the DMA can provide data to be transmitted by writing to the transmit FIFO. Once the peripheral finishes transmitting each byte, it removes it from the transmit FIFO and, if available, begins transmitting the next byte.

Interrupts can be generated for the following FIFO status:

- Transmit FIFO level less than or equal to the threshold.
- Receive FIFO level greater than or equal to the threshold.
- Transmit FIFO underflow.
- Receive FIFO overflow.
- Transmit FIFO locked for writing.

Both the receive FIFO and transmit FIFO are flushed when the I2Cn port is disabled by clearing [*I2Cn_CTRL.en*](#) to 0. While the peripheral is disabled, writes to the transmit FIFO have no effect and reads from the receive FIFO return 0xFF.

The transmit FIFO and receive FIFO can be flushed by setting the transmit FIFO flush bit ([*I2Cn_TXCTRL0.flush*](#)=1) or the receive FIFO flush bit ([*I2Cn_RXCTRL0.flush*](#)=1), respectively. In addition, under certain conditions, the transmit FIFO is automatically locked by the hardware and flushed so stale data is not unintentionally transmitted. The transmit FIFO is automatically flushed and writes locked out from the software under the following conditions:

- General Call Address Match: Automatic flushing and lockout can be disabled by setting [*I2Cn_TXCTRL0.gc_addr_flush_dis*](#).
- Target Address Match Write: Automatic flushing and lockout can be disabled by setting [*I2Cn_TXCTRL0.wr_addr_flush_dis*](#).
- Target Address Match Read: Automatic flushing and lockout can be disabled by setting [*I2Cn_TXCTRL0.rd_addr_flush_dis*](#).
- During operation as a target transmitter, a NACK is received. Automatic flushing and lockout can be disabled by setting [*I2Cn_TXCTRL0.nack_flush_dis*](#).
- Any of the following interrupts:
 - ◆ Arbitration error, timeout error, controller mode address NACK error, controller mode data NACK error, start error, and stop error. Automatic flushing cannot be disabled for these conditions.

When the above conditions occur, the transmit FIFO is flushed so that data intended for a previous transaction is not transmitted unintentionally for a new transaction. In addition to flushing the transmit FIFO, the transmit lockout flag is set ([*I2Cn_INTF0.tx_lockout*](#) = 1) and writes to the transmit FIFO are ignored until the software acknowledges the external event by clearing [*I2Cn_INTF0.tx_lockout*](#).

11.4.9 Transmit FIFO Preloading

There can be situations during target mode operation where the software wants to preload the transmit FIFO before a transmission, such as when clock stretching is disabled. In this scenario, rather than responding to an external controller requesting data with an ACK and clock stretching while the software writes the data to the transmit FIFO, the hardware responds with a NACK until the software has preloaded the requested data into the transmit FIFO.

When transmit FIFO preloading is enabled, the software controls ACKs to the external controller using the transmit ready (*I2Cn_TXCTRL1.preload_rdy*) bit. When *I2Cn_TXCTRL1.preload_rdy* is set to 0, the hardware automatically NACKs all read transactions from the controller. Setting *I2Cn_TXCTRL1.preload_rdy* to 1 sends an ACK to the controller on the next read transaction and transmits the data in the transmit FIFO. Preloading the transmit FIFO should be complete before setting the *I2Cn_TXCTRL1.preload_rdy* field to 1.

The required steps for implementing transmit FIFO preloading in software are as follows:

1. Enable the transmit FIFO preloading by setting the field *I2Cn_TXCTRL0.preload_mode* to 1. The hardware automatically clears the *I2Cn_TXCTRL1.preload_rdy* field to 0.
2. If the transmit FIFO lockout flag (*I2Cn_INTFLO.tx_lockout*) is set to 1, write 1 to clear the flag and enable writes to the transmit FIFO.
3. Enable DMA or interrupts if required.
4. Load the transmit FIFO with the data to send when the controller sends the next read request.
5. Set *I2Cn_TXCTRL1.preload_rdy* to 1 to automatically let the hardware send the preloaded FIFO on the next read from a controller.
6. *I2Cn_TXCTRL1.preload_rdy* is cleared by the hardware once it finishes transmitting the first byte, and data is transmitted from the transmit FIFO. Once cleared, the software can repeat the preloading process or disable transmit FIFO preloading.

*Note: To prevent the preloaded data from being cleared when the controller tries to read it, the software must at least set *I2Cn_TXCTRL0.rd_addr_flush_dis* to 1, disabling auto flush on READ address match. The software determines if the other auto flush disable bits should be set. For example, if a controller uses I²C WRITE transactions to determine what data the target should send in the following READ transactions, the software can clear *I2Cn_TXCTRL0.wr_addr_flush_dis* to 0. When a WRITE occurs, the transmit FIFO is flushed, giving the software time to load the new data. For the READ transaction, the external controller can poll the target address until the new data is loaded and *I2Cn_TXCTRL1.preload_rdy* is set, at which point the peripheral responds with an ACK.*

11.4.10 Interactive Receive Mode (IRXM)

In some situations, the I2Cn might want to inspect and respond to each byte of received data. In this case, IRXM can be used. IRXM is enabled by setting *I2Cn_CTRL.irxm_en* = 1. If IRXM is enabled, it must occur before any I²C transfer is initiated.

When IRXM is enabled, after every data byte received, the I2Cn peripheral automatically holds SCL low before the ACK bit. Additionally, after the 8th SCL falling edge, the I2Cn peripheral sets the IRXM interrupt status flag (*I2Cn_INTFLO.irxm* = 1). Software must read the data and generate a response (ACK or NACK) by setting the IRXM Acknowledge (*I2Cn_CTRL.irxm_ack*) bit accordingly. Send an ACK by clearing the *I2Cn_CTRL.irxm_ack* bit to 0. Send a NACK by setting the *I2Cn_CTRL.irxm_ack* bit to 1.

After setting the *I2Cn_CTRL.irxm_ack* bit, clear the IRXM interrupt flag. Write 1 to *I2Cn_INTFLO.irxm* to clear the interrupt flag. When the IRXM interrupt flag is cleared, the I2Cn peripheral hardware releases the SCL line and sends the *I2Cn_CTRL.irxm_ack* on the SDA line.

While the I2Cn peripheral is waiting for the software to clear the *I2Cn_INTFLO.irxm* flag, the software can disable IRXM and, if operating as a controller, load the remaining number of bytes to be received for the transaction. This allows the software to examine the initial bytes of a transaction, which might be a command, and then disable IRXM to receive the remaining bytes in normal operation.

During IRXM, received data is not placed in the receive FIFO. Instead, the *I2Cn_FIFO* address is repurposed to directly read the receive shift register, bypassing the receive FIFO. Therefore, before disabling IRXM, the software must first read the data byte from *I2Cn_FIFO.data*. If the IRXM byte is not read, the byte is lost, and the next read from the receive FIFO returns 0xFF.

Note: IRXM only applies to data bytes and does not apply to address bytes, general call address responses, or START byte responses.

Note: When enabling IRXM and operating as a target, clock stretching must remain enabled ([I2Cn_CTRL.clkstr_dis = 0](#)).

11.4.11 Clock Stretching

When the I2Cn peripheral requires some response or intervention from the software to continue with a transaction, it holds SCL low, preventing the transfer from continuing. This is called 'clock stretching' or 'stretching the clock.' While the I²C Bus Specification defines the term 'clock stretching' to only apply to a target device holding the SCL line low, this section describes situations where the I2Cn peripheral holds the SCL line low in either target *or* controller mode and refers to *both* as clock stretching.

When the I2Cn peripheral stretches the clock, it typically does so in response to either a full receive FIFO during a receive operation or an empty transmit FIFO during a transmit operation. Necessarily, this occurs before the next data byte begins, either between the ACK bit and the first data bit or, if at the beginning of a transaction, immediately after a START or RESTART condition. However, when operating in IRXM ([I2Cn_CTRL.irxm_en = 1](#)), the peripheral can also clock stretch *before* the ACK bit, allowing the software to decide if to send an ACK or NACK.

For a transmit operation (as either controller or target), when the transmit FIFO is empty, SCL is automatically held low after the ACK bit and before the next data byte begins. The software must write data to [I2Cn_FIFO.data](#) to stop clock stretching and continue the transaction. However, if operating in controller mode instead of sending more data, the software can also set either [I2Cn_MSTCTRL.stop](#) or [I2Cn_MSTCTRL.restart](#) to send a STOP or RESTART condition, respectively.

For a receive operation (as either controller or target), when both the receive FIFO and the receive shift register are full, SCL is automatically held low until at least one data byte is read from the receive FIFO. The software must read data from [I2Cn_FIFO.data](#) to stop clock stretching and continue the transaction. If operating in controller mode and this is the final byte of the transaction, as determined by [I2Cn_RXCTRL1.cnt](#), the software must also set either [I2Cn_MSTCTRL.stop](#) or [I2Cn_MSTCTRL.restart](#) to send a STOP or RESTART condition, respectively. This must be done in addition to reading from the receive FIFO since the peripheral cannot start sending the STOP or RESTART until the last data byte is moved from the receive shift register into the receive FIFO. This occurs automatically once there is space in the receive FIFO.

Note: Since some controllers do not support other devices stretching the clock, it is possible to completely disable all clock stretching during target mode by setting [I2Cn_CTRL.clkstr_dis](#) to 1 and clearing [I2Cn_CTRL.irxm_en](#) to 0. In this case, instead of clock stretching, the I2Cn peripheral sends a NACK if receiving data or sends 0xFF if transmitting data.

Note: The clock synchronization required to support other I²C controller or target devices stretching the clock is built into the peripheral and requires no intervention from the software to operate correctly.

11.4.12 Bus Timeout

The timeout field, [I2Cn_TIMEOUT.scl_to_val](#), is used to detect bus errors. [Equation 11-4](#) and [Equation 11-5](#) show equations for calculating the maximum and minimum timeout values based on the value loaded into the [I2Cn_TIMEOUT.scl_to_val](#) field.

Equation 11-4: I²C Timeout Maximum

$$t_{TIMEOUT} \leq \left(\frac{1}{f_{I2C_CLK}} \right) \times ((I2Cn_TIMEOUT.scl_to_val \times 32) + 3)$$

Due to clock synchronization, the timeout is guaranteed to meet the following minimum time calculation shown in [Equation 11-5](#).

Equation 11-5: I²C Timeout Minimum

$$t_{TIMEOUT} \leq \left(\frac{1}{f_{I2C_CLK}} \right) \times ((I2Cn_TIMEOUT.scl_to_val \times 32) + 2)$$

The timeout feature is disabled when [I2Cn_TIMEOUT.scl_to_val](#) = 0 and is enabled for any non-zero value. When the timeout is enabled, the timeout timer starts counting when the I2Cn peripheral hardware drives SCL low and is reset by the I2Cn peripheral hardware when the SCL line is released.

The timeout counter only monitors if the I2Cn peripheral hardware is driving the SCL line low. It does not monitor if an external I2Cn device is actively holding the SCL line low. The timeout counter also does not monitor the status of the SDA line.

If the timeout timer expires, a bus error condition occurred. When a timeout error occurs, the I2Cn peripheral hardware releases the SCL and SDA lines, and sets the timeout error interrupt flag to 1 ([I2Cn_INTFL0.to_err](#) = 1).

For applications where the device can hold the SCL line low longer than the maximum timeout supported, the timeout can be disabled by setting the timeout field to 0 ([I2Cn_TIMEOUT.scl_to_val](#) = 0).

11.4.13 DMA Control

There are independent DMA channels for each transmit FIFO, and each receive FIFO. DMA activity is triggered by the transmit FIFO ([I2Cn_TXCTRL0.thd_val](#)) and receive FIFO ([I2Cn_RXCTRL0.thd_lvl](#)) threshold levels.

When the transmit FIFO byte count ([I2Cn_TXCTRL1_lvl](#)) is less than or equal to the transmit FIFO threshold level [I2Cn_TXCTRL0.thd_val](#), then the DMA transfers data into the transmit FIFO according to the DMA configuration.

The DMA burst size should be set as shown in [Equation 11-6](#) to ensure the DMA does not overflow the transmit FIFO:

Equation 11-6: DMA Burst Size Calculation for I²C Transmit

$$\text{DMA Burst Size} \leq \text{TX FIFO Depth} - I2Cn_TXCTRL0.thd_val = 8 - I2Cn_TXCTRL0.thd_val$$

$$\text{where } 0 \leq I2Cn_TXCTRL0.thd_val \leq 7$$

Software trying to avoid transmit underflow and/or clock stretching should use a smaller burst size and higher [I2Cn_TXCTRL0.thd_val](#) setting. This fills up the FIFO more frequently but increases internal bus traffic.

When the receive FIFO count ([I2Cn_RXCTRL1_lvl](#)) is greater than or equal to the receive FIFO threshold level [I2Cn_RXCTRL0.thd_lvl](#), the DMA transfers data out of the receive FIFO according to the DMA configuration. The DMA burst size should be set as shown in [Equation 11-7](#) to ensure the DMA does not underflow the receive FIFO:

Equation 11-7: DMA Burst Size Calculation for I²C Receive

$$\text{DMA Burst Size} \leq I2Cn_RXCTRL0.thd_lvl$$

$$\text{where } 1 \leq I2Cn_RXCTRL0.thd_lvl \leq 8$$

Applications trying to avoid receive overflow and/or clock stretching should use a smaller burst size and lower [I2Cn_RXCTRL0.thd_lvl](#). This results in reading from the Receive FIFO more frequently but increases internal bus traffic.

Note for receive operations, the length of the DMA transaction (in bytes) must be an integer multiple of [I2Cn_RXCTRL0.thd_lvl](#). Otherwise, the receive transaction ends with some data still in the receive FIFO, but not enough to trigger an interrupt to the DMA, leaving the DMA transaction incomplete. One easy way to ensure this for all transaction lengths is to set burst size to 1 ([I2Cn_RXCTRL0.thd_lvl](#) = 1).

Enable the transmit DMA channel (*I2Cn_DMA.tx_en*) and/or the receive DMA channel (*I2Cn_DMA.rx_en*) to enable DMA transfers.

11.5 I²C Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own, independent set of the registers, as shown in *Table 11-4*. Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register *PERIPHERALn_CTRL* resolves to *PERIPHERAL0_CTRL* and *PERIPHERAL1_CTRL* for instances 0 and 1, respectively.

See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific reset.

Table 11-4: I²C Registers

Offset	Register Name	Description
[0x0000]	<i>I2Cn_CTRL</i>	I ² C Control Register
[0x0004]	<i>I2Cn_STATUS</i>	I ² C Status Register
[0x0008]	<i>I2Cn_INTF0</i>	I ² C Interrupt Flags 0 Register
[0x000C]	<i>I2Cn_INTEN0</i>	I ² C Interrupt Enable 0 Register
[0x0010]	<i>I2Cn_INFL1</i>	I ² C Interrupt Flags 1 Register
[0x0014]	<i>I2Cn_INTEN1</i>	I ² C Interrupt Enable 1 Register
[0x0018]	<i>I2Cn_FIFOLEN</i>	I ² C FIFO Length Register
[0x001C]	<i>I2Cn_RXCTRL0</i>	I ² C Receive Control 0 Register
[0x0020]	<i>I2Cn_RXCTRL1</i>	I ² C Receive Control 1 Register
[0x0024]	<i>I2Cn_TXCTRL0</i>	I ² C Transmit Control 0 Register
[0x0028]	<i>I2Cn_TXCTRL1</i>	I ² C Transmit Control 1 Register
[0x002C]	<i>I2Cn_FIFO</i>	I ² C Transmit and Receive FIFO Register
[0x0030]	<i>I2Cn_MSTCTRL</i>	I ² C Controller Control Register
[0x0034]	<i>I2Cn_CLKLO</i>	I ² C Clock Low Time Register
[0x0038]	<i>I2Cn_CLKHI</i>	I ² C Clock High Time Register
[0x003C]	<i>I2Cn_HSCLK</i>	I ² C Hs-Mode Clock Control Register
[0x0040]	<i>I2Cn_TIMEOUT</i>	I ² C Timeout Register
[0x0044]	<i>I2Cn_SLAVE</i>	I ² C Target Address 0 Register
[0x0048]	<i>I2Cn_DMA</i>	I ² C DMA Enable Register

11.5.1 Register Details

Table 11-5: I²C Control Register

I ² C Control			I2Cn_CTRL		[0x0000]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15	hs_en	RO	0	Reserved	
14:13	-	RO	0	Reserved	
12	clkstr_dis	R/W	0	Target Mode Clock Stretching 0: Enabled. 1: Disabled.	

I ² C Control				I ² Cn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
11	read	R	0	Target Read/Write Bit Status Returns the logic level of the R/W bit on a received address match (<i>I²Cn_INTFLO.addr_match</i> = 1) or general call match (<i>I²Cn_INTFLO.gc_addr_match</i> = 1). This bit is valid for three system clock cycles after the address match status flag is set.	
10	bb_mode	R/W	0	Software Output Control Enabled Setting this field to 1 enables software bit-bang control of the I ² Cn Bus. 0: The I ² C controller manages the SDA and SCL pins in the hardware. 1: SDA and SCL are controlled by the software using the <i>I²Cn_CTRL.sda_out</i> and <i>I²Cn_CTRL.scl_out</i> fields.	
9	sda	R	-	SDA Status 0: SDA pin is logic low. 1: SDA pin is logic high.	
8	scl	R	-	SCL Status 0: SCL pin is logic low. 1: SCL pin is logic high.	
7	sda_out	R/W	0	SDA Pin Output Control Set the state of the SDA hardware pin (actively pull low or float). 0: Pull SDA low. 1: Release SDA. <i>Note: Only valid when I²Cn_CTRL.bb_mode=1</i>	
6	scl_out	R/W	0	SCL Pin Output Control Set the state of the SCL hardware pin (actively pull low or float). 0: Pull SCL low. 1: Release SCL. <i>Note: Only valid when I²Cn_CTRL.bb_mode =1</i>	
5	-	RO	0	Reserved	
4	irxm_ack	R/W	0	IRXM Acknowledge If IRXM is enabled (<i>I²Cn_CTRL.irxm_en</i> = 1), this field determines if the hardware sends an ACK or a NACK to an IRXM transaction. 0: Respond to IRXM with ACK. 1: Respond to IRXM with NACK.	
3	irxm_en	R/W	0	IRXM Enable When receiving data, this field allows for an IRXM interrupt event after each received byte of data. The I ² Cn peripheral hardware can be enabled to send either an ACK or NACK for IRXM. See the <i>Interactive Receive Mode</i> section for detailed information. 0: Disabled. 1: Enabled. <i>Note: Only set this field when the I²C bus is inactive.</i>	
2	gc_addr_en	R/W	0	General Call Address Enable 0: Ignore general call address. 1: Acknowledge general call address.	
1	mst_mode	R/W	0	Controller Mode Enable 0: Target mode enabled. 1: Controller mode enabled.	

I ² C Control					I2Cn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description		
0	en	R/W	0	I²C Peripheral Enable 0: Disabled. 1: Enabled.		

Table 11-6: I²C Status Register

I ² C Status					I2Cn_STATUS	[0x0004]
Bits	Field	Access	Reset	Description		
31:6	-	RO	0	Reserved		
5	mst_busy	RO	0	Controller Mode I²C Bus Transaction Active The peripheral is operating in controller mode, and a valid transaction beginning with a START command is in progress on the I ² C bus. This bit reads 1 until the controller ends the transaction with a STOP command. This bit continues to read 1 while a target performs clock stretching. 0: Device not actively driving SCL clock cycles. 1: Device operating as controller and actively driving SCL clock cycles.		
4	tx_full	RO	0	Transmit FIFO Full 0: Not full. 1: Full.		
3	tx_em	RO	1	Transmit FIFO Empty 0: Not empty. 1: Empty.		
2	rx_full	RO	0	Receive FIFO Full 0: Not full. 1: Full.		
1	rx_em	RO	1	Receive FIFO Empty 0: Not empty. 1: Empty.		
0	busy	RO	0	Controller or Target Mode I²C Busy Transaction Active The peripheral is operating in controller or target mode, and a valid transaction beginning with a START command is in progress on the I ² C bus. This bit reads 1 until the peripheral acting as a controller or an external controller ends the transaction with a STOP command. This bit continues to read 1 while a target performs clock stretching. 0: I ² C bus is idle. 1: I ² C bus transaction in progress.		

Table 11-7: I²C Interrupt Flag 0 Register

I ² C Interrupt Flag 0					I2Cn_INTFLO	[0x0008]
Bits	Field	Access	Reset	Description		
31:24	-	RO	0	Reserved		
23	wr_addr_match	R/W1C	0	Target Write Address Match Interrupt Flag If set, the device has been accessed for a write (i.e., receive) transaction in target mode, and the address received matches the device target address. 0: No address match. 1: Address match.		

I ² C Interrupt Flag 0				I2Cn_INTFL0	[0x0008]
Bits	Field	Access	Reset	Description	
22	rd_addr_match	R/W1C	0	Target Read Address Match Interrupt Flag If set, the device has been accessed for a read (i.e., transmit) transaction in target mode, and the address received matches the device target address. 0: No address match. 1: Address match.	
21:17	-	RO	0	Reserved	
16	mami	R/W1C	0	MAMI Interrupt Flag	
15	tx_lockout	R/W1C	0	Transmit FIFO Locked Interrupt Flag If set, the transmit FIFO is locked, and writes to the transmit FIFO are ignored. When set, the transmit FIFO is automatically flushed. Writes to the transmit FIFO are ignored until this flag is cleared. Write 1 to clear. 0: transmit FIFO not locked. 1: transmit FIFO is locked, and all writes to the transmit FIFO are ignored.	
14	stop_err	R/W1C	0	Out of Sequence STOP Interrupt Flag This flag is set if a STOP condition occurs out of the expected sequence. Write 1 to clear this field. Writing 0 has no effect. 0: Error condition has not occurred. 1: Out of sequence STOP condition occurred.	
13	start_err	R/W1C	0	Out of Sequence START Interrupt Flag This flag is set if a START condition occurs out of the expected sequence. Write 1 to clear this field. Writing 0 has no effect. 0: Error condition has not occurred. 1: Out of sequence START condition occurred.	
12	dnr_err	R/W1C	0	Target Mode Do Not Respond Interrupt Flag This occurs if an address match is made, but the transmit FIFO or receive FIFO is not ready. Write 1 to clear this field. Writing 0 has no effect. 0: Error condition has not occurred. 1: I ² C address match occurred, and either the transmit or receive FIFO is not configured.	
11	data_err	R/W1C	0	Controller Mode Data NACK from External Target Interrupt Flag The hardware sets this flag if a NACK is received from a target. This flag is only valid if the I2Cn peripheral is configured for controller mode operation. Write 1 to clear. Write 0 has no effect. 0: Error condition has not occurred. 1: Data NACK received from a target.	
10	addr_nack_err	R/W1C	0	Controller Mode Address NACK from Target Error Flag The hardware sets this flag if an Address NACK is received from a target bus. This flag is only valid if the I2Cn peripheral is configured for controller mode operation. Write 1 to clear. Write 0 has no effect. 0: Error condition has not occurred. 1: Address NACK received from a target.	
9	to_err	R/W1C	0	Timeout Error Interrupt Flag This flag is set when this device holds SCL low longer than the programmed timeout value. This field's setting applies to both controller and target mode. Write 1 to clear. Write 0 has no effect. 0: Timeout error has not occurred. 1: Timeout error occurred.	

I ² C Interrupt Flag 0				I2Cn_INTFL0	[0x0008]
Bits	Field	Access	Reset	Description	
8	arb_err	R/ W1C	0	Controller Mode Arbitration Lost Interrupt Flag Write 1 to clear. Write 0 has no effect. 0: Condition has not occurred. 1: Condition occurred.	
7	addr_ack	R/ W1C	0	Controller Mode Address ACK from External Target Interrupt Flag This field is set when a target address ACK is received. Write 1 to clear. Write 0 has no effect. 0: Condition has not occurred. 1: The target device ACK for the address was received.	
6	stop	R/ W1C	0	Target Mode STOP Condition Interrupt Flag This flag is set by hardware when a STOP condition is detected. Write 1 to clear. Write 0 has no effect. 0: Condition has not occurred. 1: Condition occurred.	
5	tx_thd	RO	1	Transmit FIFO Threshold Level Interrupt Flag The hardware sets this field if the number of bytes in the Transmit FIFO is less than or equal to the Transmit FIFO threshold level. Write 1 to clear. This field is automatically cleared by the hardware when the transmit FIFO contains fewer bytes than the transmit threshold level. 0: Transmit FIFO contains more bytes than the transmit threshold level. 1: Transmit FIFO contains the transmit threshold level or fewer bytes.	
4	rx_thd	R/W1C	1	Receive FIFO Threshold Level Interrupt Flag The hardware sets this field if the number of bytes in the Receive FIFO is greater than or equal to the Receive FIFO threshold level. This field is automatically cleared when the receive FIFO contains fewer bytes than the receive threshold setting. 0: receive FIFO contains fewer bytes than the receive threshold level. 1: receive FIFO contains at least receive threshold level of bytes.	
3	addr_match	R/W1C	0	Target Mode Incoming Address Match Status Interrupt Flag Write 1 to clear. Writing 0 has no effect. 0: Target address match has not occurred. 1: Target address match occurred.	
2	gc_addr_match	R/W1C	0	Target Mode General Call Address Match Received Interrupt Flag Write 1 to clear. Writing 0 has no effect. 0: General call address match has not occurred. 1: General call address match occurred.	
1	irxm	R/W1C	0	Interactive Receive Mode Interrupt Flag Write 1 to clear. Writing 0 is ignored. 0: Interrupt condition has not occurred. 1: Interrupt condition occurred.	
0	done	R/W1C	0	Transfer Complete Interrupt Flag This flag is set for both controller and target mode once a transaction completes. Write 1 to clear. Writing 0 has no effect. 0: Transfer is not complete. 1: Transfer complete.	

Table 11-8: I²C Interrupt Enable 0 Register

I ² C Interrupt Enable 0			I2Cn_INTENO		[0x000C]
Bits	Field	Access	Reset	Description	
31:24	-	RO	0	Reserved	
23	wr_addr_match	R/W	0	Target Write Address Match Interrupt Enable This bit is set to enable interrupts when the device is accessed in target mode, and the address received matches the device target addressed for a write transaction. 0: Disabled. 1: Enabled.	
22	rd_addr_match	R/W	0	Target Read Address Match Interrupt Enable This bit is set to enable interrupts when the device is accessed in target mode, and the address received matches the device target addressed for a read transaction. 0: Disabled. 1: Enabled.	
21:17	-	RO	0	Reserved	
16	mami	R/W	0	MAMI Interrupt Enable	
15	tx_lockout	R/W	0	Transmit FIFO Lock Out Interrupt Enable 0: Disabled. 1: Enabled.	
14	stop_err	R/W	0	Out of Sequence STOP Condition Detected Interrupt Enable 0: Disabled. 1: Enabled.	
13	start_err	R/W	0	Out of Sequence START Condition Detected Interrupt Enable 0: Disabled. 1: Enabled.	
12	dnr_err	R/W	0	Target Mode Do Not Respond Interrupt Enable Set this field to enable interrupts in target mode when the "Do Not Respond" condition occurs. 0: Interrupt disabled. 1: Interrupt enabled.	
11	data_err	R/W	0	Controller Mode Received Data NACK from Target Interrupt Enable 0: Disabled. 1: Enabled.	
10	addr_nack_err	R/W	0	Controller Mode Received Address NACK from Target Interrupt Enable 0: Disabled. 1: Enabled.	
9	to_err	R/W	0	Timeout Error Interrupt Enable 0: Disabled. 1: Enabled.	
8	arb_err	R/W	0	Controller Mode Arbitration Lost Interrupt Enable 0: Disabled. 1: Enabled.	
7	addr_ack	R/W	0	Received Address ACK from Target Interrupt Enable Set this field to enable interrupts for controller mode target device address ACK events. 0: Interrupt disabled. 1: Interrupt enabled.	
6	stop	R/W	0	STOP Condition Detected Interrupt Enable 0: Disabled. 1: Enabled.	

I ² C Interrupt Enable 0			I2Cn_INTENO		[0x000C]
Bits	Field	Access	Reset	Description	
5	tx_thd	R/W	0	Transmit FIFO Threshold Level Interrupt Enable 0: Disabled. 1: Enabled.	
4	rx_thd	R/W	0	Receive FIFO Threshold Level Interrupt Enable 0: Disabled. 1: Enabled.	
3	addr_match	R/W	0	Target Mode Incoming Address Match Interrupt Enable 0: Disabled. 1: Enabled.	
2	gc_addr_match	R/W	0	Target Mode General Call Address Match Received Interrupt Enable 0: Disabled. 1: Enabled.	
1	irxm	R/W	0	Interactive Receive Interrupt Enable 0: Disabled. 1: Enabled.	
0	done	R/W	0	Transfer Complete Interrupt Enable 0: Disabled. 1: Enabled.	

Table 11-9: I²C Interrupt Flag 1 Register

I ² C Interrupt Status Flags 1			I2Cn_INTFL1		[0x0010]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	start	R/W1C	0	START Condition Status Flag If set, a device START condition has been detected. 0: START condition not detected. 1: START condition detected.	
1	tx_un	R/W1C	0	Target Mode Transmit FIFO Underflow Status Flag In target mode operation, the hardware sets this flag automatically if the transmit FIFO is empty and the controller requests more data by sending an ACK after the previous byte is transferred. 0: Target mode transmit FIFO underflow condition has not occurred. 1: Target mode transmit FIFO underflow condition occurred.	
0	rx_ov	R/W1C	0	Target Mode Receive FIFO Overflow Status Flag In target mode operation, the hardware sets this flag automatically when a receive FIFO overflow occurs. Write 1 to clear. Writing 0 has no effect. 0: Target mode receive FIFO overflow event has not occurred. 1: Target mode receive FIFO overflow condition occurred (data lost).	

Table 11-10: I²C Interrupt Enable 1 Register

I ² C Interrupt Enable 1			I2Cn_INTEN1		[0x0014]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	start	R/W	0	START Condition Interrupt Enable 0: Disabled. 1: Enabled.	

I ² C Interrupt Enable 1				I2Cn_INTEN1	[0x0014]
Bits	Field	Access	Reset	Description	
1	tx_un	R/W	0	Target Mode Transmit FIFO Underflow Interrupt Enable 0: Disabled. 1: Enabled.	
0	rx_ov	R/W	0	Target Mode Receive FIFO Overflow Interrupt Enable 0: Disabled. 1: Enabled.	

Table 11-11: I²C FIFO Length Register

I ² C FIFO Length				I2Cn_FIFOLEN	[0x0018]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15:8	tx_depth	RO	8	Transmit FIFO Length This field returns the depth of the transmit FIFO. 8: 8-bytes.	
7:0	rx_depth	RO	8	Receive FIFO Length This field returns the depth of the receive FIFO. 8: 8-bytes.	

Table 11-12: I²C Receive Control 0 Register

I ² C Receive Control 0				I2Cn_RXCTRL0	[0x001C]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	
11:8	thd_lvl	R/W	0	Receive FIFO Threshold Level Set this field to the required number of bytes to trigger a receive FIFO threshold event. When the number of bytes in the receive FIFO is equal to or greater than this field, the hardware sets the <i>I2Cn_INTFL0.rx_thd</i> bit indicating a receive FIFO threshold level event. 0: 0 bytes or more in the receive FIFO causes a threshold event. 1: 1+ bytes in the receive FIFO triggers a receive threshold event (recommended minimum value). ... 8: Receive FIFO threshold event only occurs when the receive FIFO is full.	
7	flush	R/W1O	0	Flush Receive FIFO Write 1 to this field to initiate a receive FIFO flush, clearing all data in the receive FIFO. This field is automatically cleared by the hardware when the receive FIFO flush completes. Writing 0 has no effect. 0: Receive FIFO flush complete or not active. 1: Flush the receive FIFO	
6:1	-	RO	0	Reserved	
0	dnr	R/W	0	Target Mode Do Not Respond Target mode operation only. If the device has been addressed for a write operation, and there is still data in the receive FIFO, then: 0: Always respond to an address match with an ACK but always respond to data bytes with a NACK. 1: NACK the address.	

Table 11-13: I²C Receive Control 1 Register

I ² C Receive Control 1			I2Cn_RXCTRL1		[0x0020]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	
11:8	lvl	R	0	Receive FIFO Byte Count Status This field returns the number of bytes in the receive FIFO. 0: 0 bytes (No data). 1: 1 byte. 2: 2 bytes. 3: 3 bytes. 4: 4 bytes. 5: 5 bytes. 6: 6 bytes. 7: 7 bytes. 8: 8 bytes.	
7:0	cnt	R/W	1	Receive FIFO Transaction Byte Count Configuration In controller mode, write the number of bytes to be received in a transaction from 1 to 256. 0x00 represents 256. 0: 256 byte receive transaction. 1: 1 byte receive transaction. 2: 2 byte receive transaction. ... 255: 255 byte receive transaction. <i>This field is ignored when I2Cn_CTRL.irxm_en = 1. To receive more than 256 bytes, use I2Cn_CTRL.irxm_en = 1</i>	

Table 11-14: I²C Transmit Control 0 Register

I ² C Transmit Control 0			I2Cn_TXCTRL0		[0x0024]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	
11:8	thd_val	R/W	0	Transmit FIFO Threshold Level This field sets the level for a transmit FIFO threshold event interrupt. If the number of bytes remaining in the transmit FIFO falls to this level or lower, the interrupt flag <i>I2Cn_INTFLO.tx_thd</i> is set, indicating a transmit FIFO threshold event occurred. 0: 0 bytes remaining in the transmit FIFO triggers a transmit FIFO threshold event. 1: 1 byte or fewer remaining in the transmit FIFO triggers a transmit FIFO threshold event (recommended minimum value). ... 7: 7 or fewer bytes remaining in the transmit FIFO triggers a transmit FIFO threshold event	
7	flush	R/W1O	0	Transmit FIFO Flush A transmit FIFO flush clears all remaining data from the transmit FIFO. 0: Transmit FIFO flush is complete or not active. 1: Flush the transmit FIFO. <i>Note: The hardware automatically clears this bit to 0 after it is written to 1 when the flush is completed.</i> <i>If I2Cn_INTFLO.tx_lockout = 1, then I2Cn_TXCTRL0.flush = 1.</i>	
6	-	RO	0	Reserved	

I ² C Transmit Control 0			I ² Cn_TXCTRL0		[0x0024]
Bits	Field	Access	Reset	Description	
5	nack_flush_dis	R/W	0	Transmit FIFO received NACK Auto Flush Disable Various situations or conditions are described in this user guide, leading to the transmit FIFO being flushed and locked out (<i>I²Cn_INTFLO.tx_lockout</i> = 1). 0: Received NACK at the end of a target transmit operation enabled. 1: Received NACK at the end of a target transmit operation disabled. <i>Note: Upon entering transmit preload mode, the hardware automatically sets this bit to 0. The software can subsequently set this bit to any value desired (i.e., the hardware does not continuously force the bit to 0).</i>	
4	rd_addr_flush_dis	R/W	0	Transmit FIFO Target Address Match Read Auto Flush Disable Various situations or conditions are described in this user guide, leading to the transmit FIFO being flushed and locked out (<i>I²Cn_INTFLO.tx_lockout</i> = 1). 0: Enabled. 1: Disabled. <i>Note: Upon entering transmit preload mode, hardware automatically sets this bit to 1. The software can subsequently set this bit to any value desired (i.e., the hardware does not continuously force the bitfield to 1).</i>	
3	wr_addr_flush_dis	R/W	0	Transmit FIFO Target Address Match Write Auto Flush Disable Various situations or conditions are described in this user guide, leading to the transmit FIFO being flushed and locked out (<i>I²Cn_INTFLO.tx_lockout</i> = 1). 0: Enabled 1: Disabled. <i>Note: Upon entering transmit preload mode, hardware automatically sets this bit to 1. The software can subsequently set this bit to any value desired (i.e., the hardware does not continuously force the bit to 1).</i>	
2	gc_addr_flush_dis	R/W	0	Transmit FIFO General Call Address Match Auto Flush Disable Various situations or conditions are described in this user guide, leading to the transmit FIFO being flushed and locked out (<i>I²Cn_INTFLO.tx_lockout</i> = 1). 0: Enabled. 1: Disabled. <i>Note: Upon entering transmit preload mode, hardware automatically sets this bit to 1. The software can subsequently set this bit to any value desired (i.e., the hardware does not continuously force the bit to 1).</i>	
1	tx_ready_mode	R/W	0	Transmit FIFO Ready Manual Mode 0: The hardware controls <i>I²Cn_TXCTRL1.preload_rdy</i> . 1: Software control of <i>I²Cn_TXCTRL1.preload_rdy</i> .	
0	preload_mode	R/W	0	Transmit FIFO Preload Mode Enable 0: Normal operation. An address match in target mode, or a general call address match, flushes and locks the transmit FIFO so it cannot be written and sets <i>I²Cn_INTFLO.tx_lockout</i> . 1: Transmit FIFO preload mode. An address match in target mode, or a general call address match, does not lock the transmit FIFO and does not set <i>I²Cn_INTFLO.tx_lockout</i> . This allows the software to preload data into the transmit FIFO. The status of the I ² C is controllable at <i>I²Cn_TXCTRL1.preload_rdy</i> .	

Table 11-15: I²C Transmit Control 1 Register

I ² C Transmit Control Register 1			I ² Cn_TXCTRL1		[0x0028]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	

I ² C Transmit Control Register 1			I2Cn_TXCTRL1		[0x0028]
Bits	Field	Access	Reset	Description	
11:8	lvl	R	0	Transmit FIFO Byte Count Status 0: 0 bytes (No data). 1: 1 byte. 2: 2 bytes. 3: 3 bytes. 4: 4 bytes. 5: 5 bytes. 6: 6 bytes. 7: 7 bytes. 8: 8 bytes (max value).	
7:1	-	RO	0	Reserved	
0	preload_rdy	R/W1O	1	Transmit FIFO Preload Ready Status When transmit FIFO preload mode is enabled, <i>I2Cn_TXCTRL0.preload_mode</i> = 1, this bit is automatically cleared to 0. While this bit is 0, if the I2Cn hardware receives a target address match, a NACK is sent. Once the I2Cn hardware is ready (the software has preloaded the transmit FIFO, configured the DMA, etc.), the software must set this bit to 1, so the I2Cn hardware sends an ACK on a target address match. When transmit FIFO preload mode is disabled, <i>I2Cn_TXCTRL0.preload_mode</i> = 1, this bit is forced to 1, and the I2Cn hardware behaves normally.	

Table 11-16: I²C Data Register

I ² C Data			I2Cn_FIFO		[0x002C]
Bits	Field	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7:0	data	R/W	0xFF	FIFO Data Reads from this register pop data off the receive FIFO. Writes to this register push data onto the transmit FIFO. Reading from an empty receive FIFO returns 0xFF. Writes to a full transmit FIFO are ignored.	

Table 11-17: I²C Controller Control Register

I ² C Controller Control			I2Cn_MSTCTRL		[0x0030]
Bits	Field	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7	ex_addr_en	R/W	0	Target Extended Addressing Enable 0: Send a 7-bit address to the target. 1: Send a 10-bit address to the target.	
6:3	-	RO	0	Reserved	
2	stop	R/W1O	0	Send STOP Condition 1: Send a STOP Condition at the end of the current transaction. <i>Note: This bit is automatically cleared by the hardware when the STOP condition begins.</i>	

I ² C Controller Control			I ² Cn_MSTCTRL		[0x0030]
Bits	Field	Access	Reset	Description	
1	restart	R/W1O	0	Send Repeated START Condition After sending data to a target, the controller can send another START to retain control of the bus. 1: Send a repeated START condition to the target instead of sending a STOP condition at the end of the current transaction. <i>Note: This bit is automatically cleared by the hardware when the repeated START condition begins.</i>	
0	start	R/W1O	0	Start Controller Mode Transfer 1: Start controller mode transfer. <i>Note: This bit is automatically cleared by the hardware when the transfer is completed or aborted.</i>	

Table 11-18: I²C SCL Low Control Register

I ² C Clock Low Control			I ² Cn_CLKLO		[0x0034]
Bits	Field	Access	Reset	Description	
31:9	-	RO	0	Reserved	
8:0	lo	R/W	1	Clock Low Time In controller mode, this configures the SCL low time. $t_{SCL_LO} = f_{I2C_CLK} \times (lo + 1)$ <i>Note: 0 is not a valid setting for this field.</i>	

Table 11-19: I²C SCL High Control Register

I ² C Clock High Control			I ² Cn_CLKHI		[0x0038]
Bits	Field	Access	Reset	Description	
31:9	-	RO	0	Reserved	
8:0	hi	R/W	1	Clock High Time In controller mode, this configures the SCL high time. $t_{SCL_HI} = 1/f_{I2C_CLK} \times (hi + 1)$ In both controller and target mode, this also configures the time SCL is held low after new data is loaded from the transmit FIFO or after the software clears I²Cn_INTFL0.irxm during IRXM. <i>Note: 0 is not a valid setting for this field.</i>	

Table 11-20: I²C Hs-Mode Clock Control Register

I ² C Hs-Mode Clock Control			I ² Cn_HSCLK		[0x003C]
Bits	Field	Access	Reset	Description	
31:16	-	R/W	0	Reserved	
15:8	hi	R/W	0	Reserved	
7:0	lo	R/W	0	Reserved	

Table 11-21: I²C Timeout Register

I ² C Timeout		I2Cn_TIMEOUT			[0x0040]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15:0	scl_to_val	R/W	0	Bus Error SCL Timeout Period Set this value to the number of I ² C clock cycles desired to cause a bus timeout error. The peripheral timeout timer starts when it pulls SCL low. After the peripheral releases the line, if the line is not pulled high before the timeout number of I ² C clock cycles, a bus error condition is set (<i>I2Cn_INTFLO.to_err</i> = 1), and the peripheral releases the SCL and SDA lines. 0: Timeout disabled. All other values result in a timeout calculation of: $t_{BUS_TIMEOUT} = 1/f_{I2C_CLK} \times scl_to_val$ <i>Note: The timeout counter monitors the I2Cn peripheral's driving of the SCL pin, not an external I²C device driving the SCL pin.</i>	

Table 11-22: I²C Target Address 0 Register

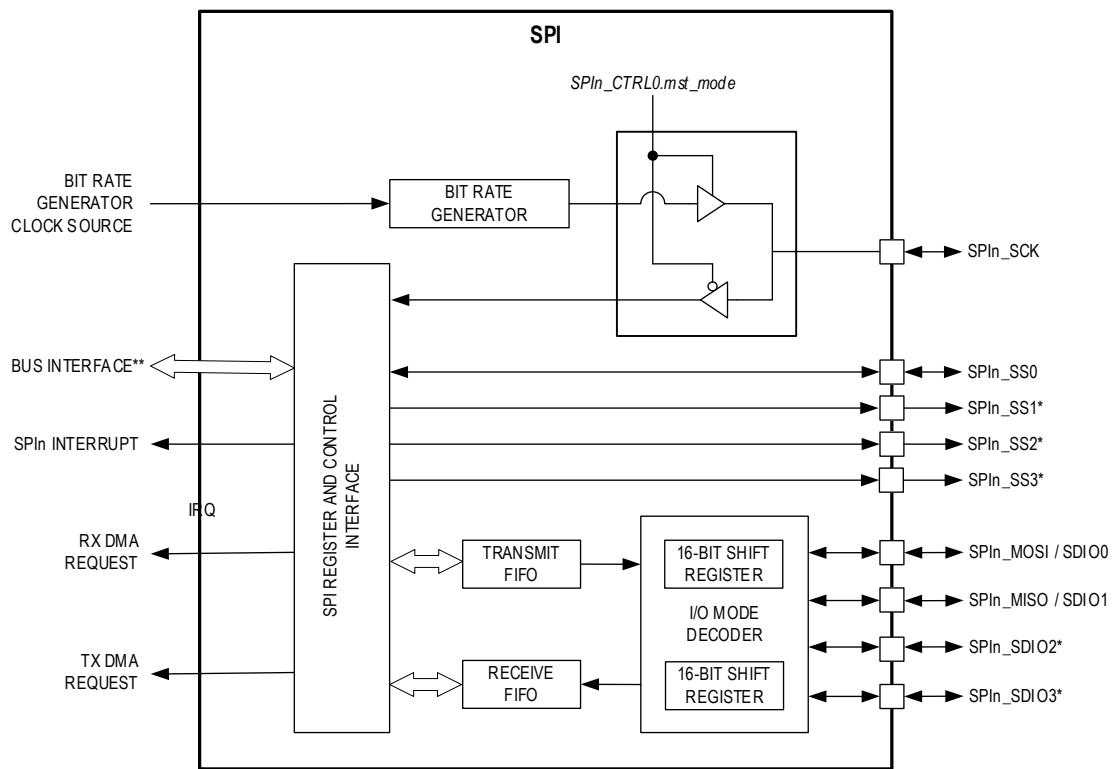
I ² C Target Address			I2Cn_SLAVE		[0x0044]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15	ext_addr_en	R/W	0	Target Mode Extended Address Length Select 0: 7-bit addressing. 1: 10-bit addressing.	
14:10	-	RO	0	Reserved	
9:0	addr	R/W	0	Target Mode Target Address In target mode operation, (<i>I2Cn_CTRL.mst_mode</i> = 0), set this field to the target address for the I ² C port. For 7-bit addressing, the address occupies the least significant 7 bits. For 10-bit addressing, the 9-bits of address occupies the most significant 9 bits, and the R/W bit occupies the least significant bit. <i>Note: I2Cn_SLAVE.ext_addr_en controls if this field is a 7-bit or 10-bit address.</i>	

Table 11-23: I²C DMA Register

I ² C DMA			I2Cn_DMA		[0x0048]
Bits	Field	Access	Reset	Description	
31:2	-	RO	0	Reserved	
1	rx_en	R/W	0	Receive DMA Channel Enable 0: Disabled. 1: Enabled.	
0	tx_en	R/W	0	Transmit DMA Channel Enable 0: Disabled. 1: Enabled.	

12. Serial Peripheral Interface (SPI)

The SPI peripheral is a configurable, flexible, and efficient synchronous interface between multiple SPI devices on a single bus. The SPI bus uses a single clock signal, single or dual data lines, and one or more target select lines for communication with external SPI devices.


The provided SPI ports support full-duplex, bi-direction I/O, and each SPI includes a Bit Rate Generator (BRG) for generating the clock signal when operating in controller mode. Each SPI port operates independently and requires minimal processor overhead. All instances of the SPI peripheral support both controller and target modes and support single controller and multi-controller networks.

Features include:

- Dedicated BRG for precision serial clock generation in controller mode
 - ◆ Up to $\frac{f_{PCLK}}{2}$ for instances on the APB bus.
 - ◆ Up to $\frac{f_{HCLK}}{2}$ for instances on the AHB bus.
 - ◆ Programmable SCK duty cycle timing.
- Full-duplex, synchronous communication of 2 to 16-bit characters
 - ◆ 1-bit and 9-bit characters are not supported.
 - ◆ 2-bit and 10-bit characters do not support maximum clock speed. [*SPIn_CLKCTRL.clkdiv*](#) must be > 0.
- 3-wire and 4-wire SPI operation for single-bit communication.
- Single or Dual I/O operation.
- Byte-wide Transmit and Receive FIFOs with 32-byte depth
 - ◆ For character sizes greater than 8, each character uses 2 entries per character resulting in 16 entries for the transmit and receive FIFO.
- Transmit and receive DMA support.
- SPI modes 0, 1, 2, 3.
- Configurable target select lines
 - ◆ Programmable target select level.
- Programmable target select timing with respect to the SCK starting edge and ending edge.
- Multi-controller mode fault detection.

[*Figure 12-1*](#) shows a high-level block diagram of the SPI peripheral. See [*Table 12-1*](#) for the peripheral-specific peripheral bus assignment and BRG clock source.

Figure 12-1: SPI Block Diagram

* The number of target select and SDIO signals can vary for each instance of the peripheral.

** The bus interface (APB or AHB) can vary for each instance of the peripheral.

12.1 Instances

There are two instances of the SPI peripheral, as shown in *Table 12-1*.

Table 12-1: MAX32675C SPI Instances

Instance	Formats				Hardware Bus	Bit Rate Generator Clock Source
	3-Wire	4-Wire	Dual	Quad		
SPI0*	Yes	Yes	No	No	APB	f_{PCLK}
SPI1	Yes	Yes	No	No	APB	f_{PCLK}
SPI2	Yes	Yes	No	No	APB	f_{PCLK}

* SPI0 is internally connected and used to communicate with the *Analog Front-End (AFE)*.

Note: Refer to the device data sheet's pin description table for the list of alternate function assignments for each peripheral instance.

12.2 Formats

12.2.1 Four-Wire SPI

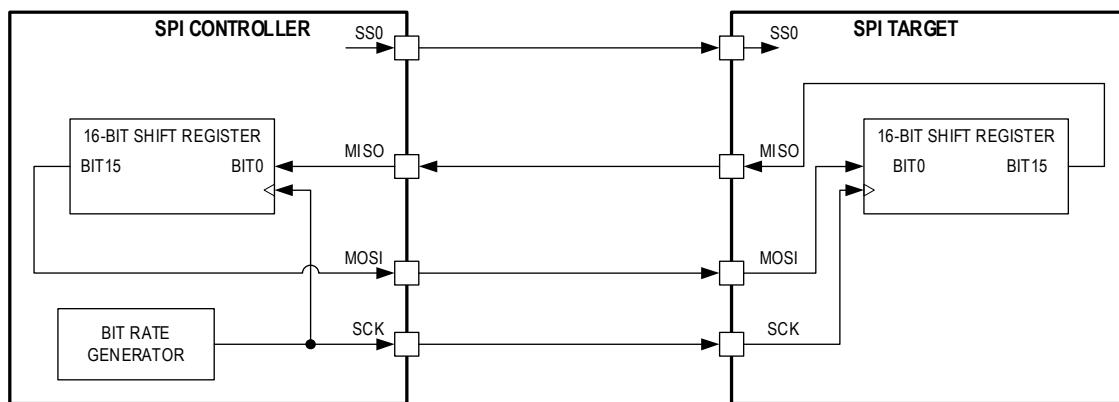

SPI devices operate as either a controller or target device. Four signals are required for communication in four-wire SPI, as shown in *Table 12-2*.

Table 12-2: Four-Wire Format Signals

Signal	Description	Direction
SCK	Serial Clock	The controller generates the SCK signal, an output from the controller, and an input to the target.
MOSI	Controller Output Target Input	This signal is used as an output for sending data to the target in controller mode. In target mode, this is the input data from the controller.
MISO	Controller Input Target Output	In controller mode, this signal is used as an input for receiving data from the target. This signal is an output for transmitting data to the controller in target mode.
SS	Target Select	This signal is an output used to select a target device before communication in controller mode. Peripherals may have multiple target select outputs to communicate with one or more external target devices. SPIn_SS0 is a dedicated input in target mode that indicates an external controller is starting communication. Other target select signals into the target are ignored in target mode.

The SPI controller starts communication with a target by asserting the target select output. The controller then starts the SPI clock through the SCK output pin. When a target device's target select pin is deasserted, the target device is required to put the SPI pins in tri-state mode.

Figure 12-2: 4-Wire SPI Connection Diagram

12.2.2 Three-Wire SPI

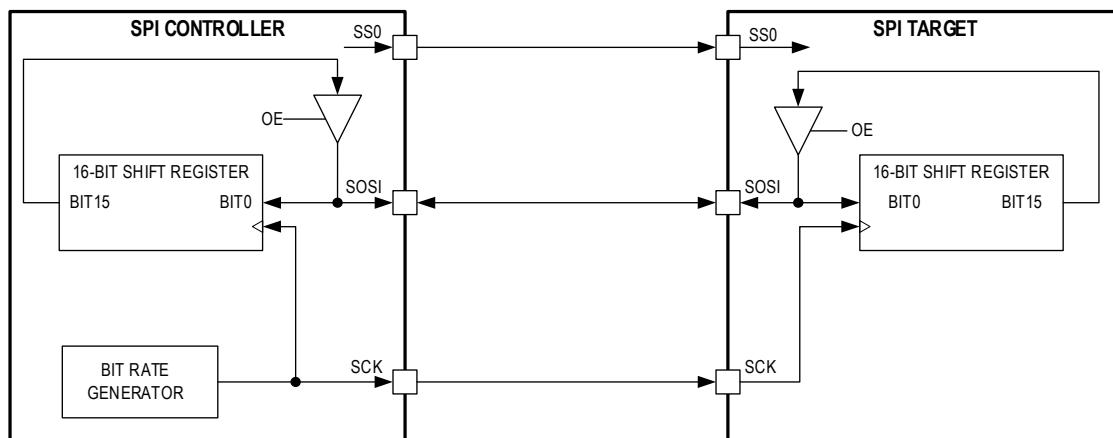

The signals in three-wire SPI operation are shown in *Table 12-3*. The MOSI signal is used as a bidirectional, half-duplex I/O referred to as target input target output (SISO). Three-wire SPI also uses a serial clock signal generated by the controller and a target select pin controlled by the controller.

Table 12-3: Three-Wire Format Signals

Signal	Description	Direction
SCK	Serial Clock	The controller generates the serial clock signal, an output from the controller, and an input to the target.
MOSI	Target Input Target Output	This is a half-duplex, bidirectional I/O pin used for communication between the SPI controller and target. This signal is used to transmit data from the controller to the target and to receive data from the target by the controller.
SS	Target Select	In controller mode, this signal is an output used to select a target device before communication. In target mode, SPIn_SS0 is a dedicated input that indicates an external controller is going to start communication. Other target select signals into the target are ignored in target mode

A three-wire SPI network is shown in [Figure 12-3](#). The controller device selects the target device using the target select output. The communication starts with the controller asserting the target select line and then starting the clock (SCK). In three-wire SPI communication, the controller and target must both know the intended direction of the data to prevent bus contention. For a write, the controller drives the data out the SISO pin. For a read, the controller must release the SISO line and let the target drive the SISO line. The direction of transmission is controlled using the FIFO. Writing to the FIFO starts the three-wire SPI write, and reading from the FIFO starts a three-wire SPI read transaction.

Figure 12-3: Generic 3-Wire SPI Controller to Target Connection

12.3 Pin Configuration

Before configuring the SPI target, first, disable any SPI activity for the port by clearing the `SPIn_CTRL0.en` field to 0.

12.3.1 SPI Alternate Function Mapping

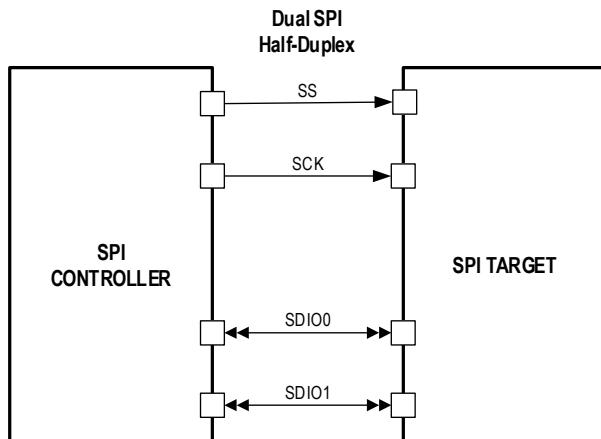
Pin selection and configuration are required to use the SPI port. The following information applies to SPI controller and target operation as well as three-wire, four-wire, and dual mode communications. Determine the pins required for the SPI type and mode in the application, and configure the required GPIO as described in the following sections. Refer to the MAX32675C data sheet for pin availability for a specific package.

When the SPI port is disabled, `SPIn_CTRL0.en` = 0, the GPIO pins enabled for SPI alternate function are placed in high-impedance input mode.

12.3.2 Four-Wire Format Configuration

Four-wire SPI uses SCK, MISO, MOSI, and one or more SS pins. Four-wire SPI may use more than one target select pin for a transaction, resulting in more than four wires total. However, the communication is referred to as four-wire for historical reasons.

Note: Select the pins mapped to the SPI external device in the design and modify the setup accordingly. There is no restriction on which alternate function is used for a specific SPI pin, and each SPI pin can be used independently from the other pins chosen. However, it is recommended that only one set of GPIO port pins be used for any network.


12.3.3 Three-Wire Format Configuration

Three-wire SPI uses SCK, MOSI, and one or more target select pins for an SPI transaction. Three-wire SPI configuration is identical to the four-wire configuration, except SPI_n_MISO does not need to be set up for the SPI alternate function. The direction of communication in three-wire SPI mode is controlled by the transmit and receive FIFO enables. Enabling the receive FIFO and disabling the transmit FIFO indicates a read transaction. Enabling the transmit FIFO and disabling the receive FIFO indicates a write transaction. It is an illegal condition to enable both the transmit and receive FIFOs in three-wire SPI operation.

12.3.4 Dual-Mode Format Configuration

In dual-mode SPI, two I/O pins are used to transmit 2-bits of data per SCK clock cycle. The communication is half-duplex, and the direction of the data transmission must be known by both the controller and target for a given transaction. Dual-mode SPI uses SCK, SDIO0, SDIO1, and one or more target select lines, as shown in [Figure 12-4](#). The configuration of the GPIO pins for dual-mode SPI is identical to four-wire SPI, and the mode is controlled by setting `SPIn_CTRL2.data_width` to 1, indicating to the SPI hardware to use SDIO0 and SDIO1 for half-duplex communication rather than full-duplex communication.

Figure 12-4: Dual Mode SPI Connection Diagram

12.4 Configuration

12.4.1 Serial Clock

The SCK signal synchronizes data movement in and out of the device. The controller drives SCK as an output to the target's SCK pin. When SPI is set to controller mode, the SPI bit rate generator creates the serial clock and outputs it on the configured SPI_n_SCK pin. When SPI is configured for target operation, the SPI_n_SCK pin is an input from the external controller, and the SPI hardware synchronizes communications using the SCK input. Operating as a target, if an SPI target select input is not asserted, the SPI ignores any signals on the serial clock and serial data lines.

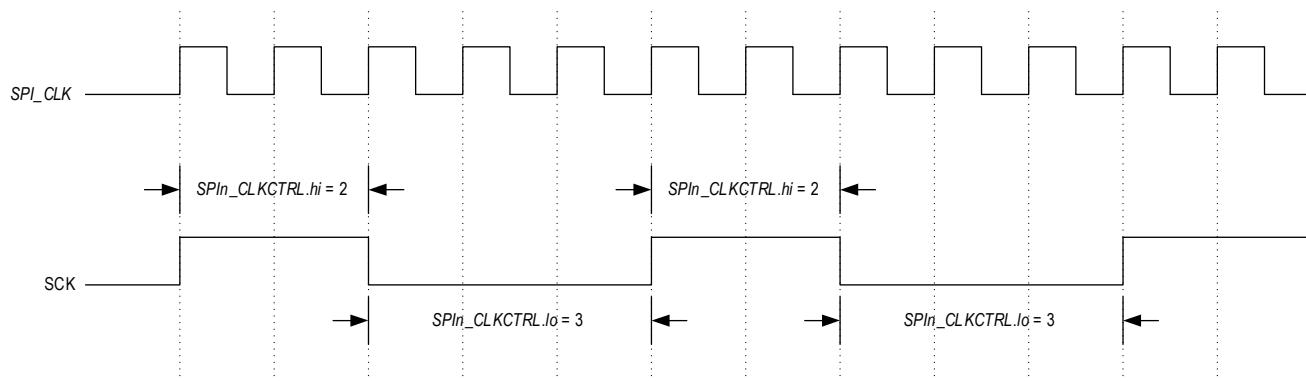
In both controller and target devices, data is shifted on one edge of the SCK and is sampled on the opposite edge where data is stable. Data availability and sampling time are controlled using the SPI phase control field, *SPI_n_CTRL2.clkpha*. The SCK clock polarity field, *SPI_n_CTRL2.clkpol*, controls if the SCK signal is active high or active low.

The SPI target supports four combinations of SCK phase and polarity referred to as SPI modes 0, 1, 2, and 3. Clock Polarity (*SPI_n_CTRL2.clkpol*) selects an active low/high clock and has no effect on the transfer format. Clock Phase (*SPI_n_CTRL2.clkpha*) selects one of two different transfer formats.

For proper data transmission, the clock phase and polarity must be identical for the SPI controller and target. The controller always places data on the MOSI line a half-cycle before the SCK edge for the target to latch the data. See section [Clock Phase and Polarity Control](#) for additional details.

12.4.2 Peripheral Clock

See [Table 12-1](#) for the specific input clock, *f_{INPUT_CLK}*, used for each SPI instance. For SPI instances assigned to the AHB bus, the SPI input clock is the system clock, *SYS_CLK*. For SPI instances mapped to the APB bus, the SPI input clock is the system peripheral clock, *PCLK*. The SPI input clock drives the SPI peripheral clock. The SPI provides an internal clock, *SPI_CLK*, that is used within the SPI peripheral for the base clock to control the module and generate the SCK clock when in controller mode. Set the SPI internal clock using the field *SPI_n_CLKCTRL.clkdiv*, as shown in [Equation 12-1](#). Valid settings for *SPI_n_CLKCTRL.clkdiv* are 0 to 8, allowing a divisor of 1 to 256.


Equation 12-1: SPI Peripheral Clock

$$f_{SPI_CLK} = \frac{f_{INPUT_CLK}}{2^{clkdiv}}$$

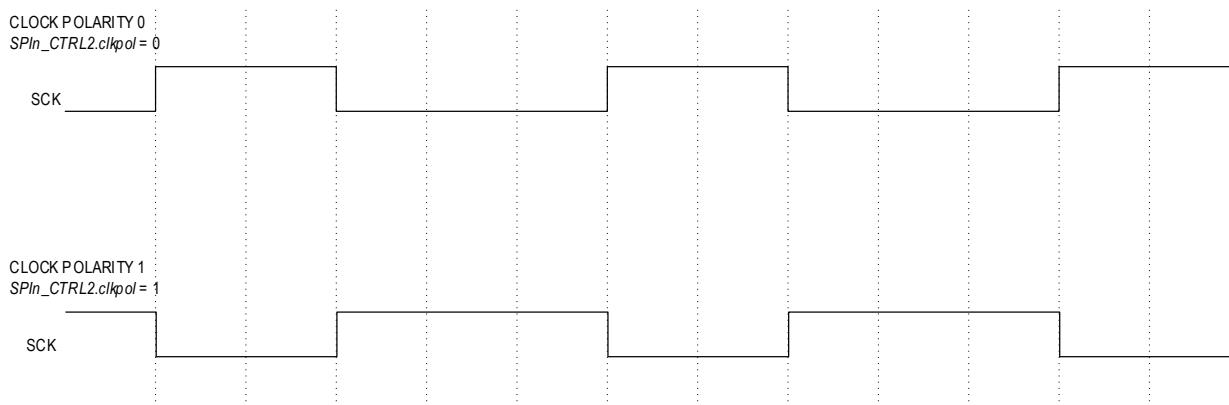
12.4.3 Controller Mode Serial Clock Generation

In controller and multi-controller mode, the SCK clock is generated by the controller. The SPI target provides control for both the high time and low time of the SCK clock. This control allows setting the high and low times for the SCK to duty cycles other than 50% if required. The SCK clock uses the SPI target clock as a base value, and the high and low values are a count of the number of *f_{SPI_CLK}* clocks. [Figure 12-6](#) visually represents the use of the *SPI_n_CLKCTRL.hi* and *SPI_n_CLKCTRL.lo* fields for a non-50% duty cycle serial clock generation. See [Equation 12-2](#) and [Equation 12-3](#) for calculating the SCK high and low time from the *SPI_n_CLKCTRL.hi* and *SPI_n_CLKCTRL.lo* field values.

Figure 12-5: SCK Clock Rate Control

Equation 12-2: SCK High Time

$$t_{SCK_HI} = t_{SPIn_CLK} \times SPIn_CLKCTRL.hi$$


Equation 12-3: SCK Low Time

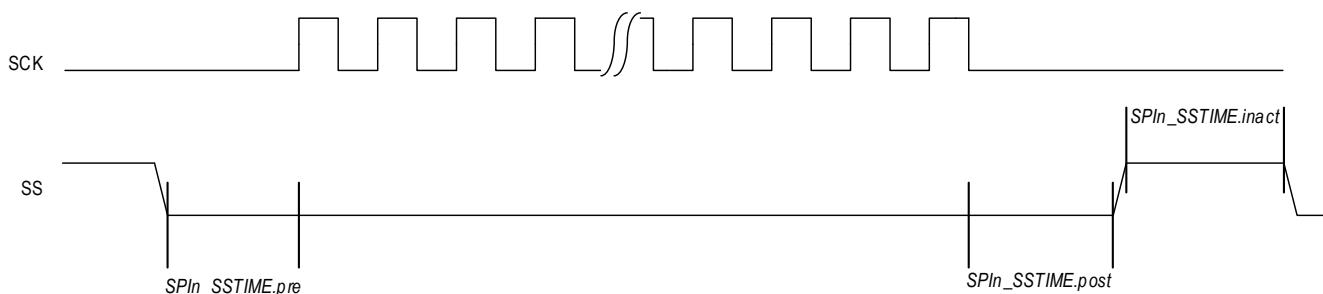
$$t_{SCK_LOW} = t_{SPIn_CLK} \times SPIn_CLKCTRL.lo$$

12.4.4 Clock Phase and Polarity Control

SPI supports four combinations of clock and phase polarity, as shown in [Table 12-4](#). Clock polarity is controlled using the bit *SPIn_CTRL2.clkpol* and determines if the clock is active high or active low, as shown in [Figure 12-7](#). Clock polarity does not affect the transfer format for SPI. The clock phase determines when the data must be stable for sampling. Setting the clock phase to 0, *SPIn_CTRL2.clkpha* = 0, dictates the SPI data is sampled on the initial SPI clock edge regardless of clock polarity. Phase 1, *SPIn_CTRL2.clkpha* = 1, results in data sample occurring on the second edge of the clock regardless of clock polarity.

Figure 12-6: SPI Clock Polarity

For proper data transmission, the clock phase and polarity must be identical for the SPI controller and target. The controller always places data on the MOSI line a half-cycle before the SCK edge for the target to latch the data.


Table 12-4: SPI Modes Clock Phase and Polarity Operation

SPI Mode	<i>SPIn_CTRL2.clkpol</i>	<i>SPIn_CTRL2.clkpha</i>	SCK Transmit Edge	SCK Receive Edge	SCK Idle State
0	0	0	Falling	Rising	Low
1	0	1	Rising	Falling	High
2	1	0	Rising	Falling	Low
3	1	1	Falling	Rising	High

12.4.5 Target Select Configuration

The SPI supports additional controller mode configuration for fine tuning the target select lines timing with respect to the time between SPI transactions as well as how many clock cycles between target select going active and the first SCK transition and the last SCK transition to target select going inactive. The register fields for controlling each of these portions of the target control signal (SPIn_SS) are shown in *Figure 12-8*. Each of these fields selects the number of system clocks for the delay from 1 to 256. Each of these fields defaults to the maximum setting of 256 system clocks.

Figure 12-7: Target Select Configuration Using SPIn_SSTIME Register

12.4.6 Transmit and Receive FIFOs

The transmit FIFO hardware is 32 bytes deep. The write data width can be 8-, 16- or 32-bits wide. A 16-bit write queues a 16-bit word to the FIFO hardware. A 32-bit write queues two 16-bit words to the FIFO hardware with the least significant word dequeued first. Bytes must be written to two consecutive byte addresses, with the odd byte as the most significant byte and the even byte as the least significant byte. The FIFO logic waits for both the odd and even bytes to be written to this register space before dequeuing the 16-bit result to the FIFO.

The receive FIFO hardware is 32 bytes deep. Read data width can be 8-, 16- or 32-bits. A byte read from this register dequeues one byte from the FIFO. A 16-bit read from this register dequeues two bytes from the FIFO, least significant byte first. A 32-bit read from this register dequeues four bytes from the FIFO, least significant byte first.

12.4.7 Interrupts and Wakeups

The SPI supports multiple interrupt sources. Status flags for each interrupt are set regardless of the state of the interrupt enable bit for that event. The event happens once when the condition is satisfied. The status flag must be cleared by the software by writing a 1 to the interrupt flag.

The following FIFO interrupts are supported:

- Transmit FIFO Empty.
- Transmit FIFO Threshold.
- Receive FIFO Full.
- Receive FIFO Threshold.
- Transmit FIFO Underrun.
 - ◆ Target mode only, controller mode stalls the serial clock.
- Transmit FIFO Overrun.
- Receive FIFO Underrun.
- Receive FIFO Overrun.
 - ◆ Target mode only, controller mode stalls the serial clock.
- SPI supports interrupts for the internal state of the SPI as well as external signals. The following transmission interrupts are supported:
 - ◆ SS asserted or deasserted.
 - ◆ SPI transaction complete.
 - Controller mode only.
 - ◆ Target mode transaction aborted.
 - ◆ Multi-controller fault.

The SPI port can wake up the microcontroller from low-power modes when the wake event is enabled. SPI events that can wake the microcontroller are:

- Receive FIFO full.
- Transmit FIFO empty.
- Receive FIFO threshold.
- Transmit FIFO threshold.

12.5 SPI Registers

See [Table 3-2](#) for the base address of this target/module. If multiple instances of the target are provided, each instance has its own, independent set of registers, as shown in [Table 12-5](#). Register names for a specific instance are defined by replacing "n" with the instance number. As an example, a register PERIPHERALn_CTRL resolves to PERIPHERAL0_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the target-specific resets.

Table 12-5: SPI Registers

Offset	Register Name	Description
[0x0000]	SPIn_FIFO32	SPI FIFO Data Register
[0x0000]	SPIn_FIFO16	SPI 16-bit FIFO Data Register
[0x0000]	SPIn_FIFO8	SPI 8-bit FIFO Data Register
[0x0004]	SPIn_CTRL0	SPI Controller Signals Control Register
[0x0008]	SPIn_CTRL1	SPI Transmit Packet Size Register
[0x000C]	SPIn_CTRL2	SPI Static Configuration Register
[0x0010]	SPIn_SSTIME	SPI Target Select Timing Register

Offset	Register Name	Description
[0x0014]	<i>SPIn_CLKCTRL</i>	SPI Controller Clock Configuration Register
[0x001C]	<i>SPIn_DMA</i>	SPI DMA Control Register
[0x0020]	<i>SPIn_INTFL</i>	SPI Interrupt Flag Register
[0x0024]	<i>SPIn_INTEN</i>	SPI Interrupt Enable Register
[0x0028]	<i>SPIn_WKFL</i>	SPI Wakeup Flags Register
[0x002C]	<i>SPIn_WKEN</i>	SPI Wakeup Enable Register
[0x0030]	<i>SPIn_STAT</i>	SPI Status Register

12.5.1 Register Details

Table 12-6: SPI FIFO32 Register

SPI FIFO Data			SPIn_FIFO32		[0x0000]
Bits	Name	Access	Reset	Description	
31:0	data	R/W	0	SPI FIFO Data Register This register is used for the SPI Transmit and Receive FIFO. Reading from this register returns characters from the Receive FIFO, and writing to this register adds characters to the Transmit FIFO. Read and write this register in either 1-byte, 2-byte, or 4-byte widths only. Reading from an empty FIFO or writing to a full FIFO results in undefined behavior.	

Table 12-7: SPI 16-bit FIFO Register

SPI FIFO Data			SPIn_FIFO16		[0x0000]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved	
15:0	data	R/W	0	SPI 16-bit FIFO Data Register This register is used for the SPI Transmit and Receive FIFO. Reading from this register returns characters from the Receive FIFO, and writing to this register adds characters to the Transmit FIFO. Read and write this register in 2-byte width only for 16-bit FIFO access. Reading from an empty FIFO or writing to a full FIFO results in undefined behavior.	

Table 12-8: SPI 8-bit FIFO Register

SPI 8-bit FIFO Data			SPIn_FIFO8		[0x0000]
Bits	Name	Access	Reset	Description	
31:8	-	R/W	0	Reserved	
7:0	data	R/W	0	SPI 8-bit FIFO Data Register This register is used for the SPI Transmit and Receive FIFO. Reading from this register returns characters from the Receive FIFO, and writing to this register adds characters to the Transmit FIFO. Read and write this register in 1-byte width only for 8-bit FIFO access. Reading from an empty FIFO or writing to a full FIFO results in undefined behavior.	

Table 12-9: SPI Control 0 Register

SPI Control 0			SPIn_CTRL0		[0x0004]
Bits	Name	Access	Reset	Description	
31:20	-	R/W	0	Reserved	

SPI Control 0				SPI _n _CTRL0	[0x0004]
Bits	Name	Access	Reset	Description	
19:16	ss_active	R/W	0	Controller Target Select The SPI includes up to four target select lines for each port. This field selects which target select pin is active when the next SPI transaction is started (<i>SPI_n_CTRL0.start</i> = 1). One or more target select pins can be selected for each SPI transaction by setting the bit for each target select pin. For example, use SPI _n _SS0 and SPI _n _SS2 by setting this field to 0b0101 or select all target selects by setting this field to 0b1111. <i>Note: This field is only used when the SPI is configured for controller mode (<i>SPI_n_CTRL0.mst_mode</i> = 1).</i>	
15:9	-	R/W	0	Reserved	
8	ss_ctrl	R/W	0	Controller Target Select Control This field controls the behavior of the target select pins at the completion of a transaction. The default behavior, <i>ss_ctrl</i> = 0, deasserts the target select pin at the completion of the transaction. Set this field to 1 to leave the target select pins asserted at the completion of the transaction. If the external device supports this behavior, leaving the target select pins asserted allows multiple transactions without the delay associated with deassertion of the target select pin between transactions. 0: Target Select is deasserted at the end of a transmission. 1: Target Select stays asserted at the end of a transmission.	
7:6	-	R/W	0	Reserved.	
5	start	R/W10	0	Controller Start Data Transmission Set this field to 1 to start an SPI controller mode transaction. 0: No controller mode transaction active. 1: Initiate the data transmission. Ensure that all pending transactions are complete before setting this field to 1. <i>Note: This field is only used when the SPI is configured for controller mode (<i>SPI_n_CTRL0.mst_mode</i> = 1).</i>	
4	ss_io	R/W	0	Controller Target Select Signal Direction Set the I/O direction for 0: Target select is an output. 1: Target select is an input. <i>Note: This field is only used when the SPI is configured for controller mode (<i>SPI_n_CTRL0.mst_mode</i> = 1).</i>	
3:2	-	R/W	0	Reserved	
1	mst_mode	R/W	0	SPI Controller Mode Enable This field selects between target mode and controller mode operation for the SPI port. Write this field to 0 to operate as an SPI target. Set this field to 1 to set the port as an SPI controller. 0: Target mode SPI operation. 1: Controller mode SPI operation.	
0	en	R/W	0	SPI Enable/Disable This field enables and disables the SPI port. Disable the SPI port by setting this field to 0. Disabling the SPI port does not affect the SPI FIFOs or register settings. Access to SPI registers is always available. 0: SPI port is disabled. 1: SPI port is enabled.	

Table 12-10: SPI Control 1 Register

SPI Transmit Packet Size			SPln_CTRL1		[0x0008]
Bits	Name	Access	Reset	Description	
31:16	rx_num_char	R/W	0	Number of Receive Characters This field sets the number of characters to receive in the receive FIFO. <i>Note: If the SPI port is set to four-wire mode, this field is ignored, and the SPln_CTRL1.tx_num_char field is used for both the number of characters to receive and transmit.</i>	
15:0	tx_num_char	R/W	0	Number of Transmit Characters This field sets the number of characters to transmit from transmit FIFO. <i>Note: If the SPI port is set to four-wire mode, this field is used to receive and transmit the number of characters.</i>	

Table 12-11: SPI Control 2 Register

SPI Control 2			SPln_CTRL2		[0x000C]
Bits	Name	Access	Reset	Description	
31:20	-	R/W	0	Reserved	
19:16	ss_pol	R/W	0	Target Select Polarity Controls the polarity of each individual SS signal where each bit position corresponds to a SS signal. SPln_SS0 is controlled with bit position 0, and SPln_SS2 is controlled with bit position 2. For each bit position: 0: SS is active low. 1: SS is active high.	
15	three_wire	R/W	0	Three-Wire SPI Enable Set this field to 1 to enable three-wire SPI communication. Set this field to 0 for four-wire full-duplex SPI communication. 0: Four-wire full-duplex mode enabled. 1: Three-wire mode enabled. <i>Note: This field is ignored for Dual SPI, SPln_CTRL2.data_width =1 and SPln_CTRL2.data_width =2.</i>	
14	-	R/W	0	Reserved	
13:12	data_width	R/W	0b00	SPI Data Width This field controls the number of data lines used for SPI communications. <i>Three-wire SPI: data_width = 0.</i> Set this field to 0, indicating SPln_MOSI is used for half-duplex communication. <i>Four-wire full-duplex SPI: data_width = 0.</i> Set this field to 0, indicating SPln_MOSI and SPln_MISO are used for the SPI data output and input, respectively. <i>Dual-mode SPI: data_width = 1.</i> Set this field to 1, indicating SPln_SDIO0 and SPln_SDIO1 are used for half-duplex communication. <i>Note: When this field is set to 0, use the field SPln_CTRL2.three_wire to select either Three-Wire SPI or Four-Wire SPI operation.</i>	

SPI Control 2				SPI_n_CTRL2	[0x000C]
Bits	Name	Access	Reset	Description	
11:8	numbits	R/W	0	Number of Bits per Character Set this field to the number of bits per character for the SPI transaction. Setting this field to 0 indicates a character size of 16. 0: 16-bits per character. 1: 1-bit per character (not supported). 2: 2-bits per character. ... 14: 14-bits per character. 15: 15-bits per character. <i>Note: 1-bit and 9-bit character lengths are not supported.</i> <i>Note: 2-bit and 10-bit character lengths do not support maximum SCK speeds in controller mode. SPI_n_CLKCTRL.clkdiv must be > 0.</i> <i>Note: For Dual mode SPI, the character size should be divisible by the number of bits per SCK cycle.</i>	
7:5	-	R/W	0	Reserved	
4	sclk_fb_inv	R/W	0	Invert SCLK Feedback in Controller Mode Set this bit to 1 to invert the SCLK feedback in controller mode for modes 0 and 2 if operating at an SCLK rate \geq 20MHz. This field must be set to 0 for modes 1 and 3. 0: SCLK feedback is not inverted. 1: SCLK feedback is inverted.	
3:2	-	RO	0	Reserved	
1	clkpol	R/W	0	Clock Polarity This field controls the SCK polarity. The default clock polarity is for SPI mode 0 and mode 1 operation and is active high. Invert the SCK polarity for SPI mode 2 and mode 3 operation. 0: Standard SCK for use in SPI mode 0 and mode 1. 1: Inverted SCK for use in SPI mode 2 and mode 3.	
0	clkpha	R/W	0	Clock Phase 0: Data sampled on clock rising edge. Use when in SPI mode 0 and mode 2. 1: Data sampled on clock falling edge. Use when in SPI mode 1 and mode 3.	

Table 12-12: SPI Target Select Timing Register

SPI Target Select Timing				SPI_n_SSTIME	[0x0010]
Bits	Name	Access	Reset	Description	
31:24	-	R/W	0	Reserved	
23:16	inact	R/W	0	Inactive Stretch This field controls the number of system clocks the bus is inactive between the end of a transaction (target select inactive) and the start of the next transaction (target select active). 0: 256. 1: 1. 2: 2. 3:3. ... : ... 254: 254. 255: 255. <i>Note: The SPI_n_SSTIME register bit settings only apply when SPI is operating in controller mode (SPI_n_CTRL0.mst_mode = 1)</i>	

SPI Target Select Timing				SPI _n _SSTIME	[0x0010]
Bits	Name	Access	Reset	Description	
15:8	post	R/W	0	Target Select Hold Post Last SCK Set this field to the number of system clock cycles for SS to remain active after the last SCK edge. 0: 256. 1: 1. 2: 2. 3:3. ... : ... 254: 254. 255: 255.	
				<i>Note: The SPI_n_SSTIME register bit settings only apply when SPI is operating in controller mode (SPI_n_CTRL0.mst_mode = 1)</i>	
7:0	pre	R/W	0	Target Select Delay to First SCK Set the number of system clock cycles the target select is held active before the first SCK edge. 0: 256. 1: 1. 2: 2. 3:3. ... : ... 254: 254. 255: 255.	
				<i>Note: The SPI_n_SSTIME register bit settings only apply when SPI is operating in controller mode (SPI_n_CTRL0.mst_mode = 1)</i>	

Table 12-13: SPI Controller Clock Configuration Registers

SPI Controller Clock Configuration				SPI _n _CLKCTRL	[0x0014]
Bits	Name	Access	Reset	Description	
31:20	-	R/W	0	Reserved	
19:16	clkdiv	R/W	0	SPI Target Clock Scale Scales the SPI input clock (PCLK) by 2^{clkdiv} to generate the SPI peripheral clock. $f_{\text{SPInCLK}} = \frac{f_{\text{SPIn_INPUT_CLK}}}{2^{\text{clkdiv}}}$ Valid values for scale are 0 to 8 inclusive. Values greater than 8 are reserved. <i>Note: 1-bit and 9-bit character lengths are not supported.</i> <i>Note: If SPI_n_CLKCTRL.clkdiv = 0, SPI_n_CLKCTRL.hi = 0, and SPI_n_CLKCTRL.lo = 0, character sizes of 2 and 10 bits are not supported.</i>	
15:8	hi	R/W	0	SCK Hi Clock Cycles Control 0: Hi duty cycle control disabled. Only valid if SPI _n _CLKCTRL.clkdiv = 0. 1 - 15: The number of SPI peripheral clocks, f_{SPInCLK} , that SCK is high. <i>Note: 1-bit and 9-bit character lengths are not supported.</i> <i>Note: If SPI_n_CLKCTRL.clkdiv = 0, SPI_n_CLKCTRL.hi = 0, and SPI_n_CLKCTRL.lo = 0, character sizes of 2 and 10 bits are not supported.</i>	

SPI Controller Clock Configuration			SPIn_CLKCTRL		[0x0014]
Bits	Name	Access	Reset	Description	
7:0	lo	R/W	0	SCK Low Clock Cycles Control This field controls the SCK low clock time and is used to control the overall SCK duty cycle in combination with the SPIn_CLKCTRL.hi field. 0: Low duty cycle control disabled. Setting this field to 0 is only valid if SPIn_CLKCTRL.clkdiv = 0. 1 to 15: The number of SPI peripheral clocks, $f_{SPInCLK}$, that the SCK signal is low. <i>Note: 1-bit and 9-bit character lengths are not supported.</i> <i>Note: If SPIn_CLKCTRL.clkdiv = 0, SPIn_CLKCTRL.hi = 0, and SPIn_CLKCTRL.lo = 0, character sizes of 2 and 10 bits are not supported.</i>	

Table 12-14: SPI DMA Control Registers

SPI DMA Control			SPIn_DMA		[0x001C]
Bits	Name	Access	Reset	Description	
31	dma_rx_en	R/W	0	Receive DMA Enable 0: Disabled. Any pending DMA requests are cleared. 1: Enabled.	
30:24	dma_rx_en	R	0	Number of Bytes in the Receive FIFO Read returns the number of bytes currently in the receive FIFO.	
23	rx_flush	R/W1O	-	Clear the Receive FIFO 1: Clear the receive FIFO and any pending receive FIFO flags in SPIn_INTFL . This should be done when the receive FIFO is inactive. <i>Note: Writing a 0 has no effect.</i>	
22	rx_fifo_en	R/W	0	Receive FIFO Enabled 0: Disabled. 1: Enabled.	
21	-	R/W	0	Reserved	
20:16	rx_thd_val	R/W	0	Receive FIFO Threshold Level Set this value to the desired receive FIFO threshold level. When the receive FIFO level crosses above this setting, a DMA request is triggered if enabled (SPIn_DMA.dma_tx_en = 1), and SPIn_INTFL.rx_thd is set. Valid values are 0 to 30. <i>Note: 31 is an invalid setting.</i>	
15	dma_tx_en	R/W	0	Transmit DMA Enable 0: Disabled. Any pending DMA requests are cleared. 1: Transmit DMA is enabled.	
14:8	tx_lvl	RO	0	Number of Bytes in the Transmit FIFO Read this field to determine the number of bytes currently in the transmit FIFO.	
7	tx_flush	R/W	0	Transmit FIFO Clear Set this bit to clear the transmit FIFO and all transmit FIFO flags in the SPIn_INTFL register. <i>Note: The transmit FIFO should be disabled (SPIn_DMA.tx_fifo_en = 0) before setting this field.</i> <i>Note: Setting this field to 0 has no effect.</i>	
6	tx_fifo_en	R/W	0	Transmit FIFO Enabled 0: Disabled. 1: Enabled.	
5	-	R/W	0	Reserved	

SPI DMA Control			SPIn_DMA		[0x001C]
Bits	Name	Access	Reset	Description	
4:0	tx_thd_val	R/W	0x10	Transmit FIFO Threshold Level Set this value to the desired transmit FIFO threshold level. When the transmit FIFO count (<i>SPIn_DMA.tx_lvl</i>) falls below this value, a DMA request is triggered if enabled (<i>SPIn_DMA.dma_tx_en</i> = 1), and <i>SPIn_INTFL.tx_thd</i> becomes set.	

Table 12-15: SPI Interrupt Status Flags Registers

SPI Interrupt Status Flags			SPIn_INTFL		[0x0020]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved	
15	rx_un	R/1	0	Receive FIFO Underrun Flag Set when a read is attempted from an empty receive FIFO.	
14	rx_ov	R/W1C	0	Receive FIFO Overrun Flag Set if SPI is in target mode, and a write to a full receive FIFO is attempted. If the SPI is in controller mode, this bit is not set as the SPI stalls the clock until data is read from the receive FIFO.	
13	tx_un	R/W1C	0	Transmit FIFO Underrun Flag Set if SPI is in target mode, and a read from empty transmit FIFO is attempted. If SPI is in controller mode, this bit is not set as the SPI stalls the clock until data is written to the empty transmit FIFO.	
12	tx_ov	R/W1C	0	Transmit FIFO Overrun Flag Set when a write is attempted, and the transmit FIFO is full.	
11	mst_done	R/W1C	0	Controller Data Transmission Done Flag Set if SPI is in controller mode and all transactions are complete. <i>SPIn_CTRL1.tx_num_char</i> has been reached.	
10	-	R/W	0	Reserved	
9	abort	R/W1C	0	Target Mode Transaction Abort Detected Flag Set if the SPI is in target mode, and SS is deasserted before a complete character is received.	
8	fault	R/W1C	0	Multi-Controller Fault Flag Set if the SPI is in controller mode, multi-controller mode is enabled, and a target select input is asserted. A collision also sets this flag.	
7:6	-	R/W	0	Reserved	
5	ssd	R/W1C	0	Target Select Deasserted Flag	
4	ssa	R/W1C	0	Target Select Asserted Flag	
3	rx_full	R/W1C	0	Receive FIFO Full Flag	
2	rx_thd	R/W1C	0	Receive FIFO Threshold Level Crossed Flag Set when the receive FIFO exceeds the value in <i>SPIn_DMA.rx_lvl</i> . Cleared once receive FIFO level drops below <i>SPIn_DMA.rx_lvl</i> .	
1	tx_em	R/W1C	1	Transmit FIFO Empty Flag This field is set to 1 by hardware if the transmit FIFO is empty.	

SPI Interrupt Status Flags			SPIn_INTFL		[0x0020]
Bits	Name	Access	Reset	Description	
0	tx_thd	R/W1C	0	Transmit FIFO Threshold Level Crossed Flag This field is set to 1 by hardware when the transmit FIFO is less than the value in <i>SPIn_DMA.tx_lvl</i> . This field is cleared by hardware once transmit FIFO level exceeds <i>SPIn_DMA.tx_lvl</i> .	

Table 12-16: SPI Interrupt Enable Registers

SPI Interrupt Enable			SPIn_INTEN		[0x0024]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved	
15	rx_un	R/W	0	Receive FIFO Underrun Interrupt Enable 0: Disabled. 1: Enabled.	
14	rx_ov	R/W	0	Receive FIFO Overrun Interrupt Enable 0: Disabled. 1: Enabled.	
13	tx_un	R/W	0	Transmit FIFO Underrun Interrupt Enable 0: Disabled. 1: Enabled.	
12	tx_ov	R/W	0	Transmit FIFO Overrun Interrupt Enable 0: Disabled. 1: Enabled.	
11	mst_done	R/W	0	Controller Data Transmission Done Interrupt Enable 0: Disabled. 1: Enabled.	
10	-	R/W	0	Reserved	
9	abort	R/W	0	Target Mode Abort Detected Interrupt Enable 0: Disabled. 1: Enabled.	
8	fault	R/W	0	Multi-Controller Fault Interrupt Enable 0: Disabled. 1: Enabled.	
7:6	-	R/W	0	Reserved	
5	ssd	R/W	0	Target Select Deasserted Interrupt Enable 0: Disabled. 1: Enabled.	
4	ssa	R/W	0	Target Select Asserted Interrupt Enable 0: Disabled. 1: Enabled.	
3	rx_full	R/W	0	Receive FIFO Full Interrupt Enable 0: Disabled. 1: Enabled.	
2	rx_thd	R/W	0	Receive FIFO Threshold Level Crossed Interrupt Enable 0: Disabled. 1: Enabled.	
1	tx_em	R/W	0	Transmit FIFO Empty Interrupt Enable 0: Disabled. 1: Enabled.	

SPI Interrupt Enable			SPIn_INTEN		[0x0024]
Bits	Name	Access	Reset	Description	
0	tx_thd	R/W	0	Transmit FIFO Threshold Level Crossed Interrupt Enable 0: Disabled. 1: Enabled.	

Table 12-17: SPI Wakeup Status Flags Registers

SPI Wakeup Flags			SPIn_WKFL		[0x0028]
Bits	Name	Access	Reset	Description	
31:4	-	R/W	0	Reserved	
3	rx_full	R/W1C	0	Wake on Receive FIFO Full Flag 0: Normal operation. 1: Wake condition occurred.	
2	rx_thd	R/W1C	0	Wake on Receive FIFO Threshold Level Crossed Flag 0: Normal operation. 1: Wake condition occurred.	
1	tx_em	R/W1C	0	Wake on Transmit FIFO Empty Flag 0: Normal operation. 1: Wake condition occurred.	
0	tx_thd	R/W1C	0	Wake on Transmit FIFO Threshold Level Crossed Flag 0: Normal operation. 1: Wake condition occurred.	

Table 12-18: SPI Wakeup Enable Registers

SPI Wakeup Enable			SPIn_WKEN		[0x002C]
Bits	Name	Access	Reset	Description	
31:4	-	R/W	0	Reserved	
3	rx_full	R/W	0	Wake On Receive FIFO Full Enable 0: Wake event is disabled. 1: Wake event is enabled.	
2	rx_thd	R/W	0	Wake On Receive FIFO Threshold Level Crossed Enable 0: Wake event is disabled. 1: Wake event is enabled.	
1	tx_em	R/W	0	Wake On Transmit FIFO Empty Enable 0: Wake event is disabled. 1: Wake event is enabled.	
0	tx_thd	R/W	0	Wake On Transmit FIFO Threshold Level Crossed Enable 0: Wake event is disabled. 1: Wake event is enabled.	

Table 12-19: SPI Target Select Timing Registers

SPI Status			SPIn_STAT		[0x0030]
Bits	Name	Access	Reset	Description	
31:1	-	R/W	0	Reserved	

SPI Status				SPIn_STAT	[0x0030]
Bits	Name	Access	Reset	Description	
0	busy	R	0	<p>SPI Active Status</p> <p>This field returns the SPI status.</p> <p>0: SPI is not active. In controller mode, the <i>busy</i> flag is cleared when the last character is sent. In target mode, the <i>busy</i> field is cleared when the configured target select input is deasserted.</p> <p>1: SPI is active. In controller mode, the <i>busy</i> flag is set when a transaction starts. In target mode, the <i>busy</i> flag is set when a configured target select input is asserted.</p> <p><i>Note: SPIn_CTRL0, SPIn_CTRL1, SPIn_CTRL2, SPIn_SSTIME, and SPIn_CLKCTRL should not be configured if this bit is set.</i></p>	

13. Analog Front-End (AFE)

The MAX32675C communicates internally using the SPI0 interface to provide register and control to the AFE peripherals.

See the [Serial Peripheral Interface \(SPI\)](#) chapter for details of SPI communications and configuration. The AFE enables access to the following peripherals:

- The dual 16-/24-bit delta-sigma ADCs with PGA.
- The 12-bit DAC and voltage reference.
- The HART modem.

13.1 Instances

There is one instance of the AFE. SPI0 is used to communicate to the AFE and must be configured as shown in [Table 13-2](#).

Table 13-1: MAX32675C AFE Instance

Instance	SPI Interface	SPI Clock
AFE	SPI0	PCLK

13.2 SPI Communication Interface

The AFE requires the internally connected SPI0 instance for communications to each of the AFE peripherals for configuration and command.

The SPI interface must be set to mode 0. Data is strobed in on the SCLK rising edges. The content of the SPI operation consists of a one-byte register address and read/write command followed by a one, two, or three-byte control or data word. Programming is by a variable cycle (dictated by the peripheral's register byte width) SPI instruction framed by a slave select low interval. To abort a command sequence, the rise of the target select signal must precede the updating rising edge of SCLK. [Table 13-2](#) shows the internal pins between the microcontroller and the AFE used for the SPI interface.

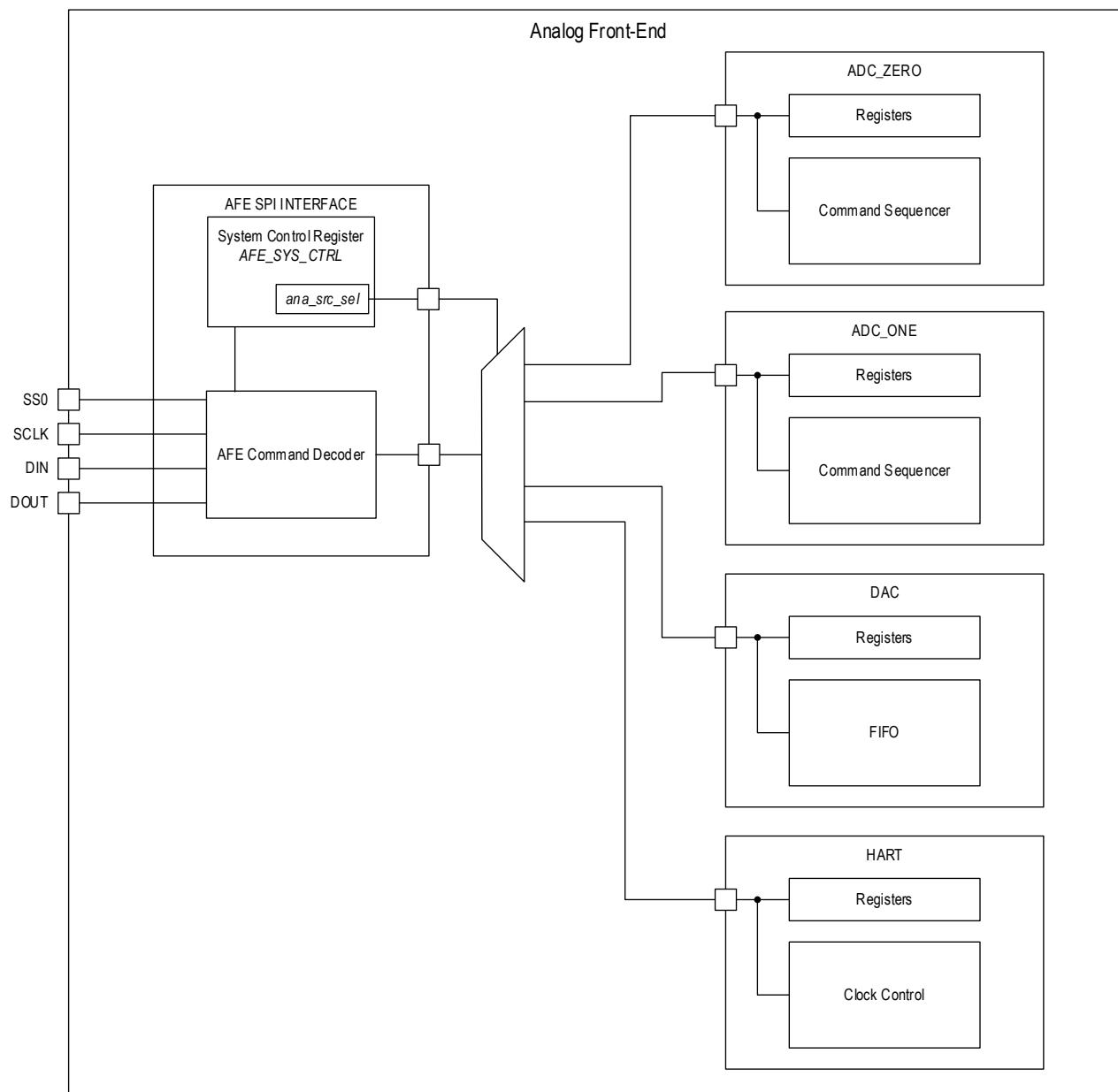

[Figure 13-1](#) shows the AFE functional diagram and interface.

Table 13-2: MAX32675C SPI0 Pins Used for Communication with the AFE

Signal Name	AFE Interface Name	SPI0 Pin	Alternate Function	Direction
SCLK	SCLK	P0.4	AF1	Input from microcontroller
SS	SS0	P0.5	AF1	Input from microcontroller
MOSI	DIN	P0.3	AF1	Input from microcontroller
MISO	DOUT	P0.2	AF1	Output to microcontroller

See the [Serial Peripheral Interface \(SPI\)](#) chapter for details on configuring the SPI interface in software.

Figure 13-1: AFE Functional Diagram and Interface

13.2.1 AFE Peripheral Register Byte Width

Each of the individual AFE peripherals contain a list of independent registers. Each of these registers is either 8-bits, 16-bits, 24-bits, or 32-bits wide. See each of the AFE peripheral's register list tables to determine the width of each specific register.

Table 13-3 shows the convention used for the AFE peripherals in this document. This convention applies to the following peripherals and their register sets:

- The AFE.
- The [24-Bit Delta-Sigma ADC with PGA](#).
- The [Digital-to-Analog Converter \(DAC\)](#).
- The [HART Modem \(HART\)](#).

The address column shows the SPI command address when the peripheral is selected using the [AFE_SYS_CTRL.ana_src_sel](#) field. The width column shows the bit width of the register. This width can be 8-bits, 16-bits, or 24-bits and corresponds to the number of SPI bytes to read or write for each register.

Note: The [AFE_SYS_CTRL](#) register is always at SPI address 0x7A regardless of the AFE peripheral selected.

Table 13-3: AFE Peripheral Register Table Convention

Address	Width	Register Name	Description
<SPI Address>	<Register Width>	<Register Name>	<Register Description>

13.2.2 DOUT/INTB

This output from the AFE serves a dual function. In addition to the serial-data output function, DOUT/INTB also indicates the interrupt condition when SSO is low. To find the interrupt state, assert SSO low and sample the INTB/DOUT output. When performing a device readback, the DOUT/INTB signal reflects the interrupt states until the 9th SCLK falling edge, at which point it transitions to the DOUT data.

13.2.3 SPI Transactions

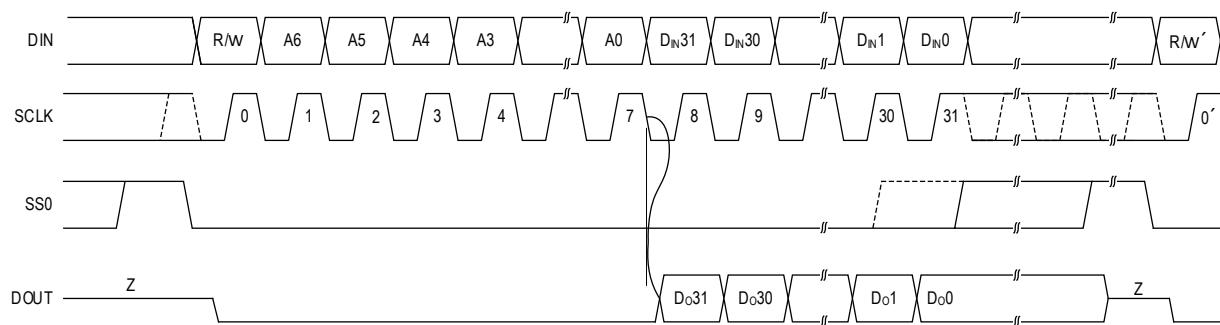
All transactions consist of a read/write bit, register address, and register data (returned or written). All registers are either 8, 16, or 24 bits in length. Program word execution happens on either the 16th, 24th, or 32nd edge, depending on the programmed register word length. Paired SPI register reads and writes are not supported. Registers are read and written MSB first. *Figure 13-2* shows the structure of the SPI communications used between SPI0 and the AFE.

If CRC-5-USB is enabled, [AFE_SYS_CTRL.crc5](#) = 1, all SPI read transactions are extended by one byte. The last byte read from the AFE during the SPI transaction is the CRC-5-USB byte of the data read bytes.

Note: Enabling CRC-5-USB adds an additional byte to the standard SPI read transaction, extending an 8-bit register read to a two byte SPI read, a 16-bit register read to three byte SPI read and a 24-bit register read to a four byte SPI read.

13.2.3.1 SPI Register Address Byte

The write to the SPI register address byte, shown in SCLK cycles 0 through 7 in *Figure 13-2*, begins any read or write transaction to the AFE or the selected AFE peripheral. *Table 13-4* shows the format of the SPI register address byte. The R/WB bits selects whether the transaction is a read or a write. Setting the R/WB bit to 1 indicates a read transaction and setting R/WB to 0 indicates a write transaction. The REG_ADDR bits select the address of the register to be written or read.


Table 13-4: Register Address Byte

D7	D6	D5	D4	D3	D2	D1	D0
R/WB				REG_ADDR[6:0]			

13.2.4 SPI Transactions and ADC Conversions

When an ADC conversion is started using either of the 16-/24-bit Delta-Sigma ADCs, any SPI register writes to the same ADC results in the conversion being aborted. To allow an ADC conversion to complete, while switching to a different AFE peripheral, it is required to first read the [AFE_SYS_CTRL](#) register. This read automatically sets the [AFE_SYS_CTRL.spi_abort_dis](#) to 1 in hardware. After the read, modify the [AFE_SYS_CTRL.ana_src_sel](#) field to a different AFE peripheral and then write the [AFE_SYS_CTRL](#) register.

Figure 13-2: AFE SPI Communications Diagram with CRC-5-USB Disabled

13.3 Selecting an AFE Peripheral

Selecting an AFE peripheral requires writing to the [AFE_SYS_CTRL](#) register and setting the [AFE_SYS_CTRL.ana_src_sel](#) field to the desired AFE peripheral. To set the [AFE_SYS_CTRL](#) register, it is recommended first to read the register and modify the desired fields before writing it. Select one of the four AFE components using the following steps:

1. Configure the SPI interface as specified in [Table 13-2](#).
2. Perform an 8-bit SPI read using the [AFE_SYS_CTRL](#) register address.
 - a. The data read is the current value of the [AFE_SYS_CTRL](#) register.
3. Modify the data read and change the [AFE_SYS_CTRL.ana_src_sel](#) field to the desired selection.
 - a. Set [AFE_SYS_CTRL.ana_src_sel](#) to 0 to select ADC_ZERO.
 - b. Set [AFE_SYS_CTRL.ana_src_sel](#) to 1 to select ADC_ONE.
 - c. Set [AFE_SYS_CTRL.ana_src_sel](#) to 2 to select the DAC.
 - d. Set [AFE_SYS_CTRL.ana_src_sel](#) to 3 to select the HART modem.
4. Perform an 8-bit SPI write using the [AFE_SYS_CTRL](#) register address and the modified [AFE_SYS_CTRL](#) value as the write data.

13.4 Loading the AFE Trim Values

Each device contains unique trim values determined during production test. The values are stored in the information block starting at address 0x1080 0280. [Figure 13-3](#) shows the trim values starting at address offset 0x280 in the information block. These trim values must be loaded by software to the corresponding trim registers as follows:

1. Unlock the information block for reading. See [Unlocking the Flash Information Block](#) for details.
2. Read the trim values shown in [Figure 13-3](#).
3. Select ADC_ZERO. See [Selecting an AFE Peripheral](#) for details.
4. Put ADC_ZERO in the reset state by writing 3 to the [AFE_ADC_n_PD](#) register.
5. Unlock ADC_ZERO trim as follows:
 - a. Write the ADC_ZERO [AFE_ADC_n_FT_PWORD](#) register with the value 0x48.
 - b. Write the ADC_ZERO [AFE_ADC_n_FT_PWORD](#) register with the value 0x7B.
6. Select ADC_ONE. See [Selecting an AFE Peripheral](#) for details.
7. Put ADC_ONE in the reset state by writing 3 to the [AFE_ADC_n_PD](#) register.
8. Unlock ADC_ONE trim as follows:
 - a. Write the ADC_ONE [AFE_ADC_n_FT_PWORD](#) register with the value 0x48.
 - b. Write the ADC_ONE [AFE_ADC_n_FT_PWORD](#) register with the value 0x7B.
9. Select ADC_ZERO. See [Selecting an AFE Peripheral](#) for details.
10. Write ADC_ZERO ADC_TRIM0[18:0] from the information block to the [AFE_ADC_n_ADC_TRIM0](#) register.
11. Write ADC_ZERO ADC_TRIM1[13:0] from the information block to the [AFE_ADC_n_ADC_TRIM1](#) register.
12. Write ADC_ZERO ANA_TRIM[14:0] from the information block to the [AFE_ADC_n_ANA_TRIM](#) register.
13. Select the DAC. See [Selecting an AFE Peripheral](#) for details.
14. Write DAC_TRIM[15:0] from the information block to the [AFE_DAC_TRIM](#) register.
15. Write VREF_TRIM[10:0] from the information block to the [AFE_DAC_VREF_TRIM](#) register.
16. Select ADC_ONE. See [Selecting an AFE Peripheral](#) for details.
17. Write ADC1 ADC_TRIM0[18:0] from the information block to the [AFE_ADC_n_ADC_TRIM0](#) register.
18. Write ADC1 ADC_TRIM1[13:0] from the information block to the [AFE_ADC_n_ADC_TRIM1](#) register.
19. Write ADC1 ANA_TRIM1[11:0] from the information block to the [AFE_ADC_n_ANA_TRIM](#) register.

Note: Only ANA_TRIM[11:10] are contained in the information block. Bits 9:0 should be set to 0 before writing.
20. Select the HART modem. See [Selecting an AFE Peripheral](#) for details.
21. Write HART_TRIM[19:0] from the information block to the [AFE_HART_TRIM](#) register.

Note: Bits 6:5 of HART_TRIM must be set to 0 before writing the trim value.
22. Select ADC_ZERO. See [Selecting an AFE Peripheral](#) for details.
23. Write 0x00 to ADC_ZERO's [AFE_ADC_n_FT_PWORD](#) register.
24. Write 0x00 to ADC_ONE's [AFE_ADC_n_FT_PWORD](#) register.
25. Lock the flash information block by writing 0x1234 to the [FLC_ACTRL](#) register.

Figure 13-3: Information Block Address Offset of AFE Trim Values

13.5 AFE Registers

See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a POR, and the AFE reset ([GCR_RST1.afe](#)).

Table 13-5: AFE Registers

Address	Width	Register Name	Description
0x7A	8 bits	AFE_SYS_CTRL	AFE System Control Register

13.5.1 Register Details

Table 13-6: AFE System Control Register

AFE System Control		AFE_SYS_CTRL			0x7A
Bits	Name	Access	Reset	Description	
7	crc_inv	R/W	0	CRC5 Bit Invert Set this field to 1 to invert the CRC5 bits. This field has no effect unless the CRC5 is enabled. Enable the CRC5 by setting AFE_SYS_CTRL.crc5 to 1. 0: CRC5 bits are not inverted for SPI reads. 1: Invert CRC5 bits for SPI reads.	
6	por_flag	R/W	1	AFE POR Flag This field indicates if a POR event has occurred. Setting this field to 0 clears the POR status. Once set to 0, only a POR event can set this field to 1. Software should write this field to 0 after any form of reset. This field reads 0 until another reset event occurs. 0: Normal operation. 1: POR occurred.	
5	spi_abort_dis	See Description	0	SPI Write Abort ADC Conversion Reading the AFE_SYS_CTRL register sets this field to 1. See SPI Transactions and ADC Conversions for details on how this field is used to allow switching AFE peripherals while allowing an ADC conversion to be completed.	
4	hart_en	R/W	0*	HART Modem Enable Setting this field to 1 enables the HART modem. 0: HART modem disabled. 1: HART modem enabled. <i>*Note: This field is only reset by a POR.</i>	
3	rst	R/W	1	Reset Occurred This field is set to 1 when a reset has occurred. This field must be cleared by software to ensure proper HART functionality. 0: Normal operation. 1: Reset occurred.	
2	crc5	R/W	0	CRC5 Enable for SPI Reads Setting this field to 1 enables the CRC5-USB protocol on all SPI reads, extending the read by 1 byte. The CRC5 is read as the last byte of the SPI read transaction. 0: CRC5 disabled. 1: CRC5 enabled.	

AFE System Control		AFE_SYS_CTRL			0x7A
Bits	Name	Access	Reset	Description	
1:0	ana_src_sel	R/W	0	AFE Source Select Set this field to the desired analog block's register set. The default setting of this field selects the ADC_ZERO peripheral. 0: ADC_ZERO registers 1: ADC_ONE registers 2: DAC12 registers 3: HART registers	

14. HART Modem (HART)

Highway Addressable Remote Transducer (HART) communication is a widely implemented serial communication interface often used in electrically noisy applications. Digital signals are superimposed on the analog signal of a 4–20mA current loop.

The HART modem interfaces directly with a HART communications network.

The HART protocol is based on the phase continuous frequency shift keying (FSK) technique. Bit 0 is modulated to a 2200Hz trapezoidal signal, and bit 1 is modulated to a 1200Hz trapezoidal signal with a baud rate of 1200bps. The hardware superimposes the two frequencies, which can easily be superimposed on the analog current-loop signal. The current-loop signal operates in the range of DC to 10Hz without affecting either of the FSK signals. The unique methodology of the HART protocol enables simultaneous analog and digital communication on the same wire.

Functionally, the peripheral appears as a UART at the link level and with the 4-20mA current loop at the physical layer.

Software controls the HART mode using the internal SPI port shown in [Figure 14-1](#). Data communications use the internal UART shown in the same figure. Software is required to configure the SPI and UART interface for communications between the CPU and the internal HART modem. When the HART modem is in use, the UART port is dedicated to the HART modem and is not available for any other use. When software disables the HART modem, the UART port is available for general use.

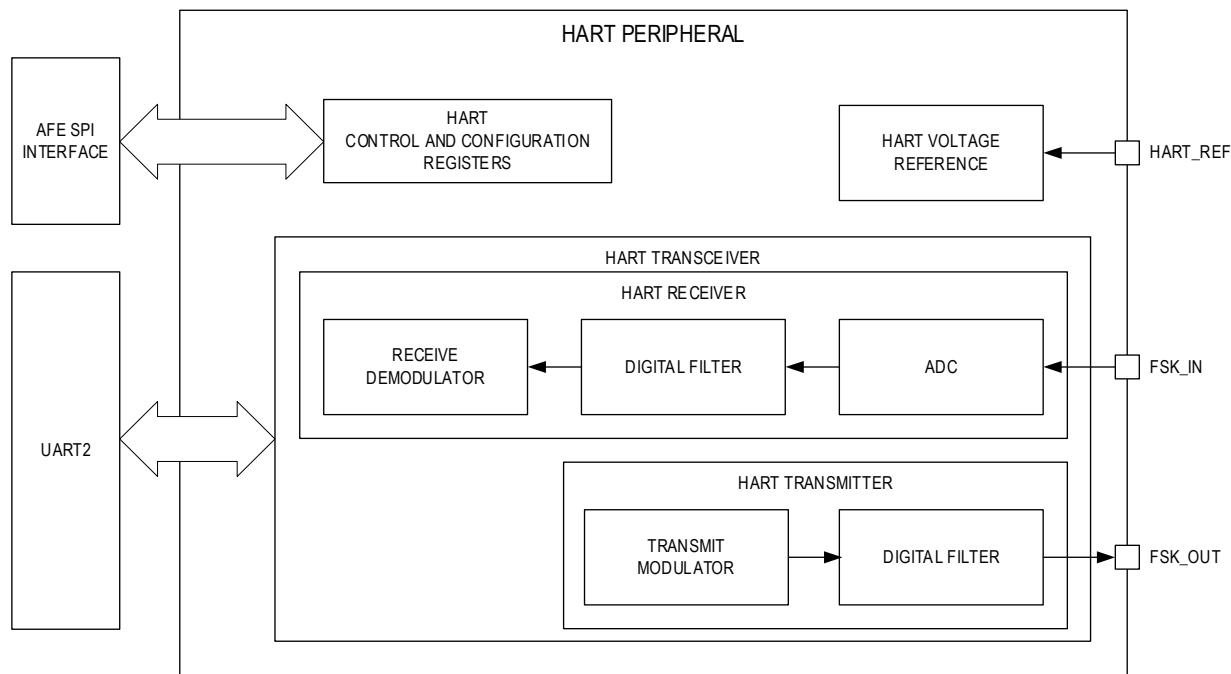
HART communication is accomplished through commands and responses depending on the specific protocol and network topology. The HART peripheral does not implement any portion of the communication protocol; it only handles the modulation and demodulation of the encoded information. Analog Devices, Inc. provides a HART FSK physical layer interface and Service Access Points (SAP) in the MAX32675C Software Development Kit. The HART FSK physical layer interface and the SAP are detailed in the HART Token Passing Data Link Layer (TPDLL) specification (HCF_SPEC-81 FC TS20081).

HART Peripheral Features:

- The integrated design reduces PCB footprint and components.
- The digital signal processing increases reliable signal detection in noisy environments.
- The peripheral supports both 500Ω and 30kΩ line impedances.
- The HART transmitter provides the required trapezoidal output signal.
- The HART receiver processes both trapezoidal and sinusoidal input signals.
- Fast carrier detect output (OCD) assertion occurs after a valid HART signal is received.
- Programmable signal thresholds:
 - ◆ Bit detect up
 - ◆ Bit detect down
 - ◆ Carrier detect up
 - ◆ Carrier detect down

14.1 Instances

Instances of the peripheral are listed in [Table 14-1](#). The UART interface listed is used when the peripheral is active and should not be used by software while the HART is in use.

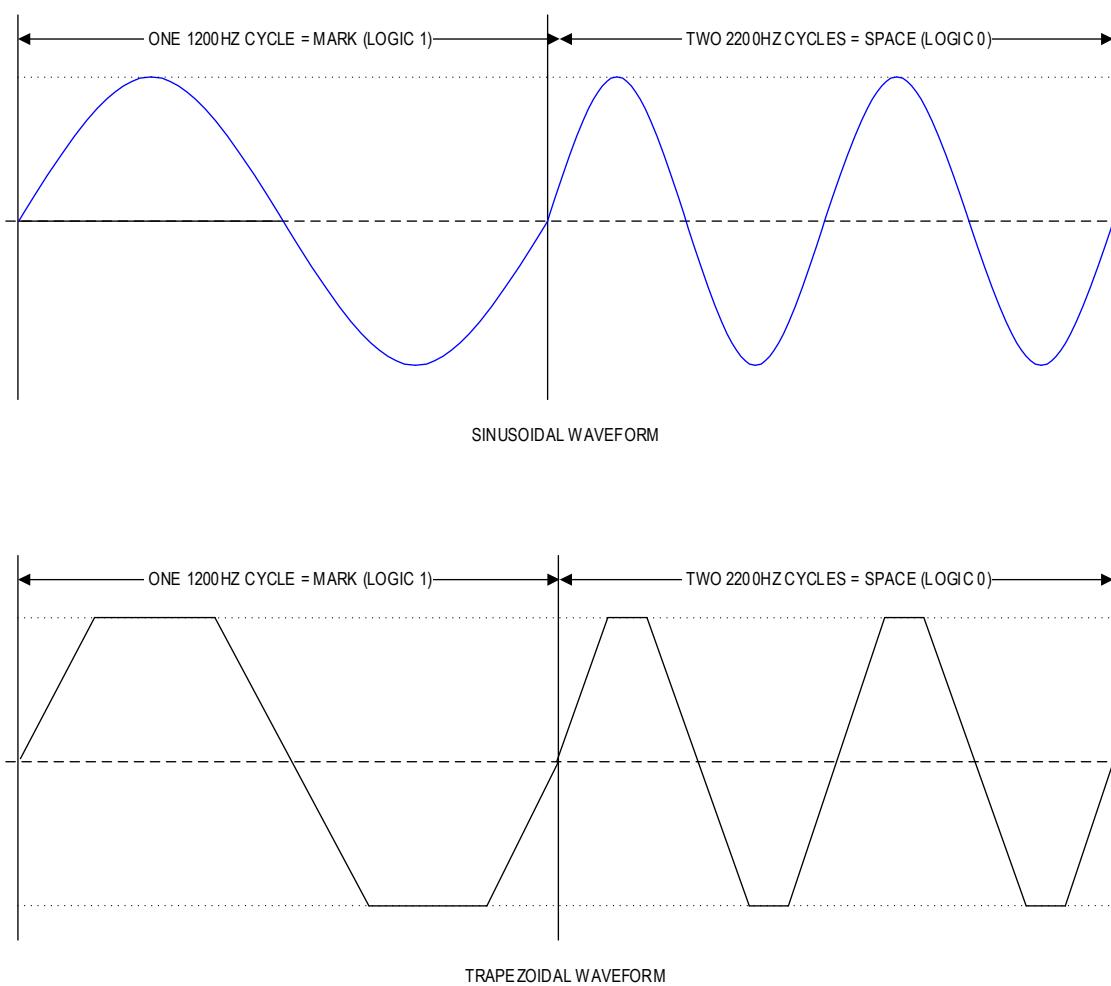

Table 14-1: MAX32675C HART Modem Instances

Instance	UART Interface	HART Registration Certificate Number
HART	UART2	Pending

14.2 Functional Description

The HART peripheral consists of a demodulator, carrier detect, and digital filter as well an ADC for input signal conversion and a modulator for output signal generation. *Figure 14-1* shows the HART peripheral's block diagram. The SPI interface is used for the configuration of the HART peripheral, and the UART interface provides control and data communications through HART.

Figure 14-1: MAX32675C HART Block Diagram


14.3 Selecting the HART Modem Using the AFE

Communication to the HART modem is configured using the AFE interface through the internal SPI0. See the section *Selecting an AFE Peripheral* for the required steps to select the DAC.

14.4 Modulator

The FSK-modulated signal is present at the FSK_OUT output pin, as illustrated in *Figure 14-2*. The modulator is enabled by the UART RTS signal set to a logic low (0). The modulator preserves a continuous phase when switching between frequencies to minimize the bandwidth of the transmitted signal.

Figure 14-2: HART Waveforms Trapezoid and Sinusoid

14.5 Demodulator

The demodulator accepts an FSK signal and reproduces the original modulating signal. The HART signal should be presented as an 11-bit UART character with a start, data, odd parity, and stop bits for proper operation of the demodulator block. The nominal bit rate of the D_OUT signal is 1200 bits per second. Refer to the device's evaluation kit data sheet for a schematic for an example of the simple RC filter to condition the raw analog signal and improve anti-aliasing.

14.6 HART Registration

The peripheral incorporates circuitry, which was previously validated, and received a Modem IC Registration Certificate from the HART Communication Foundation. The use of a HART-registered IC reduces the customer cost and effort associated with achieving HART registration of the end product. This IC has been submitted to the HART Communication Foundation for evaluation, and a copy of the MAX32675C Registration Certificate will be available at <https://www.fieldcommgroup.org/technologies/hart> when the registration is complete.

14.7 HART Protocol and Interface Management

The implementation of the HART modem protocol for this device involves software interrupts and data handling routines. The details of this software are beyond the scope of this chapter and are demonstrated fully in the SDK.

14.8 Writing and Reading the HART Registers

The communication interface consists of:

- UART data interface
- SPI control interface

HART modem data transfer is performed through the UART2 FIFO located on the APB bus. Once configured, the transmit and receive data is available in their respective FIFOs. Data management is performed using the FIFO status flags and programmable interrupts.

The modem control and configuration registers for this peripheral are not mapped to the APB bus like other peripherals. Instead, they are accessed indirectly through the internal SPI0 port shown in [Figure 14-1](#). Once the SPI0 port is configured, the HART registers are accessed using standard SPI read and write operations. See [Table 14-2](#) for the addresses of each of the HART registers. The procedure for configuring the SPI0 peripheral and accessing these registers is described in [Analog Front-End \(AFE\)](#) and demonstrated in the SDK example software.

Note: The HART register configuration is performed using the HART FSK physical layer and SAP driver provided in the MAX32675C Software Development Kit. Direct modifications to these registers should not be necessary.

14.9 HART Registers

These registers are accessed through the [Analog Front-End \(AFE\)](#) using the internal SPI0 interface. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a POR, and the AFE reset ([GCR_RST1.afe](#)).

All HART modem registers are 24-bits wide.

Table 14-2: HART Modem Registers

Address	Width	Register Name	Description
0x00	24 bits	AFE_HART_CTRL	Control Register
0x01	24 bits	AFE_HART_RX_TX_CTL	Receive-Transmit Control Register
0x02	24 bits	AFE_HART_RX_CTL_EXT1	Receive Control Extension 1 Register
0x03	24 bits	AFE_HART_RX_CTL_EXT2	Receive Control Extension 1 Register
0x04	24 bits	AFE_HART_RX_DB_THRSHLD	Receive Bit-Detect/Demodulation Threshold Register
0x05	24 bits	AFE_HART_RX_CRD_UP_THRSHLD	Receive Carrier Detect Up Threshold Register
0x06	24 bits	AFE_HART_RX_CRD_DN_THRSHLD	Receive Carrier Detect Down Threshold Register
0x07	24 bits	AFE_HART_RX_CRD_DOUT_THRSHLD	Receive Carrier Detect DOUT Threshold
0x08	24 bits	AFE_HART_TX_MARKSPACE_CNT	Transmit Mark-Space Count Values Register
0x09	24 bits	AFE_HART_STAT	Status Register
0x0A	24 bits	AFE_HART_TRIM	Trim Register
0x0B	24 bits	AFE_HART_TM	Test Mode Register 0

14.9.1 Register Details

Table 14-3: HART Control Register

HART Control		AFE_HART_CTRL			0x00
Bits	Field	Access	Reset	Description	
23:1	-	RO	0	Reserved	

HART Control			AFE_HART_CTRL		0x00
Bits	Field	Access	Reset	Description	
0	adm_tm_en	R/W	0	ADC Test Mode Enable When set, this bit enables the HART ADC test mode for INL/DNL measurements. The AFE_SYS_CTRL.hart_en bit must be set to enable this mode. When this bit is set, the RTS to the HART digital is automatically set and is not taken from the designated GPIO. This then enables the HART receive mode as a functional mode, but the GPIO[6:1] now outputs the HART ADC Data Output, ADC_DOUT[7:2] bits for INL/DNL measurements. 0: Disabled. 1: Enabled.	

Table 14-4: HART Receive-Transmit Control Register

HART Receive-Transmit Control			AFE_HART_RX_TX_CTL		0x01
Bits	Field	Access	Reset	Description	
23	tx_4mhz_clk_en	R/W	1	Transmit 4MHz Clock Enable Selects the clock that generates the TX_FSK_CLK_DIG input for the transmit slew rate AFE. The default 4MHz results in higher accuracy in generating the mark/space outputs on the TX_FSK_CLK_DIG output to the AFE. 0: N/A. 1: 4MHz. <i>Note: This field must be set to 1 for HART operation.</i>	
22	tx_ws_dis_rs	R/W	0	Transmit Disable Edge Selects which edge of the TX_FSK_CLK_DIG disables the transmit slew rate AFE. 0: Falling. 1: Rising. <i>Note: This field is only reset on a POR.</i>	
21	tx_bus_dcl_en	R/W	1	Bus DC Load Select 0: 30kΩ. 1: 500Ω. <i>Note: This field is only reset on a POR.</i>	
20	tx_buf_en	R/W	1	Transmit Buffer Enable 0: Disabled. 1: Enabled. <i>Note: This field is only reset on a POR.</i>	
19:16	rx_adc_pwr_dly_cnt	R/W	2	Receive ADC Power-up Sample Ignore Count Sets the delay in ADC cycles before the carrier detect, and the bit-detect logic is enabled to reject false assertions/glitches when the receiver is enabled. Note that this has a direct impact on carrier detect assertion time; thus, the value must be programmed appropriately. A large value delays carrier detect assertion delaying the receive traffic.	
15:8	rx_bp_settle_cnt	R/W	0x50	Receive Bandpass Settling Count This sets the number of ADC samples to delay before enabling the Receive DSP. This ignores Carrier-Detect/Bit-Detect glitches due to the initial power-up of the ADC.	
7:4	rx_adc_pwr_up_smp_ignr	R/W	4	Receive ADC Ignore Sample Count on Power Up	

HART Receive-Transmit Control			AFE_HART_RX_TX_CTL		0x01
Bits	Field	Access	Reset	Description	
3	rx_dout_uart_en	R/W	0	Receive Demodulated Bit UART Timing Enable Setting this field to 1 forces character based re-timing on the received HART data. This field should be set to 1 to ensure correctly received data in in-band noisy environments. 0: UART bypassed. 1: UART timing.	
2	rx_adc_offset_sel	R/W	0	Receive ADC Offset Select 0: Disabled. 1: Enabled.	
1	rx_adc_refbuf_en	R/W	1	Receive ADC Reference Buffer Enable 0: Disabled. 1: Enabled. <i>Note: This field is only reset on a POR.</i>	
0	rx_adc_ref_en	R/W	1	Receive ADC Reference Enable 0: Disabled. 1: Enabled.	

Table 14-5: HART Receive Control Extension 1 Register

HART Receive Control Extension 1			AFE_HART_RX_CTL_EXT1		0x02
Bits	Field	Access	Reset	Description	
23:19	-	RO	0	Reserved	
18:0	rx_an_init_val	R/W	0	Receive AN Initialization Value The AN register can be initialized at the start of receive transaction (before enabling the HART through the MAX32675C system control register) to the value programmed in this register to help quick carrier detect (OCD) activation. Normally the AN average builds up from zero to the carrier detect threshold. Initializing this and the ARN registers (must be done together to see the effect) can shorten this process. This is useful to create a less noisy scenario to ensure fast carrier detection on the HART signal application.	

Table 14-6: HART Receive Control Extension 2 Register

HART Receive Control Extension 2			AFE_HART_RX_CTL_EXT2		0x03
Bits	Field	Access	Reset	Description	
23:22	-	RO	0	Reserved	
21	rx_uart_timer_fast_cnt_en	R/W	1	Receive UART Timer Fast Count Enable 0: Disabled. 1: Enabled.	
20	rx_uart_timer_syn_alws_en	R/W	0	Receive UART Timer Bit Transition Synchronize This determines which event triggers the UART synchronization. 0: Synchronization occurs on every start bit. 1: Synchronization occurs on every one to zero transition.	
19:18	-	RO	0	Reserved	

HART Receive Control Extension 2		AFE_HART_RX_CTL_EXT2			0x03
Bits	Field	Access	Reset	Description	
17:16	rx_zc_ign_val	R/W	0	Receive Zero Cross Ignore Value This determines how many zero crossings are ignored after the receiver bandpass settling time counter expires before the carrier detect is enabled. After the HART receive bandpass settling time counter expires, this allows the filters to stabilize and gives control over carrier-detect/bit-detect glitching, particularly in noisy environments. Note that this has a direct impact on carrier detect assertion time; thus, the value must be programmed appropriately. A large value delays carrier detect assertion delaying the received traffic.	
15	-	RO	0	Reserved	
14:0	rx_arn_init_val	R/W	0	Receive AN Initialization Value This value determines the minimum delay for quick carrier detect (OCD) activation in applications that can guarantee relatively low levels of electrical noise. This value should be left at the default value in an end-product and only modified during product development if needed.	

Table 14-7: HART Receive Bit-Detect/Demodulation Threshold Register

HART Receive Bit-Detect/Demodulation Threshold		AFE_HART_RX_DB_THRSHLD			0x04
Bits	Field	Access	Reset	Description	
23:21	-	RO	0	Reserved	
20:12	rx_bitdtct_up_thrshld	RO	0b010010100	Reserved	
11:9	-	RO	0	Reserved	
8:0	rx_bitdtct_dn_thrshld	RO	0b010010010	Reserved	

Table 14-8: HART Receive Carrier Detect Up Threshold Register

HART Receive Carrier Detect Up Threshold		AFE_HART_RX_CRD_UP_THRSHLD			0x05
Bits	Field	Access	Reset	Description	
23:19	-	RO	0	Reserved	
18:0	rx_crd_up_thrshld	RO	0x1350	Reserved	

Table 14-9: HART Receive Carrier Detect Down Threshold Register

HART Receive Carrier Detect Down Threshold		AFE_HART_RX_CRD_DN_THRSHLD			0x06
Bits	Field	Access	Reset	Description	
23:19	-	RO	0	Reserved	
18:0	rx_crd_dn_thrshld	R/W	0x1230	Reserved	

Table 14-10: HART Receive Carrier Detect DOUT Threshold Register

HART Receive Carrier Detect DOUT Threshold		AFE_HART_RX_CRD_DOUT_THRSHLD			0x07
Bits	Field	Access	Reset	Description	
23:19	-	RO	0	Reserved	
18:0	rx_crd_dout_thrshld	R/W	0xd3	Receive Carrier Detect DOUT Threshold Value This adjusts the threshold used to suppress the DOUT = zero decoding in the receiver demodulation logic.	

Table 14-11: HART Transmit Mark-Space Count Values Register

HART Transmit Mark-Space Count Values		AFE_HART_TX_MARKSPACE_CNT			0x08
Bits	Field	Access	Reset	Description	
23	-	RO	0	Reserved	
21:12	tx_mark_cnt	R/W	0x682	Transmit Mark Count Value This is the number of clocks to be counted for the Mark frequency on the TX_FSK_CLK_DIG output. The value programmed is based on the AFE_HART_RX_TX_CTL.tx_4mhz_clk_en value. 0x682: Mark count for 4MHz clock. 0x341: Mark count for 2MHz clock.	
11:10	-	RO	0	Reserved	
9:0	tx_space_cnt	R/W	0x38C	Transmit Space Count Value This is the number of clocks to be counted for the Space frequency on the TX_FSK_CLK_DIG output. The value programmed is based on the AFE_HART_RX_TX_CTL.tx_4mhz_clk_en value. 0x38C: Space count for 4MHz clock. 0x0E3: Space count for 2MHz clock.	

Table 14-12: HART Status Register

HART Status		AFE_HART_STAT			0x09
Bits	Field	Access	Reset	Description	
23:0	-	DNM	0	Reserved	

Table 14-13: HART Trim Register

HART Trim		AFE_HART_TRIM			0x0A
Bits	Field	Access	Reset	Description	
23:0	-	R/W	0	HART Trim The values in this field should be written once after every reset, with the factory calibration values as described in Loading the AFE Trim Values . <i>Note: This register is only reset on POR.</i>	

Table 14-14: HART Test Mode Register

HART Test Mode 0		AFE_HART_TM			0x0B
Bits	Field	Access	Reset	Description	
23:4	-	RO	0	Reserved	
3	tm_vref_en	R/W	0	Test Mode V_{REF} Enable 0: Disabled. 1: Enabled.	
2	tm_bg_en	R/W	0	Test Mode Bandgap Analog Enable 0: Disabled. 1: Enabled.	
1	tm_bias_en	R/W	0	Test Mode BIAS Analog Enable 0: Disabled. 1: Enabled.	
0	tm_en	R/W	0	Test Mode Enable 0: Disabled. 1: Enabled.	

15. 24-Bit Delta-Sigma ADC with PGA

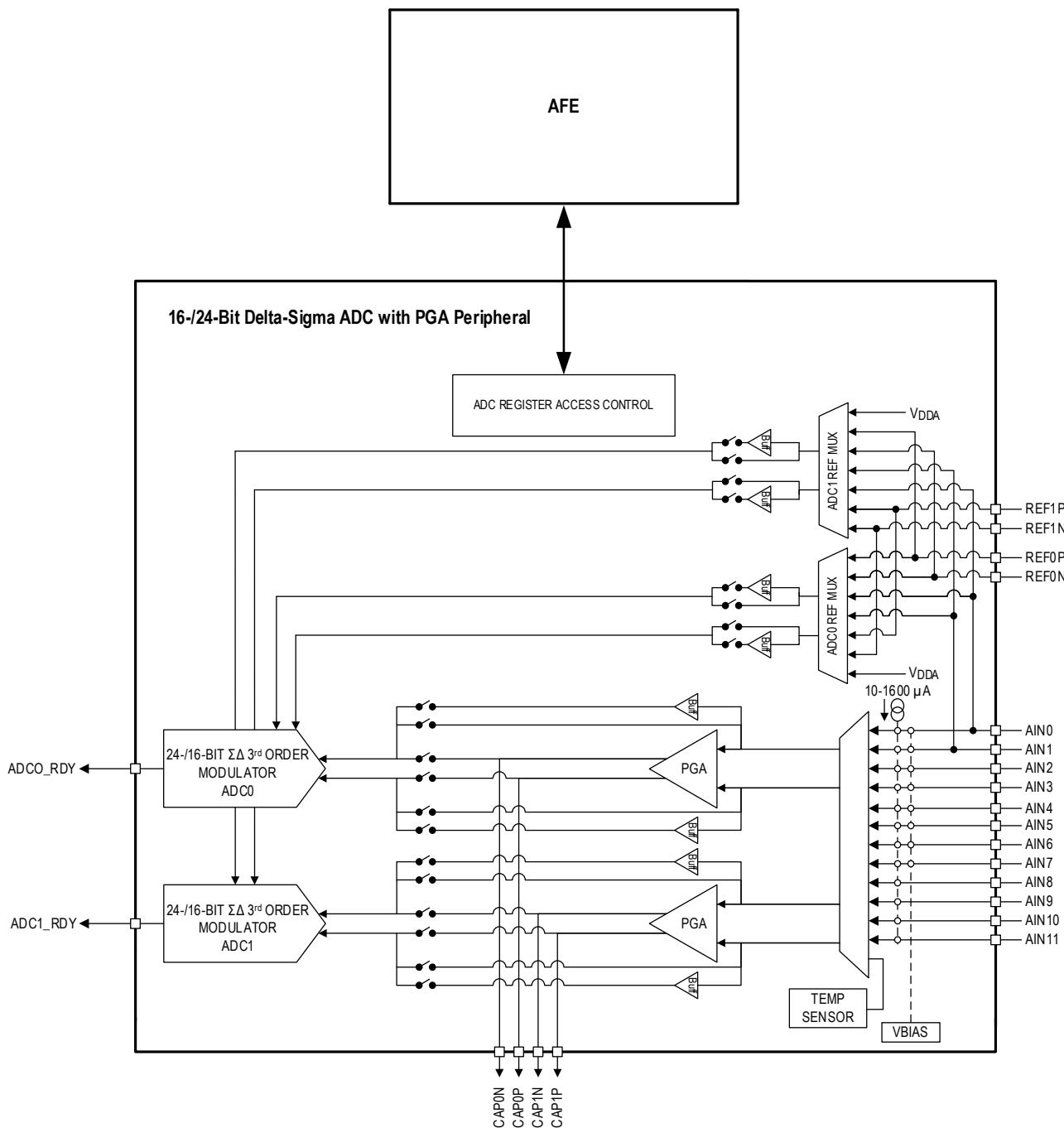
The MAX32675C includes dual multi-channel 16-/24-bit delta-sigma ADCs with features and specifications optimized for precision sensor measurement. The architecture includes a low-noise programmable gain amplifier (PGA), low-power input buffers, programmable matched current sources, differential/single-ended input multiplexer, and integrated on-chip oscillator.

Features include:

- PGA with available gains from 1 \times to 128 \times
 - ◆ Very high input impedance
 - ◆ Optimizes overall dynamic range
- Low-power input buffers
 - ◆ Provide input isolation
- Selectable reference
 - ◆ Internal differential (V_{REF})
 - ◆ External differential
- Programmable current sources
 - ◆ Bias for resistive sensors
 - ◆ 16 current level options
 - ◆ Detection of broken sensor wires
- 12 analog inputs
 - ◆ 6 differential or 12 single-ended
- Sample rates up to 7,680 samples per second
- FIR digital filter
 - ◆ Allows fast settling time while providing rejection of 50Hz and 60Hz line noise

15.1 Instances

There are two instances of the 16-/24-bit delta-sigma ADC, as shown in [Table 15-1](#).


Table 15-1: MAX32675C 16-/24-bit ADC with PGA Instances

Instance
AFE_ADC_ZERO
AFE_ADC_ONE

15.2 Functional Description

[Figure 15-1](#) shows the ADC peripheral's block diagram. The SPI interface is used for configuration and reading of each of the 16-/24-bit delta-sigma ADCs registers. Each ADC instance contains an independent set of registers to control and configure the ADC, PGA, reference selection, and analog inputs.

Figure 15-1: MAX32675C ADC Block Diagram

15.3 Detailed Description

This low-power, multi-channel, 24-bit delta-sigma ADC has features and specifications optimized for precision measurement of sensors and other analog signal sources.

The input section includes a low-noise PGA with very high input impedance and available gains from 1 \times to 128 \times to optimize the overall dynamic range. In addition, low-power input buffers can be enabled to provide isolation of the signal source from the modulator's switched-capacitor sampling network when the PGA is not in use, reducing the supply current requirements compared to the PGA.

Several integrated features simplify precision sensor applications. The programmable matched current sources provide excitation for resistive sensors; sixteen different current levels are available, allowing sensor full-scale range to be tuned for optimum signal-to-noise ratio. An additional current sink and current source supply small current levels to aid in detecting broken sensor wires. The 6-channel differential/12-channel single-ended multiplexer provides the flexibility needed for complex multi-sensor measurements. Two GPIO, ADC0_RDY and ADC1_RDY, reduce isolation components and ease control of switches or other circuitry.

The ADC can operate in continuous conversion mode at data rates up to 7,680 sps and in single-cycle conversion mode at rates up to 3,840sps. When used in single-cycle mode, the digital filter settles within a single conversion cycle. The available FIR digital filter allows single-cycle settling in 16ms while providing more than 90dB simultaneous rejection of 50Hz and 60Hz line noise. The integrated on-chip oscillator requires no external components. If needed, an external clock source may be used instead. Control registers and conversion data are accessed through the AFE using the SPI0 internal interface.

15.4 Analog Inputs

The twelve analog inputs (AIN0–AIN11) are configurable for differential/single-ended operation. For each conversion, the input multiplexer can be configured such that any of the twelve external analog inputs or V_{DDA} can be used as the positive input. Additionally, any of the twelve external analog inputs or V_{SSA} can be used as the negative input for the differential measurement. The multiplexer outputs may either drive the ADC inputs directly or drive low-power buffers. They then drive the ADC or the PGA inputs.

15.5 Signal Path Considerations

Three signal-path options are available to trade power-supply current against input impedance, gain, and input voltage range by enabling the PGA or the input buffers or bypassing both and driving the modulator directly. The PGA control register selects among these options, which are summarized below.

15.5.1 Bypass (Direct Signal Path) Mode

In bypass mode, the multiplexer outputs are directly connected to the ADC modulator inputs. In this mode, the input buffer and the PGA are disabled for minimum power-supply current. This mode allows input voltages from $V_{SSA} - 30mV$ to $V_{DDA} + 30mV$ and adds no amplifier noise to the signal. Input bias current is typically $1\mu A/V$, which is appropriate when driving with a low source resistance.

For smaller signal amplitudes, "digital gains" of 2 and 4 are available when using the direct signal path. See the [Digital Gain](#) section for more information.

15.5.2 Buffered Mode

The multiplexer outputs drive the inputs to the low-power signal buffers in buffered mode, which then drive the ADC modulator inputs. Selecting buffered mode disables the PGA. Input voltages from $V_{SSA} + 100mV$ to $V_{DDA} - 100mV$ are accepted in this mode, and no amplifier noise is added to the signal. The input bias current, typically $61nA$, is significantly less than that in the direct mode, so higher source resistances may be accommodated without causing appreciable errors. Enabling the input buffers increases the power supply current by $35\mu A$ (typical) compared to the bypassed (direct signal path) mode.

As with the bypassed mode, digital gains of 2 and 4 are available when using the buffered mode. See the [Digital Gain](#) section for more information.

15.5.3 PGA Mode

The PGA provides 1, 2, 4, 8, 16, 32, 64, or 128 gain. Selecting PGA mode enables the PGA, connects the PGA inputs to the multiplexer outputs, connects the PGA outputs to the ADC modulator inputs, and disables the low-power input buffers. The PGA accepts input voltages from $V_{SSA} + 100mV$ to $V_{DDA} - 100mV$ for gains up to 16, and $V_{SSA} + 200mV$ to $V_{DDA} - 200mV$ for gains from 32 to 128. When enabled, the PGA supply current is typically $130\mu A$.

Input current in PGA mode is much lower than in the buffered or direct modes, so PGA mode is a good choice for maintaining precision when source resistances are high.

Note: The input current in PGA mode is dominated by multiplexer leakage current and is highest when the input voltage, including that of unused inputs, is nearest V_{DDA} or GND. For applications that are most sensitive to the effects of input current, connect any unused inputs to a voltage near $\frac{V_{DDA}}{2}$.

Note: The maximum usable gain is limited by the reference voltage and input voltage. Ensure that the differential input voltage multiplied by the PGA gain is less than or equal to the reference voltage:

$$V_{IN} \times GAIN \leq V_{REF}$$

Where:

V_{IN} = differential input voltage

$GAIN$ = PGA gain

V_{REF} = reference voltage

Also, ensure that the input common-mode voltage (V_{CM}) falls within the acceptable common-mode voltage range of the PGA:

$$200mV + \frac{V_{IN} \times GAIN}{2} \leq V_{CM} \leq V_{DDA} - 200mV - \frac{V_{IN} \times GAIN}{2} \text{ for gains of 32 to 128 or}$$

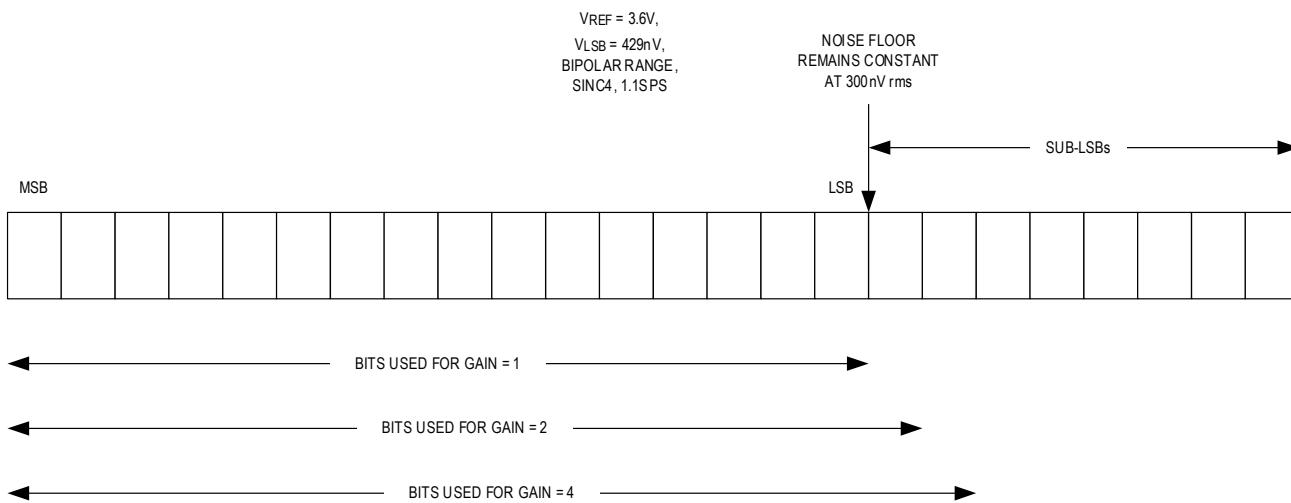
$$100mV + \frac{V_{IN} \times GAIN}{2} \leq V_{CM} \leq V_{DDA} - 100mV - \frac{V_{IN} \times GAIN}{2} \text{ for gains of 1 to 16}$$

Where:

$$V_{CM} = \frac{AINP - AINN}{2}$$

Enable the PGA and set the gain using the following steps:

1. Set the [*AFE_ADC_n_PGA*](#) register fields:
 - a. Set the signal path field, [*AFE_ADC_n_PGA.sig_path*](#) field to 2.
 - b. Set the desired gain by setting the [*AFE_ADC_n_PGA.gain*](#) field.
2. Write the [*AFE_ADC_n_PGA*](#) register using the AFE SPI interface.


15.6 Digital Gain

Programmable digital gain settings of 2 and 4 are available in the Direct and Buffered modes. Select the desired gain using the [*AFE_ADC_n_PGA.gain*](#) field. Gain bits of the PGA register. Digital gain selections greater than or equal to 4 results in digital gain equal to 4. The input range is 0V to $\frac{V_{REF}}{GAIN}$ for unipolar conversions or $\pm \frac{V_{REF}}{GAIN}$ for bipolar conversions.

The modulator produces 32 bits of data, and for unity gain, the 8 LSBs are truncated before the data is stored in the 24-bit conversion data registers. Selecting a digital gain of 2 causes the MSB and the 7 LSBs to be discarded, producing 24 bits of data with an effective "gain" of 2.

Note: For any data rate, the noise floor remains constant, independent of the digital gain setting. Digital gain is useful for systems whose input noise is dominated by the source or systems that can take advantage of averaging multiple readings to improve effective resolution. For cases when the output noise is below an LSB, using digital gain can decrease the input-referred noise at the expense of reduced dynamic range.

Figure 15-2: Digital Programmable Gain Example

15.7 Reference Inputs

There are three selectable differential reference voltage inputs. Select the reference input using the `AFE_ADC_n_CTRL.ref_sel` field. Either V_{REFP} , V_{REFN} , or both may be buffered, as determined by the `AFE_ADC_n_CTRL.refbufp_en` and `AFE_ADC_n_CTRL.refbufn_en` bits. With the reference buffer disabled, the input current is a few microamps (2.1 μ A/V, typical). Enabling a reference buffer reduces the reference input current to 65nA, typical. With the buffer enabled, the common-mode voltage range for V_{REFP} and V_{REFN} is between 100mV and V_{DDA} - 100mV. With the buffer disabled, the common-mode range is between GND and V_{DDA} .

Selectable buffers allow flexibility in using resistive voltage references. For example, suppose a voltage reference is generated by driving a current through a grounded reference resistor. In that case, V_{REFN} may be unbuffered, allowing it to be connected directly to GND, while V_{REFP} is buffered, helping reduce the effect of input bias current on the reference voltage.

15.8 Low-Power Considerations

Several operating modes help to optimize power and performance. As discussed in the *Signal Path Considerations* section, applications that do not require the gain or low input bias current available in PGA mode can reduce supply current by 130 μ A by disabling the PGA. For low-impedance sources, the input buffers may be disabled for further power savings. Similarly, the reference buffers may be disabled when the source resistance is low. The modulator has a selectable "duty cycle" mode for low power at lower sampling rates. The IC may be placed into sleep mode between conversions to reduce the average power supply current.

15.9 Modulator Duty Cycle Mode

In addition to its normal operating mode, the modulator can be operated in a 1/4 duty cycle mode to reduce power consumption for a given data rate at the expense of noise. The noise performance of a delta-sigma ADC generally improves when increasing the OSR (lowering the output data rate) because more samples of the internal modulator can be averaged to yield one conversion result. However, in applications where power consumption is critical, improved noise performance at low data rates may not be required. The internal duty cycling mode can yield significant power savings for these applications by periodically entering a low-power state between conversions. In principle, the modulator runs in normal mode with a duty cycle of 25%, performing one "normal" conversion and then automatically entering a low-power state for three consecutive conversion cycles. Therefore, the noise performance in duty-cycle mode is comparable to the noise performance in normal mode at four times the data rate. The duty-cycle mode can be selected using Direct, Buffered, or PGA signal paths. Neither the input buffers nor PGA is duty-cycled while in duty cycle mode.

Select duty-cycle mode using the [*AFE_ADC_n_CONV_START.conv_type*](#) field. To minimize current consumption in duty-cycle mode, set the signal path for an appropriate low-power mode (see [*Signal Path Considerations*](#) section for additional details).

15.10 Sleep Mode

Sleep mode (controlled by the [*AFE_ADC_n_PD*](#) register) powers down all analog circuitry, including the internal oscillator, resulting in 0.5 μ A typical current consumption. Exit sleep mode either by writing to the [*AFE_ADC_n_PD*](#) register or (when enabled) by using a GPIO trigger.

15.11 Circuit Settling Time

The input to the ADC requires some time to settle after changing the state of the multiplexer, PGA, current sources, and other analog components. Therefore, when using the sequencer, insert appropriate wait times when changing the state of any of these components.

15.11.1 Input Multiplexer

Settling time for changes to the state of the input multiplexer depends on several factors. These include the delay time of the nonoverlap circuits and the on-resistance of the multiplexer switches but are dominated by the output impedance of the external source, the impedance (cables, protection components) between the external source and the multiplexer, any input filter capacitance, the 10pF capacitance on the input to the PGA and modulator blocks, and whether or not the I_{DAC} current sources or the V_{BIAS} source are being used. To obtain an accurate conversion, wait until the multiplexer is fully settled before starting a new conversion. With no added capacitance at the inputs, the settling time after a multiplexer channel change with a 2k Ω source is typically 2 μ s.

15.11.2 PGA

The external PGA filter primarily limits PGA settling time. A 100nF external capacitor across CAP0P and CAP0N and/or CAP1P and CAP1N reduces noise by limiting the bandwidth of the PGA. This results in a 2kHz single-pole lowpass filter at the PGA's output. Settling to 22-bit accuracy (0.25ppm) requires 15.25 time constants or 1.21ms for a 2kHz bandwidth. Therefore, the PGA typically dominates the settling time of the input when changing multiplexer settings or changing the PGA's gain.

15.11.3 Reference Multiplexer

Settling time for the reference input multiplexer is similar to that of the input multiplexer but with less complexity. The reference multiplexer has fewer channels and does not have the I_{DAC} current sources or the V_{BIAS} source as possible inputs. The delay is still dependent on the on-resistance of the reference multiplexer switches, the impedance between the reference source and the reference multiplexer, the output impedance of the reference source, and the input capacitance of the modulator. For accurate conversions, it is essential to wait until the reference multiplexer is fully settled before starting a new conversion.

Normally the reference should be located close to the reference inputs, so the resistance between the source and the input should be negligible. If the reference source is an active voltage reference, the source impedance should be low enough to ignore. In some cases, the reference source may be a resistor with a value of a few kilohms. So long as the source resistance is less than around 10k Ω , the settling time contribution from the reference source resistance is less than 1 μ s and can generally be ignored.

15.11.4 Excitation Current Source

Enabling/disabling the current source(s) requires time for any input capacitance to charge or discharge. This can be especially important when external capacitors have been added at the inputs for noise filtering.

15.12 V_{BIAS} Source

The V_{BIAS} source generates a bias voltage equal to $\frac{V_{DD}}{2}$. There are three V_{BIAS} modes, controlled by the [*AFE_ADC_n_SOURCE.vbias_mode*](#) field.

The first mode is an active bias generator featuring a class AB output stage with a series 125k Ω resistor to create a nominal output impedance of 125k Ω . The active bias generator mode reduces current and channel to channel crosstalk. In active mode, if the output is not settled to $\frac{V_{DD}}{2}$, the series resistor is bypassed by a separate low-impedance class AB output stage to decrease settling time. When the output settles to $\frac{V_{DD}}{2}$, the resistor is reasserted for improved noise filtering.

The second and third modes create the V_{BIAS} with resistive voltage-dividers to offer fixed output impedance (either 125k Ω or 20k Ω) at the expense of increased current consumption. The 125k Ω mode offers increased supply noise filtering at the expense of increased settling time. The 20k Ω mode offers reduced settling time but is higher in current consumption and offers less supply noise filtering.

The bias voltage can be switched into the input channels using the channel's corresponding [*AFE_ADC_n_MUX_CTRL2.vbias_sel_n*](#) field.

15.13 Sensor Excitation Current Sources

The matched current sources can be programmed to provide 16 different levels of matched currents from 10 μ A to 1600 μ A with $\pm 10\%$ accuracy, 0.1% matching, and 50ppm/ $^{\circ}$ C temperature drift from -40 $^{\circ}$ C to +85 $^{\circ}$ C. Either current source or both may be enabled, and each current source can be connected to any one of the twelve analog inputs.

Note: Only one current source may be connected to any input, and a current source may not be connected to an input that has V_{BIAS} connected to it.

Note: The input/output connection multiplexers from the ADC and the current sources travel through additional impedances before the actual pin on the device. This includes ESD structures among other things. Therefore, its best practice to avoid using the same ADC pin to sample voltage as used to source the current. Instead use another input to the ADC to function as a Kelvin connection to the external node for measurement. Otherwise, the ADC will measure the resistance of the ESD and other internal structures, in addition to the external resistance.

15.14 Burnout Currents

The internal, selectable 1 μ A, 5 μ A, and 10 μ A burnout current source and sink can be used to detect a sensor fault or wire break.

When enabled, the current source is connected to the selected positive analog input (AINP), and the current sink is connected to the selected negative analog input (AINN).

In an open circuit condition in the sensor input path, these burn-out currents pull the positive input towards V_{DDA} and the negative input towards V_{SSA} , resulting in a full-scale reading.

Note: A full-scale reading may also indicate that the sensor is overdriven or that the reference voltage is absent.

15.15 Calibration

The ADC can, on-demand, automatically calibrate its internal offset and gain errors and system offset and gain errors and store the calibration values in dedicated registers. The calibration register value defaults are zero (offset) and one (gain). Calibration values may be calculated and stored automatically using an [*AFE_ADC_n_CAL_START*](#) command or written directly to the registers through the serial interface. The [*AFE_ADC_n_CAL_START*](#) command selects the type of calibration to be performed (self-calibration, PGA gain calibration, system calibration) and initiates the calibration cycle. In addition, there is a separate gain calibration register for each PGA gain.

Calibration values are applied to the conversion results stored in the [AFE_ADC_n_DATA0:AFE_ADC_n_DATA7](#) registers according to the following equation:

$$\begin{aligned}
 AFE_ADC_n_DATA[0:7] \\
 &= AFE_ADC_n_SYS_GAIN_A, B] \\
 &\times (((Conversion - AFE_ADC_n_SELF_OFF) \times AFE_ADC_n_SELF_GAIN[1:128]) \\
 &\quad - AFE_ADC_n_SYS_OFF_A, B])
 \end{aligned}$$

Where

AFE_ADC_n_DATA[0:7] is the ADC data result destination register, selected by the [AFE_ADC_n_CONV_START.dest](#) field,

Conversion is the ADC's conversion result before calibration results are applied,

AFE_ADC_n_SELF_GAIN[1:128] is the internal gain correction value for the selected gain,

AFE_ADC_n_SELF_OFF is the internal offset correction value,

AFE_ADC_n_SYS_GAIN_A, B is the selected system gain corrections value, and

AFE_ADC_n_SYS_OFFSET_A, B is the selected system offset correction value.

All calibration operations are performed at the filter settings programmed into the [AFE_ADC_n_FILTER.linef](#) and [AFE_ADC_n_FILTER.rate](#) fields.

There are two sets of system calibration registers, A and B. Either A, B, or neither set can be applied to the ADC conversion result, selectable by the [AFE_ADC_n_SYSC_SEL](#) register.

Note: Calibration routines are performed using the conversion rate, PGA gain, and filter settings in the control registers. In general, slower conversion rates exhibit lower noise and therefore produce more accurate calibration.

15.15.1 Self-Calibration

In self-calibration, the required connections to zero and full scale are made internally using the PGA gain setting set in the GAIN register. Self-calibration is typically sufficient to achieve offset and gain accuracy on the order of the noise. When the gain is 1, self-calibration provides 20ppm of typical full-scale accuracy. The self-calibration routine does not include external effects such as source resistance of the signal driving the input pins, which can change the offset and gain of the system.

The range of digital gain correction is from 0.5 \times to 2.0 \times . The range of offset correction is $\pm \frac{V_{REF}}{4}$. [Table 15-2](#) and [Table 15-3](#) show example values for gain and offset calibration codes.

Table 15-2: Gain Calibration Codes

Code Description	Gain	Code
Maximum Gain Correction	1.999999881	0xFFFFFFF
1 LSB Greater Than Unity Gain	$1 + \frac{1}{2^{23}}$	0x800001
Unity Gain	1.000000	0x800000
1 LSB Less Than Unity Gain	$1 - \frac{1}{2^{23}}$	0x7FFFFF
Minimum Recommended Gain Correction	0.5	0x400000
Zero Gain	0	0x000000

Table 15-3: Offset Calibration Codes

Code Description	Offset	Code
Maximum Offset Correction	$0.24 \times V_{REF}$	0x7FFFFF

Code Description	Offset	Code
Positive 0.25LSB (Bipolar) or 0.5LSB (Unipolar)	$0.25 \times \frac{V_{REF}}{2^{23} - 1}$	0x000001
Zero Offset Correction	0V	0x000000
Negative 0.25LSB (Bipolar) or 0.5LSB (Unipolar)	$-0.25 \times \frac{V_{REF}}{2^{23} - 1}$	0xFFFFFFF
Minimum Offset Correction	$-0.25 \times V_{REF} \times (1 + \frac{1}{2^{23} - 1})$	0x800000

15.15.1.1 Self-Calibration Example

Table 15-4 shows an example of self-calibration.

Table 15-4: Self-Calibration Example

Step	Description	Register	Comments
1	Select filter and rate	AFE_ADC_n_FILTER	For best results, select a rate no faster than the rate that is used for conversions. A slower rate results in more accurate calibration. This determines the time required to execute a calibration.
2	Select clock source and format	AFE_ADC_n_CTRL	For best results, select the clock source (internal or external) that is used for conversions. If the external clock is selected, ensure that the external clock is operating before beginning calibration. Format selection does not affect results.
3	Start calibration	AFE_ADC_n_CAL_START	Write XXXXX00 to the AFE_ADC_n_CAL_START register. Two conversions execute at the rate controlled by the AFE_ADC_n_FILTER register. The AFE_ADC_n_SELF_OFF and AFE_ADC_n_SELF_GAIN_1 registers are updated.

15.15.2 PGA Self-Calibration

To ensure the lowest possible gain error, eight separate self-gain calibration registers store the calibration factors for each PGA gain from 1x to 128x. When performing gain calibration, the register corresponding to the currently selected PGA gain is updated. Perform a PGA gain calibration for each PGA gain setting that is used. Not doing so yields errors for conversions performed using the gains that have not been calibrated. Self-calibration updates the 1x self-gain register ([AFE_ADC_n_SELF_GAIN_1](#)).

15.15.2.1 PGA Gain Calibration Example

Table 15-5 shows an example of PGA gain calibration.

Table 15-5: Self-Calibration Example

Step	Description	Register	Comments
1	Select filter and rate	AFE_ADC_n_FILTER	For best results, select a rate no faster than the rate that is used for conversions. A slower rate results in more accurate calibration. Filter selection does not affect results.
2	Select gain and signal path	AFE_ADC_n_PGA	For best results, select the signal path that will be used for conversions. The gain selection causes the calibration value to be saved in the corresponding AFE_ADC_n_SELF_GAIN_1 : AFE_ADC_n_SELF_GAIN_128 registers.

Step	Description	Register	Comments
3	Select clock source and format	AFE_ADC_n_CTRL	For best results, select the clock source (internal or external) that will be used for conversions. If the external clock is selected, ensure that the external clock is operating before beginning calibration. Format selection does not affect results.
4	Select PGA gain and start calibration	AFE_ADC_n_CAL_START	Write XXXXX001 to the AFE_ADC_n_CAL_START register. One conversion executes at the rate controlled by the AFE_ADC_n_FILTER register. The AFE_ADC_n_SELF_GAIN_1:AFE_ADC_n_SELF_GAIN_128 register for the selected gain is updated.

15.15.3 System Offset and Gain Calibration

A system calibration enables calibration of system zero scale and system full scale by presenting a zero-scale signal or a full-scale signal to the selected input pins and initiating a system zero-scale or system gain calibration command. As an alternative to automatic generation of the system calibration values, values may be directly written to the internal calibration registers to achieve any digital offset or scaling required. The range of digital offset correction is $\pm \frac{V_{REF}}{4}$. The range of digital gain correction is from 0.5 \times to 2.0 \times . The resolution of offset correction is 0.5 LSB.

Automatic system calibration requires applying the appropriate external signals to the selected AIN inputs. Therefore, the input multiplexer must be properly configured before system calibration. Two sets of system calibration coefficients can be created and stored ([AFE_ADC_n_SYS_OFF_A](#) and [AFE_ADC_n_SYS_GAIN_A](#), and [AFE_ADC_n_SYS_OFF_B](#) and [AFE_ADC_n_SYS_GAIN_B](#)). Conversions may be performed using either or neither of these sets of coefficients.

Request a system offset calibration by presenting a system zero-scale signal level to the input pins and programming the [AFE_ADC_n_CAL_START](#) register with the appropriate value. The [AFE_ADC_n_SYS_OFF_A](#) or [AFE_ADC_n_SYS_OFF_B](#) register then updates with the value that corrects the chip zero scale.

Request a system gain calibration by presenting a system full-scale signal level to the input pins and programming the [AFE_ADC_n_CAL_START](#) register with the appropriate value. The [AFE_ADC_n_SYS_GAIN_A](#) or [AFE_ADC_n_SYS_GAIN_B](#) register then updates with the value that corrects the system full-scale. A system offset calibration is required before system gain calibration to ensure accurate gain calculation.

15.15.3.1 System Offset Calibration Example

Table 15-6 shows an example of system offset calibration.

Table 15-6: System Offset Calibration Example

Step	Description	Register	Comments
1	Apply "System Zero"	-	Apply the input voltage that should result in a conversion result of 0 to the appropriate analog input(s).
2	Select filter and rate	AFE_ADC_n_FILTER	For best results, select a rate no faster than the rate that will be used for conversions. A slower rate results in more accurate calibration.
3	Select reference input	AFE_ADC_n_CTRL	For best results, select a reference voltage equal to or near the value that will be used for conversions.
4	Set input multiplexer	AFE_ADC_n_MUX_CTRL0	Select the inputs to which "system zero" is applied.
5	Select gain and signal path	AFE_ADC_n_PGA	For best results, select the signal path that will be used for conversions. Gain selection does not affect results.
6	Select clock source and format	AFE_ADC_n_CTRL	For best results, select the clock source (internal or external) that will be used for conversions. If the external clock is selected, ensure that the external clock is operating before beginning calibration. Format selection does not affect results.

Step	Description	Register	Comments
7	Select system offset and start calibration	AFE_ADC_n_CAL_START	Write XXXXX100 to store the result in the AFE_ADC_n_SYS_OFF_A register, or write XXXXX110 to store the result in the AFE_ADC_n_SYS_OFF_B register.

15.15.3.2 System Gain Calibration Example

Table 15-7 shows an example of a system gain calibration.

Table 15-7: System Gain Calibration Example

Step	Description	Register	Comments
1	Apply "System Full-Scale"	-	Apply an input voltage that should result in a full-scale conversion result to the appropriate analog input(s).
2	Select filter and rate	AFE_ADC_n_FILTER	For best results, select a rate no faster than the rate that will be used for conversions. A slower rate results in more accurate calibration.
3	Select reference input	AFE_ADC_n_CTRL	For best results, select a reference voltage equal to or near the value that will be used for conversions.
4	Set input multiplexer	AFE_ADC_n_MUX_CTRL0	Select the inputs to which "system full-scale" is applied.
5	Select gain and signal path	AFE_ADC_n_PGA	For best results, select the signal path that will be used for conversions. Then, select the gain that, when combined with the applied input voltage, yields a full-scale conversion result.
6	Select clock source and format	AFE_ADC_n_CTRL	For best results, select the clock source (internal or external) that will be used for conversions. If the external clock is selected, ensure that the external clock is operating before beginning calibration. Format selection does not affect results.
7	Select system offset and start calibration	AFE_ADC_n_CAL_START	Write XXXXX101 to store the result in the AFE_ADC_n_SYS_GAIN_A register, or write XXXXX111 to store the result in the AFE_ADC_n_SYS_GAIN_B register.

15.15.4 Sensitivity of Calibration Coefficients

Calibration needs to be repeated if external factors change.

- Both offset and gain calibration (PGA GAIN = 1) should be performed if V_{DDA} supply voltage changes.
- Temperature change affects the calibration accuracy to a much lesser extent (10°C change results in 0.2ppm offset error drift and 0.5ppm gain error drift);
- For gain settings > 1, the PGA has reduced sensitivity to supply changes than the modulator (28ppm over the supply range). However, it is still comparable to the device's Electrical Characteristics table specification. Refer to the device data sheet for the electrical characteristics table.

Therefore, it is a good idea to recalibrate in the unlikely case that the supply voltage changes from the minimum V_{DDA} to the maximum V_{DDA} and vice versa.

Note: Calibration is done at the currently selected data rate, so for best results, set the data rate to a value equal to or lower than the lowest rate used for conversions.

15.16 GPIOs

Two general-purpose digital I/Os increase the ADC's flexibility. When used as an output, a GPIO can be used as a microcontroller interrupt if connected externally, a control signal for a multiplexer or multichannel switch, or a modulator

clock output. GPIO pins configured as outputs operate on the V_{DDA} rail. Care should be taken when using the GPIO pins in input mode to avoid bringing the signal above $V_{DDA} + 0.3V$.

A GPIO can be used as an ADC start control or a sequence start control when configured as an input. GPIO pins configured as inputs accept inputs at V_{DDIO} levels (not to exceed V_{DDA}).

The GPIO ports are configurable with the [*AFE_ADC_n_GPO_CTRL*](#) register. The registers select whether a GPIO is used as an input or as an output, and if used as an output, the output configuration (CMOS/open-drain).

15.16.1 Low-Side Power Switch

The GPIO pins can be configured to function as a low-side power switch with less than 35Ω on-resistance (25mA switch current) to reduce system power consumption in bridge sensor applications by powering down a bridge circuit between conversions.

15.16.1.1 Automatic Low-Side Switch Operation

Select automatic low-side switch operation by setting the respective GPIO0 (ADC_RDY) direction and output select bits as follows.

GPIO0 (ADC_RDY):

1. Set the GPIO0 direction field to output mode, open-drain ([*AFE_ADC_n_GPO_CTRL*.gp0_dir](#) = 0b10).
2. Set the GPIO0 output selection type to automatic low-side switch operation ([*AFE_ADC_n_GPO_CTRL*.gp0_ose1](#) = 0b101).

15.16.1.2 Manual Low-Side Switch Operation

Manually control the low-side power switch by configuring GPIO0 (ADC_RDY) as an open-drain output, and switch between state logic 0 and logic 1:

GPIO0 (ADC_RDY):

1. Set the GPIO0 direction field to output mode, open-drain ([*AFE_ADC_n_GPO_CTRL*.gp0_dir](#) = 0b10).
2. Set the GPIO0 output selection type to output state logic 0 ([*AFE_ADC_n_GPO_CTRL*.gp0_ose1](#) = 0b011), switch closed.
3. Set the GPIO0 output selection type to output state logic 1 ([*AFE_ADC_n_GPO_CTRL*.gp0_ose1](#) = 0b100), switch open.

15.17 Status

The [*AFE_ADC_n_STATUS*](#) register can be read to determine the state of the ADC and determine the cause of DOUT/INTB signal assertion. Therefore, most [*AFE_ADC_n_STATUS*](#) register bits are cleared by an [*AFE_ADC_n_STATUS*](#) register read.

The [*AFE_ADC_n_STATUS*.tor](#) bits are threshold register over-range status bits. When one is set, it indicates that the corresponding [*AFE_ADC_n_DATA0:AFE_ADC_n_DATA7*](#) register value is greater than the value set by the [*AFE_ADC_n_UTHRESH0:AFE_ADC_n_UTHRESH7*](#) register or the ADC conversion result has created a digital under-range condition. [*AFE_ADC_n_STATUS*.tor](#) is cleared when the [*AFE_ADC_n_STATUS*](#) register is read. [*AFE_ADC_n_STATUS*.tor](#) register bits do not self-clear.

The [*AFE_ADC_n_STATUS*.tur](#) bits are threshold register under-range status bits. When one is set, it indicates that the corresponding [*AFE_ADC_n_DATA0:AFE_ADC_n_DATA7*](#) register value is less than the value set by the [*AFE_ADC_n_UTHRESH0:AFE_ADC_n_UTHRESH7*](#) register or the ADC conversion result has created a digital under-range condition. [*AFE_ADC_n_STATUS*.tur](#) is cleared when the [*AFE_ADC_n_STATUS*](#) register is read. [*AFE_ADC_n_STATUS*.tur](#) register bits do not self-clear.

The system gain over-range status bit ([*AFE_ADC_n_STATUS*.sysgor](#)) indicates that a system gain calibration was over-range. The [*AFE_ADC_n_STATUS*.sysgor](#) calibration coefficient has a maximum value of 1.9999999 (0xFFFFFFF). When set to 1,

[*AFE_ADC_n_STATUS.sysgor*](#) indicates that the full-scale value out of the converter is likely not available.

[*AFE_ADC_n_STATUS.sysgor*](#) is cleared when the [*AFE_ADC_n_STATUS*](#) register is read or if a new system gain calibration yields a valid result.

The [*AFE_ADC_n_STATUS.data_rdy*](#) bit indicates that the DATA registers contain unread ADC conversion results. This bit is cleared when all unread [*AFE_ADC_n_DATA0:AFE_ADC_n_DATA7*](#) registers have been read. Unlike other status bits, [*AFE_ADC_n_STATUS.data_rdy*](#) is not cleared by an [*AFE_ADC_n_STATUS*](#) register read. The [*AFE_ADC_n_STATUS.data_rdy*](#) status bit is a logical OR of 8 internal register status bits that are set when new ADC data is written to an [*AFE_ADC_n_DATA0:AFE_ADC_n_DATA7*](#) register and are cleared when the corresponding [*AFE_ADC_n_DATA0:AFE_ADC_n_DATA7*](#) register is read.

15.17.1 Status Interrupt Enable

The [*AFE_ADC_n_STATUS_IE*](#) register enables or disables status events from appearing as a logic OR of the INT signal state. For every [*AFE_ADC_n_STATUS*](#) register bit, there is a corresponding [*AFE_ADC_n_STATUS_IE*](#) bit. This register allows the INT signal to be used as a system interrupt for one or more system status sources. Writing a 1 to a bit causes the corresponding [*AFE_ADC_n_STATUS*](#) bit state to assert an interrupt. The specific cause of the interrupt can be discerned by reading the [*AFE_ADC_n_STATUS*](#) register. An interrupt can be masked by disabling its corresponding enable bit in this register.

The default value of this register is 0x000001, enabling only [*AFE_ADC_n_STATUS.conv_rdy*](#) interrupt by default.

15.18 Conversion Data Formats

The conversion data format is selected by the [*AFE_ADC_n_CTRL.format*](#) and [*AFE_ADC_n_CTRL.u_bn*](#) bits, as shown in [Table 15-8](#). The unipolar/bipolar select ([*AFE_ADC_n_CTRL.u_bn*](#)) bit selects whether the input range is bipolar or unipolar. A '1' in this bit location selects unipolar input range, and a '0' selects bipolar input range. The format select ([*AFE_ADC_n_CTRL.format*](#)) bit controls the data format when in bipolar mode ([*AFE_ADC_n_CTRL.u_bn* = 0](#)). Unipolar data is always in straight binary format. The [*AFE_ADC_n_CTRL.format*](#) bit has no effect in unipolar mode ([*AFE_ADC_n_CTRL.u_bn* = 1](#)). In bipolar mode, if the [*AFE_ADC_n_CTRL.format*](#) bit = 1, then the data format is offset binary. If the [*AFE_ADC_n_CTRL.format*](#) bit = 0, then the data format is two's complement.

Table 15-8: Conversion Data Formats

Mode	Bipolar Mode			Unipolar Mode	
<i>AFE_ADC_n_CTRL.format</i>		1	0		x
<i>AFE_ADC_n_CTRL.u_bn</i>		0	0		1
Code Description	Input Voltage ($V_{AINP} - V_{AINN}$)	Offset Binary	2's Complement	Input Voltage ($V_{AINP} - V_{AINN}$)	Straight Binary (Unipolar Mode)
Positive Full Scale	$\geq V_{REF}$	0xFFFFFFF	0x7FFFFFF	$\geq V_{REF}$	0xFFFFFFF
Positive FS - 1 LSB	$V_{REF}(1-1/(2^{23}-1))$	0xFFFFFE	0x7FFFFE	$V_{REF}(1-1/(2^{24}-1))$	0xFFFFFE
Positive Mid-Scale	$V_{REF}(1+1/(2^{23}-1))/2$	0xC00000	0x400000	$V_{REF}(1+1/(2^{24}-1))/2$	0x800000
Positive 1 LSB	$V_{REF}/(2^{23}-1)$	0x800001	0x000001	$V_{REF}/(2^{24}-1)$	0x000001
	0V	0x800000	0x000000	0V	0x000000
Negative 1 LSB	$-V_{REF}/(2^{23}-1)$	0x7FFFFF	0xFFFFFFF	$< 0V$	0x000000
Negative FS + 1 LSB	$-V_{REF}$	0x000001	0x800001	$< 0V$	0x000000
Negative FS	$-V_{REF}(1+1/(2^{23}-1))$	0x000000	0x800000	$< 0V$	0x000000

15.19 Digital Filter

The configurable digital filter has selectable notch frequencies (50Hz and 60Hz, 50Hz, 60Hz, or SINC4) and selectable data rates. The filter rejection and frequency response is determined by the [*AFE_ADC_n_FILTER.linef*](#) and [*AFE_ADC_n_FILTER.rate*](#) field settings.

The simultaneous 50Hz/60Hz rejection FIR filter provides well over 90dB rejection of 50Hz and 60Hz at 16sps and significant rejection of their harmonics. The 50Hz and 60Hz FIR filter settings provide a lower level of attenuation for those frequencies but at a faster conversion time than available with the simultaneous 50Hz/60Hz FIR filter. The SINC4 setting enables a 4th-order SINC filter that can operate at continuous data rates up to 1920sps, with the first notch at the continuous data rate. The [AFE_ADC_n_FILTER.linef](#) and the [AFE_ADC_n_FILTER.rate](#) settings determine the conversion rate.

Note: The data rate for a given RATE setting is determined by the type of conversion selected in the [AFE_ADC_n_CONV_START](#) or [AFE_ADC_n_GP_CONV](#) register, based on a nominal clock period of 2.456MHz. In continuous conversion mode with [AFE_ADC_n_FILTER.linef](#) = 0b11, the digital filter has a settling time of 4x the sample rate. The first sample is not available until the expiration of that settling time. Subsequent samples are available at the listed sample rate. The filter sample rate is determined by the combination of [AFE_ADC_n_FILTER.linef](#) and [AFE_ADC_n_FILTER.rate](#) settings and the type of conversion launched by the [AFE_ADC_n_CONV_START](#) command. Data rates and rejection specifications for all settings are summarized below.

Table 15-9: [AFE_ADC_n_FILTER.linef](#) = 0b00 Data Rate and Filter Rejection Settings

AFE_ADC_n_FILTER.rate	Filter Type	Rejection (Hz)	Data Rate (SPS)		
			Single Cycle	Continuous	Duty Cycle
0b0000	FIR50/60	50/60	1.0	1.1	0.3
0b0001	FIR50/60	50/60	2.0	2.1	0.5
0b0010	FIR50/60	50/60	4.0	4.2	1.1
0b0011	FIR50/60	50/60	8.0	8.4	2.1
0b0100 – 0b1111	FIR50/60	50/60	16.0	16.8	4.2

Table 15-10: [AFE_ADC_n_FILTER.linef](#) = 0b01 Data Rate and Filter Rejection Settings

AFE_ADC_n_FILTER.rate	Filter Type	Rejection (Hz)	Data Rate (SPS)		
			Single Cycle	Continuous	Duty Cycle
0b0000	FIR50	50	1.3	1.3	0.3
0b0001	FIR50	50	2.5	2.7	0.7
0b0010	FIR50	50	5.0	5.3	1.3
0b0011	FIR50	50	10.0	10.7	2.7
0b0100	FIR50	50	20.0	21.3	5.3
0b0101 – 0b1111	FIR50	50	35.6	40.0	10.0

Table 15-11: [AFE_ADC_n_FILTER.linef](#) = 0b10 Data Rate and Filter Rejection Settings

AFE_ADC_n_FILTER.rate	Filter Type	Rejection (Hz)	Data Rate (SPS)		
			Single Cycle	Continuous	Duty Cycle
0b0000	FIR60	60	1.3	1.3	0.3
0b0001	FIR60	60	2.5	2.7	0.7
0b0010	FIR60	60	5.0	5.3	1.3
0b0011	FIR60	60	10.0	10.7	2.7
0b0100	FIR60	60	20.0	21.3	5.3
0b0101 – 0b1111	FIR60	60	35.6	40.0	10.0

Table 15-12: *AFE_ADC_n_FILTER.linef* = 0b11 Data Rate and Filter Rejection Settings

<i>AFE_ADC_n_FILTER.rate</i>	Filter Type	Rejection (Hz)	Data Rate (SPS)		
			Single Cycle	Continuous	Duty Cycle
0b0000	SINC4	4	0.25	1	0.25
0b0001	SINC4	10	0.63	2.5	0.63
0b0010	SINC4	20	1.25	5	1.25
0b0011	SINC4	40	2.5	10	2.5
0b0100	SINC4	60	15	60	5
0b0101	SINC4	120	30	120	10
0b0110	SINC4	240	60	240	15
0b0111	SINC4	480	120	480	30
0b1000	SINC4	960	240	960	60
0b1001	SINC4	1,920	480	1,920	120
0b1010 – 0b1111	SINC4	N/A	N/A	N/A	N/A

15.20 Sequencer

The sequencer is a powerful feature that allows a sequence of commands to be programmed into the sequence buffer (*AFE_ADC_n_UC_0* - *AFE_ADC_n_UC_52*) registers. When a sequence is initiated by a write to the *AFE_ADC_n_SEQ_START* register or (when configured) a rising edge on an ADC GPIO pin, the sequencer serially executes commands as if it were the application software writing those commands to the control registers. Thus, the initiated sequence begins executing at the address in the *AFE_ADC_n_SEQ_START.seq_address* or *AFE_ADC_n_GP_SEQ_ADDR*, depending on which is selected. Sequences execute until a PD command is encountered or until the sequencer is interrupted by a write from the application software through the AFE. If no PD command is encountered, the sequence executes in a loop and wraps around from *AFE_ADC_n_UC_52* → *AFE_ADC_n_UC_0*.

All *AFE_ADC_n_UC* registers are set to 0 by default, which corresponds to a '*AFE_ADC_n_PD.pd* = Normal' command. *AFE_ADC_n_PD* commands function as a sequence stop. The completion of a sequence can be configured to generate an interrupt through the *AFE_ADC_n_STATUS_IE.seq_rdy_ie* bit. A wraparound, an *AFE_ADC_n_PD* execution, or an *AFE_ADC_n_SEQ_START* inside a sequence causes the assertion of *AFE_ADC_n_STATUS.seq_rdy*. As with a continuous conversion with *AFE_ADC_n_STATUS.conv_rdy*, executing the sequencer in a loop auto-clears *AFE_ADC_n_STATUS.seq_rdy* before re-asserting it.

Using an *AFE_ADC_n_SEQ_START* command within the sequencer microcode functions as a GOTO statement, enabling multiple continuous sequences to be programmed into the sequencer's *AFE_ADC_n_UC* register space. An *AFE_ADC_n_CONV_START*, *AFE_ADC_n_CAL_START*, or *AFE_ADC_n_WAIT_START* command prevents the sequencer from advancing until the command is completed. Likewise, sequence timing can be controlled with an *AFE_ADC_n_WAIT_START* command. Wait durations should be programmed according to the settling time of the associated internal and external circuitry.

The currently executing microcode address and data can be read back through the read-only *AFE_ADC_n_UCADDR* register. The *AFE_ADC_n_UCADDR.ucaddr* can be read back at any time to determine the currently executing microcode address. A read of 0x00 indicates that the sequencer is inactive. Values of 0x3A-0x6E indicate an active sequence.

Active sequences are exited by a write to any register, resetting the *AFE_ADC_n_UCADDR* register to 0x00. Launching a sequence does not reset the control registers. All register states are retained, either as a result of a prior write or a prior sequence execution.

15.20.1 Sequencer Notes

- Registers with 24-bit data operands, including [AFE_ADC_n_UTHRESH](#), [AFE_ADC_n_LTHRESH](#), [AFE_ADC_n_SELF_OFF](#), [AFE_ADC_n_STATUS_IE](#), amongst others, are not supported in sequencer mode. Programming a register with a 24-bit operand into an [AFE_ADC_n_UC](#) register results in a '0000' or '[AFE_ADC_n_PD](#)' being written to the register.
- Write an [AFE_ADC_n_UC](#) address to an [AFE_ADC_n_UC](#) register results in a '0000' or '[AFE_ADC_n_PD](#)' being written to the register.

15.20.2 Sequencer Example

Table 15-13 shows a populated sequence buffer. Three [AFE_ADC_n_SEQ_START](#) examples are discussed.

Example 1: The interface executes [AFE_ADC_n_SEQ_START](#) in [AFE_ADC_n_UC_0](#)

The sequencer executes the commands shown (configure the input multiplexer, select the buffered signal path, wait, convert and store in location 1, configure the input multiplexer, wait, convert and store in data location 2, initiate a power down, issue an [AFE_ADC_n_STATUS.seq_rdy](#) status, and halt the sequence at register [AFE_ADC_n_UC_7](#)).

Example 2: The interface executes [AFE_ADC_n_SEQ_START](#) in [AFE_ADC_n_UC_8](#)

The sequencer executes the commands starting at [AFE_ADC_n_UC_8](#) and continuing through [AFE_ADC_n_UC_48](#) in a loop until the sequencer is interrupted with a write to the interface through the AFE. This sequence configures the input multiplexer for various combinations of AIN0 through AIN7, performing a conversion with a variety of PGA settings, storing the results in [AFE_ADC_n_DATA0](#) through [AFE_ADC_n_DATA7](#). Finally, an [AFE_ADC_n_STATUS.seq_rdy](#) is asserted at the end of the sequence ([AFE_ADC_n_UC_48](#)) and deasserted when the sequence starts again ([AFE_ADC_n_UC_8](#)).

Example 3: The interface executes [AFE_ADC_n_SEQ_START](#) in [AFE_ADC_n_UC_49](#)

The sequencer executes the commands shown from address [AFE_ADC_n_UC_49](#) (program the input multiplexer and filter, wait, perform a self-calibration) and wraparound continuing execution at [AFE_ADC_n_UC_0](#). Ultimately, the sequencer initiates a power down, issues an [AFE_ADC_n_STATUS.seq_rdy](#) status, and halts the sequencer at register [AFE_ADC_n_UC_7](#).

Table 15-13: Populated Sequencing Buffer Example

Sequencer Register	Sequencer Address	Command Address Bits 15:8	Command Name	Command Data Bits 7:0	Comments
AFE_ADC_n_UC_0	0x3A	0x0B	AFE_ADC_n_MUX_CTRL0	0x01	Select AINP = AIN0, AINN = AIN1.
AFE_ADC_n_UC_1	0x3B	0x0E	AFE_ADC_n_PGA	0x00	Select buffered input, gain = 1.
AFE_ADC_n_UC_2	0x3C	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of: AFE_ADC_n_WAIT_EXT × 16) (AFE_ADC_n_WAIT_EXT × 16) × 407ns. Assuming AFE_ADC_n_WAIT_EXT = 0, wait time = 1.3ms.
AFE_ADC_n_UC_3	0x3D	0x01	AFE_ADC_n_CONV_START	0x10	Initiate a single conversion and send data to the AFE_ADC_n_DATA1 register.
AFE_ADC_n_UC_4	0x3E	0x0B	AFE_ADC_n_MUX_CTRL0	0x23	Select AINP = AIN2, AINN = AIN3.
AFE_ADC_n_UC_5	0x3F	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_6	0x40	0x01	AFE_ADC_n_CONV_START	0x20	Initiate a single conversion and send data to the AFE_ADC_n_DATA2 register.

Sequencer Register	Sequencer Address	Command Address Bits 15:8	Command Name	Command Data Bits 7:0	Comments
AFE_ADC_n_UC_7	0x41	0x00	AFE_ADC_n_PD	0x10	Enter Sleep Mode, issue AFE_ADC_n_STATUS.seq_rdy status, halt sequence.
AFE_ADC_n_UC_8	0x42	0x0E	AFE_ADC_n_PGA	0x21	Select PGA, Gain = 2.
AFE_ADC_n_UC_9	0x43	0x0B	AFE_ADC_n_MUX_CTRL0	0x01	Select AINP = AIN0, AINN = AIN1.
AFE_ADC_n_UC_10	0x44	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_11	0x45	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_12	0x46	0x01	AFE_ADC_n_CONV_START	0x00	Initiate a single conversion and send data to the AFE_ADC_n_DATA0 register.
AFE_ADC_n_UC_13	0x47	0x0E	AFE_ADC_n_PGA	0x22	Select PGA, Gain = 4.
AFE_ADC_n_UC_14	0x48	0x0B	AFE_ADC_n_MUX_CTRL0	0x23	Select AINP = AIN2, AINN = AIN3.
AFE_ADC_n_UC_15	0x49	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_16	0x4A	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_17	0x4B	0x01	AFE_ADC_n_CONV_START	0x10	Initiate a single conversion and send data to the AFE_ADC_n_DATA1 register.
AFE_ADC_n_UC_18	0x4C	0x0E	AFE_ADC_n_PGA	0x20	Select PGA, Gain = 1.
AFE_ADC_n_UC_19	0x4D	0x0B	AFE_ADC_n_MUX_CTRL0	0x45	Select AINP = AIN4, AINN = AIN5.
AFE_ADC_n_UC_20	0x4E	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_21	0x4F	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_22	0x50	0x01	AFE_ADC_n_CONV_START	0x20	Initiate a single conversion and send data to the AFE_ADC_n_DATA2 register.
AFE_ADC_n_UC_23	0x51	0x0E	AFE_ADC_n_PGA	0x02	Select buffered input, digital gain = 4.
AFE_ADC_n_UC_24	0x52	0x0B	AFE_ADC_n_MUX_CTRL0	0x03	Select AINP = AIN0, AINN = AIN3.
AFE_ADC_n_UC_25	0x53	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_26	0x54	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_27	0x55	0x01	AFE_ADC_n_CONV_START	0x30	Initiate a single conversion and send data to the AFE_ADC_n_DATA3 register.
AFE_ADC_n_UC_28	0x56	0x0E	AFE_ADC_n_PGA	0x24	Select PGA, Gain = 16.
AFE_ADC_n_UC_29	0x57	0x0B	AFE_ADC_n_MUX_CTRL0	0x78	Select AINP = AIN7, AINN = AIN8.
AFE_ADC_n_UC_30	0x58	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_31	0x59	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_32	0x5A	0x01	AFE_ADC_n_CONV_START	0x40	Initiate a single conversion and send data to the AFE_ADC_n_DATA4 register.
AFE_ADC_n_UC_33	0x5B	0x0E	AFE_ADC_n_PGA	0x22	Select PGA, Gain = 4.
AFE_ADC_n_UC_34	0x5C	0x0B	AFE_ADC_n_MUX_CTRL0	0x69	Select AINP = AIN6, AINN = AIN9.
AFE_ADC_n_UC_35	0x5D	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_36	0x5E	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.

Sequencer Register	Sequencer Address	Command Address Bits 15:8	Command Name	Command Data Bits 7:0	Comments
AFE_ADC_n_UC_37	0x5F	0x01	AFE_ADC_n_CONV_START	0x50	Initiate a single conversion and send data to the AFE_ADC_n_DATA5 register.
AFE_ADC_n_UC_38	0x60	0x0E	AFE_ADC_n_PGA	0x22	Select PGA, Gain = 4.
AFE_ADC_n_UC_39	0x61	0x0B	AFE_ADC_n_MUX_CTRL0	0x20	Select AINP = AIN2, AINN = AIN0.
AFE_ADC_n_UC_40	0x62	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_41	0x63	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_42	0x64	0x01	AFE_ADC_n_CONV_START	0x60	Initiate a single conversion and send data to the AFE_ADC_n_DATA6 register.
AFE_ADC_n_UC_43	0x65	0x0E	AFE_ADC_n_PGA	0x27	Select PGA, Gain = 128.
AFE_ADC_n_UC_44	0x66	0x0B	AFE_ADC_n_MUX_CTRL0	0x19	Select AINP = AIN1, AINN = AIN9.
AFE_ADC_n_UC_45	0x67	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_46	0x68	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_47	0x69	0x01	AFE_ADC_n_CONV_START	0x70	Initiate a single conversion and send data to the AFE_ADC_n_DATA7 register.
AFE_ADC_n_UC_48	0x6A	0x02	AFE_ADC_n_SEQ_START	0x42	Loop back to sequencer address 0x42 and restart the sequence.
AFE_ADC_n_UC_49	0x6B	0x0B	AFE_ADC_n_MUX_CTRL0	0x26	Select AINP = AIN2, AINN = AIN6.
AFE_ADC_n_UC_50	0x6C	0x08	AFE_ADC_n_FILTER	0x04	Select 50/60Hz rejection, 16sps.
AFE_ADC_n_UC_51	0x6D	0x10	AFE_ADC_n_WAIT_START	0xD0	Insert wait time of 1.3ms (assuming AFE_ADC_n_WAIT_EXT = 0).
AFE_ADC_n_UC_52	0x6E	0x03	AFE_ADC_n_CAL_START	0x00	Perform a self-calibration. Wrap around to AFE_ADC_n_UC_0 (0x3A) and continue.

15.21 ADC Registers

These registers are accessed through the *Analog Front-End (AFE)* using the internal SPI0 interface. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a POR, and the AFE reset (*GCR_RST1.afe*).

There are two instances of the ADC peripheral, and each instance has its own independent set of the registers shown in *Table 15-14*. Register names for a specific instance are defined by replacing "n" with the instance number's name. For example, a register *AFE_ADC_n_PD* resolves to *AFE_ADC_ZERO_PD* and *AFE_ADC_ONE_PD* for instances 0 and 1, respectively.

The ADC registers range in size from 8-bits to 24-bits wide. See the width column in *Table 15-14* for each register's width.

Table 15-14: 16-24-Bit Delta-Sigma ADC with PGA Registers

Address	Width	Register Name	Description
0x00	8 bits	<i>AFE_ADC_n_PD</i>	Power Down Register
0x01	8 bits	<i>AFE_ADC_n_CONV_START</i>	Conversion Start
0x02	8 bits	<i>AFE_ADC_n_SEQ_START</i>	Sequence Start
0x03	8 bits	<i>AFE_ADC_n_CAL_START</i>	Calibration Start
0x04	8 bits	<i>AFE_ADC_n_GPO_CTRL</i>	GPIO0 (ADCO_RDY) Control
0x05	8 bits	<i>AFE_ADC_n_GP1_CTRL</i>	Reserved
0x06	8 bits	<i>AFE_ADC_n_GP_CONV</i>	GPIO Conversion
0x07	8 bits	<i>AFE_ADC_n_GP_SEQ_ADDR</i>	GPIO Sequence Address Start
0x08	8 bits	<i>AFE_ADC_n_FILTER</i>	Conversion Rate and Filter
0x09	8 bits	<i>AFE_ADC_n_CTRL</i>	Control
0x0A	8 bits	<i>AFE_ADC_n_SOURCE</i>	Source
0x0B	8 bits	<i>AFE_ADC_n_MUX_CTRL0</i>	AINP and AINN Mux Control
0x0C	8 bits	<i>AFE_ADC_n_MUX_CTRL1</i>	Matched Excitation Source Select
0x0D	8 bits	<i>AFE_ADC_n_MUX_CTRL2</i>	V _{BIAS} Connection
0x0E	8 bits	<i>AFE_ADC_n_PGA</i>	PGA Control
0x0F	8 bits	<i>AFE_ADC_n_WAIT_EXT</i>	Wait Extension
0x10	8 bits	<i>AFE_ADC_n_WAIT_START</i>	Wait Start
0x11	24-bit	<i>AFE_ADC_n_PART_ID</i>	Part Identification
0x12	24-bit	<i>AFE_ADC_n_SYSC_SEL</i>	System Calibration Registers Select
0x13	24-bit	<i>AFE_ADC_n_SYS_OFF_A</i>	System Offset A Calibration
0x14	24-bit	<i>AFE_ADC_n_SYS_OFF_B</i>	System Offset B Calibration
0x15	24-bit	<i>AFE_ADC_n_SYS_GAIN_A</i>	System Gain A Calibration
0x16	24-bit	<i>AFE_ADC_n_SYS_GAIN_B</i>	System Gain B Calibration
0x17	24-bit	<i>AFE_ADC_n_SELF_OFF</i>	Self-Offset
0x18	24-bit	<i>AFE_ADC_n_SELF_GAIN_1</i>	Self-Gain 1x
0x19	24-bit	<i>AFE_ADC_n_SELF_GAIN_2</i>	Self-Gain 2x
0x1A	24-bit	<i>AFE_ADC_n_SELF_GAIN_4</i>	Self-Gain 4x
0x1B	24-bit	<i>AFE_ADC_n_SELF_GAIN_8</i>	Self-Gain 8x
0x1C	24-bit	<i>AFE_ADC_n_SELF_GAIN_16</i>	Self-Gain 16x
0x1D	24-bit	<i>AFE_ADC_n_SELF_GAIN_32</i>	Self-Gain 32x

Address	Width	Register Name	Description
0x1E	24-bit	AFE_ADC_n_SELF_GAIN_64	Self-Gain 64x
0x1F	24-bit	AFE_ADC_n_SELF_GAIN_128	Self-Gain 128x
0x20	24-bit	AFE_ADC_n_LTHRESH0	Lower Threshold 0 Register
0x21	24-bit	AFE_ADC_n_LTHRESH1	Lower Threshold 1 Register
0x22	24-bit	AFE_ADC_n_LTHRESH2	Lower Threshold 2 Register
0x23	24-bit	AFE_ADC_n_LTHRESH3	Lower Threshold 3 Register
0x24	24-bit	AFE_ADC_n_LTHRESH4	Lower Threshold 4 Register
0x25	24-bit	AFE_ADC_n_LTHRESH5	Lower Threshold 5 Register
0x26	24-bit	AFE_ADC_n_LTHRESH6	Lower Threshold 6 Register
0x27	24-bit	AFE_ADC_n_LTHRESH7	Lower Threshold 7 Register
0x28	24-bit	AFE_ADC_n_UTHRESH0	Upper Threshold 0 Register
0x29	24-bit	AFE_ADC_n_UTHRESH1	Upper Threshold 1 Register
0x2A	24-bit	AFE_ADC_n_UTHRESH2	Upper Threshold 2 Register
0x2B	24-bit	AFE_ADC_n_UTHRESH3	Upper Threshold 3 Register
0x2C	24-bit	AFE_ADC_n_UTHRESH4	Upper Threshold 4 Register
0x2D	24-bit	AFE_ADC_n_UTHRESH5	Upper Threshold 5 Register
0x2E	24-bit	AFE_ADC_n_UTHRESH6	Upper Threshold 6 Register
0x2F	24-bit	AFE_ADC_n_UTHRESH7	Upper Threshold 7 Register
0x30	24-bit	AFE_ADC_n_DATA0	Data 0 Register
0x31	24-bit	AFE_ADC_n_DATA1	Data 1 Register
0x32	24-bit	AFE_ADC_n_DATA2	Data 2 Register
0x33	24-bit	AFE_ADC_n_DATA3	Data 3 Register
0x34	24-bit	AFE_ADC_n_DATA4	Data 4 Register
0x35	24-bit	AFE_ADC_n_DATA5	Data 5 Register
0x36	24-bit	AFE_ADC_n_DATA6	Data 6 Register
0x37	24-bit	AFE_ADC_n_DATA7	Data 7 Register
0x38	24-bit	AFE_ADC_n_STATUS	Status Register
0x39	24-bit	AFE_ADC_n_STATUS_IE	Status Interrupt Enable Register
0x3A	16 bit	AFE_ADC_n_UC_0	Sequencer Register
0x3B	16 bit	AFE_ADC_n_UC_1	Sequencer Register
0x3C	16 bit	AFE_ADC_n_UC_2	Sequencer Register
0x3D	16 bit	AFE_ADC_n_UC_3	Sequencer Register
0x3E	16 bit	AFE_ADC_n_UC_4	Sequencer Register
0x3F	16 bit	AFE_ADC_n_UC_5	Sequencer Register
0x40	16 bit	AFE_ADC_n_UC_6	Sequencer Register
0x41	16 bit	AFE_ADC_n_UC_7	Sequencer Register
0x42	16 bit	AFE_ADC_n_UC_8	Sequencer Register
0x43	16 bit	AFE_ADC_n_UC_9	Sequencer Register
0x44	16 bit	AFE_ADC_n_UC_10	Sequencer Register
0x45	16 bit	AFE_ADC_n_UC_11	Sequencer Register

Address	Width	Register Name	Description
0x46	16 bit	AFE_ADC_n_UC_12	Sequencer Register
0x47	16 bit	AFE_ADC_n_UC_13	Sequencer Register
0x48	16 bit	AFE_ADC_n_UC_14	Sequencer Register
0x49	16 bit	AFE_ADC_n_UC_15	Sequencer Register
0x4A	16 bit	AFE_ADC_n_UC_16	Sequencer Register
0x4B	16 bit	AFE_ADC_n_UC_17	Sequencer Register
0x4C	16 bit	AFE_ADC_n_UC_18	Sequencer Register
0x4D	16 bit	AFE_ADC_n_UC_19	Sequencer Register
0x4E	16 bit	AFE_ADC_n_UC_20	Sequencer Register
0x4F	16 bit	AFE_ADC_n_UC_21	Sequencer Register
0x50	16 bit	AFE_ADC_n_UC_22	Sequencer Register
0x51	16 bit	AFE_ADC_n_UC_23	Sequencer Register
0x52	16 bit	AFE_ADC_n_UC_24	Sequencer Register
0x53	16 bit	AFE_ADC_n_UC_25	Sequencer Register
0x54	16 bit	AFE_ADC_n_UC_26	Sequencer Register
0x55	16 bit	AFE_ADC_n_UC_27	Sequencer Register
0x56	16 bit	AFE_ADC_n_UC_28	Sequencer Register
0x57	16 bit	AFE_ADC_n_UC_29	Sequencer Register
0x58	16 bit	AFE_ADC_n_UC_30	Sequencer Register
0x59	16 bit	AFE_ADC_n_UC_31	Sequencer Register
0x5A	16 bit	AFE_ADC_n_UC_32	Sequencer Register
0x5B	16 bit	AFE_ADC_n_UC_33	Sequencer Register
0x5C	16 bit	AFE_ADC_n_UC_34	Sequencer Register
0x5D	16 bit	AFE_ADC_n_UC_35	Sequencer Register
0x5E	16 bit	AFE_ADC_n_UC_36	Sequencer Register
0x5F	16 bit	AFE_ADC_n_UC_37	Sequencer Register
0x60	16 bit	AFE_ADC_n_UC_38	Sequencer Register
0x61	16 bit	AFE_ADC_n_UC_39	Sequencer Register
0x62	16 bit	AFE_ADC_n_UC_40	Sequencer Register
0x63	16 bit	AFE_ADC_n_UC_41	Sequencer Register
0x64	16 bit	AFE_ADC_n_UC_42	Sequencer Register
0x65	16 bit	AFE_ADC_n_UC_43	Sequencer Register
0x66	16 bit	AFE_ADC_n_UC_44	Sequencer Register
0x67	16 bit	AFE_ADC_n_UC_45	Sequencer Register
0x68	16 bit	AFE_ADC_n_UC_46	Sequencer Register
0x69	16 bit	AFE_ADC_n_UC_47	Sequencer Register
0x6A	16 bit	AFE_ADC_n_UC_48	Sequencer Register
0x6B	16 bit	AFE_ADC_n_UC_49	Sequencer Register
0x6C	16 bit	AFE_ADC_n_UC_50	Sequencer Register
0x6D	16 bit	AFE_ADC_n_UC_51	Sequencer Register

Address	Width	Register Name	Description
0x6E	16 bit	AFE_ADC_n_UC_52	Sequencer Register
0x6F	8 bits	AFE_ADC_n_UCADDR	Sequencer Register
0x70	8-bits	AFE_ADC_n_FT_PWORD	Protection Register
0x77	24-bit	AFE_ADC_n_ADC_TRIMO	ADC Trim 0 Register
0x78	16 bit	AFE_ADC_n_ADC_TRIM1	ADC Trim 1 Register
0x79	16 bit	AFE_ADC_n_ANA_TRIM	Analog Trim 0 Register

15.21.1 Register Details

Table 15-15: Power-Down Register

Power Down			AFE_ADC_n_PD		0x00
Bits	Name	Access	Reset	Description	
7:2	-	R	0	Reserved	
1:0	pd	R/W	1	Power Down This field selects the power-down state to be executed. While in a sequence, executing a power-down command causes the sequencer to stop and issue an AFE_ADC_n_STATUS.seq_rdy status. In standby or sleep mode, writing an asynchronous start command (AFE_ADC_n_WAIT_START , AFE_ADC_n_CONV_START , AFE_ADC_n_SEQ_START) initiates wake-up, causing the PD state to change to normal mode. During wake-up, the AFE_ADC_n_PD.pd field reads 0b10 and transitions to 0b00 after the wake-up timer expires. Asynchronous start operations are delayed until the wake-up timer expires. 0b00: Normal mode. 0b01: Standby mode - Powers down all analog circuitry, but not the internal voltage regulator. 0b10: Sleep mode – Powers down all analog circuitry, including the internal voltage regulator. 0b11: Reset – Resets all registers to the POR state. When complete, the ADC automatically enters standby mode.	

Table 15-16: Start Conversion Register

Start Conversion			AFE_ADC_n_CONV_START		0x01
Bits	Name	Access	Reset	Description	
7	-	R	0	Reserved	
6:4	dest	R/W	0	ADC Conversion Destination This field selects the register to store the ADC conversion output. 0: AFE_ADC_n_DATA0 . 1: AFE_ADC_n_DATA1 . 2: AFE_ADC_n_DATA2 . 3: AFE_ADC_n_DATA3 . 4: AFE_ADC_n_DATA4 . 5: AFE_ADC_n_DATA5 . 6: AFE_ADC_n_DATA6 . 7: AFE_ADC_n_DATA7 . <i>Note: Writing to this register when the AFE_ADC_n_PD.pd field is set to sleep or standby automatically results in the AFE_ADC_n_PD.pd field being set to normal operation and initiates a conversion.</i>	
3:2	-	R	0	Reserved	

Start Conversion			AFE_ADC_n_CONV_START		0x01
Bits	Name	Access	Reset	Description	
1:0	conv_type	R/W	0	ADC Conversion Type Selects the type of ADC conversion to perform. 0: Single Conversion. 1: Continuous conversions. 2 - 3: $\frac{1}{4}$ duty cycled conversions.	

Table 15-17: Sequencer Start Register

Sequencer Start			AFE_ADC_n_SEQ_START		0x02
Bits	Name	Access	Reset	Description	
7	-	R	0	Reserved	
6:0	seq_address	R/W	0	Sequencer Start Address Writing a valid address of a sequencer register to this field immediately executes a sequence beginning at the sequencer address written. If the ADC is set to sleep or standby mode, the <i>AFE_ADC_n_PD</i> .pd field is automatically set to 0 by hardware, and the sequence immediately executes. 0x3A – 0x6E: Execute sequence starting at the address written. <i>Note: Writing an address outside the sequencer's microcode address range is ignored.</i>	

Table 15-18: Calibration Start Register

Calibration Start			AFE_ADC_n_CAL_START		0x03
Bits	Name	Access	Reset	Description	
7:3	-	R	0	Reserved	

Calibration Start			AFE_ADC_n_CAL_START		0x03
Bits	Name	Access	Reset	Description	
2:0	cal_type	R/W	0	<p>Calibration Type</p> <p>Writing this field executes a calibration as selected by the calibration type selected. Successful completion of a calibration results in an update of the corresponding calibration value registers. All calibrations are performed at the filter settings in the AFE_ADC_n_FILTER.linef and AFE_ADC_n_FILTER.rate fields when the calibration is initiated.</p> <p>0: Performs a self-calibration. The resulting offset calibration value is stored in the AFE_ADC_n_SELF_OFF register, and the 1x gain calibration value is stored in the AFE_ADC_n_SELF_GAIN_1 register.</p> <p>1: Performs a PGA gain calibration at the currently programmed PGA gain. A 'No Op' results if PGA gain calibration is executed with the PGA disabled through the AFE_ADC_n_PGA.sig_path field or with the AFE_ADC_n_PGA.gain set to 1x. The resulting gain calibration value is stored in the AFE_ADC_n_SELF_GAIN_2:AFE_ADC_n_SELF_GAIN_128 register corresponding to the currently programmed PGA gain setting.</p> <p>2, 3: Reserved.</p> <p>4: Performs a system offset calibration. The resulting calibration value is stored in the AFE_ADC_n_SYS_OFF_A register.</p> <p>5: Performs a system gain calibration. The resulting calibration value is stored in the AFE_ADC_n_SYS_GAIN_A register.</p> <p>6: Performs a system offset calibration. The resulting calibration value is stored in the AFE_ADC_n_SYS_OFF_B register.</p> <p>7: Performs a system gain calibration. The resulting calibration value is stored in the AFE_ADC_n_SYS_GAIN_B register.</p> <p><i>Note: Writing to this register when the AFE_ADC_n_PD.pd field is set to sleep or standby automatically results in the AFE_ADC_n_PD.pd field being set to normal, and the calibration is performed.</i></p>	

Table 15-19: GPIO0 (ADCO_RDY) Control Register

GPIO0 Control			AFE_ADC_n_GPO_CTRL		0x04
Bits	Name	Access	Reset	Description	
7:6	gp0_dir	R/W	0	<p>GPIO0 Input/Output Selection</p> <p>This field controls the ADC's GPIO0 (ADCO_RDY) input/output direction and type.</p> <p>0b00: Input mode, reference to V_{DDIO}.</p> <p>0b01: Reserved.</p> <p>0b10: Output mode, open-drain output.</p> <p>0b11: Output mode, CMOS output.</p>	
5:4	gp0_isel	R/W	0	<p>GPIO0 Input Select Type</p> <p>When GPIO0 (ADCO_RDY) is configured as an input, AFE_ADC_n_GPO_CTRL.gp0_dir = 0, this field selects the usage of the input signal.</p> <p>0b00: Input disabled.</p> <p>0b01: Input configured as a rising-edge triggered conversion start.</p> <p>0b10: Input configured as a rising-edge triggered sequence start.</p> <p>0b11: Reserved.</p>	
3	-	R	0	<p>Reserved</p>	

GPIO0 Control			AFE_ADC_n_GPO_CTRL		0x04
Bits	Name	Access	Reset	Description	
2:0	gp0_ose1	R/W	0	GPIO0 Output Select Type When GPIO0 (ADC0_RDY) is configured as an output, AFE_ADC_n_GPO_CTRL.gp0_dir = 2 or 3, this field selects the usage of the output signal. 0b000: Output disabled, high Z. 0b001: Output is configured as an interrupt (active low). 0b010: Output is configured as an interrupt (active high). 0b011: Output is configured as state logic 0. 0b100: Output is configured as state logic 1. 0b101: Output is configured as an automatic low-side switch operation (CMOS output mode overridden). 0b110: Output is configured as modulator active status. 0b111: Reserved.	

Table 15-20: GPIO1 (ADC1_RDY) Control Register

GPIO1 Control			AFE_ADC_n_GP1_CTRL		0x05
Bits	Name	Access	Reset	Description	
7:0	-	RO	0	Reserved	

Table 15-21: GPIO Conversion Register

GPIO Conversion			AFE_ADC_n_GP_CONV		0x06
Bits	Name	Access	Reset	Description	
7	-	R	0	Reserved	
6:4	dest	R/W	0	Destination Register When the GPIO0 is configured as a conversion start input, AFE_ADC_n_GPO_CTRL.gp0_isel = 2 or 3, this field selects the destination register to store the conversion result. 0b000: Store result in AFE_ADC_n_DATA0 . 0b001: Store result in AFE_ADC_n_DATA1 . 0b010: Store result in AFE_ADC_n_DATA2 . 0b011: Store result in AFE_ADC_n_DATA3 . 0b100: Store result in AFE_ADC_n_DATA4 . 0b101: Store result in AFE_ADC_n_DATA5 . 0b110: Store result in AFE_ADC_n_DATA6 . 0b111: Store result in AFE_ADC_n_DATA7 .	
3:2	-	R	0	Reserved	
1:0	conv_type	R/W	0	Conversion Type When the GPIO0 is configured as a conversion start input, AFE_ADC_n_GPO_CTRL.gp0_isel = 2 or 3, this field selects the type of conversion to perform. 0b00: Single conversion. 0b01: Continuous conversion. 0b10, 0b11: 1:4 duty cycled conversions (modulator low-power mode).	

Table 15-22: GPIO Sequence Address Register

GPIO Sequence Address			AFE_ADC_n_GP_SEQ_ADDR		0x07
Bits	Name	Access	Reset	Description	
7	-	R	0	Reserved	

GPIO Sequence Address			AFE_ADC_n_GP_SEQ_ADDR		0x07
Bits	Name	Access	Reset	Description	
6:0	gp_seq_addr	R/W	0	GPIO Sequencer Address Write the address of the sequencer register at which a sequence should be initiated by a sequencer start GPIO event. Writing to this register does not start a sequence. 0x3A – 0x6E: Execute sequence starting at the address written. <i>Note: Writing an address outside the sequencer's microcode address range is ignored.</i>	

Table 15-23: Filter Register

Filter			AFE_ADC_n_FILTER		0x08
Bits	Name	Access	Reset	Description	
7:6	-	R	0	Reserved	
5:4	linef	R/W	0	Digital Filter Selection This field sets the filter type. 0b00: Simultaneous 50/60Hz FIR rejection. 0b01: 50Hz FIR rejection. 0b10: 60Hz FIR rejection. 0b11: SINC4.	
3:0	rate	R/W	0	Conversion Rate The valid settings for this field are dependent on the filter selected with the <i>AFE_ADC_n_FILTER.linef</i> setting. See the tables in the <i>Digital Gain</i> and <i>Digital Filter</i> section for details.	

Table 15-24: Control Register

Control			AFE_ADC_n_CTRL		0x09
Bits	Name	Access	Reset	Description	
7	extclk	DNM	0	Reserved, Do Not Modify	
6	u_bn	R/W	0	Unipolar/Bipolar Input Range 0: Bipolar input range. 1: Unipolar input range.	
5	format	R/W	0	Format This field selects the format of the data conversion. 0: Two's complement format. It only applies when bipolar input range is enabled. 1: Offset binary format.	
4	refbufp_en	R/W	0	Reference P-Side Buffer Select 0: Power down the reference P-side buffer and bypass, driving the ADC reference input directly from the reference mux. 1: Enable the reference P-side buffer.	
3	refbufn_en	R/W	0	Reference N-Side Buffer Select 0: Power down the reference N-side buffer and bypass, driving the ADC reference input directly from the reference mux. 1: Enable the reference N-side buffer.	

Control				AFE_ADC_n_CTRL	0x09
Bits	Name	Access	Reset	Description	
2:0	ref_sel	R/W	1	Reference Select This field selects the reference for the ADC. 0b000: AIN0(Positive reference)/AIN1(Negative reference). 0b001: REFOP/REFON. 0b010: REF1P/REF1N. 0b011: V_{DDA}/V_{SSA} . 0b100: AIN0(Positive reference)/ V_{SSA} (single-ended mode). 0b101: REFOP/ V_{SSA} (single-ended mode). 0b110: REF1P/ V_{SSA} (single-ended mode). 0b111: Reserved.	

Table 15-25: Source Register

Source				AFE_ADC_n_SOURCE	0x0A
Bits	Name	Access	Reset	Description	
7:6	vbias_mode	R/W	0	V_{BIAS} Mode Select This field selects the operating mode for the $V_{DDA}/2$ bias voltage source. The bias voltage may be supplied by an amplifier (Active mode) or a resistive device (either 125k Ω or 20k Ω source resistance). 0b00: Active mode. 0b01: High impedance; 125k Ω output impedance. 0b10: Low impedance; 20k Ω output impedance. 0b11: Low impedance; 20k Ω output impedance. <i>Note: Enabling the V_{BIAS} and IDAC sources on the same analog input is not supported. Enabling V_{BIAS} on an analog input with an IDAC enabled clears the corresponding IDAC enable.</i>	
5:4	brn_mode	R/W	0	Burnout Current Source Select This field selects the nominal current value for the burnout detection current source and sink. Three current values are available. 0b00: Powered down, burnout sources disabled. 0b01: 0.5 μ A burnout current sources enabled. 0b10: 1 μ A burnout current sources enabled. 0b11: 10 μ A burnout current sources enabled.	

Source			AFE_ADC_n_SOURCE		0x0A
Bits	Name	Access	Reset	Description	
3:0	idac_mode	R/W	0	IDAC Matched Current Source Select This field selects the nominal current output for the two matched excitation current sources. 0b0000: 10µA 0b0001: 50µA 0b0010: 75µA 0b0011: 100µA 0b0100: 125µA 0b0101: 150µA 0b0110: 175µA 0b0111: 200µA 0b1000: 225µA 0b1001: 250µA 0b1010: 300µA 0b1011: 400µA 0b1100: 600µA 0b1101: 800µA 0b1110: 1200µA 0b1111: 1600µA <i>Note: Enabling the V_{BIAS} and IDAC sources on the same analog input is not supported. Enabling IDAC on an analog input with a V_{BIAS} enabled clears the corresponding V_{BIAS} enable.</i>	

Table 15-26: Mux Control 0 Register

Mux Control 0				AFE_ADC_n_MUX_CTRL0	0x0B
Bits	Name	Access	Reset	Description	
7:4	ainp_sel	R/W	0b1111	Positive Analog Input Connection This field selects which analog input is connected to AINP. 0b0000: AINP = AIN0. 0b0001: AINP = AIN1. 0b0010: AINP = AIN2. 0b0011: AINP = AIN3. 0b0100: AINP = AIN4. 0b0101: AINP = AIN5. 0b0110: AINP = AIN6. 0b0111: AINP = AIN7. 0b1000: AINP = AIN8. 0b1001: AINP = AIN9. 0b1010: AINP = AIN10. 0b1011: AINP = AIN11. 0b1100: AINP = Temp Sense P. 0b1101: AINP = Temp Sense N. 0b1110: AINP = V _{DDA} . 0b1111: AINP = Unconnected.	<i>Note: AINP defaults to unconnected.</i>
3:0	ainn_sel	R/W	0b1111	Negative Analog Input Connection This field selects which analog input is connected to AINN. 0b0000: AINN = AIN0. 0b0001: AINN = AIN1. 0b0010: AINN = AIN2. 0b0011: AINN = AIN3. 0b0100: AINN = AIN4. 0b0101: AINN = AIN5. 0b0110: AINN = AIN6. 0b0111: AINN = AIN7. 0b1000: AINN = AIN8. 0b1001: AINN = AIN9. 0b1010: AINN = AIN10. 0b1011: AINN = AIN11. 0b1100: AINN = Temp Sense P. 0b1101: AINN = Temp Sense N. 0b1110: AINN = GND. 0b1111: AINN = Unconnected.	<i>Note: AINN defaults to unconnected.</i>

Table 15-27: Mux Control 1 Register

Mux Control 1				AFE_ADC_n_MUX_CTRL1	0x0C
Bits	Name	Access	Reset	Description	
7:4	idac1_sel	R/W	0b1111	IDAC1 Matched Current Source Select This field selects which analog input the IDAC1 matched excitation current source is connected to or if it is powered down. 0b0000:AIN0. 0b0001:AIN1. 0b0010:AIN2. 0b0011:AIN3. 0b0100:AIN4. 0b0101:AIN5. 0b0110:AIN6. 0b0111:AIN7. 0b1000:AIN8. 0b1001:AIN9. 0b1010:AIN10. 0b1011:AIN11. 0b1100:Unconnected; IDAC1 powered down. 0b1101:Unconnected; IDAC1 powered down. 0b1110:Unconnected; IDAC1 powered down. 0b1111:Unconnected; IDAC1 powered down. <i>Note: IDAC1 defaults to unconnected and powered down.</i>	
3:0	idac0_sel	R/W	0b1111	IDAC0 Select This field selects which analog input the IDAC0 matched excitation current source is connected to or if it is powered down. 0b0000:AIN0. 0b0001:AIN1. 0b0010:AIN2. 0b0011:AIN3. 0b0100:AIN4. 0b0101:AIN5. 0b0110:AIN6. 0b0111:AIN7. 0b1000:AIN8. 0b1001:AIN9. 0b1010:AIN10. 0b1011:AIN11. 0b1100:Unconnected; IDAC0 powered down. 0b1101:Unconnected; IDAC0 powered down. 0b1110:Unconnected; IDAC0 powered down. 0b1111:Unconnected; IDAC0 powered down. <i>Note: IDAC0 defaults to unconnected and powered down.</i>	

Table 15-28: Mux Control 2 Register

Mux Control 2			AFE_ADC_n_MUX_CTRL2		0x0D
Bits	Name	Access	Reset	Description	
7	vbias_sel_7	R/W	0	V_{BIAS} Connection to AIN7 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN7.	
6	vbias_sel_6	R/W	0	V_{BIAS} Connection to AIN6 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN6.	
5	vbias_sel_5	R/W	0	V_{BIAS} Connection to AIN5 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN5.	
4	vbias_sel_4	R/W	0	V_{BIAS} Connection to AIN4 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN4.	
3	vbias_sel_3	R/W	0	V_{BIAS} Connection to AIN3 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN3.	
2	vbias_sel_2	R/W	0	V_{BIAS} Connection to AIN2 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN2.	
1	vbias_sel_1	R/W	0	V_{BIAS} Connection to AIN1 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN1.	
0	vbias_sel_0	R/W	0	V_{BIAS} Connection to AIN0 This field enables the connection of the V _{BIAS} source to the input mux. The V _{BIAS} input source can be connected to multiple inputs simultaneously, but only AIN0 to AIN7 are supported. 0: Unconnected. 1: V _{BIAS} connected to AIN0.	

Table 15-29: PGA Register

PGA		AFE_ADC_n_PGA			0x0E
Bits	Name	Access	Reset	Description	
7:6	-	R	0	Reserved	
5:4	sig_path	R/W	0	Signal Path 0: Buffered, low-power, unity-gain path (PGA disabled, digital gain). 1: Bypass path (signal buffer disabled, PGA disabled, digital gain). 2: PGA path (signal buffer disabled, analog gain). 3: Reserved.	
3	-	R	0	Reserved	
2:0	gain	R/W	0	Gain Selection 0b000: 1x. 0b001: 2x. 0b010: 4x. 0b011: 8x. 0b100: 16x. 0b101: 32x. 0b110: 64x. 0b111: 128x.	

Table 15-30: Wait Extend Register

Wait Extend		AFE_ADC_n_WAIT_EXT			0x0E
Bits	Name	Access	Reset	Description	
7:0	wait_ext	R/W	0	Wait Extension for Wait Command This field extends the wait command as shown in the following equation. $Wait\ Clocks = (wait_ext \times 16) \times (wait \times 16)$ For a 2.456MHz input clock, the minimum wait period is 6.5μs. The maximum wait period using the wait extender is 6.77s. <i>Note: Reading this register returns the written value. A write to this register does not cause a wait command to execute. When wait_ext = 0x00, no wait extension is applied, and the wait period is equal to wait × 16. In the absence of a reset, the wait_ext selection applies to all subsequence AFE_ADC_n_WAIT_START commands.</i>	

Table 15-31: Wait Start Register

Wait Start		AFE_ADC_n_WAIT_START			0x10
Bits	Name	Access	Reset	Description	
7:0	wait	R/W	0	Wait Extension for Wait Command A write to this register executes a wait operation with a clock count equal to: $Wait\ Clocks = (wait_ext \times 16) \times (wait \times 16)$ For a 2.456MHz input clock, the minimum wait period is 6.5μs. The maximum wait period using the wait extender is 6.77s. <i>Note: Reading this register returns the current count value, as decremented since the last wait execution. Writing to any register during a wait aborts the count operation but does not reset the register. Writing 0x00 to this register results in a 'No Op' and no AFE_ADC_n_STATUS.wait_done status is issued.</i>	

Table 15-32: Part ID Register

Part ID			AFE_ADC_n_PART_ID		0x11
Bits	Name	Access	Reset	Description	
23:6	-	R	0	Reserved	
5	adc_sel	R	0	ADC Selected This field reads 1 if this ADC is currently selected by the AFE.	
4:0	rev_id	R	0	Revision ID This field returns the revision ID of the ADC.	

Table 15-33: System Calibration Select Register

Self-System Calibration Select			AFE_ADC_n_SYSC_SEL		0x12
Bits	Name	Access	Reset	Description	
23:16	-	R	0	Reserved	
15:14	sysc_sel_7	R/W	0	Calibration Select for Data Register 7 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA7 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA7 . 2, 3: System calibration disabled for AFE_ADC_n_DATA7 . (Only self-calibration is applied.)	
13:12	sysc_sel_6	R/W	0	Calibration Select for Data Register 6 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA6 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA6 . 2, 3: System calibration disabled for AFE_ADC_n_DATA6 . (Only self-calibration is applied.)	
11:10	sysc_sel_5	R/W	0	Calibration Select for Data Register 5 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA5 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA5 . 2, 3: System calibration disabled for AFE_ADC_n_DATA5 . (Only self-calibration is applied.)	
9:8	sysc_sel_4	R/W	0	Calibration Select for Data Register 4 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA4 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA4 . 2, 3: System calibration disabled for AFE_ADC_n_DATA4 . (Only self-calibration is applied.)	
7:6	sysc_sel_3	R/W	0	Calibration Select for Data Register 3 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA3 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA3 . 2, 3: System calibration disabled for AFE_ADC_n_DATA3 . (Only self-calibration is applied.)	

Self-System Calibration Select			AFE_ADC_n_SYSC_SEL		0x12
Bits	Name	Access	Reset	Description	
5:4	sysc_sel_2	R/W	0	Calibration Select for Data Register 2 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA2 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA2 . 2, 3: System calibration disabled for AFE_ADC_n_DATA2 . (Only self-calibration is applied.)	
3:2	sysc_sel_1	R/W	0	Calibration Select for Data Register 1 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA1 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA1 . 2, 3: System calibration disabled for AFE_ADC_n_DATA1 . (Only self-calibration is applied.)	
1:0	sysc_sel_0	R/W	0	Calibration Select for Data Register 0 0: AFE_ADC_n_SYS_OFF_A and AFE_ADC_n_SYS_GAIN_A calibration values are applied to the conversion result stored in AFE_ADC_n_DATA0 . 1: AFE_ADC_n_SYS_OFF_B and AFE_ADC_n_SYS_GAIN_B calibration values are applied to the conversion result stored in AFE_ADC_n_DATA0 . 2, 3: System calibration disabled for AFE_ADC_n_DATA3 . (Only self-calibration is applied.)	

Table 15-34: System Offset A Register

Self-System Offset A			AFE_ADC_n_SYS_OFF_A		0x13
Bits	Name	Access	Reset	Description	
23:0	sys_off_a	R/W	0	System Offset A The system offset A calibration value is subtracted from each conversion result if selected by the AFE_ADC_n_SYSC_SEL register. The data is always in 2's complement binary format and is unaffected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. Writes to this field are allowed. A value written to the register remains valid until either a new value is written or until an on-demand system calibration operation is performed, which overwrites the current value. The system offset calibration value applied to the selected destination register is subtracted from the conversion result after self-calibration but before the system gain correction. It is also applied before the 1x or 2x scale factor associated with bipolar and unipolar modes.	

Table 15-35: System Offset B Register

Self-System Offset B			AFE_ADC_n_SYS_OFF_B		0x14
Bits	Name	Access	Reset	Description	
23:0	sys_off_b	R/W	0	System Offset B The system offset B calibration value is subtracted from each conversion result if selected by the AFE_ADC_n_SYSC_SEL register. The data is always in 2's complement binary format and is unaffected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. Writes to this field are allowed. A value written to the register remains valid until either a new value is written or until an on-demand system calibration operation is performed, which overwrites the current value. The system offset calibration value applied to the selected destination register is subtracted from the conversion result after self-calibration but before the system gain correction. It is also applied before the 1x or 2x scale factor associated with bipolar and unipolar modes.	

Table 15-36: System Gain A Register

Self-System Gain A			AFE_ADC_n_SYS_GAIN_A		0x15
Bits	Name	Access	Reset	Description	
23:0	sys_gain_a	R/W	0	System Gain A The System Gain Calibration A value is used to scale the offset-corrected conversion result if selected by the AFE_ADC_n_SYSC_SEL register. The format is fixed point, unsigned binary, and is unaffected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. The binary point is located after the MSB. The MSB corresponds to 2^0 , and the LSB corresponds to 2^{-23} . Writes to this register are allowed. A value written to the register remains valid until either a new value is written or until an on-demand system calibration operation is performed, which overwrites the current value. The system gain calibration value scales the offset corrected result by up to 1.999999881x or can correct a gain error of -50%. The amount of positive gain error that can be corrected is determined by modulator overload characteristics, which may be as much as +25%.	

Table 15-37: System Gain B Register

Self-System Gain B			AFE_ADC_n_SYS_GAIN_B		0x16
Bits	Name	Access	Reset	Description	
23:0	sys_gain_b	R/W	0	System Gain B The System Gain Calibration B value is used to scale the offset-corrected conversion result if selected by the AFE_ADC_n_SYSC_SEL register. The format is fixed point, unsigned binary, and is unaffected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. The binary point is located after the MSB. The MSB corresponds to 2^0 , and the LSB corresponds to 2^{-23} . Writes to this register are allowed. A value written to the register remains valid until either a new value is written or until an on-demand system calibration operation is performed, which overwrites the current value. The system gain calibration value scales the offset corrected result by up to 1.999999881x or can correct a gain error of -50%. The amount of positive gain error that can be corrected is determined by modulator overload characteristics, which may be as much as +25%.	

Table 15-38: Self-Calibration Offset Register

Self-Calibration Offset Value		AFE_ADC_n_SELF_OFF		0x17
Bits	Name	Access	Reset	Description
23:0	self_off	R/W	0	Self-Calibration Offset The self-calibration offset value, <i>self_off</i> , is subtracted from the conversion result. The format is always 2's complement binary format and is unaffected by the <i>AFE_ADC_n_CTRL.u.bn</i> and <i>AFE_ADC_n_CTRL.format</i> fields. Writing to the self-calibration register is allowed. The value remains valid until either a new write is complete or an on-demand self-calibration operation is performed (<i>AFE_ADC_n_CAL_START.cal_type</i> = 0), which overwrites this field. The self-calibration offset value is subtracted from the conversion result before the selected self-calibration gain correction (<i>AFE_ADC_n_SELF_GAIN_1</i> to <i>AFE_ADC_n_SELF_GAIN_128</i>) and before the system offset (<i>AFE_ADC_n_SYS_OFF_A/AFE_ADC_n_SYS_OFF_B</i>) and gain (<i>AFE_ADC_n_SYS_GAIN_A/AFE_ADC_n_SYS_GAIN_B</i>). It is also applied before the 2x scale factor associated with unipolar mode.

Table 15-39: Self-Gain 1x Register

Self-Gain 1x		AFE_ADC_n_SELF_GAIN_1		0x18
Bits	Name	Access	Reset	Description
23:0	gain	R/W	0	Gain 1x

Table 15-40: Self-Gain 2x Register

Self-Gain 2x		AFE_ADC_n_SELF_GAIN_2		0x19
Bits	Name	Access	Reset	Description
23:0	gain	R/W	0	Gain 2x

Table 15-41: Self-Gain 4x Register

Self-Gain 4x		AFE_ADC_n_SELF_GAIN_4		0x1A
Bits	Name	Access	Reset	Description
23:0	gain	R/W	0	Gain 4x

Table 15-42: Self-Gain 8x Register

Self-Gain 8x		AFE_ADC_n_SELF_GAIN_8		0x1B
Bits	Name	Access	Reset	Description
23:0	gain	R/W	0	Gain 8x

Table 15-43: Self-Gain 16x Register

Self-Gain 16x		AFE_ADC_n_SELF_GAIN_16		0x1C
Bits	Name	Access	Reset	Description
23:0	gain	R/W	0	Gain 16x

Table 15-44: Self-Gain 32x Register

Self-Gain 32x			AFE_ADC_n_SELF_GAIN_32		0x1D
Bits	Name	Access	Reset	Description	
23:0	gain	R/W	0	Gain 32x	

Table 15-45: Self-Gain 64x Register

Self-Gain 64x			AFE_ADC_n_SELF_GAIN_64		0x1E
Bits	Name	Access	Reset	Description	
23:0	gain	R/W	0	Gain 64x	

Table 15-46: Self-Gain 128x Register

Self-Gain 128x			AFE_ADC_n_SELF_GAIN_128		0x1F
Bits	Name	Access	Reset	Description	
23:0	gain	R/W	0	Gain 128x	

Table 15-47: Lower Threshold 0 Register

Lower Threshold 0			AFE_ADC_n_LTHRESH0		0x20
Bits	Name	Access	Reset	Description	
23:0	lthresh0	R/W	0	Lower Threshold Data 0 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA0 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_0 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_0 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-48: Lower Threshold 1 Register

Lower Threshold 1			AFE_ADC_n_LTHRESH1		0x21
Bits	Name	Access	Reset	Description	
23:0	lthresh1	R/W	0	Lower Threshold Data 1 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA1 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_1 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_1 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-49: Lower Threshold 2 Register

Lower Threshold 2			AFE_ADC_n_LTHRESH2		0x22
Bits	Name	Access	Reset	Description	
23:0	lthresh2	R/W	0	Lower Threshold Data 1 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA2 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_2 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_2 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-50: Lower Threshold 3 Register

Lower Threshold 3			AFE_ADC_n_LTHRESH3		0x23
Bits	Name	Access	Reset	Description	
23:0	lthresh3	R/W	0	Lower Threshold Data 3 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA3 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_3 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_3 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-51: Lower Threshold 4 Register

Lower Threshold 4			AFE_ADC_n_LTHRESH4		0x24
Bits	Name	Access	Reset	Description	
23:0	lthresh4	R/W	0	Lower Threshold Data 4 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA4 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_4 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_4 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-52: Lower Threshold 5 Register

Lower Threshold 5			AFE_ADC_n_LTHRESH5		0x25
Bits	Name	Access	Reset	Description	
23:0	lthresh5	R/W	0	Lower Threshold Data 5 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA5 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_5 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_5 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-53: Lower Threshold 6 Register

Lower Threshold 6			AFE_ADC_n_LTHRESH6		0x26
Bits	Name	Access	Reset	Description	
23:0	lthresh6	R/W	0	Lower Threshold Data 6 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA6 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_6 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_6 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-54: Lower Threshold 7 Register

Lower Threshold 7			AFE_ADC_n_LTHRESH7		0x27
Bits	Name	Access	Reset	Description	
23:0	lthresh7	R/W	0	Lower Threshold Data 7 This field holds the lower comparison threshold for the value in the AFE_ADC_n_DATA7 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tur_7 field. The comparison result indicated by AFE_ADC_n_STATUS.tur_7 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-55: Upper Threshold 0 Register

Upper Threshold 0			AFE_ADC_n_UTRESH0		0x28
Bits	Name	Access	Reset	Description	
23:0	uthresh0	R/W	0	Lower Threshold Data 0 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA0 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_0 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_0 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-56: Upper Threshold 1 Register

Upper Threshold 1			AFE_ADC_n_UTRESH1		0x29
Bits	Name	Access	Reset	Description	
23:0	uthresh1	R/W	0	Lower Threshold Data 2 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA1 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_1 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_1 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-57: Upper Threshold 2 Register

Upper Threshold 2			AFE_ADC_n_UTHRESH2		0x2A
Bits	Name	Access	Reset	Description	
23:0	uthresh2	R/W	0	Lower Threshold Data 2 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA2 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_2 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_2 is affected by the AFE_ADC_n_CTRL.u_bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u_bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-58: Upper Threshold 3 Register

Upper Threshold 3			AFE_ADC_n_UTHRESH3		0x2B
Bits	Name	Access	Reset	Description	
23:0	uthresh3	R/W	0	Lower Threshold Data 3 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA3 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_3 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_3 is affected by the AFE_ADC_n_CTRL.u_bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u_bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-59: Upper Threshold 4 Register

Upper Threshold 4			AFE_ADC_n_UTHRESH4		0x2C
Bits	Name	Access	Reset	Description	
23:0	uthresh4	R/W	0	Lower Threshold Data 4 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA4 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_4 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_4 is affected by the AFE_ADC_n_CTRL.u_bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u_bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-60: Upper Threshold 5 Register

Upper Threshold 5			AFE_ADC_n_UTHRESH5		0x2D
Bits	Name	Access	Reset	Description	
23:0	uthresh5	R/W	0	Lower Threshold Data 5 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA5 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_5 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_5 is affected by the AFE_ADC_n_CTRL.u_bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u_bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-61: Upper Threshold 6 Register

Upper Threshold 6			AFE_ADC_n_UTHRESH6		0x2E
Bits	Name	Access	Reset	Description	
23:0	uthresh6	R/W	0	Lower Threshold Data 6 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA6 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_6 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_6 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-62: Upper Threshold 7 Register

Upper Threshold 7			AFE_ADC_n_UTHRESH7		0x2F
Bits	Name	Access	Reset	Description	
23:0	uthresh7	R/W	0	Lower Threshold Data 7 This field holds the upper comparison threshold for the value in the AFE_ADC_n_DATA7 register. The comparison result is indicated by the AFE_ADC_n_STATUS.tor_7 field. The comparison result indicated by AFE_ADC_n_STATUS.tor_7 is affected by the AFE_ADC_n_CTRL.u.bn and AFE_ADC_n_CTRL.format fields. If the AFE_ADC_n_CTRL.u.bn or AFE_ADC_n_CTRL.format fields are changed, the threshold value should be changed accordingly.	

Table 15-63: Data 0 Register

Data 0			AFE_ADC_n_DATA0		0x30
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-64: Data 1 Register

Data 1			AFE_ADC_n_DATA1		0x31
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-65: Data 2 Register

Data 2			AFE_ADC_n_DATA2		0x32
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-66: Data 3 Register

Data 3		AFE_ADC_n_DATA3			0x33
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-67: Data 4 Register

Data 4		AFE_ADC_n_DATA4			0x34
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-68: Data 5 Register

Data 5		AFE_ADC_n_DATA5			0x35
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-69: Data 6 Register

Data 6		AFE_ADC_n_DATA6			0x36
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-70: Data 7 Register

Data 7		AFE_ADC_n_DATA7			0x37
Bits	Name	Access	Reset	Description	
23:0	data	R	0	ADC Data Conversion This ADC conversion result is stored in this field if selected by either the AFE_ADC_n_CONV_START.dest field or the AFE_ADC_n_GP_CONV_gp_dest field.	

Table 15-71: Status Register

Status		AFE_ADC_n_STATUS			0x38
Bits	Name	Access	Reset	Description	
23	tor_7	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 7 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
22	tor_6	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 6 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	

Status			AFE_ADC_n_STATUS		0x38
Bits	Name	Access	Reset	Description	
21	tor_5	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 5 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
20	tor_4	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 4 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
19	tor_3	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 3 0: Normal operation 1: Threshold Overrange /digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
18	tor_2	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 2 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
17	tor_1	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 1 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
16	tor_0	ROC	0	Threshold Over-Range/Digital Over-Range Condition on Channel 0 0: Normal operation. 1: Threshold over-range/digital over-range condition. <i>Note: This field is automatically cleared by reading the register.</i>	
15	tur_7	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 7 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
14	tur_6	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 6 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
13	tur_5	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 5 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
12	tur_4	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 4 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
11	tur_3	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 3 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	

Status			AFE_ADC_n_STATUS		0x38
Bits	Name	Access	Reset	Description	
10	tur_2	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 2 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
9	tur_1	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 1 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
8	tur_0	ROC	0	Threshold Under-Range/Digital Under-Range Condition on Channel 0 0: Normal operation. 1: Threshold under-range/digital under-range condition. <i>Note: This field is automatically cleared by reading this register.</i>	
7	sysgor	ROC	0	System Gain Calibration Over-Range 0: No fault detected. 1: A system gain calibration was over-range. <i>Note: This field is automatically cleared by reading this register.</i>	
6:5	-	RO	0	Reserved	
4	data_rdy	R	0	Data Ready This field indicates that one of the AFE_ADC_n_DATA0:AFE_ADC_n_DATA7 registers contains an unread ADC conversion result. 0: No change. 1: Unread ADC data conversion data available.	
3	wait_done	ROC	0	Wait Done This field is set to 1 when a wait operation is complete. This field is cleared by reading this register or a write to the AFE_ADC_n_WAIT_START register.	
2	cal_rdy	ROC	0	Calibration Complete 0: No change. 1: Calibration complete. New calibration result(s) available in one of the system or self-calibration registers. <i>Note: This field is cleared by reading this register or a write to the AFE_ADC_n_CAL_START register.</i>	
1	seq_rdy	ROC	0	Sequence Ready This field indicates a sequence has completed at least one iteration. 0: No sequence completed, or status bit has been reset. 1: Sequence has completed at least one iteration. <i>Note: This field is cleared by reading this register, writing to the AFE_ADC_n_SEQ_START register (including within a sequence), or a sequence wraparound from AFE_ADC_n_UC_52 to AFE_ADC_n_UC_0.</i>	
0	conv_rdy	ROC	0	Conversion Ready This field is set to 1 when a new conversion result is available in the AFE_ADC_n_DATA0:AFE_ADC_n_DATA7 registers.	

Table 15-72: Status Interrupt Enable Register

Status Interrupt Enable			AFE_ADC_n_STATUS_IE		0x39
Bits	Name	Access	Reset	Description	
23	tor_7	R/W	0	Threshold Over-Range 7 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_7 = 1.	
22	tor_6	R/W	0	Threshold Over-Range 6 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_6 = 1.	
21	tor_5	R/W	0	Threshold Over-Range 5 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_5 = 1.	
20	tor_4	R/W	0	Threshold Over-Range 4 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_4 = 1.	
19	tor_3	R/W	0	Threshold Over-Range 3 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_3 = 1.	
18	tor_2	R/W	0	Threshold Over-Range 2 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_2 = 1.	
17	tor_1	R/W	0	Threshold Over-Range 1 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_1 = 1.	
16	tor_0	R/W	0	Threshold Over-Range 0 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tor_0 = 1.	
15	tur_7	R/W	0	Threshold Under-Range 7 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_7 = 1.	
14	tur_6	R/W	0	Threshold Under-Range 6 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_6 = 1.	
13	tur_5	R/W	0	Threshold Under-Range 5 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_5 = 1.	
12	tur_4	R/W	0	Threshold Under-Range 4 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_4 = 1.	
11	tur_3	R/W	0	Threshold Under-Range 3 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_3 = 1.	
10	tur_2	R/W	0	Threshold Under-Range 2 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_2 = 1.	
9	tur_1	R/W	0	Threshold Under-Range 1 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_1 = 1.	
8	tur_0	R/W	0	Threshold Under-Range 0 Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.tur_0 = 1.	

Status Interrupt Enable			AFE_ADC_n_STATUS_IE		0x39
Bits	Name	Access	Reset	Description	
7	sysgor_ie	R/W	0	System Gain Calibration Over-Range Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.sysgor = 1.	
6:5	-	RO	0	Reserved	
4	data_rdy_ie	R/W	0	Data Ready Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.data_rdy = 1.	
3	wait_done_ie	R/W	0	Wait Done Interrupt Enable 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.wait_done = 1.	
2	cal_rdy_ie	R/W	0	Calibration Complete 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.cal_rdy = 1.	
1	seq_rdy_ie	R/W	0	Sequence Ready 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.seq_rdy = 1.	
0	conv_rdy_ie	R/W	1	Conversion Ready 0: Disabled. 1: Interrupt enabled and asserts when AFE_ADC_n_STATUS.conv_rdy = 1.	

15.21.1.1 16-Bit Sequencer Registers

Table 15-73: Sequencer 0 to 25 Registers

Sequencer 0 Register	AFE_ADC_n_UC_0	0x3A		
Sequencer 1 Register	AFE_ADC_n_UC_1	0x3B		
Sequencer 2 Register	AFE_ADC_n_UC_2	0x3C		
Sequencer 3 Register	AFE_ADC_n_UC_3	0x3D		
Sequencer 4 Register	AFE_ADC_n_UC_4	0x3E		
Sequencer 5 Register	AFE_ADC_n_UC_5	0x3F		
Sequencer 6 Register	AFE_ADC_n_UC_6	0x40		
Sequencer 7 Register	AFE_ADC_n_UC_7	0x41		
Sequencer 8 Register	AFE_ADC_n_UC_8	0x42		
Sequencer 9 Register	AFE_ADC_n_UC_9	0x43		
Sequencer 10 Register	AFE_ADC_n_UC_10	0x44		
Sequencer 11 Register	AFE_ADC_n_UC_11	0x45		
Sequencer 12 Register	AFE_ADC_n_UC_12	0x46		
Sequencer 13 Register	AFE_ADC_n_UC_13	0x47		
Sequencer 14 Register	AFE_ADC_n_UC_14	0x48		
Sequencer 15 Register	AFE_ADC_n_UC_15	0x49		
Sequencer 16 Register	AFE_ADC_n_UC_16	0x4A		
Sequencer 17 Register	AFE_ADC_n_UC_17	0x4B		
Sequencer 18 Register	AFE_ADC_n_UC_18	0x4C		
Sequencer 19 Register	AFE_ADC_n_UC_19	0x4D		
Sequencer 20 Register	AFE_ADC_n_UC_20	0x4E		
Sequencer 21 Register	AFE_ADC_n_UC_21	0x4F		
Sequencer 22 Register	AFE_ADC_n_UC_22	0x50		
Sequencer 23 Register	AFE_ADC_n_UC_23	0x51		
Sequencer 24 Register	AFE_ADC_n_UC_24	0x52		
Sequencer 25 Register	AFE_ADC_n_UC_25	0x53		
Bits	Name	Access	Reset	Description
15	-	RO	0	Reserved
14:8	reg_addr	R/W	0	ADC Register Address Write the address of an 8-bit control register to include it in the sequence.
7:0	reg_data	R/W	0	ADC Register Command Write the command that corresponds to the register selected by the <i>reg_addr</i> field.

Table 15-74: Sequencer 26 to 52 Registers

Sequencer 26 Register	AFE_ADC_n_UC_26	0x54		
Sequencer 27 Register	AFE_ADC_n_UC_27	0x55		
Sequencer 28 Register	AFE_ADC_n_UC_28	0x56		
Sequencer 29 Register	AFE_ADC_n_UC_29	0x57		
Sequencer 30 Register	AFE_ADC_n_UC_30	0x58		
Sequencer 31 Register	AFE_ADC_n_UC_31	0x59		
Sequencer 32 Register	AFE_ADC_n_UC_32	0x5A		
Sequencer 33 Register	AFE_ADC_n_UC_33	0x5B		
Sequencer 34 Register	AFE_ADC_n_UC_34	0x5C		
Sequencer 35 Register	AFE_ADC_n_UC_35	0x5D		
Sequencer 36 Register	AFE_ADC_n_UC_36	0x5E		
Sequencer 37 Register	AFE_ADC_n_UC_37	0x5F		
Sequencer 38 Register	AFE_ADC_n_UC_38	0x60		
Sequencer 39 Register	AFE_ADC_n_UC_39	0x61		
Sequencer 40 Register	AFE_ADC_n_UC_40	0x62		
Sequencer 41 Register	AFE_ADC_n_UC_41	0x63		
Sequencer 42 Register	AFE_ADC_n_UC_42	0x64		
Sequencer 43 Register	AFE_ADC_n_UC_43	0x65		
Sequencer 44 Register	AFE_ADC_n_UC_44	0x66		
Sequencer 45 Register	AFE_ADC_n_UC_45	0x67		
Sequencer 46 Register	AFE_ADC_n_UC_46	0x68		
Sequencer 47 Register	AFE_ADC_n_UC_47	0x69		
Sequencer 48 Register	AFE_ADC_n_UC_48	0x6A		
Sequencer 49 Register	AFE_ADC_n_UC_49	0x6B		
Sequencer 50 Register	AFE_ADC_n_UC_50	0x6C		
Sequencer 51 Register	AFE_ADC_n_UC_51	0x6D		
Sequencer 52 Register	AFE_ADC_n_UC_52	0x6E		
Bits	Name	Access	Reset	Description
15	-	RO	0	Reserved
14:8	reg_addr	R/W	0	ADC Register Address Write the address of an 8-bit control register to include it in the sequence.
7:0	reg_data	R/W	0	ADC Register Command Write the command that corresponds to the register selected by the <i>reg_addr</i> field.

Table 15-75: Sequencer Address Register

Sequencer Address			AFE_ADC_n_UCADDR		0x6F
Bits	Name	Access	Reset	Description	
7	-	RO	0	Reserved	
6:0	ucaddr	R	0	µC Sequencer Address This field indicates the active address of the sequencer. 0x00: Inactive. 0x01-0x2F: Reserved. 0x3A-0x6E: Sequencer register address. 0x6F-0x7F: Reserved.	

Table 15-76: ADC Trim Unlock Register

Sequencer Address			AFE_ADC_n_FT_PWORD		0x70
Bits	Name	Access	Reset	Description	
7:0	-	R/W	0	Trim Password Unlock the ADC trim registers by writing 0x48 and 0x7B in sequential writes to this register. Lock the trim registers by writing any other value to this register.	

Table 15-77: ADC Trim 0 Register

ADC Trim 0			AFE_ADC_n_ADC_TRIM0		0x77
Bits	Name	Access	Reset	Description	
23:0	-	R/W	0*	ADC Trim 0 The device trim values should be written to this register after a POR. See Loading the AFE Trim Values for details on how to write the trim values. <i>Note: This register is only reset on a POR.</i>	

Table 15-78: ADC Trim 1 Register

ADC Trim 1			AFE_ADC_n_ADC_TRIM1		0x78
Bits	Name	Access	Reset	Description	
15:0	-	R/W	0	ADC Trim 1 The device trim values should be written to this register after a POR. See Loading the AFE Trim Values for details on how to write the trim values. <i>Note: This register is only reset on a POR.</i>	

Table 15-79: Analog Trim 2 Register

Analog Trim 0			AFE_ADC_n_ANA_TRIM		0x79
Bits	Name	Access	Reset	Description	
15:0	-	R/W	0	ADC Trim 2 The device trim values should be written to this register after a POR. See Loading the AFE Trim Values for details on how to write the trim values. <i>Note: This register is only reset on a POR.</i>	

16. Digital-to-Analog Converter (DAC)

The MAX32675C includes a 12-bit DAC. The DAC can be set independently to generate either a static output voltage or generate a series of preloaded sample outputs at a specified sample rate.

The DAC peripheral support the following features:

- Configurable clock rate and output sample rate.
- Selectable voltage reference.
- The DAC can be set to output a static voltage level, a preset number of samples at a configurable sample rate, or samples continuously at a configurable sample rate.
- Interpolation filter allows for linearly interpolated output samples to be generated between each pair of output samples (2 to 1, 4 to 1, or 8 to 1).
- DAC output samples are pulled from a FIFO allowing continuous sample output generation.

16.1 Instances

There is one instance of the DAC, as shown in [Table 16-1](#).

Table 16-1: DAC Instances

Instance Name	FIFO Depth	Internal Interface	DAC Output Pin
AFE_DAC	32 × 16-bits	SPI0	DAC12_OUT

16.2 Operation

The DAC must be configured before use. The following sections describe the required steps for configuring the DAC and enabling operation.

16.2.1 Selecting the DAC Using the AFE

Communication to the DAC is controlled using the AFE interface through the internal SPI0. See the section [Selecting an AFE Peripheral](#) for the required steps to select the DAC.

16.2.1.1 DAC Reference

Configure the DAC reference by performing the following steps:

- Select the DAC peripheral if not already selected. See [Selecting an AFE Peripheral](#) for details.
- Perform a 32-bit SPI read using the [AFE_DAC_VREF_CTRL](#) register address.
 - The data read is the current value of the [AFE_DAC_VREF_CTRL](#) register.
- Modify the data read and change the following fields:
 - Enable the DAC reference block ([AFE_DAC_VREF_CTRL.ref_pu](#) = 1)
 - Enable the internal reference output ([AFE_DAC_VREF_CTRL.refdac_outen](#) = 1)
 - Set the [AFE_DAC_VREF_CTRL.dacrefsel](#) field to the desired reference voltage. See [Table 16-2](#) for details.
- Perform a 32-bit SPI write using the [AFE_DAC_VREF_CTRL](#) address and the modified data from step 3.

Table 16-2: DAC Reference Selection

AFE_DAC_VREF_CTRL . dacrefsel	Reference Voltage
0b00	1.024V
0b01	1.5V

<i>AFE_DAC_VREF_CTRL.dacrefsel</i>	Reference Voltage
0b01	2.048V
0b11	2.5V

16.2.2 DAC Power Modes

The DAC defaults to power output level 0, 48 μ A. The DAC power mode is configured using a three bit field which is the concatenation of two fields (*AFE_DAC_CTRL.power_mode_2*:*AFE_DAC_CTRL.power_mode_1_0*). *Table 16-3* shows the power mode selected using the combined fields.

Table 16-3: DAC Power Settings

<i>AFE_DAC_CTRL.power_mode_2</i>	<i>AFE_DAC_CTRL.power_mode_1_0</i>	DAC Power Level
0b0	0b00	Power Level 0 (48 μ A)
0b0	0b11	Power Level 1 (130 μ A)
0b1	0b01	Power Level 2 (210 μ A)
0b1	0b11	Power Level 3 (291 μ A)

16.2.3 Enabling the DAC

After configuring the DAC reference, the DAC can be configured for operation. Initially, the DAC should be powered on and set to a known state before enabling the DAC output.

Configure the DAC by performing the following steps:

1. Select the DAC peripheral if not already selected. See *Selecting an AFE Peripheral* for details.
2. Perform a 32-bit SPI read using the *AFE_DAC_CTRL* register address.
 - a. The data read is the current value of the *AFE_DAC_CTRL* register.
3. Modify the data read and change the following fields:
 - a. Power on the DAC (*AFE_DAC_CTRL.power_on* = 1).
 - b. Enable the DAC clock (*AFE_DAC_CTRL.clock_gate_en* = 1).
 - c. Set the desired DAC power mode. See *Table 16-3* for details.
 - d. Set the desired DAC operating mode (*AFE_DAC_CTRL.op_mode*).
 - e. Set the start mode to 0 (*AFE_DAC_CTRL.cpu_start* = 0).
 - f. Set the DAC output enable to 0b11 (*AFE_DAC_CTRL.en* = 0b11).
 - g. Modify the almost empty (*AFE_DAC_CTRL fifo_ae_cnt*) and almost full (*AFE_DAC_CTRL fifo_af_cnt*) thresholds if different thresholds are required.
4. Perform a 32-bit SPI write using the *AFE_DAC_CTRL* address and the modified data from step 3.

16.2.4 FIFO

The DAC includes a 32 x 16-bit internal FIFO. When writing data to the FIFO, the data should be left justified (bits 3:0 = 0). Write data to the FIFO by writing to the *AFE_DAC_FIFO* register. Before writing data to the DAC FIFO, the FIFO almost full and FIFO almost empty fields should be configured. See *Enabling the DAC* for steps to set the levels. Next, write the DAC FIFO using the following steps:

1. Select the DAC peripheral if not already selected. See [Selecting an AFE Peripheral](#) for details.
2. Perform a 16-bit SPI write using the [AFE_DAC_FIFO](#) register address.
 - a. The 16-bit data to write is added to the DAC FIFO (12-bit data must be left justified).
3. Repeat step 2 until the DAC FIFO is full or all of the required data is written to the FIFO.

16.3 DAC Registers

These registers are accessed through the *Analog Front-End (AFE)* using the internal SPI0 interface. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

There is one instance of the DAC peripheral, and the DAC registers are shown in [Table 15-14](#). The DAC registers are either 16-bits or 32-bits wide. See the width column in [Table 15-14](#) for details.

Table 16-4: DAC Registers

Address	Width	Register Name	Description
0x00	32-bits	AFE_DAC_CTRL	DAC Control Register
0x01	32-bits	AFE_DAC_RATE	DAC Rate Register
0x02	32-bits	AFE_DAC_INT	DAC Status Register
0x04	32-bits	AFE_DAC_TRIM	DAC Trim Register
0x05	16-bits	AFE_DAC_VREF_CTRL	DAC Voltage Reference Control Register
0x06	16-bits	AFE_DAC_FIFO	DAC FIFO Register
0x07	16-bits	AFE_DAC_VREF_TRIM	DAC Voltage Reference Trim

16.3.1 Register Details

Table 16-5: DAC Control Register

DAC Control Register			AFE_DAC_CTRL		0x00
Bits	Name	Access	Reset		
31	rst	R/W10	0	Reset Set this field to 1 to reset the DAC. This field is automatically cleared to 0 after a DAC reset is performed. 0: Normal operation. 1: Reset DAC. This field is automatically cleared to 0 when the reset is complete.	
30	power_mode_2	R/W	0	Power Mode 2 See DAC Power Modes for details on this field's usage.	
29	clock_gate_en	R/W	0	Clock Gate Enable 0: Clock gating disabled. 1: Clock gating enabled.	
28	power_on	R/W	0	Power On 0: DAC powered off. 1: DAC powered on.	
27:26	power_mode_1_0	R/W	0	DAC Power Mode Select 1 See DAC Power Modes for details on this field's usage.	

DAC Control Register				AFE_DAC_CTRL	0x00
Bits	Name	Access	Reset		
25:24	op_mode	R/W	0	Operating Mode This field selects the DAC operating mode. 0b00: Output data in FIFO as soon as it is available. 0b01: Output AFE_DAC_RATE.sample_cnt data points one time from FIFO at an output rate defined by the AFE_DAC_RATE.rate_cnt field. 0b10: Reserved. 0b11: Continuously output AFE_DAC_RATE.sample_cnt data points from the FIFO at an output rate defined by the AFE_DAC_RATE.rate_cnt field.	
23:21	-	RO	0	Reserved	
20	cpu_start	R/W	0	Start Bit This field should be set to 0 for proper DAC operation.	
19:18	en	W	0	DAC Output Enable Set this field to 0b11 to enable the DAC output. This field always reads 0.	
17:16	start_mode	R/W	0	Start Mode This field controls the condition that results in a DAC output sequence starting. 0: Start sequence when the FIFO is not empty. 1 - 3: Reserved.	
15:12	fifo_af_cnt	R/W	0b0111	DAC FIFO Almost Full Threshold Set this field to the level of the FIFO to trigger a FIFO almost full flag, AFE_DAC_CTRL fifo_almost_full , being set to 1. $Threshold = AFE_DAC_CTRL.fifo_af_cnt + 16$ <i>Note: Valid values for this field are 0 to 15.</i>	
11	-	R/W	0	Reserved	
10:8	interp_mode	R/W	0	DAC Output Interpolation Mode 0: Disabled. 1: 2 to 1 interpolation. 2: 4 to 1 interpolation. 3: 8 to 1 interpolation. 4-15: Reserved.	
7	fifo_almost_empty	R	1	FIFO Almost Empty Flag Hardware automatically sets this field to 1 when the FIFO is almost empty as set by the FIFO level falling below the AFE_DAC_CTRL fifo_ae_cnt . 0: FIFO is not in almost empty condition. 1: FIFO threshold is below the AFE_DAC_CTRL fifo_ae_cnt level.	
6	fifo_empty	R	1	FIFO Empty Flag This field is set to 1 by hardware automatically when the DAC FIFO is empty. 0: FIFO empty. 1: FIFO not empty.	
5	fifo_almost_full	R	0	FIFO Almost Full Flag This field is set to 1 automatically by hardware when the FIFO level is greater than the FIFO threshold defined by the AFE_DAC_CTRL fifo_af_cnt field. 0: FIFO is not almost full. 1: FIFO is almost full.	
4	-	RO	0	Reserved	

DAC Control Register				AFE_DAC_CTRL	0x00
Bits	Name	Access	Reset		
3:0	fifo_ae_cnt	R/W	0b0100	FIFO Almost Empty Threshold This field sets the level that triggers hardware to set the AFE_DAC_CTRL fifo_almost_empty field to 1. When the FIFO level falls below the value set in this field, the AFE_DAC_CTRL fifo_ae_cnt field is set to 1. <i>Note: Valid values for this field are 0 to 15.</i>	

Table 16-6: DAC Rate Register

DAC Rate				AFE_DAC_RATE	0x01
Bits	Name	Access	Reset	Description	
31:16	sample_cnt	R/W	0	Output Sample Count When the DAC operating mode is set to AFE_DAC_CTRL.op_mode is set to 0b01 and interpolation mode is active (AFE_DAC_CTRL.interp_mode != 0), this field sets the total number of data points to output using the following equation. $data\ points = (sample_cnt - 1) \times (2^{interp_mode}) + 1$ When the DAC operation mode is set to AFE_DAC_CTRL.op_mode is set to 0b01 and interpolation mode is disabled (AFE_DAC_CTRL.interp_mode = 0), this field sets the total number of data points directly.	
15:0	rate_cnt	R/W	0	Output Rate Control When the DAC operating mode is set to AFE_DAC_CTRL.op_mode is set to 0b01 or 0b11, this field sets the delay between output samples as shown in the following equation. $T_S = (rate_cnt + 2) \times \frac{1}{2.4} \text{MHz}$	

Table 16-7: DAC Status Register

DAC Status				AFE_DAC_INT	0x02
Bits	Name	Access	Reset	Description	
31:18	-	R	0	Reserved	
17	underflow_ie	R	0	Reserved	
16	out_done_ie	R	0	Reserved	
15:4	-	R	0	Reserved	
3	underflow	R/W1C	0	FIFO Underflow 0: Normal operation. 1: FIFO underflow condition occurred.	
2	almost_empty_if	R/W1C	0	FIFO Almost Empty This field is automatically set by hardware when the FIFO reaches the almost empty level (AFE_DAC_CTRL fifo_ae_cnt). 0: Normal operation. 1: Condition occurred.	
1	underflow_if	R/W1C	0	FIFO Underflow This field is automatically set to 1 by hardware when a FIFO underflow condition occurs. 0: Normal operation. 1: Condition occurred.	

DAC Status			AFE_DAC_INT		0x02
Bits	Name	Access	Reset	Description	
0	out_done_if	R/W1C	0	Output Done 0: Normal operation. 1: Output complete.	

Table 16-8: DAC Trim Register

DAC Trim			AFE_DAC_TRIM		0x04
Bits	Name	Access	Reset	Description	
15:0	trim	RO	*	DAC Trim Value The DAC trim values should be written to this register after a POR. See Loading the AFE Trim Values for details on how to write the trim values. <i>*Note: This register is only reset on a POR.</i>	

Table 16-9: DAC Voltage Reference Control Register

DAC Voltage Reference Control			AFE_DAC_VREF_CTRL		0x05
Bits	Name	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7:6	refdac_gain	RO	0	DAC Reference Gain 0: Default gain. 3: Highest gain.	
5	refdac_cp	R/W	0	DAC Reference Stability Compensation Pole 0: No additional pole. 1: Added pole to compensate zero from external (adds 100fF capacitor across 2nd gain stage).	
4	ref_pu	R/W	0	DAC Reference Power Up 0: DAC reference powered down. 1: DAC reference powered up.	
3	refdac_outen	R/W	0	DAC Reference Output Enable 0: Internal DAC reference powered down. 1: Internal DAC reference enabled, cannot be driven externally.	
2:1	dacrefsel	R/W	0	DAC Reference Select This field selects the reference voltage for the DAC. 0: 1.024V. 1: 1.5V. 2: 2.048V. 3: 2.5V.	
0	ref_dac_fast_pd	R/W	0	DAC Reference Fast Power Down Setting this field to 1 enables a fast DAC reference power down in milliseconds versus seconds in standard power down. In addition, this field can improve the DAC reference slew rate when lowering the DAC reference select from a higher value to a lower value. 0: DAC reference powers down normally. 1: DAC reference powers down in milliseconds rather than seconds. <i>Note: After setting this field to 1, it must then be set to 0 before powering on the DAC.</i>	

Table 16-10: DAC FIFO Register

DAC FIFO			AFE_DAC_FIFO		0x06
Bits	Name	Access	Reset	Description	
15:0	fifo_data	R/W	0	DAC FIFO Data Write to this register field to load data into the DAC FIFO. See FIFO for details. <i>Note: Data written to this field should be left justified (bits 3:0 = 0).</i>	

Table 16-11: DAC Voltage Reference Trim Register

DAC Voltage Reference Trim			AFE_DAC_VREF_TRIM		0x07
Bits	Name	Access	Reset	Description	
31:0	trim	RO	0	DAC Voltage Reference Trim The voltage reference trim values should be written to this register after a POR. See Loading the AFE Trim Values for details on how to write the trim values. <i>Note: This register is only reset on a POR.</i>	

17. Timers (TMR/LPTMR)

Multiple 32-bit and dual 16-bit, reloadable timers are provided.

The features include:

- Operation as a single 32-bit counter or single/dual 16-bit counter(s)
- Programmable clock prescaler with values from 1 to 4096
- Capture, compare, and capture/compare capability
- Timer input and output signals available, mapped as alternate functions
- Configurable input pin for event triggering, clock gating, or capture signal
- Timer output pin for event output and pulse-width modulated (PWM) signal generation.
- Multiple clock source options.

Instances denoted as LPTMR, shown in [Table 17-1](#), are configurable to operate in any of the low-power modes and wake the device from the low-power modes to *ACTIVE*.

Each timer supports multiple operating modes:

- One-shot: the timer counts up to terminal value then halts.
- Continuous: the timer counts up to terminal value then repeats.
- Counter: the timer counts input edges received on the timer input pin.
- PWM / PWM differential.
- Capture: the timer captures a snapshot of the current timer count when the timer's input edge transitions.
- Compare: the timer pin toggles when the timer's count exceeds the terminal count.
- Gated: the timer increments only when the timer's input pin is asserted.
- Capture/Compare: the timer counts when the timer input pin is asserted; the timer captures the timer's count when the input pin is deasserted.

17.1 Instances

Instances of the peripheral are listed in *Table 17-1*. Both the TMR and LPTMR are functionally very similar, so for convenience, they are referred to as just TMR. The LPTMR instances can function while the device is in *DEEPSLEEP* and *BACKUP*. TMR instances can operate in dual 16-bit mode or cascaded 32-bit mode if supported. LPTMR instances provide a single 32-bit timer and can select clock sources that are available in *DEEPSLEEP* and *BACKUP*.

Table 17-1: MAX32675C TMR/LPTMR

Instance	Register Access Name	Single 32-bit Mode	Cascade 32-bit Mode	Dual 16-bit Mode	Operating Modes	CLK0	CLK1	CLK2	CLK3
TMRO	TMRO	No	Yes	Yes	<i>ACTIVE SLEEP</i>	PCLK	N/A	BRO	ERFO
TMR1	TMR1								
TMR2	TMR2				<i>DEEPSLEEP BACKUP</i>	N/A	N/A	N/A	INRO ¹
TMR3	TMR3								
LPTMRO	TMR4	Yes	No	No	<i>ACTIVE SLEEP</i>	AOD_CLK	N/A	N/A	INRO ¹
					<i>DEEPSLEEP BACKUP</i>	N/A	N/A	N/A	INRO ¹
LPTMR1	TMR5	Yes	No	No	<i>ACTIVE SLEEP</i>	AOD_CLK	N/A	N/A	INRO ¹
					<i>DEEPSLEEP BACKUP</i>	N/A	N/A	N/A	INRO ¹

1. INRO accuracy varies up to $\pm 50\%$ across temperature and voltage.

Table 17-2: MAX32675C TMR/LPTMR Instances Capture Events

Instance	Capture Event 0
TMRO	Timer Input Pin
TMR1	Timer Input Pin
TMR2	Timer Input Pin
TMR3	Timer Input Pin
LPTMRO	LPTMRO Input Pin
LPTMR1	N/A

17.2 Basic Timer Operation

The timer modes operate by incrementing the *TMRO_CNT.count* register, driven by either the timer clock, an external stimulus on the timer pin, or a combination of both. The *TMRO_CNT.count* register is always readable, even while the timer is enabled and counting.

Each timer mode has a user-configurable timer period, which terminates on the timer clock cycle following the end of the timer period condition. Each timer mode has a different response at the end of a timer period, which can include changing the state of the timer pin, capturing a timer value, reloading *TMRO_CNT.count* with a new starting value, or disabling the counter. The end of a timer period always sets the corresponding interrupt bit and can generate an interrupt, if enabled.

In most modes, the timer peripheral automatically sets *TMRO_CNT.count* to 0x0000 0001 at the end of a timer period, but *TMRO_CNT.count* is set to 0x0000 0000 following a system reset. This means the first timer period following a system reset is one timer clock longer than subsequent timer periods if *TMRO_CNT.count* is not initialized to 0x0000 0001 during the timer configuration step.

17.3 32-Bit Single / 32-Bit Cascade / Dual 16-Bit

Most instances contain two 16-bit timers, which may support combinations of single or cascaded 32-bit modes, and single or dual 16-bit modes, as shown in [Table 17-1](#). In most cases, the two 16-bit timers have the same functionality.

The terminology TimerA and TimerB are used to differentiate the organization of the 32-bit registers shown in [Table 17-3](#). Most of the other registers have the same fields duplicated in the upper and lower 16 bits and are differentiated with the `_a` and `_b` suffixes.

In the 32-bit modes, the fields and controls associated with TimerA are used to control the 32-bit timer functionality. In single 16-bit timer mode, the TimerA fields are used to control the single 16-bit timer and the TimerB fields are ignored. In dual 16-bit timer modes, both TimerA and TimerB fields are used to control the dual timers; TimerB fields control the upper 16-bit timer and TimerA fields control the lower 16-bit timer. In dual 16-bit timer modes, TimerB can be used as a single 16-bit timer.

Table 17-3: TimerA/TimerB 32-Bit Field Allocations

Register	Cascade 32-Bit Mode	Dual 16-Bit Mode		Single 16-Bit Mode
Timer Counter	TimerA Count = <i>TMRn_CNT.count[31:0]</i>	TimerA Compare = <i>TMRn_CNT.compare[15:0]</i>	TimerB Count = <i>TMRn_CNT.count[31:16]</i>	TimerA Compare = <i>TMRn_CNT.compare[15:0]</i>
Timer Compare	TimerA Compare = <i>TMRn_CMP.compare[31:0]</i>	TimerA Compare = <i>TMRn_CMP.compare[15:0]</i>	TimerB Compare = <i>TMRn_CMP.compare[31:16]</i>	TimerA Compare = <i>TMRn_CMP.compare[15:0]</i>
Timer PWM	TimerA Count = <i>TMRn_PWM.pwm[31:0]</i>	TimerA Count = <i>TMRn_PWM.pwm[15:0]</i>	TimerB Count = <i>TMRn_PWM.pwm[31:16]</i>	TimerA Count = <i>TMRn_PWM.pwm[15:0]</i>

17.4 Timer Clock Sources

Clocking of timer functions is driven by the timer clock frequency, f_{CNT_CLK} , which is a function of the selected clock source shown in [Table 17-1](#). Most modes support multiple clock sources and prescaler values, which can be chosen independently for TimerA and TimerB when the peripheral is operating in dual 16-bit mode. The prescaler can be set from 1 to 4096 using the *TMRn_CTRL0.clkdiv* field.

*Note: The low-power timers must use the same clock selection for both TimerA and TimerB. Software must write both fields, *TMRn_CTRL1.clksel_a* and *TMRn_CTRL1.clksel_b* to the same value simultaneously.*

Equation 17-1: Timer Peripheral Clock Equation

$$f_{CNT_CLK} = \frac{f_{CLK_SOURCE}}{\text{prescaler}}$$

The software configures and controls the timer by reading and writing to the timer's registers. External events on timer pins are asynchronous events to the timer's clock frequency. The external events are latched on the next rising edge of the timer's clock. Since it is not possible to externally synchronize to the timer's internal clock, input events may require up to 50% of the timer's internal clock cycle before the hardware recognizes the event.

The software must configure the timer's clock source by performing the following steps:

1. Disable the timer peripheral.
 - a. Clear *TMRn_CTRL0.en* to 0 to disable the timer.
 - b. Read the *TMRn_CTRL1.clken* field until it returns 0, confirming the timer peripheral is disabled.
2. Set *TMRn_CTRL1.clksel* to the new desired clock source.
 - a. Note: In cascade 32-bit mode, both the *TMRn_CTRL1.clksel_a* and *TMRn_CTRL1.clksel_b* fields must be set to the same clock source for proper operation.
3. Configure the timer for the desired operating mode. See *Operating Modes* for details on mode configuration.
4. Enable the timer clock source:
 - a. Set the *TMRn_CTRL0.clken* field to 1 to enable the timer's clock source.
 - b. Read the *TMRn_CTRL1.clkrdy* field until it returns 1, confirming the timer clock source is enabled.
5. Enable the timer:
 - a. Set *TMRn_CTRL0.en* to 1 to enable the timer.
 - b. Read the *TMRn_CTRL0.clken* field until it returns 1 to confirm the timer is enabled.

Disable the timer peripheral while changing any of the configuration registers in the peripheral.

17.5 Reading the TMRn_CNT and TMRn_PWM Registers

The *TMRn_CNT* and *TMRn_PWM* registers are updated from the timer clock domain to the APB domain. Reading these registers can result in a partial register update resulting in an incorrect read. Therefore, either disable the timer (*TMRn_CTRL0.en* = 0) or perform multiple reads and compare the results until 2 reads match. At most, three reads are required.

17.6 Timer Pin Functionality

Each timer instance may have an input signal and/or output signal depending on the operating mode. Not all instances of the peripheral are available in all packages. The number of input and output signals per peripheral instance may vary as well. Refer to the device data sheet for I/O signal configurations and alternate functions for each timer instance.

The physical pin location of the timer input and/or output signals may vary between packages. The timer functionality, however, is always expressed on the same GPIO pin in the same alternate function mode.

The timer pin functionality is mapped as an alternate function that is shared with a GPIO. When the timer pin alternate function is enabled, the timer pin has the same electrical characteristics, such as pullup/pulldown strength, drive strength, etc., as the GPIO mode settings for that pin. Configure the pin characteristics before enabling the timer. When configured as an output, configure the corresponding bit in the *GPIO_OUT* register to match the inactive state of the timer pin for that mode. Consult the *GPIO* section for details on how to configure the electrical characteristics for the pin.

The TimerA output controls for modes 0, 1, 3, and 5 output signals are shown in *Figure 17-1*. The TimerA input controls for modes 2, 4, 6, 7, 8, and 14 input signals are shown in *Figure 17-2*.

Figure 17-1: MAX32675C TimerA Output Functionality, Modes 0/1/3/5

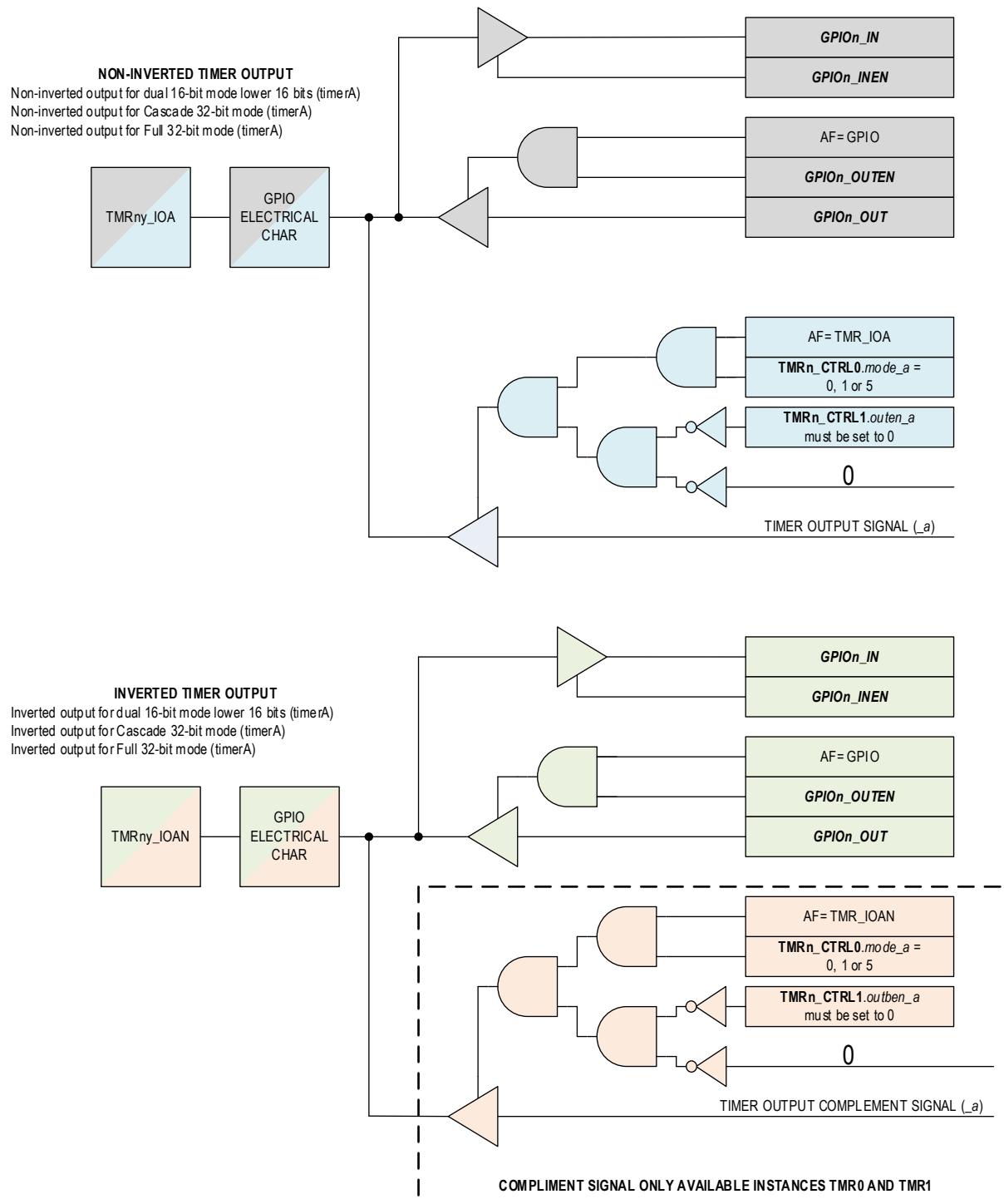
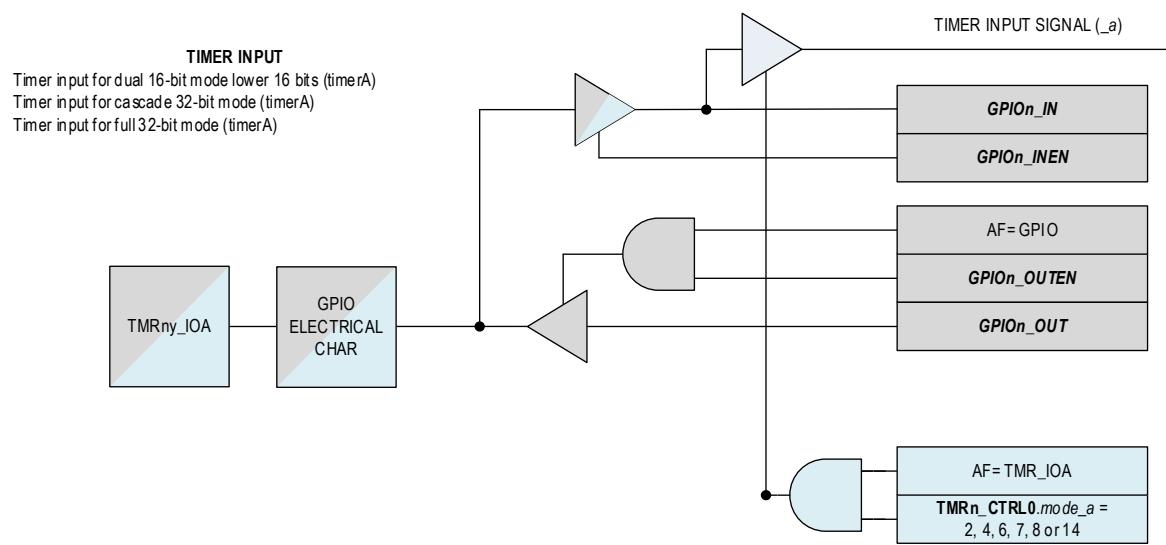



Figure 17-2: MAX32675C TimerA Input Functionality, Modes 2/4/6/7/8/14

17.7 Wakeup Events

The system clock may be turned off in low-power modes to conserve power. In this case, a wakeup event can be configured to wakeup the clock control logic and re-enable the system clock. The wakeup conditions are the same as the interrupts.

Programming Sequence Example:

1. Disable the timer peripheral and set the timer clock source as described in [Timer Clock Sources](#).
2. Configure the timer operating mode as described in the section [Operating Modes](#).
3. Enable the timer by setting `TMRn_CTRL0.en` to 1.
4. Poll `TMRn_CTRL1.clkrdy` until it reads 1.
5. Set the `TMRn_CTRL1.we` field to 1 to enable wake-up events for the timer.
6. If desired, enable the timer interrupt and provide a `TMRn_IRQn` interrupt handler for the timer.
7. Enter a low-power mode as described in the section [Operating Modes](#).
8. When the device wakes up from the low-power mode, check the `TMRn_WKFL` register to determine if the timer is the result of the wake-up event.

17.8 Low-Power Timer Wake-up Events

In low-power modes, the system clock may be turned off to conserve power. LPTMR instances can continue to run if they are configured to run from the clock sources shown in [Table 17-1](#). In this case, a wake-up event can be enabled to wake up the clock control logic and return the device to ACTIVE.

Each LPTMR clock must be enabled, and if using a LPTMR input or output pin, the LPTMR must also be configured for operation in DEEPSLEEP or BACKUP.

Table 17-4: MAX32675C Low-Power Timer Pin Configuration for DEEPSLEEP and BACKUP

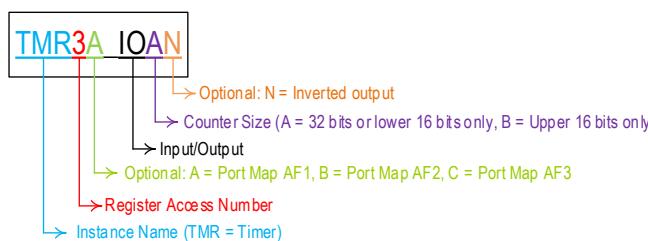
Timer	Input Pin Enable	Output Pin Enable	Clock Disable
LPTMR0	<code>MCR_LPPIOCTRL.lptmr0_i</code>	<code>MCR_LPPIOCTRL.lptmr0_o</code>	<code>MCR_CLKDIS.lptmr0</code>
LPTMR1	<code>MCR_LPPIOCTRL.lptmr1_i</code>	<code>MCR_LPPIOCTRL.lptmr0_o</code>	<code>MCR_CLKDIS.lptmr1</code>

Low-power timer programming sequence example:

1. Disable the timer peripheral and set the timer clock source as described in [Timer Clock Sources](#).
 - a. For operation in *DEEPSLEEP* and *BACKUP*, select *INRO*.
2. Configure the timer operating mode as described in the section [Operating Modes](#).
3. If using a timer input or output pin during low-power modes, set the corresponding enable bit shown in [Table 17-4](#).
4. If using the timer during low-power modes, enable the timer's low-power clock by writing 0 to either the *MCR_CLKDIS.lptmr0* field or the *MCR_CLKDIS.lptmr1* field.

Note: The low-power timer's clock must be disabled to return the timer's input and output to standard GPIO.

5. Enable the timer by setting *TMRn_CTRL0.en* to 1.
6. Poll *TMRn_CTRL1.clkrdy* until it reads 1.
7. Set the *TMRn_CTRL1.we* field to 1 to enable wake-up events for the timer.
8. If desired, enable the timer interrupt and provide a *TMRn_IRQn* for the timer.
9. Enter a low-power mode as described in the [Low-Power Modes](#) section.
10. When the device wakes up from the low-power mode, check the *PWRSEQ_LPPWKST* register to determine if the timer caused the wake-up event.


Table 17-5: MAX32675C Low-Power Timer Wake-up Events

Condition	Peripheral Wake-up Flag <i>TMRn_INTFL</i>	Peripheral Wake-up Enable	Low-Power Peripheral Wake-up Flag	Low-Power Peripheral Wake-up Enable	Power Management Wake-up Enable
Any event for LPTMR0	<i>irq_a</i>	N/A	<i>PWRSEQ_LPPWKST.lptmr0</i>	<i>PWRSEQ_LPPWKEN.lptmr0</i>	<i>GCR_PM.lptmr0_we</i>
Any event for LPTMR1	<i>irq_a</i>	N/A	<i>PWRSEQ_LPPWKST.lptmr1</i>	<i>PWRSEQ_LPPWKEN.lptmr1</i>	<i>GCR_PM.lptmr1_we</i>

17.9 Operating Modes

Multiple operating modes are supported. The availability of some operating modes is dependent on the device and package-specific implementation of the external input and output signals. Refer to the device data sheet for I/O signal configurations and alternate functions for each timer instance.

Figure 17-3: Timer I/O Signal Naming Conventions

In [Table 17-6](#) and [Table 17-7](#), the timer's signal name is generically shown where *n* is the timer number (0, 1, 2, 3, etc.) and *y* is the port mapping alternate function. See [Figure 17-3](#) for details of the timer's naming convention for I/O signals.

Table 17-6: MAX32675C Operating Mode Signals for Timer 0, 1, 2, and 3

Timer Mode	TMRO/TMR1/TMR2/TMR3 <i>TMRn_CTRL1.outen_a = 0</i> <i>TMRn_CTRL1.outben_a = 0</i>	I/O Signal Name [†]	Pin Required
<i>One-Shot Mode (0)</i>	TimerA Output Signal	TMRny_IOA	Optional
	TimerA Complementary Output Signal	TMRny_IOAN	Optional
	TimerB Output Signal	TMRny_IOB	Optional
	TimerB Complementary Output Signal	TMRny_IOBN	Optional
<i>Continuous Mode (1)</i>	TimerA Output Signal	TMRny_IOA	Optional
	TimerA Complementary Output Signal	TMRny_IOAN	Optional
	TimerB Output Signal	TMRny_IOB	Optional
	TimerB Complementary Output Signal	TMRny_IOBN	Optional
<i>Counter Mode (2)</i>	TimerA Input Signal	TMRny_IOA	Yes
	TimerB Input Signal	TMRny_IOB	Yes
<i>PWM Mode (3)</i>	TimerA Output Signal	TMRny_IOA	Yes
	TimerB Output Signal	TMRny_IOB	Yes
<i>Capture Mode (4)</i>	TimerA Input Signal	TMRny_IOA	Yes
	TimerB Input Signal	TMRny_IOB	Yes
<i>Compare Mode (5)</i>	TimerA Output Signal	TMRny_IOA	Optional
	TimerA Complementary Output Signal	TMRny_IOAN	Optional
	TimerB Output Signal	TMRny_IOB	Optional
	TimerB Complementary Output Signal	TMRny_IOBN	Optional
<i>Gated Mode (6)</i>	TimerA Input Signal	TMRny_IOA	Yes
	TimerB Input Signal	TMRny_IOB	Yes
<i>Capture/Compare Mode (7)</i>	TimerA Input Signal	TMRny_IOA	Yes
	TimerB Input Signal	TMRny_IOB	Yes
<i>Dual-Edge Capture Mode (8)</i>	TimerA Input Signal	TMRny_IOA	Yes
	TimerB Input Signal	TMRny_IOB	Yes
Reserved (9 - 13)	-	-	-
<i>Inactive Gated Mode (14)</i>	TimerA Input Signal	TMRny_IOA	Yes
	TimerB Input Signal	TMRny_IOB	Yes
Reserved (15)	-	-	-

[†] See Figure 17-3 for details on the timer I/O signal naming convention and the device data sheet for the alternate functions.

Table 17-7: MAX32675C Operating Mode Signals for Low-Power Timer 0 and 1

Timer mode	LPTMRO (TMR4) LPTMR1 (TMR5) <i>TMRn_CTRL1.outen_a = 0</i> <i>TMRn_CTRL1.outben_a = 0</i>	I/O Signal Name [†]	Required?
<i>One-Shot Mode (0)</i>	TimerA Output Signal	LPTMRny_IOB	Optional
<i>Continuous Mode (1)</i>	TimerA Output Signal	LPTMRny_IOB	Optional
<i>Counter Mode (2)</i>	TimerA Input Signal	LPTMRny_IOB	Yes
<i>PWM Mode (3)</i>	TimerA Output Signal	LPTMRny_IOB	Yes
<i>Capture Mode (4)</i>	TimerA Input Signal	LPTMRny_IOB	Yes

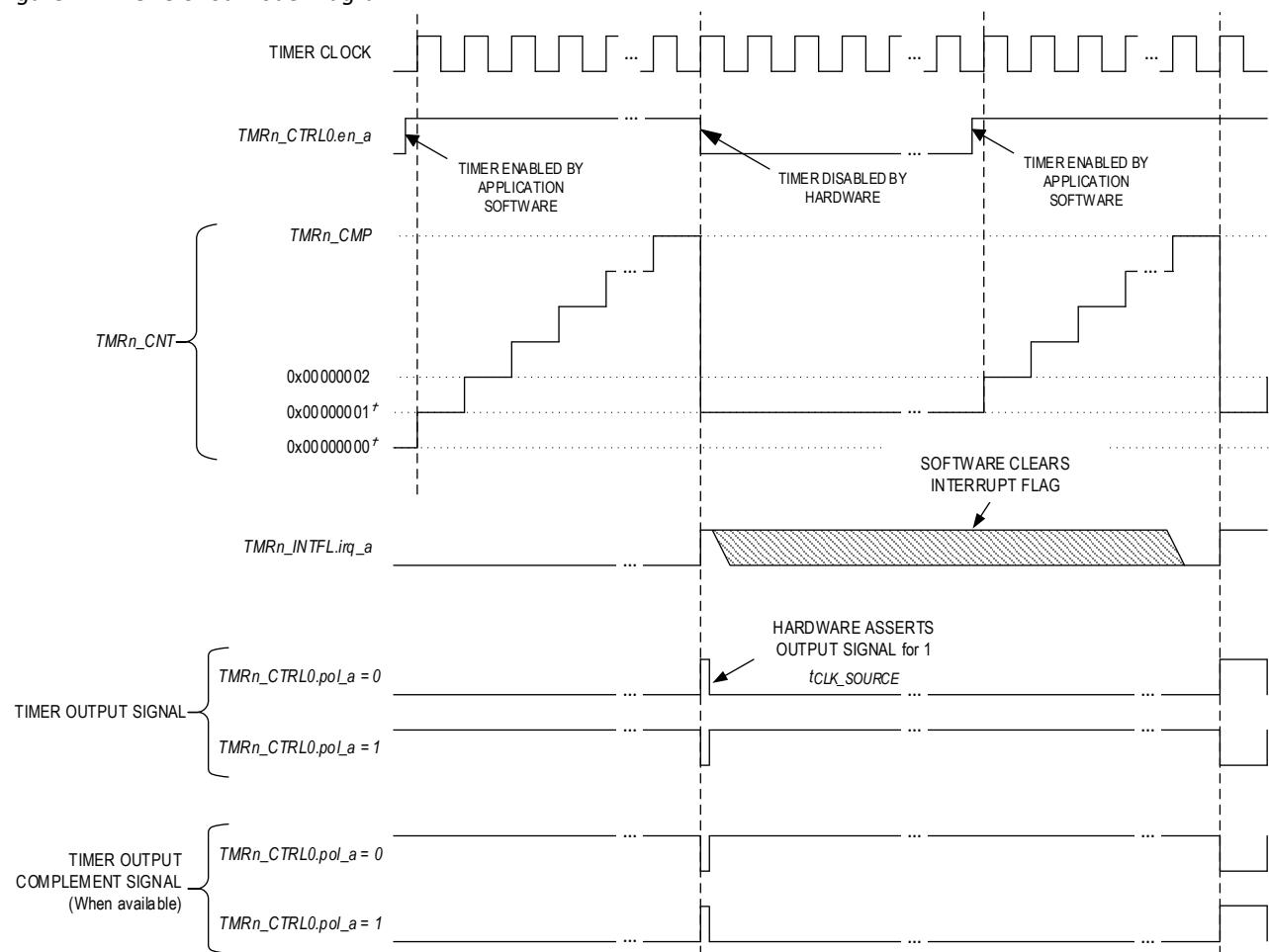
Timer mode	LPTMR0 (TMR4) LPTMR1 (TMR5) <i>TMRn_CTRL1.outen_a = 0</i> <i>TMRn_CTRL1.outben_a = 0</i>	I/O Signal Name [†]	Required?
<i>Compare Mode (5)</i>	TimerA Output Signal	LPTMRny_IOB	Optional
<i>Gated Mode (6)</i>	TimerA Input Signal	LPTMRny_IOB	Yes
<i>Capture/Compare Mode (7)</i>	TimerA Input Signal	LPTMRny_IOB	Yes
<i>Dual-Edge Capture Mode (8)</i>	TimerA Input Signal	LPTMRny_IOB	Yes
Reserved (9 - 13)	-	-	-
<i>Inactive Gated Mode (14)</i>	TimerA Input Signal	LPTMRny_IOB	Yes
Reserved (15)	-	-	-

[†] See [Figure 17-3](#) for details on the timer I/O signal naming convention and the device data sheet for the alternate functions.

17.9.1 One-Shot Mode (0)

In one-shot mode, the timer peripheral increments the timer's *TMRn_CNT.count* field until it reaches the timer's *TMRn_CMP.compare* field and the timer is then disabled. If the timer's output is enabled, the output signal is driven active for one timer source clock cycle. For example, if the timer source clock (f_{CLK_SOURCE}), is PCLK, the output is driven active for 1 PCLK cycle. One-shot mode provides exactly one timer period and is automatically disabled.

The timer period ends on the timer clock following $TMRn_CNT.count = TMRn_CMP.compare$. The timer peripheral hardware automatically performs the following actions at the end of the timer period:


- The *TMRn_CNT.count* field is set to 0x0000 0001.
- The timer is disabled (*TMRn_CTRL0.en* = 0).
- The timer output, if enabled, is driven to its active state for one timer clock period.
- The *TMRn_INTFL.irq* field is set to 1 to indicate a timer interrupt event occurred.

The timer period is calculated using [Equation 17-2](#).

Equation 17-2: One-Shot Mode Timer Period

$$\text{One-shot mode timer period in seconds} = \frac{TMRn_CMP - TMRn_CNT_{INITIAL_VALUE} + 1}{f_{CNT_CLK}(\text{Hz})}$$

Figure 17-4: One-Shot Mode Diagram

This example uses the following configuration in addition to the settings shown above:

TMR_n_CTRL1.cascade = 1 (32-bit Cascade Timer)

TMR_n_CTRL0.mode_a = 0 (One-shot)

[†] *TMR_n_CNT* defaults to 0x00000000 on a timer reset. *TMR_n_CNT* reloads to 0x00000001 for all following timer periods.

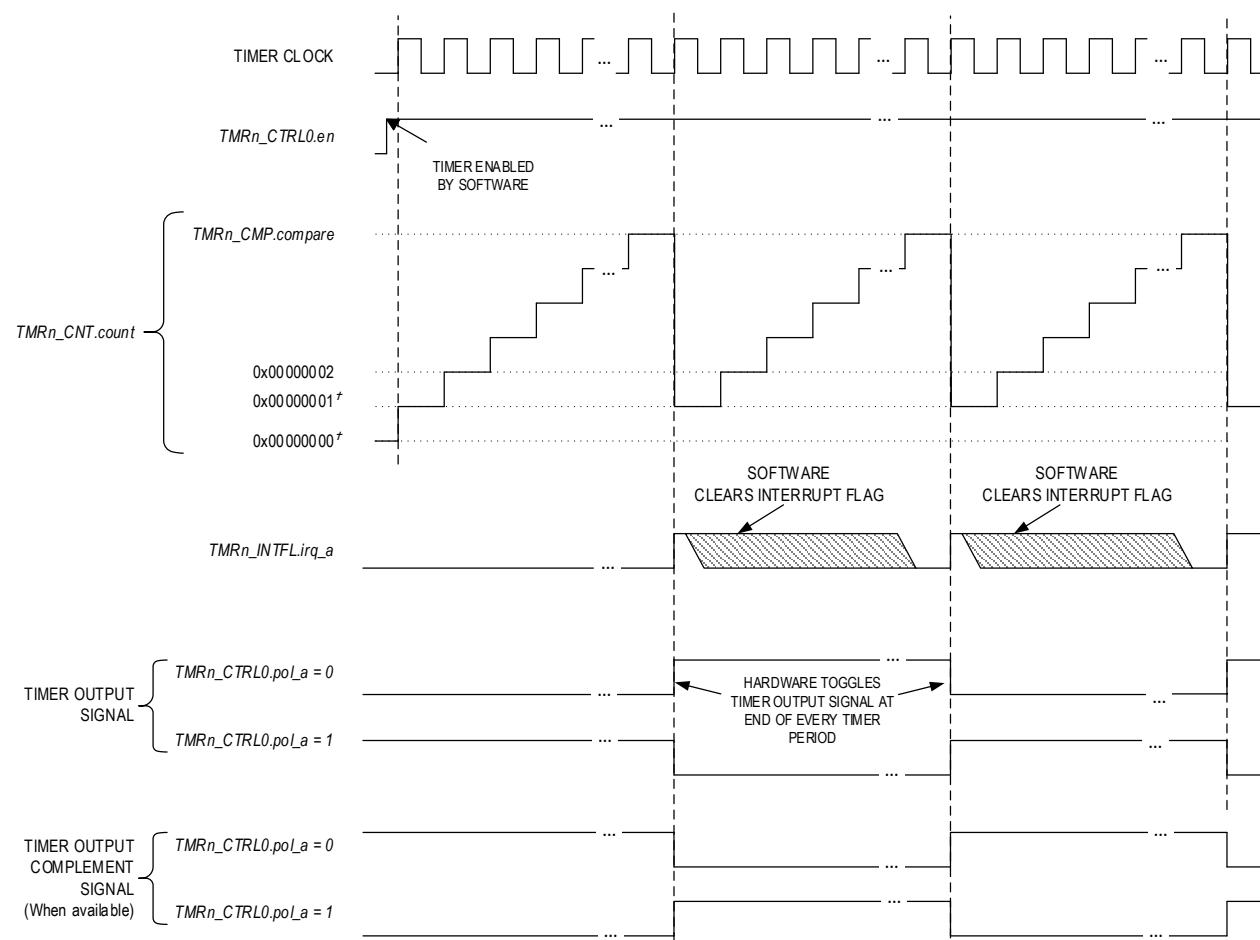
Configure the timer for one-shot mode by performing the following steps:

1. Disable the timer peripheral and set the timer clock source as described in [Timer Clock Sources](#).
2. Set the *TMRn_CTRL0.mode* field to 0 to select one-shot mode.
3. Set the *TMRn_CTRL0.clkdiv* field to set the prescaler for the required timer frequency.
4. If using the timer output function:
 - a. Set *TMRn_CTRL0.pol* to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer output pin.
5. Or, if using the inverted timer output function:
 - a. Set *TMRn_CTRL0.pol* to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the inverted timer output pin.
6. If using the timer interrupt, enable corresponding field in the *TMRn_CTRL1* register.
7. Write the compare value to the *TMRn_CMP.compare* field.
8. If desired, write an initial value to *TMRn_CNT.count* field.
 - a. The initial value only affects the first period; subsequent timer periods always reset the *TMRn_CNT.count* field to 0x0000 0001.
9. Enable the timer peripheral as described in [Timer Clock Sources](#).

17.9.2 Continuous Mode (1)

In continuous mode, the *TMRn_CNT.count* field increments until it matches the *TMRn_CMP.compare* field; the *TMRn_CNT.count* field is then set to 0x0000 0001 and the count continues to increment. Optionally, the software can configure continuous mode to toggle the timer output pin at the end of each timer period. A continuous mode timer period ends when the timer count field reaches the timer compare field (*TMRn_CNT.count* = *TMRn_CMP.compare*).

The timer peripheral hardware automatically performs the following actions on the timer clock cycle after the period ends:


- The *TMRn_CNT.count* field is set to 0x0000 0001.
- If the timer output signal is toggled, the corresponding *TMRn_INFL.irq* field is set to 1 to indicate a timer interrupt event occurred.

The continuous mode timer period is calculated using [Equation 17-3](#).

Equation 17-3: Continuous Mode Timer Period

$$\text{Continuous mode timer period (s)} = \frac{\text{TMRn_CMP} - \text{TMRn_CNT}_{\text{INITIAL_VALUE}} + 1}{f_{\text{CNT_CLK}} \text{ (Hz)}}$$

Figure 17-5: Continuous Mode Diagram

This example uses the following configuration in addition to the settings shown above:

*TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)
 TMRn_CTRL0.mode_a = 1 (Continuous)*

* *TMRn_CNT.count* defaults to 0x0000 0000 on a timer reset. *TMRn_CNT.count* reloads to 0x0000 0001 for all following timer periods.

Configure the timer for continuous mode by performing the following steps:

1. Disable the timer peripheral and set the timer clock as described in [Timer Clock Sources](#).
2. Set the `TMRn_CTRL0.mode` field to 1 to select continuous mode.
3. Set the `TMRn_CTRL0.clkdiv` field to set the prescaler that determines the timer frequency.
4. If using the timer output function:
 - a. Set `TMRn_CTRL0.pol` to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer output pin.
5. Or, if using the inverted timer output function:
 - a. Set `TMRn_CTRL0.pol` to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the inverted timer output pin.
6. If using the timer interrupt, enable the corresponding field in the `TMRn_CTRL1` register.
7. Write the compare value to the `TMRn_CMP.compare` field.
8. If desired, write an initial value to the `TMRn_CNT.count` field.
 - a. The initial value only affects the first period; subsequent timer periods always reset the `TMRn_CNT.count` field to 0x0000 0001.
9. Enable the timer peripheral as described in [Timer Clock Sources](#).

17.9.3 Counter Mode (2)

In counter mode, the timer peripheral increments the `TMRn_CNT.count` each time a transition occurs on the timer input signal. The transition must be greater than $4 \times PCLK$ for a count to occur. When the `TMRn_CNT.count` reaches the `TMRn_CMP.compare` field, the hardware automatically sets the interrupt bit to 1 (`TMRn_INTFL.irq`), sets the `TMRn_CNT.count` field to 0x0000 0001, and continues incrementing. The timer can be configured to increment on either the rising edge or falling edge of the timer's input signal, but not both. Use the `TMRn_CTRL0.pol` field to select which edge is used for the timer's input signal count.

The timer prescaler setting has no effect in this mode. The frequency of the timer's input signal (f_{CTR_CLK}) must not exceed 25% of the PCLK frequency, as shown in [Equation 17-4](#).

Note: If the input signal's frequency is equal to f_{PCLK} , it is possible the transition can be missed by the timer hardware due to PCLK being an asynchronous internal clock. A minimum of 4 PCLK cycles is required for a count to occur. To guarantee a count occurs, the timer input signal should be greater than 4 PCLK cycles.

Equation 17-4: Counter Mode Maximum Clock Frequency

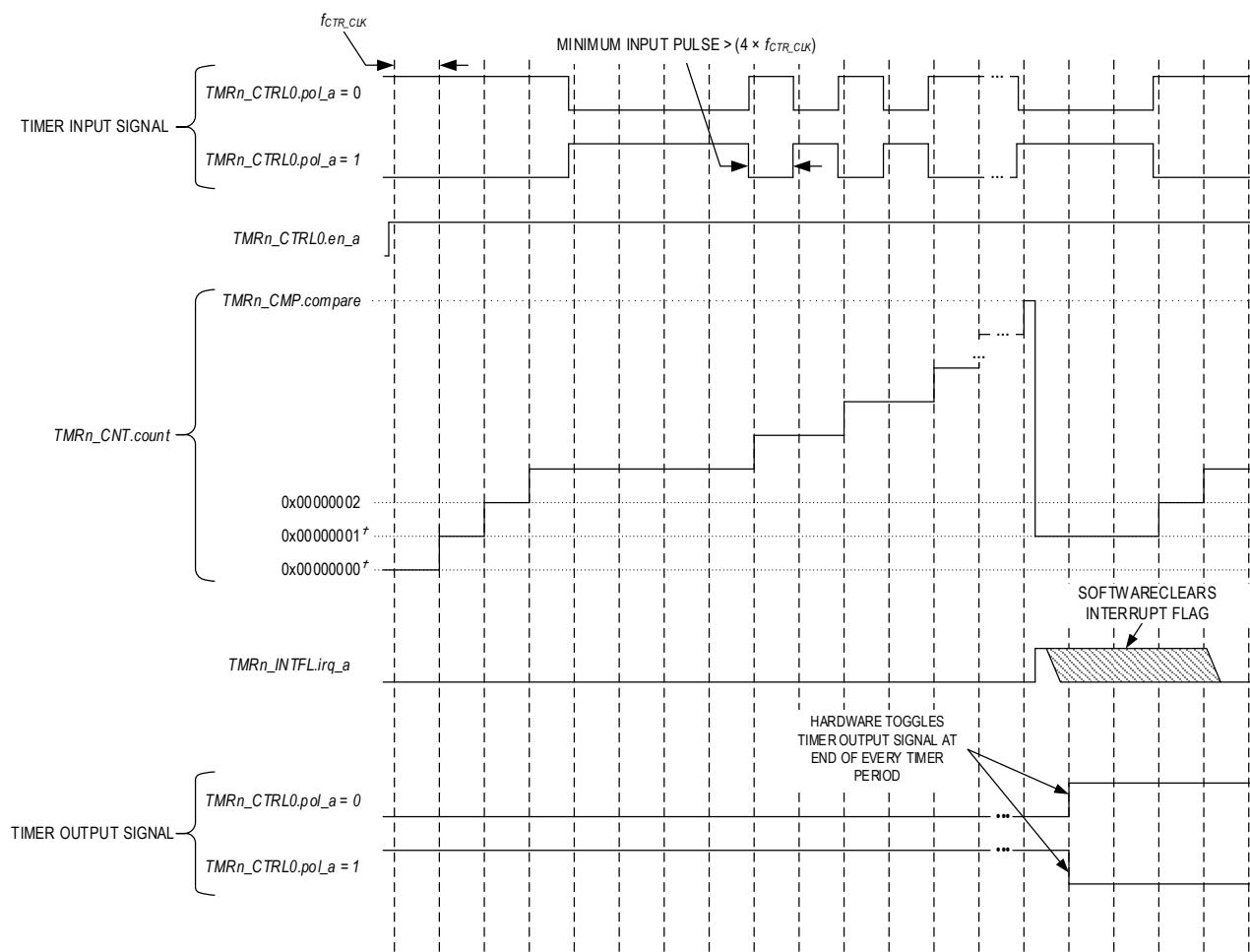
$$f_{CTR_CLK} \leq \frac{f_{PCLK} \text{ (Hz)}}{4}$$

The timer period ends on the rising edge of PCLK following `TMRn_CNT.count = TMRn_CMP.compare`.

The timer peripheral's hardware automatically performs the following actions at the end of the timer period:

- The *TMRn_CNT*.count field is set to 0x0000 0001.
- The timer output signal is toggled if the timer output pin is enabled.
- The *TMRn_INTFL*.irq field is set to 1 indicating a timer interrupt event occurred.
- The timer remains enabled and continues incrementing.

*Note: The software must clear the interrupt flag by writing 1 to the *TMRn_INTFL*.irq field. If the timer period ends and the interrupt flag is already set to 1, a second interrupt does not occur.*


In counter mode, the number of timer input transitions that occurred during a period is equal to the *TMRn_CMP*.compare field's setting. Use [Equation 17-5](#) to determine the number of transitions that occurred before the end of the timer's period.

Note: Equation 17-5 is only valid during an active timer count before the end of the timer's period.

Equation 17-5: Counter Mode Timer Input Transitions

$$\text{Counter mode timer input transitions} = \text{TMR_CNT}_{\text{CURRENT_VALUE}}$$

Figure 17-6: Counter Mode Diagram

This example uses the following configuration in addition to the settings shown above:

$TMRn_CTRL1.cascade = 1$ (32-bit Cascade Timer)
 $TMRn_CTRL0.mode_a = 2$ (Counter)

^{*} $TMRn_CNT.count$ defaults to 0x00000000 on a timer reset. $TMRn_CNT.count$ reloads to 0x00000001 for all following timer periods.

Configure the timer for counter mode by performing the following:

1. Disable the timer peripheral as described in [Timer Clock Sources](#).
2. If desired, change the timer clock source as described in [Timer Clock Sources](#).
3. Set `TMRn_CTRL0.mode` 0x2 to select Counter mode.
4. Configure the timer input function:
 - a. Set `TMRn_CTRL0.pol` to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Set `TMRn_CTRL1.outen_a` and `TMRn_CTRL1.outben_a` to the values shown in the [Operating Modes](#) section.
 - d. Select the correct alternate function mode for the timer input pin.
5. Write the compare value to `TMRn_CMP.compare`.
6. If desired, write an initial value to `TMRn_CNT.count`. This affects only the first period; subsequent timer periods always reset `TMRn_CNT.count` = 0x0000 0001.
7. Enable the timer peripheral as described in [Timer Clock Sources](#).

17.9.4 PWM Mode (3)

In PWM mode, the timer sends a PWM output using the timer's output signal. The timer first counts up to the match value stored in the `TMRn_PWM.pwm` register. At the end of the cycle where the `TMRn_CNT.count` value matches the `TMRn_PWM.pwm`, the timer output signal toggles state. The timer continues counting until it reaches the `TMRn_CMP.compare` value.

The timer period ends on the rising edge of f_{CNT_CLK} following `TMRn_CNT.count = TMRn_CMP.compare`.

The timer peripheral automatically performs the following actions at the end of the timer period:

- The `TMRn_CNT.count` is reset to 0x0000 0001 and the timer resumes counting.
- The timer output signal is toggled.
- The corresponding `TMRn_INTFL.irq` field is set to 1 to indicate a timer interrupt event occurred.

When `TMRn_CTRL0.pol` = 0, the timer output signal starts low and then transitions to high when the `TMRn_CNT.count` value matches the `TMRn_PWM` value. The timer output signal remains high until the `TMRn_CNT.count` value reaches the `TMRn_CMP.compare`, resulting in the timer output signal transitioning low, and the `TMRn_CNT.count` value resetting to 0x0000 0001.

When `TMRn_CTRL0.pol` = 1, the timer output signal starts high and transitions low when the `TMRn_CNT.count` value matches the `TMRn_PWM` value. The timer output signal remains low until the `TMRn_CNT.count` value reaches `TMRn_CMP.compare`, resulting in the timer output signal transitioning high, and the `TMRn_CNT.count` value resetting to 0x0000 0001.

Complete the following steps to configure a timer for PWM mode and initiate the PWM operation:

1. Disable the timer peripheral as described in [Timer Clock Sources](#).
2. If desired, change the timer clock source as described in [Timer Clock Sources](#).
3. Set the *TMRn_CTRL0.mode* field to 3 to select PWM mode.
4. Set the *TMRn_CTRL0.clkdiv* field to set the prescaler that determines the timer frequency.
5. Configure the pin as a timer input and configure the electrical characteristics as needed.
6. Set *TMRn_CTRL0.pol* to match the desired initial (inactive) state.
7. Set *TMRn_CTRL0.pol* to select the initial logic level (high or low) and PWM transition state for the timer's output.
8. Set *TMRn_CNT.count* initial value if desired.
 - a. The initial *TMRn_CNT.count* value only affects the initial period in PWM mode with subsequent periods always setting *TMRn_CNT.count* to 0x0000 0001.
9. Set the *TMRn_PWM* value to the transition period count.
 - a. If using the timer in dual 16-bit mode, disable both timers before writing the *TMRn_PWM* register.
10. Set the *TMRn_CMP.compare* value for the PWM second transition period. The *TMRn_CMP.compare* must be greater than the *TMRn_PWM* value.
 - a. If using the timer in dual 16-bit mode, disable both timers before writing the *TMRn_CMP* register.
11. If using the timer interrupt, set the interrupt priority and enable the interrupt.
12. Enable the timer peripheral as described in [Timer Clock Sources](#).

[Equation 17-6](#) shows the formula for calculating the timer PWM period.

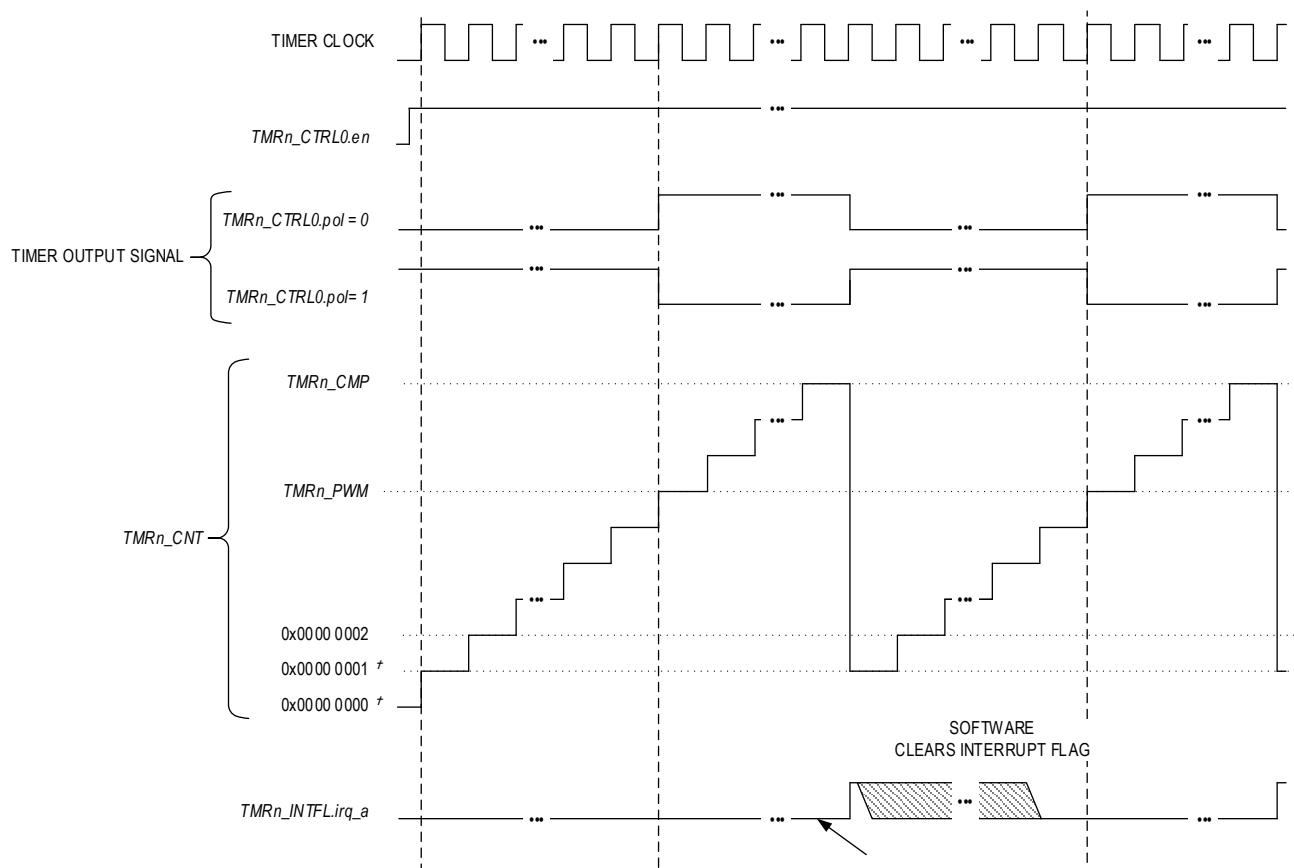
Equation 17-6: Timer PWM Period

$$\text{PWM period (s)} = \frac{\text{TMRn_CNT}}{f_{\text{CNT_CLK}} (\text{Hz})}$$

If an initial starting value other than 0x0000 0001 is loaded into the *TMRn_CNT.count* register, use the one-shot mode equation, [Equation 17-2](#), to determine the initial PWM period.

If *TMRn_CTRL0.pol* is 0, the ratio of the PWM output high time to the total period is calculated using [Equation 17-7](#).

Equation 17-7: Timer PWM Output High Time Ratio with Polarity 0


$$\text{PWM output high time ratio (\%)} = \frac{(\text{TMR_CMP} - \text{TMR_PWM})}{\text{TMR_CMP}} \times 100$$

If *TMRn_CTRL0.pol* is set to 1, the ratio of the PWM output high time to the total period is calculated using [Equation 17-8](#).

Equation 17-8: Timer PWM Output High Time Ratio with Polarity 1

$$\text{PWM output high time ratio (\%)} = \frac{\text{TMR_PWM}}{\text{TMR_CMP}} \times 100$$

Figure 17-7: PWM Mode Diagram

This example uses the following configuration in addition to the settings shown above:

TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)
TMRn_CTRL0.mode_a = 3 (PWM)

^{*} *TMRn_CNT* defaults to 0x0000 0000 on a timer reset. *TMRn_CNT* reloads to 0x0000 0001 for all following timer periods.

17.9.5 Capture Mode (4)

Capture mode is used to measure the time between software-determined events. The timer starts incrementing the timer's count field until a transition occurs on the timer's input pin or a rollover event occurs. A capture event is triggered by the hardware when the timer's input pin transitions state. [Equation 17-9](#) shows the formula for calculating the capture event's elapsed time.

If a capture event does not occur before the timer's count value reaching the timer's compare value (*TMRn_CNT.count = TMRn_CMP.compare*), a rollover event occurs. Both the capture event and the rollover event set the timer's interrupt flag, *TMRn_INFL.irq*, to 1 and result in an interrupt if the timer's interrupt is enabled.

A capture event can occur before or after a rollover event. The software must track the number of rollover events that occur before a capture event to determine the elapsed time of the capture event. When a capture event occurs, the software should reset the count of rollover events.

Note: A capture event does not stop the timer's counter from incrementing and does not reset the timer's count value; a rollover event still occurs when the timer's count value reaches the timer's compare value.

17.9.5.1 Capture Event

When a capture event occurs, the timer hardware, on the next timer clock cycle, automatically performs the following actions:

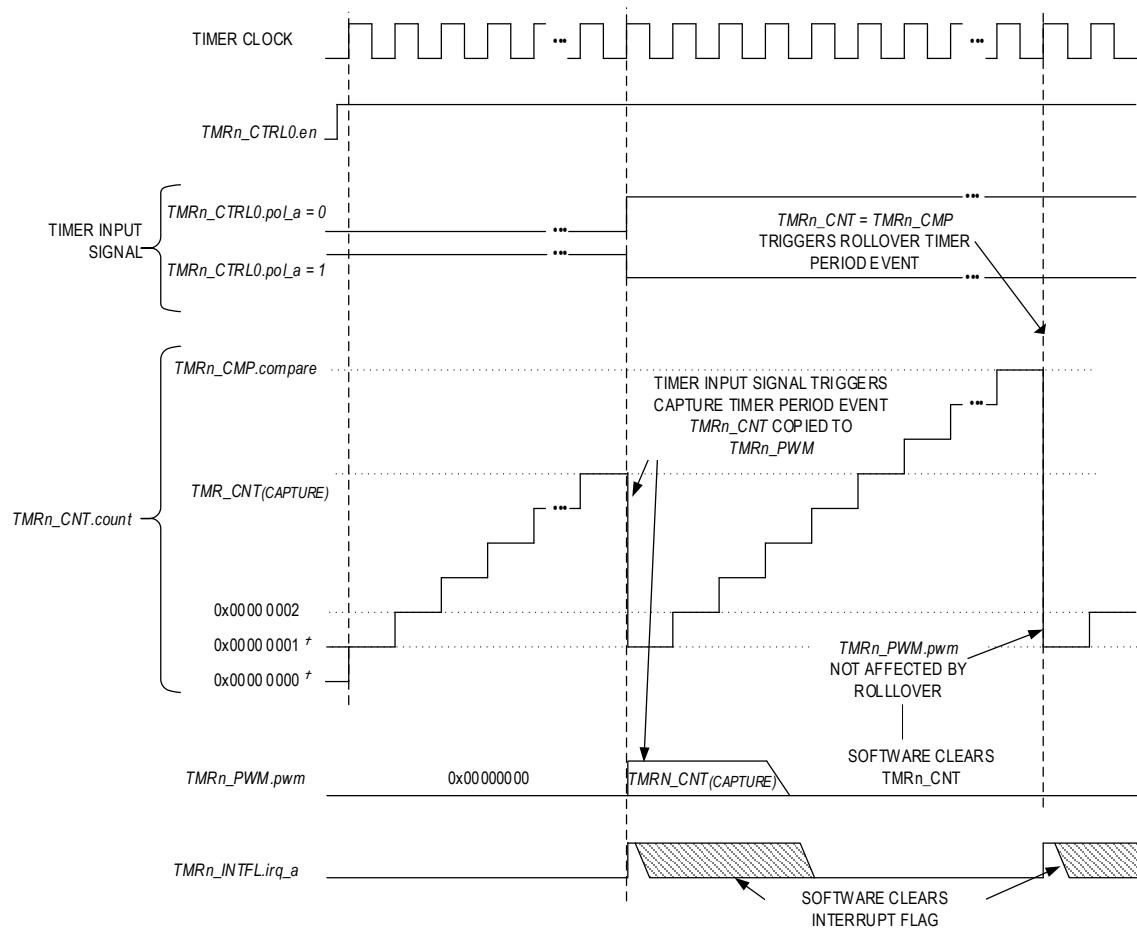
- The *TMRn_CNT*.count value is copied to the *TMRn_PWM*.pwm field.
- The *TMRn_INTFL*.irq field is set to 1.
- The timer remains enabled and continues counting.

*The software must check the value of the *TMRn_PWM*.pwm field to determine the trigger of the timer interrupt.*

Equation 17-9: Capture Mode Elapsed Time Calculation in Seconds

Capture elapsed time (s)

$$= \frac{(TMR_PWM - TMR_CNT_{INITIAL_VALUE}) + ((Number\ of\ rollover\ events) \times (TMR_CMP - TMR_CNT_{INITIAL_VALUE}))}{f_{CNT_CLK}}$$


*Note: The capture elapsed time calculation is only valid after the capture event occurs and the timer stores the captured count in the *TMRn_PWM* register.*

17.9.5.2 Rollover Event

A rollover event occurs when the timer's count value reaches the timer's compare value (*TMRn_CNT*.count = *TMRn_CMP*.compare). A rollover event indicates that a capture event did not occur within the set timer period. When a rollover event occurs, the timer hardware automatically performs the following actions during the next timer clock period:

- The *TMRn_CNT*.count field is set to 0x0000 0001.
- The *TMRn_INTFL*.irq field is set to 1.
- The timer remains enabled and continues counting.

Figure 17-8: Capture Mode Diagram

THIS EXAMPLE USES THE FOLLOWING CONFIGURATION IN ADDITION TO THE SETTINGS SHOWN ABOVE:

`TMRn_CTRL1.cascade = 1` (32-BIT CASCADE TIMER)
`TMRn_CTRL0.mode_a = 2` (COUNTER)

* TMR_n_CNT.count DEFAULTS TO 0x00000000 ON A TIMER RESET. TMR_n_CNT.count RELOADS TO 0x00000001 FOR ALL FOLLOWING TIMER PERIODS.

Configure the timer for Capture mode by doing the following:

1. Disable the timer peripheral as described in [Timer Clock Sources](#).
2. If desired, change the timer clock source as described in [Timer Clock Sources](#).
3. Set [`TMRn_CTRL0.mode`](#) to 4 to select capture mode.
4. Configure the timer input function:
 - a. Set [`TMRn_CTRL0.pol`](#) to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer input pin.
5. Write the initial value to [`TMRn_CNT.count`](#), if desired.
 - a. This affects only the first period; subsequent timer periods always reset [`TMRn_CNT.count`](#) = 0x0000 0001.
6. Write the compare value to the [`TMRn_CMP.compare`](#) field.
7. Select the capture event by setting [`TMRn_CTRL1.capecount_sel`](#).
8. Enable the timer peripheral as described in [Timer Clock Sources](#).

The timer period is calculated using the following equation:

Equation 17-10: Capture Mode Elapsed Time Calculation in Seconds

$$\text{Capture elapsed time in seconds} = \frac{\text{TMR_PWM} - \text{TMR_CNT}_{\text{INITIAL_VALUE}}}{f_{\text{CNT_CLK}}}$$

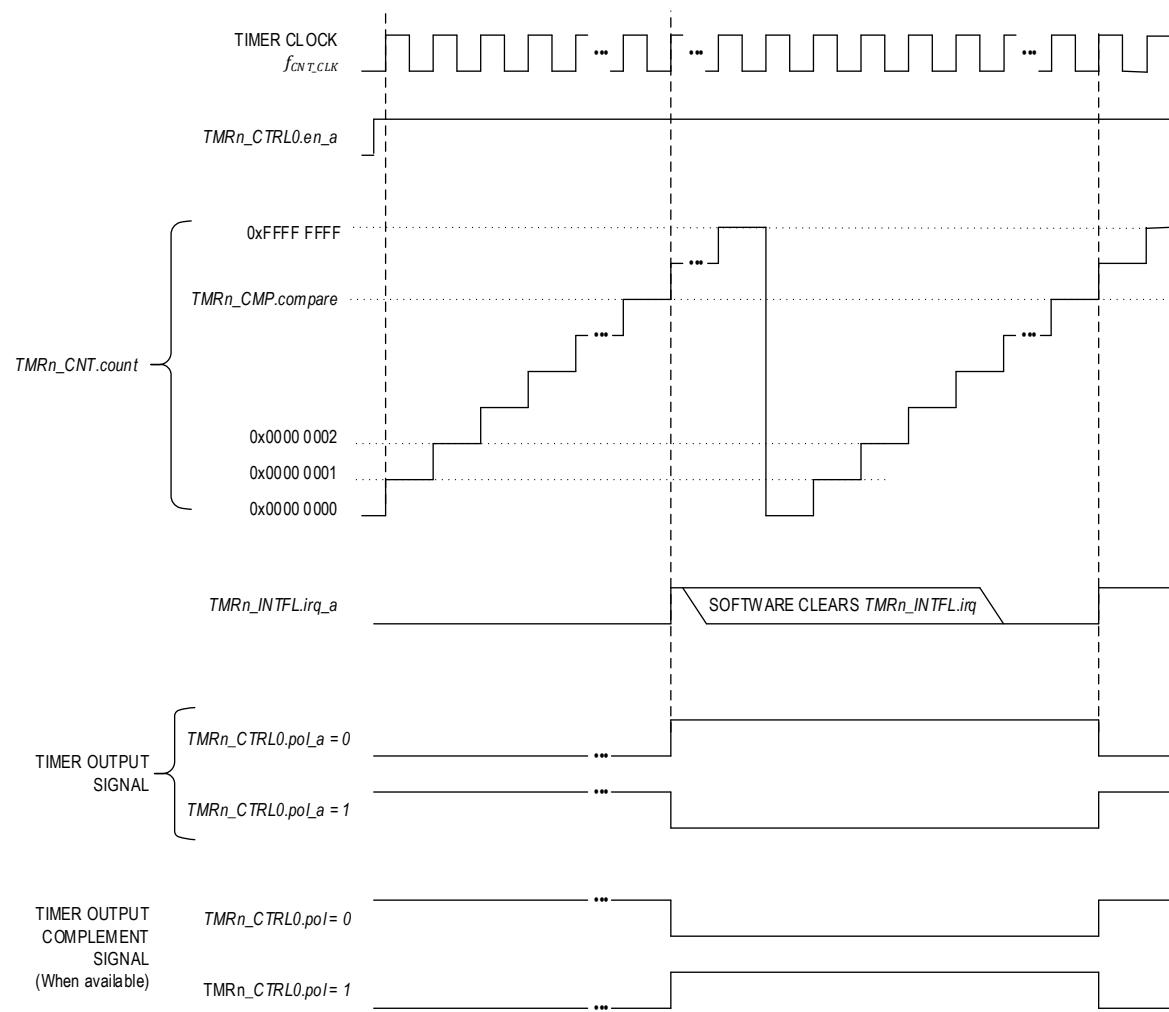
Note: The capture elapsed time calculation is only valid after the capture event occurs, and the timer stores the captured count in the [`TMRn_PWM`](#) register.

17.9.6 Compare Mode (5)

In compare mode, the timer peripheral increments continually from 0x0000 0000 (after the first timer period) to the maximum value of the 32- or 16-bit mode, then rolls over to 0x0000 0000 and continues incrementing. The end of the timer period event occurs when the timer value matches the compare value, but the timer continues to increment until the count reaches 0xFFFF FFFF. The timer counter then rolls over and continues counting from 0x0000 0000.

The timer period ends on the timer clock following [`TMRn_CNT.count`](#) = [`TMRn_CMP.compare`](#).

The timer peripheral automatically performs the following actions when a timer period event occurs:


- Unlike other modes, [`TMRn_CNT.count`](#) is reset to 0x0000 00000, not 0x0000 0001 at the end of the timer period. The timer remains enabled and continues incrementing.
- The corresponding [`TMRn_INTFL.irq`](#) field is set to 1 to indicate a timer interrupt event occurred.
- The hardware toggles the state of the timer output signal. The timer output pin changes state if the timer output is enabled.

The compare mode timer period is calculated using [Equation 17-11](#).

Equation 17-11: Compare Mode Timer Period

$$\text{Compare mode timer period in second} = \frac{(\text{TMR_CMP} - \text{TMR_CNT}_{\text{INITIAL_VALUE}} + 1)}{f_{\text{CNT_CLK}}(\text{Hz})}$$

Figure 17-9: Compare Mode Diagram

This example uses the following configuration in addition to the settings shown above:

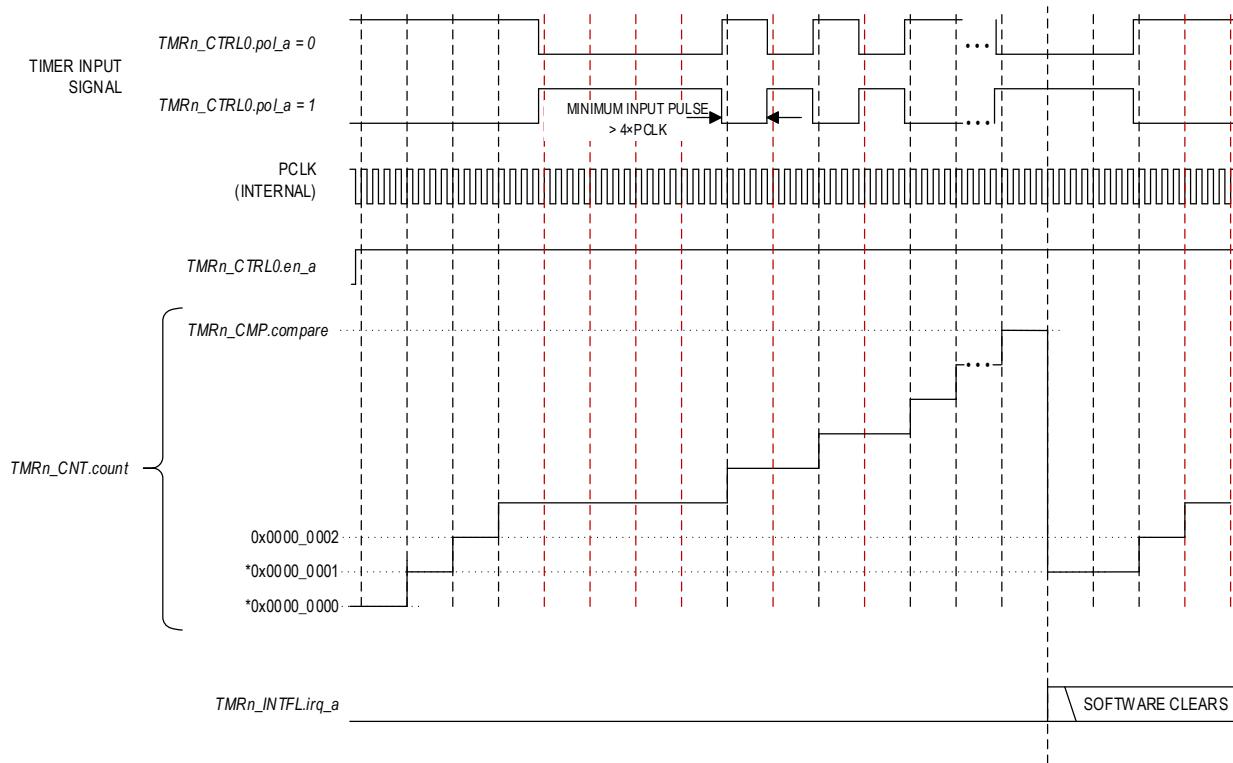
TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)

TMRn_CTRL0.mode_a = 5 (Compare)

Configure the timer for compare mode by doing the following:

1. Disable the timer peripheral as described in [Timer Clock Sources](#).
2. If desired, change the timer clock source as described in [Timer Clock Sources](#).
3. Set *TMRn_CTRL0.mode* to 5 to select Compare mode.
4. Set *TMRn_CTRL0.clkdiv* to set the prescaler that determines the timer frequency.
5. If using the timer output function:
 - a. Set *TMRn_CTRL0.pol* to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer output pin.
6. If using the inverted timer output function:
 - a. Set *TMRn_CTRL0.pol* to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the inverted timer output pin.
7. If using the timer interrupt, enable the corresponding field in the *TMRn_CTRL1* register.
8. Write the compare value to *TMRn_CMP.compare*.
9. If desired, write an initial value to *TMRn_CNT.count*.
 - a. This affects only the first period; subsequent timer periods always reset *TMRn_CNT.count* = 0x0000 0000.
10. Enable the timer peripheral as described in [Timer Clock Sources](#).

17.9.7 Gated Mode (6)


Gated mode is similar to continuous mode, except that *TMRn_CNT.count* only increments when the timer input signal is in its active state.

The timer period ends on the timer clock following *TMRn_CNT.count* = *TMRn_CMP.compare*.

The timer peripheral automatically performs the following actions at the end of the timer period:

- The *TMRn_CNT.count* field is set to 0x0000 0001.
- The timer remains enabled and continues incrementing.
- The timer output pin changes state if the timer output is enabled.
- The corresponding *TMRn_INTFL.irq* field is set to 1 to indicate a timer interrupt event occurred.

Figure 17-10: Gated Mode Diagram

This example uses the following configuration in addition to the settings shown above:

`TMRn_CTRL1.cascade = 1` (32-bit Cascade Timer)
`TMRn_CTRL0.mode_a = 6` (Gated)

[†] `TMRn_CNT.count` defaults to 0x0000 0000 on a timer reset. `TMRn_CNT.count` reloads to 0x0000 0001 for all following timer periods.

Configure the timer for gated mode by doing the following:

1. Disable the timer peripheral as described in [Timer Clock Sources](#).
2. If desired, change the timer clock source as described in [Timer Clock Sources](#).
3. Set `TMRn_CTRL0.mode` to 6 to select gated mode.
4. Configure the timer input function:
 - a. Set `TMRn_CTRL0.pol` to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer input pin.
5. If desired, write an initial value to the `TMRn_CNT.count` field.
 - a. This affects only the first period; subsequent timer periods always reset `TMRn_CNT.count` = 0x0000 0001.
6. Write the compare value to `TMRn_CMP.compare`.
7. Enable the timer peripheral as described in [Timer Clock Sources](#).

17.9.8 Capture/Compare Mode (7)

In Capture/Compare mode, the timer starts counting after the first external timer input transition occurs. The transition, a rising edge or falling edge on the timer's input signal, is set using the [*TMRn_CTRL0.pol*](#) bit.

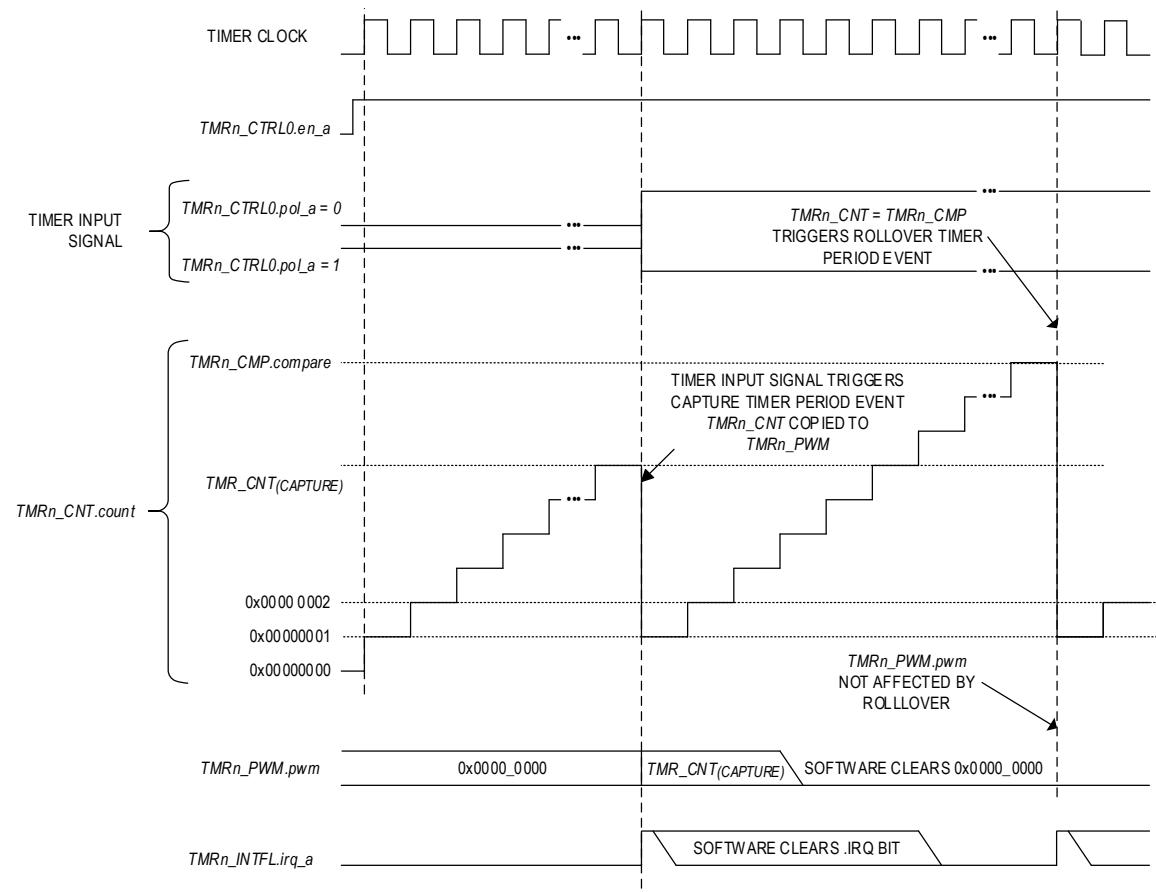
Each subsequent transition, after the first transition of the timer input signal, captures the [*TMRn_CNT.count*](#) value, writing it to the [*TMRn_PWM.pwm*](#) register (capture event). When a capture event occurs, a timer interrupt is generated, the [*TMRn_CNT.count*](#) value is reset to 0x0000 0001, and the timer resumes counting.

If no capture event occurs, the timer counts up to [*TMRn_CMP.compare*](#). At the end of the cycle where the [*TMRn_CNT.count*](#) equals the [*TMRn_CMP.compare*](#), a timer interrupt is generated, the [*TMRn_CNT.count*](#) value is reset to 0x0000 0001, and the timer resumes counting.

The timer period ends when the selected transition occurs on the timer pin, or on the clock cycle following [*TMRn_CNT.count = TMRn_CMP.compare*](#).

The actions performed at the end of the timer period are dependent on the event that ended the timer period.

If the end of the timer period is caused by a transition on the timer pin, the hardware automatically performs the following:


- The value in [*TMRn_CNT.count*](#) field is copied to the [*TMRn_PWM.pwm*](#) field.
- The [*TMRn_CNT.count*](#) field is set to 0x0000 0001.
- The timer remains enabled and continues incrementing.
- The corresponding [*TMRn_INTFL.irq*](#) field is set to 1 to indicate a timer interrupt event occurred.

In capture/compare mode, the elapsed time from the timer start to the capture event is calculated using [*Equation 17-12*](#).

Equation 17-12: Capture Mode Elapsed Time

$$\text{Capture elapsed time (seconds)} = \frac{\text{TMRn_PWM} - \text{TMRn_CNT}_{\text{INITIAL_CNT_VALUE}}}{f_{\text{CNT_CLK}}(\text{Hz})}$$

Figure 17-11: Capture/Compare Mode Diagram

THIS EXAMPLE USES THE FOLLOWING CONFIGURATION IN ADDITION TO THE SETTINGS SHOWN ABOVE:

TMR_n_CTRL1.cascade = 1 (32-BIT CASCADE TIMER)

TMR_n_CTRL0.mode_a = 7 (CAPTURE/COMPARE)

[†] *TMR_n_CNT.count* DEFAULTS TO 0x00000000 ON A TIMER RESET. *TMR_n_CNT.count* RELOADS TO 0x00000001 FOR ALL FOLLOWING TIMER PERIODS.

Configure the timer for Capture/Compare mode by doing the following:

1. Disable the timer peripheral as described in [Timer Clock Sources](#).
2. If desired, change the timer clock source as described in [Timer Clock Sources](#).
3. Set [*TMRn_CTRL0*.mode](#) to 7 to select Capture/Compare mode.
4. Configure the timer input function:
 - a. Set [*TMRn_CTRL0*.pol](#) to select the positive edge ([*TMRn_CTRL0*.pol](#) = 1) or negative edge ([*TMRn_CTRL0*.pol](#) = 0) transition to cause the capture event.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer input pin.
5. If desired, write an initial value to the [*TMRn_CNT*.count](#) field.
 - a. This affects only the first period; subsequent timer periods always reset [*TMRn_CNT*.count](#) = 0x0000 0001.
6. Write the compare value to [*TMRn_CMP*.compare](#).
7. Enable the timer peripheral as described in [Timer Clock Sources](#).

Note: No interrupt is generated by the first transition of the input signal.

17.9.9 Dual-Edge Capture Mode (8)

Dual-edge capture mode is similar to capture mode, except the counter can capture on both edges of the timer input pin.

17.9.10 Inactive Gated Mode (14)

Inactive gated mode is similar to gated mode, except the interrupt is triggered when the timer input pin is in its inactive state.

17.10 Timer Registers

See [Table 3-2](#) for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own independent set of registers, as shown in [Table 17-8](#). Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register PERIPHERALn_CTRL resolves to PERIPHERAL0_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See [Table 1-1](#) for an explanation of each field's read and write access. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 17-8: Timer Registers

Offset	Register Name	Description
[0x0000]	<i>TMRn_CNT</i>	Timer Counter Register
[0x0004]	<i>TMRn_CMP</i>	Timer Compare Register
[0x0008]	<i>TMRn_PWM</i>	Timer PWM Register
[0x000C]	<i>TMRn_INTFL</i>	Timer Interrupt Register
[0x0010]	<i>TMRn_CTRL0</i>	Timer Control Register
[0x0014]	<i>TMRn_NOLOCM</i>	Timer Non-Overlapping Compare Register
[0x0018]	<i>TMRn_CTRL1</i>	Timer Configuration Register
[0x001C]	<i>TMRn_WKFL</i>	Timer Wake-up Status Register

17.10.1 Register Details

Table 17-9: Timer Count Register

Timer Count				TMRn_CNT	[0x0000]
Bits	Field	Access	Reset	Description	
31:0	count	R/W*	0	Timer Count This field increments at a rate dependent on the selected timer operating mode. The function of the bits in this field are dependent on the 32-bit/16-bit configuration. <i>Note: See Reading the TMRn_CNT and TMRn_PWM Registers for details on reading this register.</i> <i>*Note: This register is only writable if the timer clock is enabled (TMRn_CTRL0.clken = 1).</i>	

Table 17-10: Timer Compare Register

Timer Compare				TMRn_CMP	[0x0004]
Bits	Field	Access	Reset	Description	
31:0	compare	R/W	0	Timer Compare Value The value in this register is used as the compare value for the timer's count value. The compare field meaning is determined by the specific mode of the timer. See the timer mode's detailed configuration section for compare usage and meaning.	

Table 17-11: Timer PWM Register

Timer PWM				TMRn_PWM	[0x0008]
Bits	Field	Access	Reset	Description	
31:0	pwm	R/W*	0	Timer PWM Match In PWM mode, this field sets the count value for the first transition period of the PWM cycle. At the end of the cycle when TMRn_CNT.count = TMRn_CMP.compare , the PWM output transitions to the second period of the PWM cycle. The second PWM period count is stored in TMRn_CMP.compare . TMRn_PWM.pwm must be less than TMRn_CMP.compare for PWM mode operation. Timer Capture Value In capture, compare, and capture/compare modes, this field is used to store the TMRn_CNT.count value when a capture, compare, or capture/compare event occurs. <i>Note: See Reading the TMRn_CNT and TMRn_PWM Registers for details on reading this register.</i> <i>*Note: This register is only writable if the timer clock is enabled (TMRn_CTRL0.clken = 1).</i>	

Table 17-12: Timer Interrupt Register

Timer Interrupt				TMRn_INTFL	[0x000C]
Bits	Field	Access	Reset	Description	
31:26	-	RO	0	Reserved	

Timer Interrupt				TMRn_INTFL	[0x000C]
Bits	Field	Access	Reset	Description	
25	wr_dis_b	R/W	0	TimerB Write Protect in Dual Timer Mode Set this field to 0 to write protect the TimerB fields in the TMRn_CNT.count[31:16] and TMRn_PWM.pwm[31:16] . When this field is set to 0, 32-bit writes to the TMRn_CNT and TMRn_PWM registers only modify the lower 16 bits associated with TimerA. 0: Enabled. 1: Disabled. <i>Note: This field always reads 0 if the timer is configured as a 32-bit cascade timer.</i>	
24	wrdone_b	R	0	TimerB Write Done This field is cleared to 0 by the hardware when the software performs a write to TMRn_CNT.count[31:16] or TMRn_PWM.pwm[31:16] when in dual timer mode. Wait until the field is set to 1 before proceeding. 0: Operation in progress. 1: Operation complete.	
23:17	-	RO	0	Reserved	
16	irq_b	R/W1C	0	TimerB Interrupt Event This field is set when a TimerB interrupt event occurs. Write 1 to clear. 0: No event. 1: Interrupt event occurred.	
15:10	-	RO	0	Reserved	
9	wr_dis_a	R/W	0	TimerA Dual Timer Mode Write Protect This field disables write access to the TMRn_CNT.count[15:0] and TMRn_PWM.pwm[15:0] fields so that only the 16 bits associated with updating TimerA are modified during writes to the TMRn_CNT and TMRn_PWM registers. 0: Enabled. 1: Disabled. <i>Note: This field always reads 0 if the timer is configured as a 32-bit cascade timer.</i>	
8	wrdone_a	R	0	TimerA Write Done This field is cleared to 0 by the hardware when the software performs a write to TMRn_CNT.count[15:0] or TMRn_PWM.pwm[15:0] when in dual 16-bit timer mode. Wait until the field reads 1 before proceeding. 0: Operation in progress. 1: Operation complete.	
7:1	-	RO	0	Reserved	
0	irq_a	W1C	0	TimerA Interrupt Event This field is set when a TimerA interrupt event occurs. Write 1 to clear. 0: No event. 1: Interrupt event occurred.	

Table 17-13: Timer Control 0 Register

Timer Control 0				TMRn_CTRL0	[0x0010]
Bits	Field	Access	Reset	Description	
31	en_b	R/W	0	TimerB Enable 0: Disabled. 1: Enabled.	

Timer Control 0			TMRn_CTRL0		[0x0010]
Bits	Field	Access	Reset	Description	
30	clken_b	R/W	0	TimerB Clock Enable 0: Disabled. 1: Enabled.	
29	rst_b	R/W1O	0	TimerB Reset 0: Normal operation. 1: Reset Timer B.	
28:24	-	RO	0	Reserved	
23:20	clkdiv_b	R/W	0	TimerB Prescaler Select The <i>clkdiv_b</i> field selects a prescaler that divides the timer's source clock to set the timer's count clock as follows: $f_{CNT_CLK} = f_{CLK_SOURCE} / prescaler$ See the Operating Modes section for details on which timer modes use the prescaler. 0: 1. 1: 2. 2: 4. 3: 8. 4: 16. 5: 32. 6: 64. 7: 128. 8: 256. 9: 512. 10: 1024. 11: 2048. 12: 4096. 13-15: Reserved.	
19:16	mode_b	R/W	0	TimerB Mode Select Set this field to the desired mode for TimerB. 0: One-shot. 1: Continuous. 2: Counter. 3: PWM. 4: Capture. 5: Compare. 6: Gated. 7: Capture/compare. 8: Dual-edge capture. 9-11: Reserved. 12: Internally gated. 13-15: Reserved.	
15	en_a	R/W	0	TimerA Enable 0: Disabled. 1: Enabled.	
14	clken_a	R/W	0	TimerA Clock Enable 0: Disabled. 1: Enabled.	
13	rst_a	R/W1O	0	TimerA Reset 0: No action. 1: Reset TimerA.	

Timer Control 0			TMRn_CTRL0		[0x0010]
Bits	Field	Access	Reset	Description	
12	pwmckbd_a	R/W	1	TimerA PWM Output $\phi A'$ Disable Set this field to 0 to enable the $\phi A'$ output signal. The $\phi A'$ output signal is disabled by default. 0: Enable the PWM $\phi A'$ output signal. 1: Disable PWM $\phi A'$ output signal.	
11	nolpol_a	R/W	0	TimerA PWM Output $\phi A'$ Polarity Bit Set this field to 1 to invert the PWM $\phi A'$ signal. 0: Do not invert the PWM $\phi A'$ output signal. 1: Invert the PWM $\phi A'$ output signal.	
10	nolpol_a	R/W	0	TimerA PWM Output ϕA Polarity Bit Set this field to 1 to invert the PWM ϕA signal. 0: Do not invert the ϕA PWM output signal. 1: Invert the ϕA output signal.	
9	pwmsync_a	R/W	0	TimerA/TimerB PWM Synchronization Mode 0: Disabled. 1: Enabled.	
8	pol_a	R/W	0	TimerA Polarity Selects the polarity of the timer's input and output signal. This setting is not used if the GPIO is not configured for the timer's alternate function. This field's usage and settings are operating mode specific. See the Operating Modes section for details on the mode selected.	
7:4	clkdiv_a	R/W	0	TimerA Prescaler Select The <i>clkdiv_a</i> field selects a prescaler that divides the timer's clock source to set the timer's count clock as follows: $f_{CNT_CLK} = f_{CLK_SOURCE} / prescaler$ See the Operating Modes section to determine which modes use the prescaler. 0: 1. 1: 2. 2: 4. 3: 8. 4: 16. 5: 32. 6: 64. 7: 128. 8: 256. 9: 512. 10: 1024. 11: 2048. 12: 4096. 13-15: Reserved.	

Timer Control 0			TMRn_CTRL0		[0x0010]
Bits	Field	Access	Reset	Description	
3:0	mode_a	R/W	0	TimerA Mode Select Set this field to the desired operating mode for TimerA. 0: One-shot. 1: Continuous. 2: Counter. 3: PWM. 4: Capture. 5: Compare. 6: Gated. 7: Capture/compare. 8: Dual-edge capture. 9-11: Reserved. 12: Internally gated. 13-15: Reserved.	

Table 17-14: Timer Non-Overlapping Compare Register

Timer Non-Overlapping Compare			TMRn_NOLCMP		[0x0014]
Bits	Field	Access	Reset	Description	
31:24	hi_b	R/W	0	TimerA Non-Overlapping High Compare 1 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output $\phi A'$ (phase A prime) and the next rising edge of the PWM output ϕA (phase A).	
23:16	lo_b	R/W	0	TimerA Non-Overlapping Low Compare 1 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output ϕA and the next rising edge of the PWM output $\phi A'$.	
15:8	hi_a	R/W	0	TimerA Non-Overlapping High Compare 0 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output $\phi A'$ and the next rising edge of the PWM output ϕA .	
7:0	lo_a	R/W	0	TimerA Non-Overlapping Low Compare 0 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output ϕA and the next rising edge of the PWM output $\phi A'$.	

Table 17-15: Timer Control 1 Register

Timer Control 1			TMRn_CTRL1		[0x0018]
Bits	Field	Access	Reset	Description	
31	cascade	R/W	0	32-bit Cascade Timer Enable This field is only supported by Timer instances with support for 32-bit cascade mode. 0: Dual 16-bit timers 1: 32-bit cascade timer	
30:29	-	RO	0	Reserved	
28	we_b	R/W	0	TimerB Wake-up Function 0: Disabled. 1: Enabled.	

Timer Control 1				TMRn_CTRL1	[0x0018]
Bits	Field	Access	Reset	Description	
27	sw_capevent_b	R/W	0	TimerB Software Event Capture Write this field to 1 to initiate a software event capture when operating the timer in capture mode to perform a software event capture. 0: No event. 1: Reserved.	
26:25	capevent_sel_b	R/W	0	TimerB Event Capture Selection Set this field to the desired capture event source. See Table 17-2 for available capture event 0 and capture event 1 options. 0-3: Reserved.	
24	ie_b	R/W	0	TimerB Interrupt Enable 0: Disabled. 1: Enabled.	
23	negtrig_b	R/W	0	TimerB Edge Trigger for Event 0: Rising edge triggered. 1: Falling edge triggered. <i>Note: External trigger events for rising-edge events must be active for a minimum of two timer clocks for detection.</i>	
22:20	event_sel_b	R/W	0	TimerB Event Selection 0: Event disabled. 1-7: Reserved.	
19	clkrdy_b	RO	0	TimerB Clock Ready Status This field indicates if the timer clock is ready. 0: Timer clock not ready or synchronization in progress. 1: Timer clock is ready.	
18	clken_b	RO	0	TimerB Clock Enable Status This field indicates the status of the timer enable. 0: Timer not enabled or synchronization in progress. 1: Timer is enabled.	
17:16	clksel_b	R/W	0	TimerB Clock Source See Table 17-1 for the clock sources supported by each instance. <i>Note: In cascade 32-bit mode, this field must be set to the same value as the TMRn_CTRL1.clkSEL_a field.</i> 0: Clock option 0. 1: Clock option 1. 2: Clock option 2. 3: Clock option 3.	
15	-	RO	0	Reserved	
14	outben_a	R/W	0	Output B Enable Reserved.	
13	outen_a	R/W	0	Output Enable Reserved.	
12	we_a	R/W	0	TimerA Wake-up Function 0: Disabled. 1: Enabled.	
11	sw_capevent_a	R/W	0	TimerA Software Event capture 0: Normal operation. 1: Trigger software capture event.	

Timer Control 1				TMRn_CTRL1	[0x0018]
Bits	Field	Access	Reset	Description	
10:9	capevent_sel_a	R/W	0	TimerA Event capture Selection Set this field to the desired capture event source. See Table 17-2 for available capture event 0 and capture event 1 options. 0: Capture event 0. 1: Capture event 1. 2: Capture event 2. 3: Capture event 3.	
8	ie_a	R/W	0	TimerA Interrupt Enable 0: Disabled. 1: Enabled.	
7	negtrig_a	R/W	0	TimerA Edge Trigger Selection for Event 0: Rising edge triggered. 1: Falling edge triggered. <i>Note: External trigger events for rising-edge events must be active for a minimum of two timer clocks for detection.</i>	
6:4	event_sel_a	R/W	0	TimerA Event Selection 0: Event disabled. 1-7: Reserved.	
3	clkrdy_a	R	0	TimerA Clock Ready This field is set to 1 after the software enables the TimerA clock by writing 1 to the TMRn_CTRL1.clken_a field. 0: Timer not enabled or synchronization in progress. 1: TimerA clock is ready.	
2	clken_a	R	0	TimerA Clock Enable Status This field indicates if the timer is enabled. 0: Timer not enabled or synchronization in progress. 1: Timer is enabled.	
1:0	clksel_a	R/W	0	Clock Source TimerA See Table 17-1 for the available clock options for each timer instance. <i>Note: In cascade 32-bit mode, set TMRn_CTRL1.clksel_b to the same value as this field for proper operation.</i> 0: Clock option 0. 1: Clock option 1. 2: Clock option 2. 3: Clock option 3.	

Table 17-16: Timer Wake-up Status Register

Timer Wake-up Status				TMRn_WKFL	[0x001C]
Bits	Field	Access	Reset	Description	
31:17	-	RO	0	Reserved	
16	b	R/W1C	1	TimerB Wake-up Event This flag is set when a wake-up event occurs for TimerB. Write 1 to clear. 0: No event. 1: Wake-up event occurred.	
15:1	-	RO	0	Reserved	

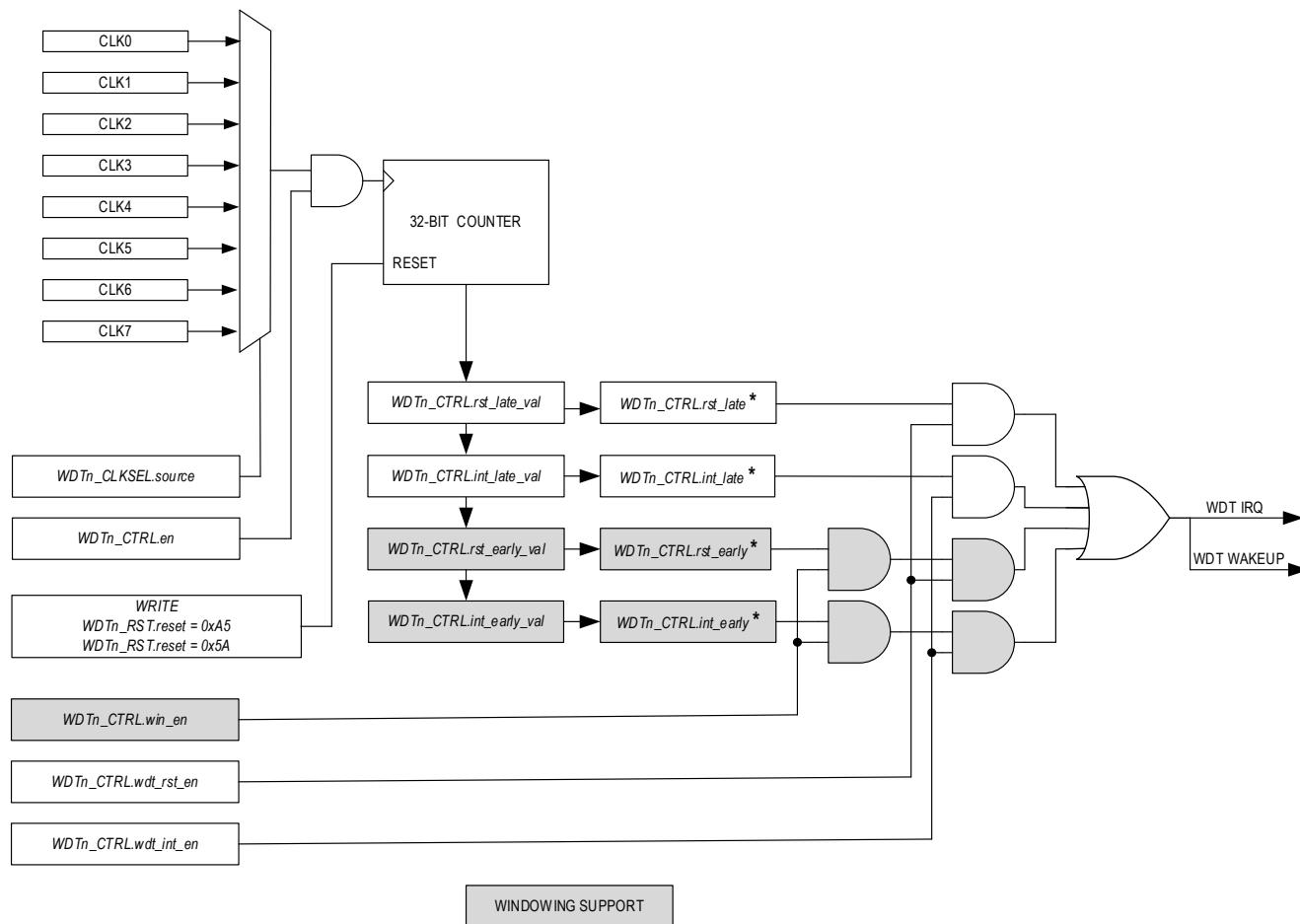
Timer Wake-up Status				TMRn_WKFL	[0x001C]
Bits	Field	Access	Reset	Description	
0	a	R/W1C	1	TimerA Wake-up Event This flag is set when a wake-up event occurs for TimerA. Write 1 to clear. 0: No event. 1: Wake-up event occurred.	

18. Watchdog Timer (WDT)

The WDT protects against corrupt or unreliable software, power faults, and other system-level problems that can place the IC into an improper operating state. The software must periodically write a unique sequence to a dedicated register to confirm the application is operating correctly. Failure to reset the watchdog timer within a user-specified time frame can first generate an interrupt, allowing the application the opportunity to identify and correct the problem. If the application cannot regain normal operation, the watchdog timer can generate a system reset as a last resort.

Some instances provide a windowed timer function. These instances support an additional feature that can detect watchdog timer resets that occur too early, too late, or never. This could happen if program execution is corrupted and is accidentally forced into a tight loop of code that contains a watchdog sequence. This is not detected with a traditional WDT because the end of the timeout periods is never reached. A new set of "watchdog timer early" fields are available to support the lower limits required for windowing. Traditional watchdog timers can only detect a loss of program control that fails to reset the watchdog timer.

Each time the application performs a reset as early as possible in the application software, examine the peripheral control register to determine if the reset was caused by a WDT late reset event or a WDT early reset event if the window function is enabled. If so, the software should take the desired action as part of its restart sequence.


The WDT is a critical safety feature, and most fields are reset on POR or system reset events only.

Features:

- Single-ended (legacy) watchdog timeout
- Windowed mode adds lower-limit timeout settings to detect loss of control in tight code loops.
- Configurable clock source
- Configurable time-base
- Programmable upper and lower limits for reset and interrupts from 2^{16} to 2^{32} time-base ticks.

Figure 18-1 shows a high-level block diagram of the WDT.

Figure 18-1: Windowed Watchdog Timer Block Diagram

* INTERRUPT FLAGS ARE SET REGARDLESS OF THE ENABLED STATE OF WDTn_CTRL.win_en, WDTn_CTRL.wdt_int_en and WDTn_CTRL.wdt_RST_en.

18.1 Instances

Table 18-1 shows the peripheral instances, available clock sources, and windowed watchdog support.

Table 18-1: MAX32675C WDT Instances Summary

Instance	Window Support	CLK0	CLK1	CLK2	CLK3	CLK4	CLK5	CLK6
WDT0	Yes	PCLK	IPO	IBRO	INRO	-	EXT_CLK1	ERFO
WDT1	Yes	PCLK	IPO	IBRO	INRO	-	EXT_CLK1	ERFO

18.2 Usage

When enabled, `WDTn_CNT.count` is incremented once every t_{WDTCLK} period. The software periodically executes the feed sequence during correct operation, resetting the `WDTn_CNT.count` field to 0x0000 0000 within the target window.

The upper and lower limits of the target window are user-configurable to accommodate different applications and non-deterministic execution times within an application.

The WDT can generate interrupts and/or reset events in response to the WDT activity. Interrupts are typically configured to respond first to an event outside the target window. The approach is that a minor system event can have temporarily delayed the execution of the feed sequence, so the event can be diagnosed in an interrupt routine and control returned to the system. When the WDT feed sequence occurs much earlier than expected or not at all, a reset event can be generated that forces the system to a known good state before continuing.

Traditional WDTs only detect execution errors that fail to perform the WDT feed sequence. If the counter reaches the WDT late interrupt threshold, the device attempts to regain program control by vectoring to the dedicated WDT interrupt service routine (ISR). The ISR should reset the WDT counter, perform the desired recovery activity, and then return execution to a known good address.

If the execution error prevents the successful execution of the interrupt, the WDT continues to increment until the count reaches the WDT late reset threshold. The WDT generates a late reset event that sets the WDT late reset flag and generates a system interrupt.

Instances that support the window feature (`WDTn_CTRL.win_en` = 1) can generate a WDT early interrupt event if the WDT feed sequence occurs earlier than expected. Analogously, the device attempts to regain program control by vectoring to the dedicated WDT ISR. The WDT ISR should reset the WDT counter, perform the desired recovery activity, and then return execution to a known good address.

A WDT feed sequence that occurs earlier than the WDT early reset threshold indicates the execution error is significant enough to initiate a reset of the device to correct the problem. The WDT generates an early reset event that sets the WDT late reset flag and generates a system interrupt.

The event flags are set regardless of the corresponding interrupt or reset enable and include the early interrupt and early event flags, even if the WDT is disabled (`WDTn_CTRL.win_en` = 0).

18.2.1 Using the WDT as a Long-Interval Timer

One application of the WDT is as a very long interval timer in ACTIVE mode. The timer can be configured to generate a WDT late interrupt event for as long as 2^{32} periods of the selected watchdog clock source. The WDT should not be enabled to generate WDT reset events in this application.

18.2.2 Using the WDT as a Long-Interval Wake-up Timer

The WDT can be used as a very long internal wake-up source. Another application of the WDT is as a very long interval wake-up source from SLEEP.

18.3 WDT Protection Sequence

The WDT protection sequence protects the system against unintentional altering of the WDT count, and unintentional enabling or disabling of the timer itself. There are three different protection sequences described below.

18.3.1 WDT Feed Sequence

Two consecutive write instructions to the `WDTn_RST.reset` field are required to reset the `WDTn_CNT.count` = 0. Disable global interrupts immediately before and re-enable after writing to ensure both writes to the `WDTn_RST.reset` field complete without interruption.

1. Disable interrupts.
2. In consecutive write operations:
 - a. Write `WDTn_RST.reset`: 0xA5.
 - b. Write `WDTn_RST.reset`: 0x5A.
3. Hardware automatically clears the `WDTn_CNT.count` to 0.
4. Re-enable interrupts.

18.3.2 WDT Enable Sequence

Perform the enable sequence immediately before enabling the WDT to prevent accidental triggering of the reset or interrupt as soon as the timer is enabled. There is no timed access window for these write operations; the operations can be separated by any length of time as long as they occur in the required sequence.

1. Write the `WDTn_RST.reset` field with 0xFE.
2. Write the `WDTn_RST.reset` field with 0xED.
3. The hardware sets `WDTn_CTRL.en` to 1 automatically.

18.3.3 WDT Disable Sequence

Perform the disable sequence immediately before disabling the WDT to prevent accidental disabling of the WDT by software. There is no timed access window for these write operations; the operations can be separated by any length of time as long as they occur in the required sequence.

1. Write the `WDTn_RST.reset` field with 0xDE.
2. Write the `WDTn_RST.reset` field with 0xAD.
3. The hardware clears `WDTn_CTRL.en` to 0 automatically.

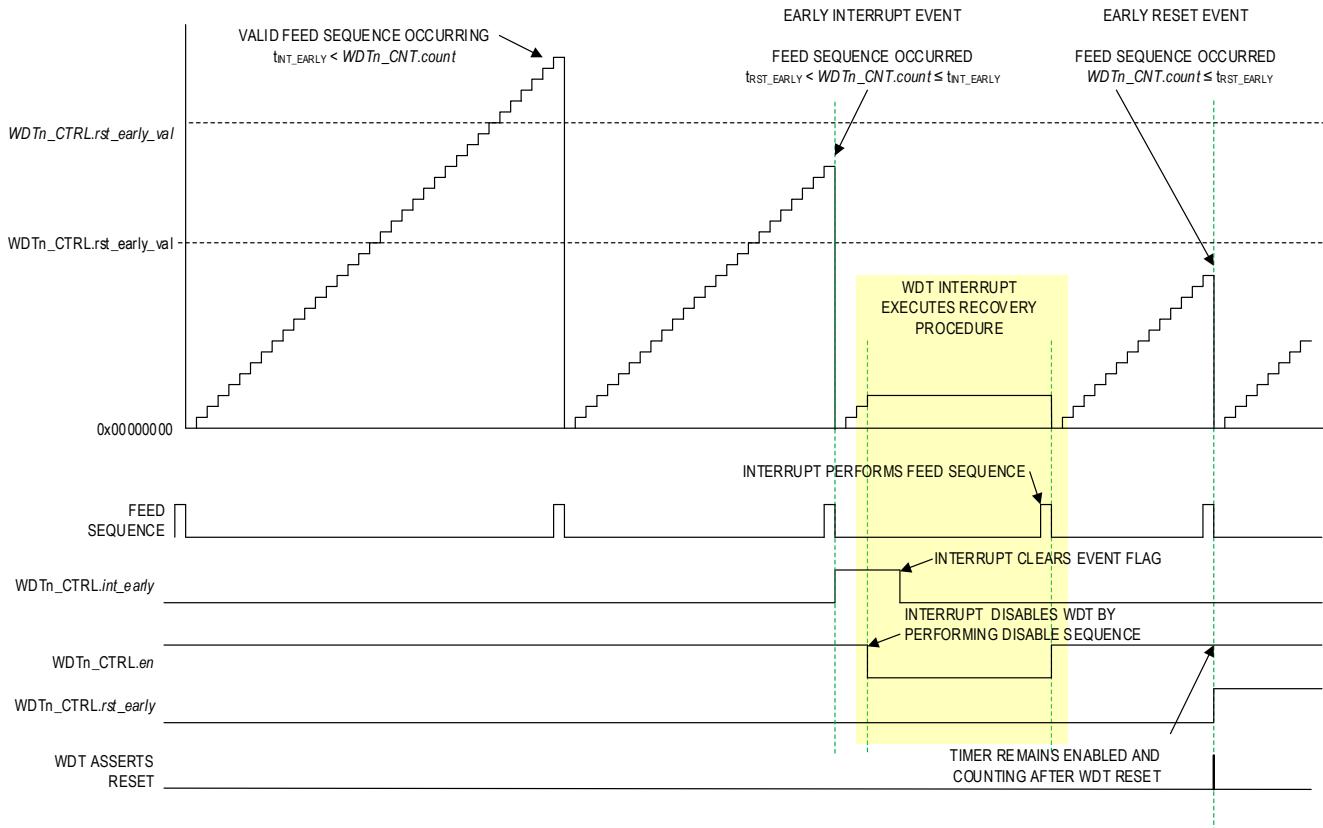
18.4 WDT Events

Multiple events are supported, as shown in *Table 18-2*. The corresponding event flag is set when the event occurs.

Typically, the system is configured such that the late interrupt events occur before the late reset events, and early interrupts occur when the feed sequence has the least error from the target time before the early reset events.

The event flags are set even if the corresponding interrupt enable or reset enable are not enabled and include the early interrupt flag and early event flag even if the window feature is disabled (`WDTn_CTRL.win_en` = 0).

The software must clear the event flags before enabling the WDT.


Table 18-2: WDT Event Summary

Event	Condition	Peripheral Interrupt Event Flag	Peripheral Interrupt Event Enable
Early Interrupt	Feed sequence occurs while $WDTn_CTRL.rst_early_val \leq WDTn_CNT.count < WDTn_CTRL.int_early_val$ $WDTn_CTRL.win_en = 1$	$WDTn_CTRL.int_early$	$WDTn_CTRL.wdt_int_en$
Early Reset	Feed sequence occurs while $WDTn_CNT.count < WDTn_CTRL.rst_early_val$ $WDTn_CTRL.win_en = 1$	$WDTn_CTRL.rst_early$	$WDTn_CTRL.wdt_rst_en$
Interrupt Late	$WDTn_CNT.count = WDTn_CTRL.int_late_val$	$WDTn_CTRL.int_late$	$WDTn_CTRL.wdt_int_en$
Reset Late	$WDTn_CNT.count = WDTn_CTRL.rst_late_val$	$WDTn_CTRL.rst_late$	$WDTn_CTRL.wdt_rst_en$
Timer Enabled	$WDTn_CTRL.clkrdy = 0 \rightarrow 1$	No event flags are set by a timer enabled event	

18.4.1 WDT Early Reset

The early reset event occurs if the software performs the WDT feed sequence while the WDT count is less than the reset late value ($WDTn_CNT.count < WDTn_CTRL.rst_late_val$).

Figure 18-2 shows the sequencing details associated with an early reset event.

Figure 18-2: WDT Early Interrupt and Reset Event Sequencing Details

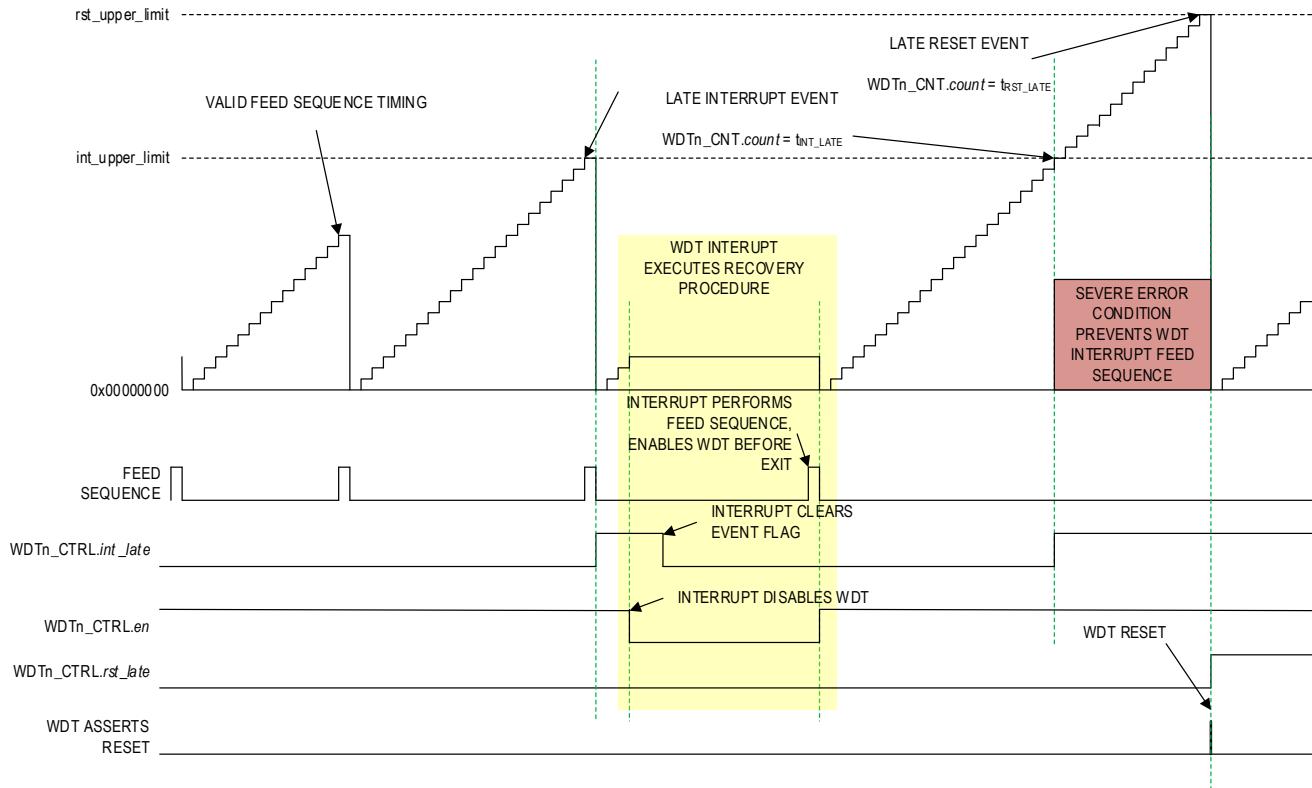
The following occurs when a WDT early reset event occurs:

1. The hardware sets `WDTn_CTRL.rst_early` to 1.
2. The hardware initiates a system reset.
 - a. The hardware resets `WDTn_CNT.count` to 0x0000 0000 during the system reset event.
 - b. The `WDTn_CTRL.en` and the `WDTn_CTRL.rst_early` fields are unaffected by a system reset.
3. After the system reset is complete, the WDT continues incrementing.

18.4.2 WDT Early Interrupt

The early interrupt event occurs if the software performs the WDT feed sequence while $WDTn_CTRL.rst_early_val \leq WDTn_CNT.count < WDTn_CTRL.int_early_val$, as shown in [Table 18-2](#). [Figure 18-2](#) shows the sequencing details associated with an early reset event, including:

- The sequencing details associated with an early interrupt event.
- The required functions performed by the WDT interrupt handler.


The following occurs when a WDT late interrupt event occurs:

1. The hardware sets `WDTn_CTRL.int_late` to 1.
2. The hardware initiates the WDT interrupt, if enabled.

18.4.3 WDT Late Reset

The late reset event occurs if the counter increments to the point where $WDTn_CNT.count = WDTn_CTRL.rst_late$ threshold, as shown in [Table 18-2](#). [Figure 18-3](#) shows the sequencing details associated with a late reset event.

Figure 18-3: WDT Late Interrupt and Reset Event Sequencing Details

The following occurs when a WDT late reset event occurs:

1. The hardware sets `WDTn_CTRL.rst_late` to 1.
2. The hardware initiates a system reset:
 - a. The hardware resets `WDTn_CNT.count` to 0x0000 0000 during the reset event.
 - b. The `WDTn_CTRL.en` and `WDTn_CTRL.rst_late` fields are unaffected by a system reset.
3. After the hardware exits the system reset, the WDT continues incrementing after the system reset completes.

18.4.4 WDT Late Interrupt

The late reset event occurs if the counter increments to the point where `WDTn_CNT.count` = `WDTn_CTRL.rst_late` threshold as shown in *Table 18-2*. *Figure 18-3* shows the sequencing details associated with a late interrupt event, including the required functions performed by the WDT interrupt handler.

The following occurs when WDT late interrupt event occurs:

1. The hardware sets `WDTn_CTRL.int_late` to 1.
2. The hardware initiates the WDT interrupt if enabled.

18.5 Initializing the WDT

The complete procedure for configuring the WDT is as follows:

1. Execute the WDT disable sequence to disable the WDT:
 - a. Disable global interrupts.
 - b. Write `WDTn_RST.reset` to 0xDE.
 - c. Write `WDTn_RST.reset` to 0xAD.
 - d. The hardware automatically clears `WDTn_CTRL.en` to 0, disabling the WDT.
 - e. Re-enable global interrupts.
2. Verify the peripheral is disabled before proceeding:
 - a. Poll `WDTn_CTRL.clkrdy` until it reads 1.
3. Set `WDTn_CTRL.clkrdy_ie` = 1 to generate a WDT enabled interrupt event.
4. Configure `WDTn_CLKSEL.source` to select the clock source.
5. Configure the standard thresholds:
 - a. Configure `WDTn_CTRL.int_late` to the desired threshold for the WDT late interrupt event.
 - b. Configure `WDTn_CTRL.rst_late_val` to the desired threshold for the WDT late reset event.
6. If using the optional windowed WDT feature:
 - a. Set `WDTn_CTRL.win_en` = 1 to enable the windowed WDT feature.
 - b. Configure `WDTn_CTRL.int_early_val` to the desired threshold for the WDT early interrupt event.
 - c. Configure `WDTn_CTRL.rst_early_val` to the desired threshold for the WDT early reset event.
7. Set `WDTn_CTRL.wdt_int_en` to generate an interrupt when a WDT late interrupt event occurs. If `WDTn_CTRL.win_en` = 1, an interrupt is generated by both a WDT late interrupt event, and a WDT early interrupt event.
8. Set `WDTn_CTRL.wdt_RST_en` to generate an interrupt when a WDT late reset event occurs. If `WDTn_CTRL.win_en` = 1, an interrupt is generated by a WDT late reset event and a WDT early reset event.
9. Execute the WDT feed sequence to reset the WDT counter.
 - a. Write `WDTn_RST.reset` to 0xA5.
 - b. Write `WDTn_RST.reset` to 0x5A.

10. Execute the WDT enable sequence and enable the WDT:
 - a. Disable global interrupts.
 - b. Write [*WDTn_RST.reset*](#) to 0xFE.
 - c. Write [*WDTn_RST.reset*](#) to 0xAD.
 - d. Set [*WDTn_CTRL.en*](#) to 1 to enable the WDT.
 - e. Re-enable global interrupts.
11. Verify the peripheral is enabled before proceeding:
 - a. Poll [*WDTn_CTRL.clkrdy*](#) until it reads 1, or
12. Set [*WDTn_CTRL.clkrdy_ie* = 1](#) to generate a WDT enabled event interrupt.

18.6 Resets

The WDT is a critical safety feature. Most of the fields are reset by a POR or system reset events only; however, the enable field ([*WDTn_CTRL.en*](#)) and the interrupt flag fields are not reset by a system reset event.

18.7 WDT Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 18-3: WDT Registers

Offset	Register Name	Description
[0x0000]	<i>WDTn_CTRL</i>	WDT Control Register
[0x0004]	<i>WDTn_RST</i>	WDT Reset Register
[0x0008]	<i>WDTn_CLKSEL</i>	WDT Clock Select Register
[0x000C]	<i>WDTn_CNT</i>	WDT Count Register

18.7.1 Register Details

Table 18-4: WDT Control Register

WDT Control			WDTn_CTRL		[0x0000]
Bits	Name	Access	Reset	Description	
31	rst_late	R/W	0	Reset Late Event A watchdog reset event occurred after the time specified in <i>WDTn_CTRL.rst_late_val</i> . This flag is set even if <i>WDTn_CTRL.win_en</i> = 0 or <i>WDTn_CTRL.wdt_RST_en</i> = 0 . The software must clear this field to 0. 0: Watchdog did not cause a reset event. 1: Watchdog reset occurred after <i>WDTn_CTRL.rst_early_val</i> .	
30	rst_early	R/W	0	Reset Early Event A watchdog reset event occurred before the time specified in the <i>WDTn_CTRL.rst_early_val</i> field. This flag is set even if <i>WDTn_CTRL.win_en</i> = 0 or <i>WDTn_CTRL.wdt_RST_en</i> = 0 . The software must clear this field to 0. 0: Watchdog did not cause a reset event. 1: Watchdog reset occurred before the time specified in the <i>WDTn_CTRL.rst_early_val</i> field.	

WDT Control			WDT _n _CTRL		[0x0000]
Bits	Name	Access	Reset	Description	
29	win_en	R/W	0	Window Function Enable 0: Disabled. The WDT recognizes interrupt late and reset late events, supporting legacy implementations. 1: Enabled.	
28	clkrdy	R	0	Clock Status This field is cleared to 0 by the hardware when the software changes the state of the WDT_n_CTRL.en field. The hardware sets this field to 1 when the change to the requested enable or disable is complete. 0: WDT status change in progress. 1: WDT status change complete.	
27	clkrdy_ie	R/W	0	Clock Switch Ready Interrupt Enable This interrupt prevents the software from needing to poll the WDT_n_CTRL.clkrdy field to determine when the WDT clock is ready. When the WDT_n_CTRL.clkrdy field transitions from 1 to 0, this interrupt signals the transition is complete. 0: Disabled. 1: Enabled.	
26:24	-	RO	0	Reserved	
23:20	rst_early_val	R/W	0	Reset Early Event Threshold 0x0: $2^{31} \times t_{WDTCLK}$ 0x1: $2^{30} \times t_{WDTCLK}$ 0x2: $2^{29} \times t_{WDTCLK}$ 0x3: $2^{28} \times t_{WDTCLK}$ 0x4: $2^{27} \times t_{WDTCLK}$ 0x5: $2^{26} \times t_{WDTCLK}$ 0x6: $2^{25} \times t_{WDTCLK}$ 0x7: $2^{24} \times t_{WDTCLK}$ 0x8: $2^{23} \times t_{WDTCLK}$ 0x9: $2^{22} \times t_{WDTCLK}$ 0xA: $2^{21} \times t_{WDTCLK}$ 0xB: $2^{20} \times t_{WDTCLK}$ 0xC: $2^{19} \times t_{WDTCLK}$ 0xD: $2^{18} \times t_{WDTCLK}$ 0xE: $2^{17} \times t_{WDTCLK}$ 0xF: $2^{16} \times t_{WDTCLK}$ <i>Note: The watchdog timer must be disabled (WDT_n_CTRL.en = 0) before changing this field.</i>	

WDT Control			WDT _n _CTRL		[0x0000]
Bits	Name	Access	Reset	Description	
19:16	int_early_val	R/W	0	Interrupt Early Event Threshold 0x0: $2^{31} \times t_{WDTCLK}$ 0x1: $2^{30} \times t_{WDTCLK}$ 0x2: $2^{29} \times t_{WDTCLK}$ 0x3: $2^{28} \times t_{WDTCLK}$ 0x4: $2^{27} \times t_{WDTCLK}$ 0x5: $2^{26} \times t_{WDTCLK}$ 0x6: $2^{25} \times t_{WDTCLK}$ 0x7: $2^{24} \times t_{WDTCLK}$ 0x8: $2^{23} \times t_{WDTCLK}$ 0x9: $2^{22} \times t_{WDTCLK}$ 0xA: $2^{21} \times t_{WDTCLK}$ 0xB: $2^{20} \times t_{WDTCLK}$ 0xC: $2^{19} \times t_{WDTCLK}$ 0xD: $2^{18} \times t_{WDTCLK}$ 0xE: $2^{17} \times t_{WDTCLK}$ 0xF: $2^{16} \times t_{WDTCLK}$ <i>Note: The watchdog timer must be disabled (WDT_n_CTRL.en = 0) before changing this field.</i>	
15:13	-	RO	0	Reserved	
12	int_early	R/W	0	Interrupt Early Flag A feed sequence is performed earlier than the time determined by the WDT _n _CTRL.int_early field. This flag is set even if WDT _n _CTRL.win_en = 0. 0: No interrupt event. 1: Interrupt event occurred. <i>Note: A WDT interrupt is generated if the WDT interrupt is enabled (WDT_n_CTRL.wdt_int_en = 1).</i>	
11	wdt_RST_en	R/W	0	WDT Reset Enable This field is only writable if the WDT is disabled (WDT _n _CTRL.en = 0). 0: Disabled. 1: Enabled.	
10	wdt_int_en	R/W	0	WDT Interrupt Enable This field is only writable if the WDT is disabled (WDT _n _CTRL.en = 0). 0: Disabled. 1: Enabled.	
9	int_late	R/W	0	Interrupt Late Flag A watchdog feed sequence did not occur before the time determined by the WDT _n _CTRL.int_late_val field. 0: No interrupt event. 1: Interrupt event occurred. <i>Note: A WDT interrupt is generated if the WDT interrupt is enabled (WDT_n_CTRL.wdt_int_en = 1).</i>	
8	en	R/W	0	WDT Enable This field enables/disables the WDT clock into the peripheral. WDT _n _CNT.count holds its value while the WDT is disabled. The WDT disable sequence must be performed immediately before setting this field to 0. The WDT enable sequence must be performed immediately before setting this field to 1. 0: Disabled. 1: Enabled.	

WDT Control			WDTn_CTRL		[0x0000]
Bits	Name	Access	Reset	Description	
7:4	rst_late_val	R/W	0	Reset Late Event Threshold 0x0: $2^{31} \times t_{WDTCLK}$ 0x1: $2^{30} \times t_{WDTCLK}$ 0x2: $2^{29} \times t_{WDTCLK}$ 0x3: $2^{28} \times t_{WDTCLK}$ 0x4: $2^{27} \times t_{WDTCLK}$ 0x5: $2^{26} \times t_{WDTCLK}$ 0x6: $2^{25} \times t_{WDTCLK}$ 0x7: $2^{24} \times t_{WDTCLK}$ 0x8: $2^{23} \times t_{WDTCLK}$ 0x9: $2^{22} \times t_{WDTCLK}$ 0xA: $2^{21} \times t_{WDTCLK}$ 0xB: $2^{20} \times t_{WDTCLK}$ 0xC: $2^{19} \times t_{WDTCLK}$ 0xD: $2^{18} \times t_{WDTCLK}$ 0xE: $2^{17} \times t_{WDTCLK}$ 0xF: $2^{16} \times t_{WDTCLK}$ <i>Note: The watchdog timer must be disabled (WDTn_CTRL.en = 0) before changing this field.</i>	
3:0	int_late_val	R/W	0	Interrupt Late Event Threshold 0x0: $2^{31} \times t_{WDTCLK}$ 0x1: $2^{30} \times t_{WDTCLK}$ 0x2: $2^{29} \times t_{WDTCLK}$ 0x3: $2^{28} \times t_{WDTCLK}$ 0x4: $2^{27} \times t_{WDTCLK}$ 0x5: $2^{26} \times t_{WDTCLK}$ 0x6: $2^{25} \times t_{WDTCLK}$ 0x7: $2^{24} \times t_{WDTCLK}$ 0x8: $2^{23} \times t_{WDTCLK}$ 0x9: $2^{22} \times t_{WDTCLK}$ 0xA: $2^{21} \times t_{WDTCLK}$ 0xB: $2^{20} \times t_{WDTCLK}$ 0xC: $2^{19} \times t_{WDTCLK}$ 0xD: $2^{18} \times t_{WDTCLK}$ 0xE: $2^{17} \times t_{WDTCLK}$ 0xF: $2^{16} \times t_{WDTCLK}$ <i>Note: The watchdog timer must be disabled (WDTn_CTRL.en = 0) before changing this field.</i>	

Table 18-5: WDT Reset Register

WDT Reset			WDTn_RST		[0x0004]
Bits	Name	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7:0	reset	R/W	0 [†]	Reset Watchdog Timer Count See the WDT Protection Sequence section for details on using this field for resetting the counter, enabling, and disabling the WDT. [†] <i>Note: This field is set to 0 on a POR and is not affected by other resets.</i>	

Table 18-6: WDT Clock Source Select Register

WDT Clock Source Select			WDT _n _CLKSEL		[0x0008]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2:0	source	R/W	0 [†]	Clock Source Select See Table 18-1 for the available clock options. 0: CLK0. 1: CLK1. 2: CLK2. 3: CLK3. 4: CLK4. 5: CLK5. 6: CLK6. 7: CLK7. <i>[†]Note: This field is only reset on a POR and unaffected by other resets.</i> <i>Note: The watchdog timer must be disabled (WDT_n_CTRL.en = 0) before changing this field.</i>	

Table 18-7: WDT Count Register

WDT Count			WDT _n _CNT		[0x000C]
Bits	Name	Access	Reset	Description	
31:0	count	R	0	WDT Counter This register is reset by system reset, as well as the watchdog feeding sequence. <i>Note: The watchdog timer must be disabled (WDT_n_CTRL.en = 0) before reading this field.</i>	

19. Cyclic Redundancy Check (CRC)

The CRC engine performs CRC calculations on data written to the CRC data input register.

The features include:

- User-definable polynomials up to x^{32} (33 terms).
- DMA support.
- Supports automatic byte swap of data input and calculated output.
- Supports big-endian or little-endian data input and calculated output.
- Supports input reflection.

An n -bit CRC can detect the following types of errors:

- Single-bit errors.
- Two-bit errors for block lengths less than 2^k where k is the order of the longest irreducible factor of the polynomial.
- Odd numbers of errors for polynomials with the parity polynomial $(x+1)$ as one of its factors (polynomials with an even number of terms).
- Burst errors less than n -bits.

In general, all but 1 out of 2^n errors are detected:

- 99.998% for a 16-bit CRC.
- 99.9999998% for a 32-bit CRC.

19.1 Instances

Instances of the peripheral are listed in [Table 19-1](#).

Table 19-1: MAX32675C CRC Instances

Instance	Maximum Terms	DMA Support	Big- and Little-Endian
CRC	33 (2^{32})	Yes	Yes

19.2 Usage

A CRC value is often appended to the end of a data exchange between a transmitter and receiver. The transmitter appends the calculated CRC to the end of the transmission. The receiver independently calculates a CRC on the data it received. The result should be a known constant if the data and CRC were received error-free.

The software must configure the CRC polynomial, the starting CRC value, and the endianness of the data. Once configured, the software or the standard DMA engine transfers the data in either 8-bit, 16-bit, or 32-bit words to the CRC engine by writing to the corresponding data input register. Use the [CRC_DATAIN8](#) register for 8-bit data, the [CRC_DATAIN16](#) register for 16-bit data, and the [CRC_DATAIN32](#) register for 32-bit data. The hardware automatically sets the [CRC_CTRL.busy](#) field to 1 while the CRC engine is calculating a CRC over the input data. When the [CRC_CTRL.busy](#) field reads 0, the CRC result is available in the [CRC_VAL](#) register. The software or the standard DMA engine must track the data transferred to the CRC engine to determine when the CRC is finalized.

Because the receiving end calculates a new CRC on both the data and received CRC, send the received CRC in the correct order, so the highest-order term of the CRC is shifted through the generator first. Because data is typically shifted through the generator LSB first, the CRC is reversed bitwise, with the highest-order term of the remainder in the LSB position. Software CRC algorithms typically manage this by calculating everything backward. The software reverses the polynomial and does right shifts on the data. The resulting CRC is bit swapped and in the correct format.

By default, the CRC is calculated using the LSB first ([CRC_CTRL.msb](#) = 0.) When calculating the CRC using MSB first data (reflected), the software must set [CRC_CTRL.msb](#) to 1.

When calculating the CRC on data LSB first, the polynomial should be reversed so that the coefficient of the highest power term is in the LSB position. The largest term, x^n , is implied (always one) and should be omitted when writing to the [CRC_POLY](#) register. This is necessary because the polynomial is always one bit larger than the resulting CRC, so a 32-bit CRC has a polynomial with 33 terms ($x^0 \dots x^{32}$).

Table 19-2: Organization of Calculated Result in the [CRC_VAL.value](#) Field

CRC_CTRL.msb	CRC_CTRL.byte_swap_out	Order
0	0	The CRC value returned is the raw value
1	0	The CRC value returned is reflected but not byte swapped
0	1	The CRC value returned is byte swapped but not reflected
1	1	The CRC value returned is reflected and then byte swapped

The CRC can be calculated on the MSB of the data first by setting the [CRC_CTRL.msb](#) field to 1, this is referred to as reflection. The CRC polynomial register, [CRC_POLY](#), must be left-justified. The hardware implies the MSB of the polynomial just as it does when calculating the CRC LSB first. The LSB position of the polynomial must be set; this defines the length of the CRC. The initial value of the CRC, [CRC_VAL.value](#), must also be left justified. When the CRC calculation is complete using MSB first, the software must right shift the calculated CRC value, [CRC_VAL.value](#), by right shifting the output value if the CRC polynomial is less than 32 bits.

19.3 Polynomial Generation

The CRC can be configured for any polynomial up to x^{32} (33 terms) by writing to the [CRC_POLY.poly](#) field. *Table 19-3* shows common CRC polynomials.

The reset value of the [CRC_POLY.poly](#) field is the *CRC-32 Ethernet* polynomial. This polynomial is used by Ethernet and file compression utilities such as zip or gzip.

Note: Only write to the CRC polynomial register, [CRC_POLY.poly](#), when the [CRC_CTRL.busy](#) field is 0.

Table 19-3: Common CRC Polynomials

Algorithm	Polynomial Expression	Order	Polynomial
CRC-32 Ethernet	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x^1+x^0$	LSB	0xEDB8 8320
CRC-CCITT	$x^{16}+x^{12}+x^5+x^0$	LSB	0x0000 8408
CRC-16	$x^{16}+x^{15}+x^2+x^0$	LSB	0x0000 A001
USB Data	$x^{16}+x^{15}+x^2+x^0$	MSB	0x8005 0000
Parity	x^1+x^0	LSB	0x0000 0001

19.4 Software CRC Calculations

The software can perform CRC calculations by writing directly to the CRC data input register. Each write to the CRC data input register triggers the hardware to compute the CRC value. The software is responsible for loading all data for the CRC into the CRC data input register. When complete, the result is read from the [CRC_VAL](#) register.

Use the following procedure to calculate a CRC:

1. Disable the CRC peripheral by setting the field [CRC_CTRL.en](#) to 0.
2. Configure input and output data format fields:
 - a. [CRC_CTRL.msb](#)
 - b. [CRC_CTRL.byte_swap_in](#)
 - c. [CRC_CTRL.byte_swap_out](#)
3. Set the polynomial by writing to the [CRC_POLY.poly](#) field.
4. Set the initial value by writing to the [CRC_VAL.value](#) field.
 - a. For a 32-bit CRC, write the initial value to the [CRC_VAL](#) register.
 - b. For a 16-bit or 8-bit CRC, the unused bits in the [CRC_VAL](#) register must be set to 0.
5. Set the [CRC_CTRL.en](#) field to 1 to enable the peripheral.
6. Write a value to be processed to data input register.
 - a. Calculate an 8-bit CRC by writing an 8-bit value to the [CRC_DATAIN8](#) register.
 - b. Calculate a 16-bit CRC by writing a 16-bit value to the [CRC_DATAIN16](#) register.
 - c. Calculate a 32-bit CRC by writing a 32-bit value to the [CRC_DATAIN32](#) register.
7. Poll the [CRC_CTRL.busy](#) field until it reads 0.
8. Repeat steps 6 and 7 until all input data is complete.
9. Disable the CRC peripheral by clearing the [CRC_CTRL.en](#) field to 0.
10. Read the CRC value from the [CRC_VAL.value](#) field.

19.5 DMA CRC Calculations

The CRC engine requests new data from the DMA controller when the fields `CRC_CTRL.en` and `CRC_CTRL.dma_en` are both set to 1. Enable the corresponding DMA channel's interrupt to receive an interrupt event when the CRC is complete. It is also possible for software to poll the DMA channel's interrupt flag directly by reading the `DMA_INFL.ch<n>` flag until it reads 1.

Use the following procedure to calculate a CRC value using DMA:

1. Set `CRC_CTRL.en` = 0 to disable the peripheral.
2. Configure the DMA:
 - a. Set `CRC_CTRL.dma_en` = 1 to enable DMA mode.
 - b. See DMA [Usage](#) for details on configuring the DMA for a memory to peripheral transfer.
 - c. Set the `DMA_CHn_CTRL.dstwd` field to match the size of the CRC calculation (0 for 8-bits, 1 for half-word, or 2 for word)
3. Configure the input and output data formats:
 - a. `CRC_CTRL.msb`
 - b. `CRC_CTRL.byte_swap_in`
 - c. `CRC_CTRL.byte_swap_out`
4. Set the polynomial by writing to the `CRC_POLY.poly` field.
5. Set the initial value by writing to the `CRC_VAL` register.
 - a. For a 32-bit CRC, write the initial value to the `CRC_VAL` register.
 - b. For a 16-bit or an 8-bit CRC, the unused bits in the `CRC_VAL` register must be set to 0.
6. Set the `CRC_CTRL.en` field to 1 to enable the peripheral.
7. When the DMA operation completes, the hardware:
 - a. Clears the `CRC_CTRL.busy` field to 0.
 - b. Loads the new CRC value into the `CRC_VAL.value` field.
 - c. Sets the `DMA_INFL.ch<n>` field to 1 and generates a DMA interrupt if the `DMA_INEN.ch<n>` field was set to 1.
8. Disable the CRC peripheral by clearing the `CRC_CTRL.en` field to 0.
9. Read the CRC value from the `CRC_VAL.value` field.

19.6 CRC Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 19-4: CRC Registers

Offset	Register Name	Description
[0x0000]	<code>CRC_CTRL</code>	CRC Control Register
[0x0004]	<code>CRC_DATAIN8</code>	CRC 8-Bit Data Input Register
[0x0004]	<code>CRC_DATAIN16</code>	CRC 16-Bit Data Input Register
[0x0004]	<code>CRC_DATAIN32</code>	CRC 32-Bit Data Input Register
[0x0008]	<code>CRC_POLY</code>	CRC Polynomial Register
[0x000C]	<code>CRC_VAL</code>	CRC Value Register

19.6.1 Register Details

Table 19-5: CRC Control Register

CRC Control			CRC_CTRL		[0x0000]
Bits	Field	Access	Reset	Description	
31:17	-	RO	0	Reserved	
16	busy	R	0	CRC Busy 0: Not busy. 1: Busy.	
15:5	-	RO	0	Reserved	
4	byte_swap_out	R/W	0	Byte Swap CRC Value Output 0: CRC_VAL .value is not byte swapped. 1: CRC_VAL .value is byte swapped.	
3	byte_swap_in	R/W	0	Byte Swap CRC Data Input 0: The data input is processed least significant byte first. 1: The data input is processed most significant byte first.	
2	msb	R/W	0	Most Significant Bit Order 0: LSB data first. 1: MSB data first (reflected).	
1	dma_en	R/W	0	DMA Enable Set this field to 1 to enable a DMA request when the CRC calculation is complete (CRC_CTRL .busy = 0.) 0: Disabled. 1: Enabled.	
0	en	R/W	0	CRC Enable 0: Disabled. 1: Enabled.	

Table 19-6: CRC 8-Bit Data Input Register

CRC 8-Bit Data Input			CRC_DATAIN8		[0x0004]
Bits	Field	Access	Reset	Description	
7:0	data	W	0	CRC Data Input Write 8-bit values to this register to calculate 8-bit CRCs. See Table 19-2 for details on the byte and bit ordering of the data in this register.	
<i>Note: Do not write to this register if CRC_CTRL.busy = 1 or CRC_CTRL.en = 0.</i>					

Table 19-7: CRC 16-Bit Data Input Register

CRC Data 16-Bit Input			CRC_DATAIN16		[0x0004]
Bits	Field	Access	Reset	Description	
15:0	data	W	0	CRC Data Input Write 16-bit values to this register to calculate 16-bit CRCs. See Table 19-2 for details on the byte and bit ordering of the data in this register.	
<i>Note: Do not write to this register if CRC_CTRL.busy = 1 or CRC_CTRL.en = 0.</i>					

Table 19-8: CRC 32-Bit Data Input Register

CRC 32-Bit Data Input			CRC_DATAIN32		[0x0004]
Bits	Field	Access	Reset	Description	
31:0	data	W	0	CRC Data Input Write 32-bit values to this register to calculate 32-bit CRCs. See Table 19-2 for details on the byte and bit ordering of the data in this register. <i>Note: Do not write to this register if CRC_CTRL.busy = 1 or CRC_CTRL.en = 0.</i>	

Table 19-9: CRC Polynomial Register

CRC Polynomial			CRC_POLY		[0x0008]
Bits	Field	Access	Reset	Description	
31:0	poly	R/W	0xEDB8 8320	CRC Polynomial See Table 19-2 for details on the byte and bit ordering of the data in this register.	

Table 19-10: CRC Value Register

CRC Value			CRC_VAL		[0x000C]
Bits	Field	Access	Reset	Description	
31:0	value	R/W	0	Current CRC Value The software can write to this register to set the initial state of the accelerator. This register should only be read or written when CRC_CTRL.busy = 0. See Table 19-2 for details on the byte and bit ordering of the data in this register.	

20. AES

The provided hardware AES accelerator performs calculations on blocks up to 128 bits.

The features include:

- Supports multiple key sizes:
 - ◆ 128 bits.
 - ◆ 192 bits.
 - ◆ 256 bits.
- Support for DMA input and output.
- Supports multiple key sources:
 - ◆ Encryption using the external AES key.
 - ◆ Decryption using the external AES key.

20.1 Instances

The device supports a single AES instance. AES

20.2 AES Key Storage

The MAX32675C includes a dedicated memory location to store AES keys which are loaded on a POR to the [AES_KEY_AES_KEY7:AES_KEY_AES_KEY0](#) registers. The following steps describe the process of saving software generated keys to the internal non-volatile memory for loading after a POR to the AES_KEY registers.

1. Generate an AES key of the desired length.
2. Write the AES key starting at address 0x1080 2008.
 - a. For example, to write a 128-bit AES key, write the key to KEY[15] - KEY[0], as shown in [Figure 20-1](#).
3. Software must write the AES key magic values. Once written, the AES keys are automatically loaded to the [AES_KEY_AES_KEY7:AES_KEY_AES_KEY0](#) registers after each POR. Write the following values to FMV1[3]:FMV1[0] and FMV0[3]:FMV0[0].
 - a. FMV0[0] = 0x79
 - b. FMV0[1] = 0xD4
 - c. FMV0[2] = 0x86
 - d. FMV1[3] = 0x2B
 - e. FMV1[0] = 0x79
 - f. FMV1[1] = 0xD4
 - g. FMV1[2] = 0x86
 - h. FMV0[3] = 0x2B

Figure 20-1: AES KEY Storage

	Address	Bit Position																													
		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Address	0x1080 2000	FMV0[3]					FMV0[2]					FMV0[1]					FMV0[0]														
	0x1080 2004	FMV1[3]					FMV1[2]					FMV1[1]					FMV1[0]														
	0x1080 2008	KEY[3]					KEY[2]					KEY[1]					KEY[0]														
	0x1080 200C	KEY[7]					KEY[6]					KEY[5]					KEY[4]														
	0x1080 2010	KEY[11]					KEY[10]					KEY[9]					KEY[8]														
	0x1080 2014	KEY[15]					KEY[14]					KEY[13]					KEY[12]														
	0x1080 2018	KEY[19]					KEY[18]					KEY[17]					KEY[16]														
	0x1080 201C	KEY[23]					KEY[22]					KEY[21]					KEY[20]														
	0x1080 2020	KEY[27]					KEY[26]					KEY[25]					KEY[24]														
	0x1080 2024	KEY[31]					KEY[30]					KEY[29]					KEY[28]														

20.3 Encryption of 128-Bit Blocks of Data Using FIFO

AES operations are typically performed on 128 bits of data at a time. Therefore, the simplest use case is to have software encrypt 128-bit blocks of data. The [AES_CTRL.start](#) field is unused in this case.

1. Enable the AES peripheral clock by setting [GCR_PCLKDIS1.aes](#) to 0.
2. If using the POR key, ensure the key is correctly stored as described in the [AES Key Storage](#) section.
3. Write a software generated key to the key registers or use a key loaded on POR by following the steps in [AES Key Storage](#).
 - a. For a 128-bit key, write the key to the [AESKEYS_KEY3:AESKEYS_KEY0](#) registers.
 - b. For a 192-bit key, write the key to the [AESKEYS_KEY5:AESKEYS_KEY0](#) registers.
 - c. For a 256-bit key, write the key to the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers.
4. Read the [AES_STATUS.busy](#) field until it reads 0.
5. Set [AES_CTRL.input_flush](#) to 1 to flush the input FIFO.
6. Set [AES_CTRL.output_flush](#) to 1 to flush the output FIFO.
7. Set [AES_CTRL.key_size](#) to the size of the loaded key.
8. Set [AES_CTRL.type](#) to 0 (encryption using the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers).
9. If interrupts are desired, set [AES_INTEN.done](#) to 1 so that an interrupt triggers at the end of the AES calculation.
10. Set [AES_CTRL.en](#) to 1 to enable the peripheral.
11. Write four 32-bit words of data to [AES_FIFO.data](#).
 - a. The hardware starts the AES calculation.
12. If [AES_INTEN.done](#) equals 1, an interrupt triggers after the AES calculation is complete.
13. If [AES_INTEN.done](#) equals 0, the software should poll until [AES_INTFL.done](#) reads 1.
14. Clear the interrupt done flag by writing 1 to [AES_INTFL.done](#).
15. Read four 32-bit words from the [AES_FIFO.data](#) register (least significant word first).
16. Repeat steps 11-15 until all 128-bit blocks have been processed.

20.4 Encryption of 128-Bit Blocks Using DMA

For this example, it is assumed that the DMA both reads and writes data to and from the AES engine. This is not a requirement. The AES could use DMA on one side and software on the other. It is required that for each DMA transmit request the DMA writes four 32-bit words of data into the AES. Likewise, it is required that for each DMA receive request the DMA reads four 32-bit words of data out of the AES engine.

The [AES_CTRL.start](#) field is used in this case. The state of the [AES_STATUS.busy](#) and [AES_INTFL.done](#) flags are indeterminate during DMA operations. The software must clear [AES_INTEN.done](#) to 0 when using the DMA mode. Use the appropriate DMA interrupt instead to determine when the DMA operation is complete, and the results can be read from [AES_FIFO.data](#).

Assuming the DMA is continuously filling the data input FIFO, the calculations complete in the following number of SYS_CLK cycles:

- 128-bit key: 181
- 192-bit key: 213
- 256-bit key: 245

The procedure to use DMA encryption/decryption is:

1. Enable the AES peripheral clock by setting [GCR_PCLKDIS1.aes](#) to 0.
2. Set the [AES_CTRL.en](#) field to 1 to enable the peripheral.
3. If using the POR key, ensure the key is correctly stored as described in the [AES Key Storage](#) section.
4. Write a software generated key to the key registers or use a key loaded on POR by following the steps in [AES Key Storage](#).
 - a. For a 128-bit key, write the key to the [AESKEYS_KEY3:AESKEYS_KEY0](#) registers.
 - b. For a 192-bit key, write the key to the [AESKEYS_KEY5:AESKEYS_KEY0](#) registers.
 - c. For a 256-bit key, write the key to the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers.
5. Initialize the AES receive and transmit channels for the DMA controller.
6. Read the [AES_STATUS.busy](#) field until it reads 0.
7. Set [AES_CTRL.input_flush](#) to 1 to flush the input FIFO.
8. Set [AES_CTRL.output_flush](#) to 1 to flush the output FIFO.
9. Set [AES_CTRL.key_size](#) to the size of the loaded key.
10. Select encryption or decryption:
 - a. Set [AES_CTRL.type](#) to 0 (encryption using the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers).
 - b. Set [AES_CTRL.type](#) to 1 (decryption using the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers).
 - c. Set [AES_CTRL.type](#) to 2 (decryption using the locally generated decryption key from a previous encryption).
11. Set [AES_INTEN.done](#) to 0 for DMA operation.
12. Set [AES_CTRL.start](#) to 1 to start the AES DMA operation.
13. The DMA engine fills the FIFO, and hardware begins the AES calculation.
14. When an AES calculation is completed, the AES hardware signals to the DMA that the data output FIFO is full and that it should be emptied. If the DMA does not empty the FIFO before the next calculation is complete, the hardware sets [AES_STATUS.output_full](#) to 1.

Step 13 and step 14 are repeated if the DMA has new data to write to the data input FIFO.

Note: The DMA interface to the AES only works when the amount of data is a multiple of 128 bits. For non-multiples of 128 bits, the remainder after calculating all 128-bit blocks must be encrypted manually using the steps in [Encryption of Blocks Less Than 128 Bits](#).

20.5 Encryption of Blocks Less Than 128 Bits

The AES engine automatically starts a calculation when 128 bits (four writes of 32 bits) occurs. Operations of less than 128 bits use the start field to initiate the AES calculation.

1. Enable the AES peripheral clock by setting [GCR_PCLKDIS1.aes](#) to 0.
2. If using the POR key ensure the key is correctly stored as described in the [AES Key Storage](#) section.
3. Write a key to the key registers or use a key loaded on POR by following the steps in [AES Key Storage](#).
 - a. For a 128-bit key, write the key to the [AESKEYS_KEY3:AESKEYS_KEY0](#) registers.
 - b. For a 192-bit key, write the key to the [AESKEYS_KEY5:AESKEYS_KEY0](#) registers.
 - c. For a 256-bit key, write the key to the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers.
4. Read the [AES_STATUS.busy](#) field until it reads 0.
5. Clear [AES_CTRL.en](#) to 0 to disable the peripheral.
6. Set [AES_CTRL.input_flush](#) to 1 to flush the input FIFO.
7. Set [AES_CTRL.output_flush](#) to 1 to flush the output FIFO.
8. Set [AES_CTRL.key_size](#) to the size of the loaded key.
9. Set [AES_CTRL.type](#) to 0 (encryption using the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers).
10. If interrupts are desired, set [AES_INTEN.done](#) to 1 so that an interrupt triggers at the end of the AES calculation.
11. Set [AES_CTRL.en](#) to 1 to enable the peripheral.
12. Write from one to three 32-bit words of data to the [AES_FIFO.data](#) field, least significant word first.
13. Start the calculation manually by setting [AES_CTRL.start](#) to 1.
14. If [AES_INTEN.done](#) = 1, an interrupt triggers after the AES calculation is complete.
15. If [AES_INTEN.done](#) = 0, the software should poll until [AES_INTFL.done](#) reads 1.
16. Read four 32-bit words from [AES_FIFO.data](#) (least significant word first).

20.6 Decryption

The decryption of data is very similar to encryption. The only difference is in the setting of [AES_CTRL.type](#). There are two settings of this field for decryption:

- Decryption using the [AESKEYS_KEY7:AESKEYS_KEY0](#) registers.
- Decryption with an internal decryption key.
 - ◆ The internal decryption key is generated during the last encryption operation.

20.7 Interrupt Events

The peripheral generates interrupts for the events shown in [Table 20-2](#). Unless noted otherwise, each instance has its own independent set of interrupts and higher-level flag and enable fields.

Multiple events may set an interrupt flag and generate an interrupt if the corresponding interrupt enable is set. The software must clear the flags in the interrupt handler if AES interrupts are enabled.

Table 20-1: Interrupt Events

Event	Local Interrupt Flag	Local Interrupt Enable
Data Output FIFO Overrun	AES_INTFL.ov	AES_INTEN.ov
Key Zero	AES_INTFL.key_zero	AES_INTEN.key_zero
Key Change	AES_INTFL.key_change	AES_INTEN.key_change
Calculation Done	AES_INTFL.done	AES_INTEN.done

20.7.1 Data Output FIFO Overrun

When an AES calculation is completed, the AES engine signals to the DMA that the data output FIFO is full and that it should be emptied. If the DMA does not empty the FIFO before the next calculation is complete, a data output FIFO overrun event occurs, and the corresponding local interrupt flag is set.

20.7.2 Key Zero

Attempting a calculation with a key of all zeros generates a key zero event.

20.7.3 Key Change

Writing to any key register while [AES_STATUS.busy](#) is 1 generates a key change event.

20.7.4 Calculation Done

The transition of [AES_STATUS.busy](#) = 1 to [AES_STATUS.busy](#) = 0 generates a calculation done event. The calculation done event interrupt must be disabled when using DMA.

20.8 AES Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 20-2: AES Registers

Offset	Register Name	Description
[0x0000]	AES_CTRL	AES Control Register
[0x0004]	AES_STATUS	AES Status Register
[0x0008]	AES_INTFL	AES Interrupt Flag Register
[0x000C]	AES_INTEN	AES Interrupt Enable Register
[0x0010]	AES_FIFO	AES Data FIFO

20.8.1 Register Details

Table 20-3: AES Control Register

AES Control		AES_CTRL		[0x0000]
Bits	Field	Access	Reset	Description
31:10	-	RO	0	Reserved
9:8	type	R/W	0	Encryption Type 0: Encryption using the AESKEYS_KEY7:AESKEYS_KEY0 registers. 1: Decryption using the AESKEYS_KEY7:AESKEYS_KEY0 registers. 2: Decryption using the locally generated decryption key. 3: Reserved.
7:6	key_size	R/W	0	Encryption Key Size 0: 128 bits. 1: 192 bits. 2: 256 bits. 3: Reserved.
5	output_flush	R/W1O	0	Flush Data Output FIFO This field always reads 0. 0: Normal operation. 1: Flush.

AES Control			AES_CTRL		[0x0000]
Bits	Field	Access	Reset	Description	
4	input_flush	R/W1O	0	Flush Data Input FIFO This field always reads 0. 0: Normal operation. 1: Flush.	
3	start	R/W1O	0	Start AES Calculation This field is used for DMA operations to start an AES calculation regardless of the state of the data input FIFO, allowing an AES calculation on less than 128-bits of data. By default, an AES calculation starts when the data input FIFO is full. This field always reads 0. 0: Normal operation. 1: Start calculation.	
2	dma_tx_en	R/W	0	DMA Request To Write Data Input FIFO 0: Disabled. 1: Enabled. DMA request is generated if the data input FIFO is empty.	
1	dma_rx_en	R/W	0	DMA Request To Read Data Output FIFO 0: Disabled. 1: Enabled. DMA request is generated if the data output FIFO is full.	
0	en	R/W	0	AES Enable 0: Disabled. 1: Enabled.	

Table 20-4: AES Status Register

AES Status				AES_STATUS	[0x0004]
Bits	Field	Access	Reset	Description	
31:5	-	RO	0	Reserved	
4	output_full	R	0	Output FIFO Full 0: Not full. 1: Full.	
3	output_em	R	0	Output FIFO Empty 0: Not empty. 1: Empty.	
2	input_full	R	0	Input FIFO Full 0: Not full. 1: Full.	
1	input_em	R	0	Input FIFO Empty 0: Not empty 1: Empty	
0	busy	R	0	AES Busy 0: Not busy. 1: Busy.	

Table 20-5: AES Interrupt Flag Register

AES Interrupt Flag			AES_INTFL		[0x0008]
Bits	Field	Access	Reset	Description	
31:5	-	RO	0	Reserved	

AES Interrupt Flag			AES_INTFL		[0x0008]
Bits	Field	Access	Reset	Description	
4	key_one	W1C	0	Key One Event Interrupt 0: No event. 1: Event occurred.	
3	ov	W1C	0	Data Output FIFO Overrun Event Interrupt 0: No event. 1: Event occurred.	
2	key_zero	W1C	0	Key Zero Event Interrupt 0: No event. 1: Event occurred.	
1	key_change	W1C	0	Key Change Event Interrupt 0: No event. 1: Event occurred.	
0	done	W1C	0	Calculation Done Event Interrupt 0: No event. 1: Event occurred.	

Table 20-6: AES Interrupt Enable Register

AES Interrupt Enable			AES_INTEN		[0x000C]
Bits	Field	Access	Reset	Description	
31:5	-	RO	0	Reserved	
4	key_one	W1C	0	Key One Event Interrupt Enable 0: Disabled. 1: Enabled.	
3	ov	W1C	0	Data Output FIFO Overrun Event Interrupt Enable 0: Disabled. 1: Enabled.	
2	key_zero	W1C	0	Key Zero Event Interrupt Enable 0: Disabled. 1: Enabled.	
1	key_change	W1C	0	Key Change Event Interrupt Enable 0: Disabled. 1: Enabled.	
0	done	W1C	0	Calculation Done Event Interrupt Enable This event interrupt must be disabled when using the DMA. 0: Disabled. 1: Enabled.	

Table 20-7: AES FIFO Register

AES Data			AES_FIFO		[0x0010]
Bits	Field	Access	Reset	Description	
31:0	data	R/W	0	AES FIFO Writing this register puts data to the data input FIFO. The hardware automatically starts a calculation after four words are written to this FIFO. The data should be written least significant word first. Reading this register pulls data from the data output FIFO. The least significant word is read first.	

20.9 AES_KEY Registers

See [Table 3-2](#) for the base address of this peripheral/module. See [Table 1-1](#) for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a POR, and the peripheral-specific resets.

Table 20-8: AES_KEY Registers

Offset	Register Name	Description
[0x0000]	AESKEYS_KEY0	AES Key 0 Register
[0x0004]	AESKEYS_KEY1	AES Key 0 Register
[0x0008]	AESKEYS_KEY2	AES Key 0 Register
[0x000C]	AESKEYS_KEY3	AES Key 0 Register
[0x0010]	AESKEYS_KEY4	AES Key 0 Register
[0x0014]	AESKEYS_KEY5	AES Key 0 Register
[0x0018]	AESKEYS_KEY6	AES Key 0 Register
[0x001C]	AESKEYS_KEY7	AES Key 0 Register

20.9.1 AES_KEY Register Details

Table 20-9: AES Key 0 Register

AES Key 0			AESKEYS_KEY0		[0x0000]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 0 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. *This register always reads 0.	

Table 20-10: AES Key 1 Register

AES Key 1			AESKEYS_KEY1		[0x0004]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 1 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. *This register always reads 0.	

Table 20-11: AES Key 2 Register

AES Key 2			AESKEYS_KEY2		[0x0008]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 2 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. *This register always reads 0.	

Table 20-12: AES Key 3 Register

AES Key 3			AESKEYS_KEY3		[0x000C]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 3 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. This register always reads 0.	

Table 20-13: AES Key 4 Register

AES Key 4			AESKEYS_KEY4		[0x0010]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 4 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. This register always reads 0.	

Table 20-14: AES Key 5 Register

AES Key 5			AESKEYS_KEY5		[0x0014]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 5 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. This register always reads 0.	

Table 20-15: AES Key 6 Register

AES Key 6			AESKEYS_KEY6		[0x0018]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 6 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. This register always reads 0.	

Table 20-16: AES Key 7 Register

AES Key 7			AESKEYS_KEY7		[0x001C]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 1 This register is optionally loaded with a portion of an AES key at POR if the user FMV is programmed at 0x1080 2000. See AES Key Storage for additional details. This register always reads 0.	

21. ROM Bootloader

The ROM-based bootloader provides for program loading and verification. The physical interface between the external host and the bootloader is UART0.

All versions of the bootloader provide the ability to block access to program memory by disabling SWD.

Devices which provide the secure boot feature automatically verify the integrity of program memory after every reset.

Bootloader features:

- Command line interface.
- Programmable through UART at 115,200bps.
- LOCKED mode disables SWD and disallows any change to flash through bootloader.
- Transition from LOCK to UNLOCKED state erases all flash and the secret key before unlocking SWD.
- User-enabled PERMLOCKED state disables SWD and disables all commands except for program validation.

Devices which feature the trusted secure boot feature provide additional features:

- Automatic program memory integrity check using HMAC SHA-256 secret key after every bootloader activation event shown in [Table 21-1](#). The device will halt and not execute the application software if the integrity check fails.
- Optional challenge/response protection of bootloader interface.

21.1 Instances

The dedicated pins and features of the bootloader are shown [Table 21-1](#).

Table 21-1: MAX32675C Bootloader Instances

Part Number	Bootloader	Secure Boot	Flash Memory Page Size	Interface Pins	Activation Pins	Bootloader Activation Events
MAX32675CALZ+ MAX32675CALZ+T	Yes	No	8KB	UART0A_RX (P0.8) UART0A_TX (P0.9) P0.21 RSTN	P0.21 (high)	POR System Reset (including RSTN and WDT resets) Exit from BACKUP Exit from STORAGE

Versions incorporating secure boot functionality will not execute code unless there is a key loaded and the code has been properly signed with that key.

21.2 Bootloader Operating States

Each bootloader supports the modes shown in [Table 21-2](#). Each bootloader state has a unique prompt.

Table 21-2: Bootloader Operating States and Prompts

State	Device Versions	Prompt
UNLOCKED	All device versions	“ULDR> “ <0x55> <0x4C> <0x44> <0x52> <0x3E> <0x20>
LOCKED	All device versions	“LLDR> “ <0x4C> <0x4C> <0x44> <0x52> <0x3E> <0x20>
PERMLOCK	All device versions	“PLLDLDR> “ <0x50> <0x4C> <0x4C> <0x44> <0x52> <0x3E> <0x20>

State	Device Versions	Prompt
CHALLENGE	Only devices with secure boot feature	"<CR> " <0x43> <0x52> <0x3E> <0x20>

The [LOCK – Lock Device](#) and [PLOCK – Permanent Lock](#) commands do not change the bootloader prompt or take effect until the bootloader is reset.

21.2.1 UNLOCKED

The UNLOCKED state provides access to load secure keys and configuration information. Program loading, verification, and status is available in the UNLOCKED state. The SWD interface is available for use.

Transitioning from the LOCKED to UNLOCKED states erases all program memory. It also clears the challenge/response and application keys on devices with the secure boot feature.

The challenge and application keys can also be erased by executing the Unlock command while in the UNLOCKED state and then resetting the device.

21.2.2 LOCKED

The LOCKED state disables access to program memory other than to verify it with the [H – Check Device](#) command. It also disables the SWD interface. The application and challenge response keys cannot be changed without first changing to the UNLOCKED state.

If the optional challenge key is activated, the bootloader will start in the CHALLENGE state. Successfully completing the challenge/response will allow access to the PERMLOCKED or LOCKED prompt.

If the device provides the secure boot feature, the application and challenge key must be configured before executing the [LOCK – Lock Device](#) command.

21.2.3 PERMLOCKED

The PERMLOCKED state disables read/write access to program memory and keys. It also disables the SWD interface. The only functions available through the bootloader in this state are the [H – Check Device](#) command and reading the USN.

If the optional challenge feature is activated, the bootloader will start in the CHALLENGE state. Successfully completing the challenge/response will access to the previous PERMLOCKED prompt.

If the device provides the secure boot feature, the application and challenge key must be configured before executing the [PLOCK – Permanent Lock](#) command.

21.2.4 CHALLENGE (Secure Boot Versions Only)

The CHALLENGE state provides an extra layer of security by requiring the host to authenticate itself using the HMAC SHA-256 key before executing any bootloader commands. If enabled, the device enters CHALLENGE mode following any of the bootloader activation events shown in [Table 21-1](#) if the external bootloader pins are active. CHALLENGE mode can be identified by the "CR>" prompt.

In CHALLENGE mode, the host first requests a 128-bit random number (the challenge) from the bootloader using [GC – Get Challenge](#). The host calculates the hash of the challenge using the mutually known HMAC SHA-256 key and sends it (the response) back to bootloader. The correct response transitions from CHALLENGE to the previous state of the bootloader. An incorrect response keeps the bootloader in the CHALLENGE state. The host must request a new challenge and send a response based on the new challenge. There is no limit to the number of challenge attempts.

21.3 Creating and Loading the Motorola SREC File

The Analog Devices microSDK can directly generate SREC files that support devices with and without the secure boot feature. The information here is presented for completeness and is not necessary when using the microSDK.

21.3.1 Procedure for Devices Without the Secure Boot Feature

Devices without the secure boot feature use a standard SREC format generated directly from the binary.

1. Compile the source code and create the Motorola SREC file.
2. Activate the bootloader as described in the [Bootloader Activation](#) section.
3. Ensure the device is in the UNLOCKED state.
4. Execute the [L - Load](#) command and load the Motorola SREC file.
5. Execute the [V - Verify](#) command to verify the file was correctly loaded.

21.3.2 Procedure for Devices with the Secure Boot Feature

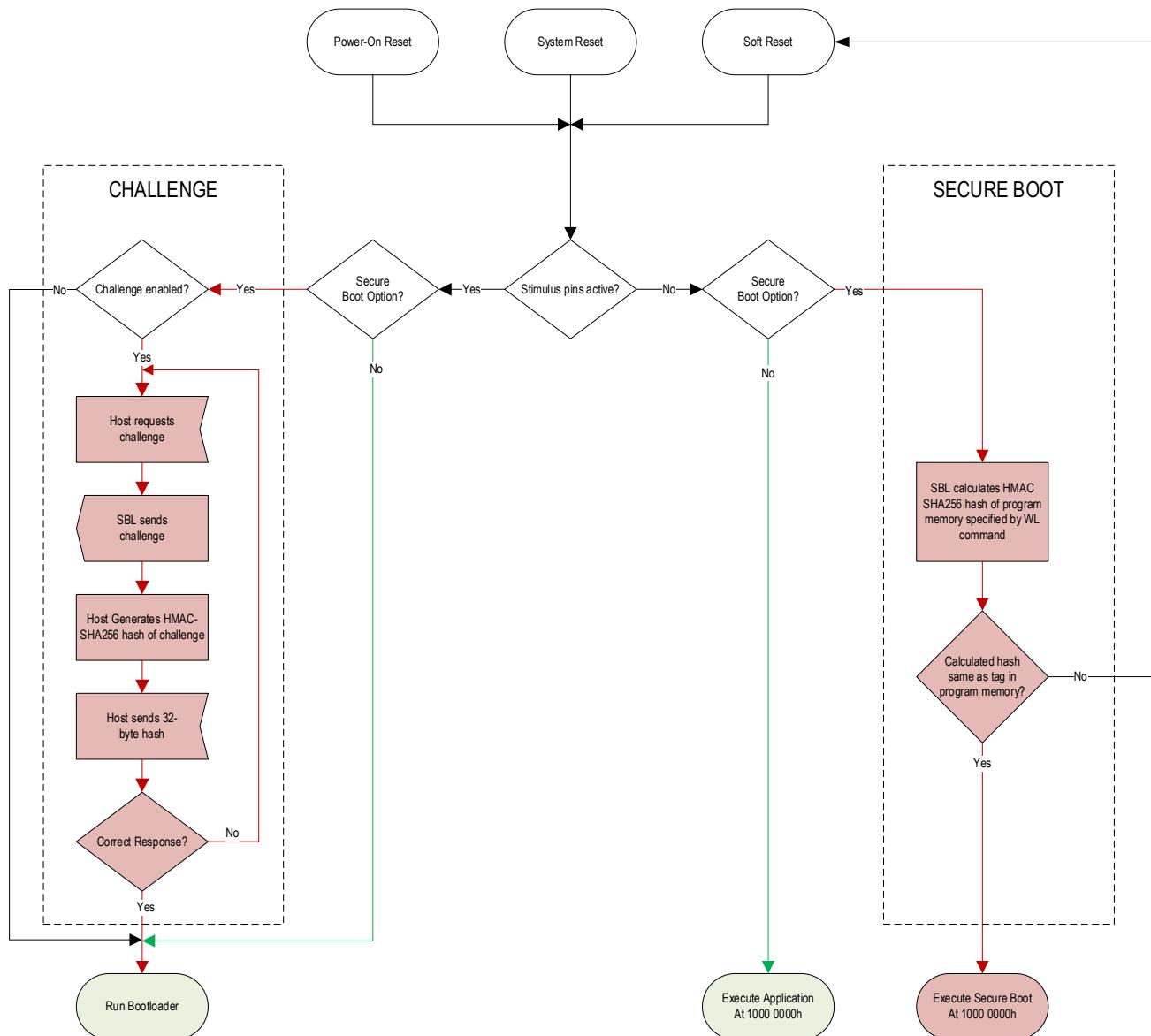
SREC files for devices with the secure boot feature must be modified to append the HMAC-256 hash to the binary before generating the SREC file as described below. Address records must be 32-bit aligned and the length of each line must be a multiple of 4 bytes. Unused memory locations within the program must be defined with 0xFF.

To generate the SREC file for devices with the secure boot feature:

1. Define the 128-bit HMAC secret key.
2. Generate the binary image.
3. Pad the binary image with 0xFF to the next 32-byte boundary.
4. Calculate the 32-byte HMAC SHA-256 hash using the secret key over the length of the padded binary image.
5. Append 32-byte hash to the binary image, after the last pad byte.
6. Generate SREC file of the modified binary image.

Follow this procedure to initialize and load a device with the secure boot feature:

1. Activate the bootloader as described in the [Bootloader Activation](#) section.
2. Ensure the device is in the UNLOCKED state.
3. Execute the [WL - Write Code Length](#) command.
4. Execute the [L - Load](#) command and load the SREC file.
5. Execute the [V - Verify](#) command to verify the file was correctly loaded.
6. Execute the [LK - Load Application Key](#) command to load the HMAC SHA-256 secret key.
7. Execute the [VK - Verify Application Key](#) command to verify the HMAC SHA-256 secret key was correctly loaded.
8. Execute the [AK - Activate Application Key](#) command. The device automatically verifies the program memory on all subsequent resets and attempts to execute the Lock and Plock commands.


21.4 Bootloader Activation

The bootloader is invoked following a bootloader activation event and the bootloader activation pin is asserted. The flow chart of the operation following a reset of the device is shown in [Figure 21-1](#). Features exclusive to devices with the secure boot feature are highlighted in red.

Perform the following sequence to activate the bootloader:

1. The host asserts the bootloader stimulus pins as shown in [Table 21-1](#).
2. The host drives RSTN pin low.
3. The host drives RSTN pin high.
4. Bootloader samples the bootloader stimulus pins immediately after reset. If active, the hardware will activate the bootloader.
5. Bootloader performs its system initialization and configures the bootloader for 115,200bps.
6. The bootloader outputs the status prompt on the UART0 Tx pin. The prompt is unique for each bootloader state as shown in [Table 21-2](#).
7. The host releases the stimulus pins once the host confirms the correct bootloader prompt.
8. The host begins bootloader session by sending commands on the UART0 Rx pin.

Figure 21-1: Combined Bootloader Flow

21.5 Secure Boot Feature

The optional secure boot version of the bootloader provides additional features for secure and authenticated loading. These features are highlighted in [Figure 21-1](#).

21.5.1 Secure Boot

Devices with the secure boot feature will perform a secure boot:

- Following a bootloader activation event and the stimulus pins are NOT active,
- Immediately before executing the *LOCK – Lock Device* command, or
- Immediately before executing the *PLOCK – Permanent Lock* command

The device will not perform a secure boot until the HMAC SHA-256 secret-key is loaded.

Failure of the verification during a secure boot indicates corrupted or tampered program memory and places the device in a continual reset loop to disable code execution. If the bootloader is in the LOCKED state it can transition to the UNLOCKED state, erasing the program memory and keys so the device can be reprogrammed. There is no recovery from a secure boot failure in the PERMLOCKED state and the device must be discarded.

21.5.2 Secure Challenge/Response Authentication

The secure challenge/response authentication feature in secure boot devices provides an extra layer of security by requiring the host to authenticate itself using the mutual HMAC SHA-256 key before executing any bootloader commands. If the challenge key is activated, the device enters CHALLENGE mode following a reset if the external bootloader pins are active. The bootloader will display the CHALLENGE mode prompt shown in [Table 21-2](#).

Only two commands are available in the CHALLENGE state.

Table 21-3: CHALLENGE Command Summary

Command
<i>GC – Get Challenge</i>
<i>SR – Send Response</i>

The host first requests a 128-bit random number (the challenge) from the bootloader. The host calculates the hash of the challenge using the HMAC SHA-256 key (the response) and sends it back to bootloader. The correct response transitions the bootloader from CHALLENGE mode to the LOCKED or PERMLOCKED states, depending on the last state of the bootloader.

Follow this procedure to enable the Challenge/Response feature in the UNLOCKED state:

1. The host generates the challenge/response HMAC SHA-256 secret key.
2. The host executes the LK command to load the challenge/response secret key. The key is sent in plaintext and should be done in a secure environment.
3. The host executes the VK command to verify the challenge/response secret key was correctly loaded.
4. The host executes the AK command to enable the challenge/response feature.

The challenge/response will be required after the next device reset. It does not affect current operation until the next reset.

Follow this procedure to successfully perform the challenge/response:

1. The host executes the GC command.
2. The bootloader generates a 32-byte hexadecimal ASCII challenge and sends it to the host.
3. The host calculates the HMAC SHA-256 of the challenge to create the response.
4. The host executes the SR command with the calculated 64-byte hexadecimal ASCII response. The SR command must be the first command sent to the bootloader after a GC command.

A correct response will return the prompt of the last bootloader state, either LOCKED or PERMLOCKED. An incorrect response will return an error message and the challenge/response prompt again. The host can perform steps 1-3 again to request another challenge from the bootloader. There is no limit on the number of challenge/response attempts.

Following a successful response, the bootloader will return the prompt corresponding to the last state of the bootloader.

21.6 Command Protocol

The bootloader presents a mode-specific prompt based on the current state of the loader as shown as in *Table 21-2*. The general format of commands is the ASCII character(s) of the command, followed by a <CR><LF> which is hexadecimal <0x0D><0x0A>. Commands with arguments always have a space (0x20) between the command mnemonic and the argument.

Commands arguments that are files always have the length specified in the file, so it is not necessary to follow the file with a <0x0D><0x0A>.

In general, arguments not related to security commands are prefixed with “0x” to denote hexadecimal input. Arguments for security commands in general are not prefixed with “0x”.

Always refer to the command description for the required format of the command.

21.7 General Commands

Table 21-4: General Command Summary

Command
<i>L – Load</i>
<i>P – Page Erase</i>
<i>V – Verify</i>
<i>LOCK – Lock Device</i>
<i>PLOCK – Permanent Lock</i>
<i>UNLOCK – Unlock Device</i>
<i>H – Check Device</i>
<i>I – Get ID</i>
<i>S – Status</i>
<i>Q – Quit</i>

21.7.1 General Command Details

L - Load		Load SREC File into Program Memory
Description	Load a Motorola SREC formatted file into flash program memory. After typing the L command, the bootloader will respond with "Ready to load SREC", then transmit the file. The end of the file is detected automatically, so there is no need to send <0x0D><0x0A> at the end. If the secure boot feature is used, the files must be modified as described in Procedure for Devices with the Secure Boot Feature . The length reported by the success response for the modified files is the padded image plus the 32-bytes of the HMAC; this is different than the length used for the WL command. <i>Note: The target page of flash must be erased before loading using the Load command.</i>	
Modes	UNLOCKED	
Command	L<0x0D><0x0A> Ready to load SREC<0x0D><0x0A> [SREC File]	
Response: Success	Load success, image loaded with the following parameters:<0x0D><0x0A> Base address: 0xnnnnnnnn<0x0D><0x0A> Length: 0xnnnnnnnn<0x0D><0x0A>	
Response: Failure	Load failed.<0x0D><0x0A>	

Table 21-5: P – Page Erase

P – Page Erase		Erase Page of Flash Program Memory
Description		Erases the page of memory associated with the 32-bit input address. Addresses must be aligned on the device-specific page boundaries.
Modes		UNLOCKED
Command		P 0xnnnnnnnn<0x0D><0x0A>
Response: Success		Erase Page Address: 0xnnnnnnnn<0x0D><0x0A>OK<0x0D><0x0A>
Response: Failure		Bad page address input<0x0D><0x0A> or Erase failed<0x0D><0x0A> or Invalid Page Address: 0xnnnnnnnn<0x0D><0x0A>

Table 21-6: V – Verify

V – Verify		Verify Flash Program Memory Against SREC File
Description	Verifies contents of flash program memory against a SREC file.	
Modes	UNLOCKED	
Command	V<0x0D><0x0A> Ready to verify SREC<0x0D><0x0A> [SREC File]	
Response: Success	Verify success, image verified with the following parameters: <0x0D><0x0A> Base address: 0xnnnnnnnn<0x0D><0x0A> Length: 0xnnnnnnnn<0x0D><0x0A>	
Response: Failure	Verify failed.<0x0D><0x0A>	

Table 21-7: LOCK – Lock Device

LOCK – Lock Device	Lock Device
Description	<p>Locks the device and disables SWD on the next device reset. See LOCKED section for a detailed description of this command.</p> <p>The effects of the Lock command do not take effect until the next time the device is reset. The bootloader will continue to display the locked prompt, but the S – Status command will show the Locked mode is active. The Lock command should be followed by the Q command (which generates a device reset) for the Lock command to take effect.</p> <p>Devices with the secure boot feature perform code verification before executing this command. Failure of this command means that the check failed.</p>
Modes	UNLOCKED
Command	LOCK<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Failed<0x0D><0x0A>

Table 21-8: PLOCK – Permanent Lock

PLOCK – Permanent Lock	Permanently Lock Device
Description	<p>Permanently locks the device if the argument matches the device's 13-byte USN.</p> <p>The effects of the Plock command do not take effect until the next time the device is reset. The bootloader will continue to display the LOCKED or UNLOCKED state prompt but the <i>S – Status</i> command will show the LOCKED or UNLOCKED state is active. The Lock command should be followed by the Q command (which generates a device reset) for the Lock command to take effect.</p> <p>Devices with the secure boot feature perform code verification before executing this command. Failure of this command means that the check failed.</p>
Modes	UNLOCKED LOCKED
Command	PLOCK <USN><0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Failed<0x0D><0x0A>

Table 21-9: UNLOCK – Unlock Device

UNLOCK – Unlock Device	Unlock Device
Description	Changes bootloader state to UNLOCKED if in LOCKED state. Erases all program memory and all bootloader keys. The SWD interface is re-enabled.
Modes	UNLOCKED LOCKED
Command	UNLOCK<0x0D><0x0A>
Response: Success	None. The device automatically resets itself and the bootloader will display the UNLOCKED mode prompt the next time the bootloader is activated.
Response: Failure	None.

Table 21-10: H – Check Device

H – Check Device		Perform SHA-256 Hash Over Memory Range
Description		Performs a simple SHA-256 (not HMAC SHA-256) hash of bytes starting at 32-bit address 0xnnnnnnnn to 0xmmmmmmmm. The address range must be a multiple of 64 bytes and a minimum of 512 bytes. The function returns the 64-byte hexadecimal ASCII hash value.
Modes		UNLOCKED LOCKED PERMLOCKED
Command		H 0xnnnnnnnn 0xmmmmmmmm<0x0D><0x0A>
Response: Success		yy<0x0D><0x0A>
Response: Failure		<0x0D><0x0A>

Table 21-11: I – Get ID

I – Get ID		Read Universal Serial Number
Description	Returns the 13-byte unique USN of the device.	
Modes	UNLOCKED LOCKED PERMLOCKED	
Command	I<0x0D><0x0A> USN: nnnnnnnnnnnnnnnnnnnnnnnnn<0x0D><0x0A>	
Response: Success	None	
Response: Failure	None	

Table 21-12: S – Status

S – Status	Read Device Status
Description	<p>Returns the state of the loader and the application key and challenge key features. Executing the LOCK and PLOCK commands will immediately transition the device to that state and this command prompt however will reflect the UNLOCKED state until the device is reset:</p> <p>The Lock <response> is: “Inactive” if the device is in the unlocked state. “Active” if the device is in the locked or permanent lock state.</p> <p>The PLock <response> is: “Inactive” if the device is in the unlocked or locked state. “Active” if the device is in the permanent lock state.</p> <p>In addition, devices with the secure boot feature will display:</p> <p>The Application Length <response> is: “Not Set” if the Write Code Length command has not previously loaded a non-zero value. “0xnnnnnnnn” which is the previously entered value using the Write Code Length command.</p> <p>The Application Key <response> is: “None Inactive” if no application key has been loaded using the LK command. “Loaded Inactive” if the application key has been loaded but the application key feature has not been activated by the AK command. “Loaded Active” If the application key has been loaded and the application key feature has been activated.</p> <p>The Challenge Key <response> is: “None Inactive” if no challenge key has been loaded using the LK command. “Loaded Inactive” if the challenge key has been loaded but the challenge key feature has not been activated by the AK command. “Loaded Active” if the challenge key has been loaded and the challenge key feature has been activated.</p>
Modes	UNLOCKED
Command	<pre>S<0xD><0xA> Status<0xD><0xA> Lock: <response><0xD><0xA> PLock: <response><0xD><0xA> Application Length: <response><0xD><0xA> Application Key: <response><0xD><0xA> Challenge Key: <response><0xD><0xA></pre>
Response: Success	None.
Response: Failure	None.

Table 21-13: Q – Quit

Q – Quit	Quit Bootloader Session
Description	Terminates the bootloader session and forces a reset of the device.
Modes	UNLOCKED LOCKED PERMLOCKED
Command	Q<0x0D><0x0A>
Response: Success	None
Response: Failure	None

21.8 Secure Commands

These commands are only supported on devices which provide the secure boot feature.

Table 21-14: Secure Command Summary

Command
<i>LK – Load Application Key</i>
<i>LC – Load Challenge Key</i>
<i>VK – Verify Application Key</i>
<i>VC – Verify Challenge Key</i>
<i>AK – Activate Application Key</i>
<i>AC – Activate Challenge</i>
<i>WL – Write Code Length</i>

21.8.1 *Secure Command Details*

Table 21-15: LK – Load Application Key

Table 21-16: LK – Load Challenge Key

LC – Load Challenge Key	Load Challenge Key
Description	Write 128-bit challenge key to nonvolatile memory. The key can only be written once until a <i>LOCK – Lock Device</i> or PLOCK – Permanent Lock command is executed.
Modes	UNLOCKED
Command	LC yy<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Bad key input<0x0D><0x0A> or Key already loaded<0x0D><0x0A>

Table 21-17: VK – Verify Application Key

Table 21-18: VC – Verify Challenge Key

VC – Verify Challenge Key	VC – Verify Challenge Key
Description	Verify the challenge key against a value provided by the host.
Modes	UNLOCKED
Command	VC yyy<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Bad key input<0x0D><0x0A> or Error, no key loaded<0x0D><0x0A> or Key Mismatch<0x0D><0x0A>

Table 21-19: AK – Activate Application Key

AK – Activate Application Key	Activate Application Key
Description	Activate application key. After this command the device will perform a code verification following the any of the bootloader activation events if the stimulus pins are not asserted, as well as following execution of the LOCK–Lock Device and PLOCK – Permanent Lock commands. The UNLOCK command deactivates the application key.
Modes	UNLOCKED
Command	AK<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Key activate failed<0x0D><0x0A> or Error, no key loaded<0x0D><0x0A>

Table 21-20: AC – Activate Challenge Key

AC – Activate Challenge Mode	Activate Challenge Mode
Description	Activate CHALLENGE mode. All subsequent bootloader sessions in LOCKED or PERMLOCKED states will start in CHALLENGE mode. The “Key activate failed” response indicates the device has already activated the challenge/response feature.
Modes	UNLOCKED
Command	AC<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Key activate failed<0x0D><0x0A> or Error, no key loaded<0x0D><0x0A>

Table 21-21: WL – Write Code Length

WL – Write Code Length	Write Code Length
Description	<p>Write the length of the application code in bytes. The code length argument is address of the last pad byte as described in Procedure for Devices with the Secure Boot Feature.</p> <p>The “Write length failed” response indicates the WL command has already been performed. The host should re-enter the UNLOCKED state to clear the WL value and repeat the command.</p>
Modes	UNLOCKED
Command	WL 0xnnnnnnnn<0x0D><0x0A>
Response: Success	Length set to: 0xnnnnnnnn<0x0D><0x0A>
Response: Failure	<p>Bad length input<0x0D><0x0A></p> <p>Or</p> <p>Write length failed<0x0D><0x0A></p>

21.9 Challenge/Response Commands

Table 21-22: Challenge/Response Command Summary

Command
GC – Get Challenge
SR – Send Response

21.9.1 Challenge/Response Command Details

Table 21-23: GC – Get Challenge

GC – Get Challenge	Get Challenge
Description	Bootloader generates a 32-byte hexadecimal ASCII challenge and transmits it to host. The challenge is sent MSB first.
Modes	LOCKED PERMLOCKED
Command	GC<0x0D><0x0A>
Response: Success	32bytechallenge<0x0D><0x0A>
Response: Failure	None

Table 21-24: SR – Send Response

SR – Send Response	Send Response
Description	Host calculates HMAC SHA-256 on the 32-byte hexadecimal ASCII challenge and sends the 64-byte hexadecimal ASCII response. The response is sent MSB first.
Modes	LOCKED PERMLOCKED
Command	SR 64byteresponse<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Bad response input<0x0D><0x0A> or Verification failed<0x0D><0x0A> or Error, request challenge<0x0D><0x0A>

22. Silicon Revision Differences

The current silicon revision of the MAX32675C is 0x03B4. Read the *GCR_REVISION.revision* field to determine a device's silicon revision. For a list of known issues for each silicon revision refer to the device's errata sheet at <http://www.analog.com/MAX32675C>.

22.1 Initial Silicon Revision B4

- The *GCR_REVISION.revision* field reads 0x03B4.
- The package topmark reads B1.
- The IBRO is the default system oscillator after a POR, system reset, and watchdog reset.
- The IPO is powered off by default after a POR, system reset, and watchdog reset.

23. Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION
0	01/2026	Initial release

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

© 2026 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
[One Analog Way, Wilmington, MA 01887 U.S.A.](http://www.analog.com) | Tel: 781.329.4700 | © 2026 Analog Devices, Inc. All rights reserved.