

Evaluating the MAX22522, IO-Link Device Transceiver with Integrated Cortex-M0 and AFE

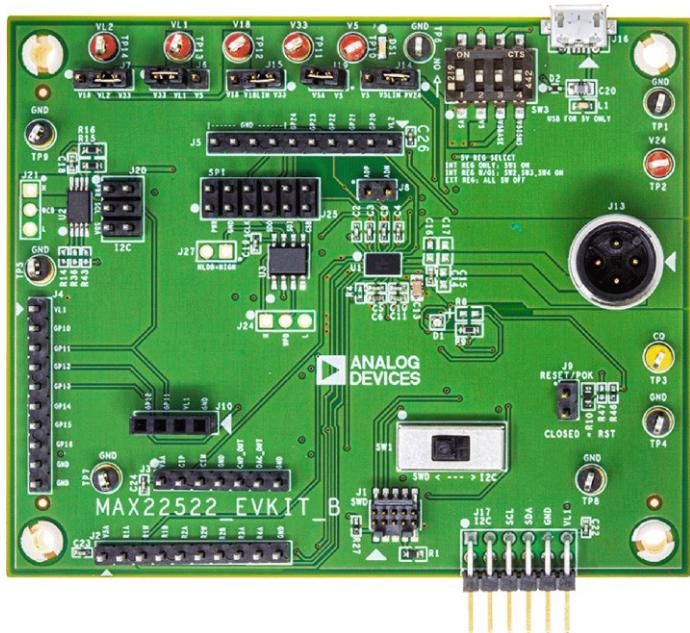
General Description

The MAX22522 evaluation kit (EV kit) is designed to evaluate the MAX22522 IO-Link device transceiver with integrated Cortex-M0 and analog front end (AFE).

The MAX22522 EV kit includes three integrated regulators (5V, 3.3V, and 1.8V) with a flexible power scheme that allows the device to be used in many different applications. The EV kit is designed to allow the user to test and optimize the power structure for any design.

The MAX22522 EV kit features suite of peripherals for high performance and flexibility. Peripherals include a high-speed comparator, a 6-bit DAC, a 13-bit ADC, four variable resistors, and twelve GPIO pins. All peripherals and associated pins are available on easy-to-access headers.

The MAX22522 EV kit includes two methods to program the IC: using on-board serial EEPROM or programming through the serial debug (SWD) interface.


Sample code is available for use with the EV kit and a user can download it from Analog's website.

Features and Benefits

- Fully-featured evaluation board for the MAX22522
- Access to all peripherals and AFE
- Enables quick prototyping

[Ordering Information](#) appears at end of data sheet.

EV Kit Photo

Quick Start

Required Equipment

- MAX22522 EV kit
- 24V, 500mA supply
- PC with Windows® operating system
- 24V/500mA supply or IO-Link master to provide power
- I²C controller with Pmod™ connector (Analog devices recommends the [USB2PMB2](#) board)
- SWD debugger with 10-pin connector (examples in this document use the Arm® Keil ULINK-ME or ULINK2TM debug unit)
- Multimeter
- MAX22522 EEPROM programming GUI

Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software.

Procedure

The EV kit is fully assembled and tested. To start evaluating with the MAX22522 EV kit, do the following steps:

1. Ensure that jumpers on the EV kit are as shown in [Table 1](#).
2. Connect the 24V supply to the V₂₄ test point (TP2). Connect the ground return of the supply to the GND test point (TP1). Alternately, connect an IO-Link master to the MAX22522 EV kit using the J13 M12 connector. Turn on the channel connected to the device to power the EV kit and skip to step 4.
3. Turn on the 24V supply.
4. Verify that the green power indicator LED (DS1) at the top of the board is on. The MAX22522 EV kit comes preprogrammed with a basic IO-Link communication script. Verify that the blue D1 LED is also blinking.
5. Using the multimeter, verify that the voltage on the V5 test point (TP10) is 5V, the voltage on the V33 test point (TP11) is 3.3V, and the voltage on the V18 test point (TP12) is 1.8V. VL1 (TP13) and VL2 (TP14) are also set to 3.3V.
6. If an IO-Link master is connected to the MAX22522 EV kit, enable IO-Link communication between the master and device and verify that the MAX22522 EV kit is correctly identified by the IO-Link master.
7. For more details on programming the device, see the [Programming the MAX22522 EV Kit](#) section.

Table 1. Initial Jumper and Switch Connections

JUMPER	DEFAULT CONNECTION	FEATURE
J6	1-2*	V _{L1} = V ₃₃ (3.3V).
	2-3	V _{L1} = V ₅ (5V).
J7	1-2	V _{L2} = V ₁₈ (1.8V).
	2-3*	V _{L2} = V ₃₃ (3.3V).
J9	Open	RESET/POK is high (pulled up to V _{L1}).
	Closed*	RESET/POK is low (GND).
J14	1-2*	V _{5LIN} = PV24.
	2-3	V _{5LIN} = V ₅ . Connect an external 5V supply to the V ₅ test point (TP10) for normal operation.
J15	1-2*	V _{18LIN} = V ₃₃ .
	2-3	V _{18LIN} = V ₁₈ . Connect an external 1.8V supply to the V ₁₈ test point (TP12) for normal operation.
J19	Open	V _{5A} is not connected to V ₅ . Connect an external 5V supply to V _{5A} for normal operation.
	Closed*	V _{5A} = V ₅ .
J21	1-2, 3-4, 5-6	M24128 serial EEPROM is connected to the MAX22522.
	Open*	M24128 serial EEPROM is not connected to the MAX22522.

JUMPER	DEFAULT CONNECTION	FEATURE
J25	1-2, 3-4, 5-6, 7-8, 9-10, 11-12*	CAV25M01 serial SPI EEPROM is connected to the MAX22522.
	Open	CAV25M01 serial SPI EEPROM is not connected to the MAX22522.
SW1	Left (SWD)*	SWDEN is high.
	Right (I2C)	SWDEN is low.
SW3	1: ON 2, 3, 4: OFF*	V ₅ is powered using the internal regulator. For other configurations, see the V ₅ Power section.
	1: OFF 2, 3, 4: ON	V ₅ is powered using the internal regulator with the external transistor, Q1. For other configurations, see the V ₅ Power section.
	1, 2, 3, 4: OFF	Internal regulator is disabled. Set V _{5LIN} = V ₅ and connect an external 5V to the V ₅ test point.

* Default options are bold.

Detailed Description of Hardware

Power

The MAX22522 EV kit has three power supply inputs: V_{24} (24V), V_5 (5V), and V_{18} (1.8V). [Table 2](#) shows a summary of available settings for each of these supplies.

Connect an external 24V power supply to the V_{24} and GND pins to power the device from a bench supply. Alternatively, connect an IO-Link master to the MAX22522 EV kit and power the device over the IO-Link cable. The V_{24} supply is required for IO-Link communication but does not need to be present when testing only peripheral functions. To test the device without V_{24} , set $V_{5LIN} = V_5$ and connect an external 5V supply to the V_5 test point or connect a USB power source using the J16 connector.

The MAX22522 EV kit requires a 5V supply for normal operation. Set SW3 Channel 1 ON (and all other channels OFF) and set $V_{5LIN} = PV24$ (J14 1-2) to use the internal 5V regulator. For larger loads, use an external transistor to generate the required 5V on V_5 . Set the SW3 Channel 2, Channel 3, and Channel 4 ON (Channel 1 is OFF) and connect $V_{5LIN} = PV24$ (J14 1-2) for this configuration. To use an external 5V supply, disable the internal regulator (SW3 Channel 1 is OFF) and the external transistor (Channel 2, Channel 3, and Channel 4 are OFF on SW3), set $V_{5LIN} = V_5$ (J14 2-3), and apply 5V to the V_5 test point.

The MAX22522 EV kit features an internal 3.3V regulator when $V_5 = 5V$. Connect to the V_{33} test point (TP11) to access this supply.

In addition to the 24V and 5V supplies, the MAX22522 EV kit requires a 1.8V supply on the V_{18} pin. To use the internal 1.8V regulator, connect the V_{18LIN} input to the V_{33} supply by setting J15 to 1-2. To bypass the internal regulator, connect $V_{18LIN} = V_{18}$ (J15 2-3) and connect an external 1.8V supply to the V_{18} test point.

Table 2. V_5 , V_{33} , and V_{18} Power Supply Settings

SUPPLY (V)	SWITCH SW3				LIN INPUT	NOTES
	CH1	CH2	CH3	CH4		
24	X	X	X	X	X	Apply 24V supply to V_5 test point (TP2). 24V is required to IO-Link communication.
5	ON	OFF	OFF	OFF	$V_{5LIN} = PV24$	5V internal regulator enabled.
	OFF	ON	ON	ON	$V_{5LIN} = PV24$	5V internal regulator with external transistor for larger loads.
	OFF	OFF	OFF	OFF	$V_{5LIN} = V_5$	5V internal regulator disabled. Connect an external 5V to V_5 test point (TP10).
3.3	X	X	X	X	X	3.3V internal regulator. V_{33} is always on.
1.8	X	X	X	X	$V_{18LIN} = V_{33}$	1.8V internal regulator enabled.
	X	X	X	X	$V_{18LIN} = V_{18}$	1.8V internal regulator disabled. Connect an external 1.8V supply to the V_{18} test point (TP12).

X = *Don't care*.

IO-Link Communication (V_{24} , CQ, and GND)

Connect the MAX22522 EV kit to an IO-Link master using the 4-pin M12 connector (J13). Power the EV kit from this connection when the device is connected to an IO-Link master.

RESET/POK Input/Output

The RESET/POK input/output is pulled up to V_{L1} by default. Place a shunt on J9 to pull RESET/POK low and put the device in reset. Remove R46 and place a 0Ω resistor on R47 to pull-up RESET/POK to V_{L2} , if required.

AFE and Peripheral Connections/Headers

GPIOs

Bank 1 GPIO pins (GPIO1_X) are accessible on the J4 header along the left-side of the board.

GPIO1_0 may also be used to drive the red LED (D1). Place a 0Ω resistor on the R8 pad to connect GPIO1_0 for this functionality. Remove R9 when GPIO1_0 is used to drive the LED.

GPIO1_1 and GPIO1_2 are also routed to J22 to connect to the on-board I²C serial EEPROM. These pins are also routed to the J10 connector for use with an I²C display.

Bank 2 GPIO pins (GPIO2_X) are accessible on the J5 header.

GPIO2_0 is used to drive the red LED (D1) by default. Remove R9 when GPIO1_0 is used to drive the LED.

GPIO2_1 to GPIO2_4 are also routed to J25 to connect to the on-board SPI serial EEPROM. J25 connections are in-place by default.

Comparator and DAC

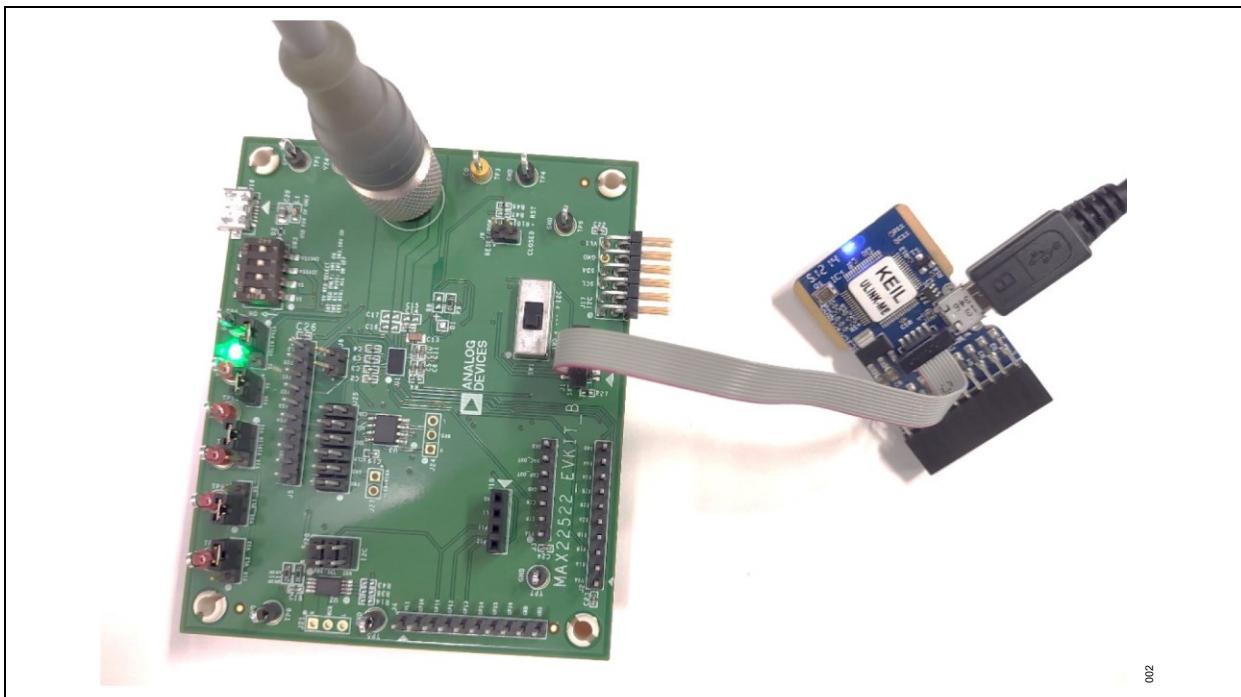
The comparator inputs (CIP, CIN), output (CMPO, CMP_OUT), and DAC output (DACO, DAC_OUT) are accessible on the J3 header. Connect CIN to DAC_OUT and set the DAC voltage to set the comparator threshold.

Variable Resistors

Variable resistor pins (R1A, R1W, R1B, R2A, R2W, R2B, R3A, and R4A) are accessible on the J2 header at the bottom of the board. Enable and set the variable resistors in the register.

Programming the MAX22522 EV Kit

The MAX22522 EV kit comes preprogrammed to boot up from EEPROM and includes a basic IO-Link communication code programmed into the EEPROM. Other functionality and programs can be run on the MAX22522 EV kit, however, this section provides step-by-step instructions to create a project and program it to the MAX22522.


Using the project code generated, there are two ways to program the MAX22522 on the EV kit: (1) programming the device through the serial debug (SWD) interface, and (2) programming the on-board EEPROM.

For prototyping and debugging new code, program the MAX22522 EV kit through the SWD interface. Code programmed through the SWD interface is cleared and reset when the device is power cycled or when the controller exits debug mode. Program new code to the EEPROM only when the code has been fully verified and debugged using the SWD interface.

Programming the MAX22522 EV Kit through the SWD Interface

The MAX22522 EV kit can be programmed tested using a standard serial debugger connected to the SWD interface (J1). To program the device through the SWD interface, do the following steps (the serial debugger used in this example is the KeilTM ULINK-METM or UNLINK2TM):

1. Connect the serial debugger controller to the J1 header, as shown in [Figure 1](#).
2. Ensure that SW1 is in the SWD position.

Figure 1. MAX22522 EV Kit Serial Debugger Connection

3. Open the Keil µVision programmer. Open the sample project and verify that the Project options are as shown in [Figure 2](#) to [Figure 7](#).

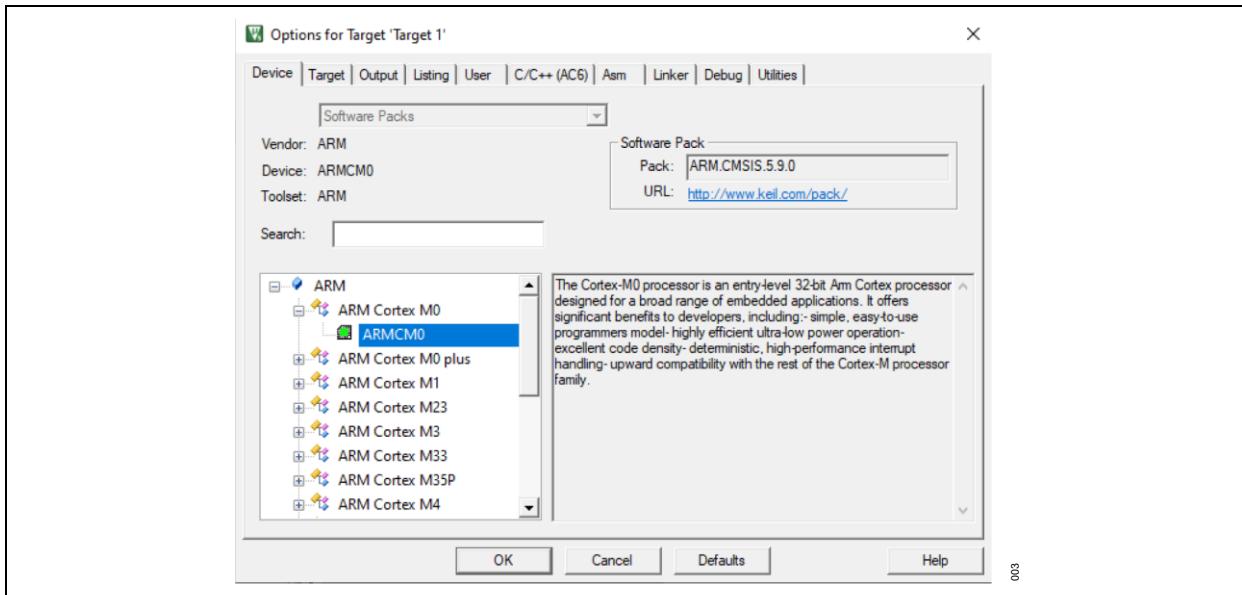


Figure 2. Keil μVision Settings – Device Tab

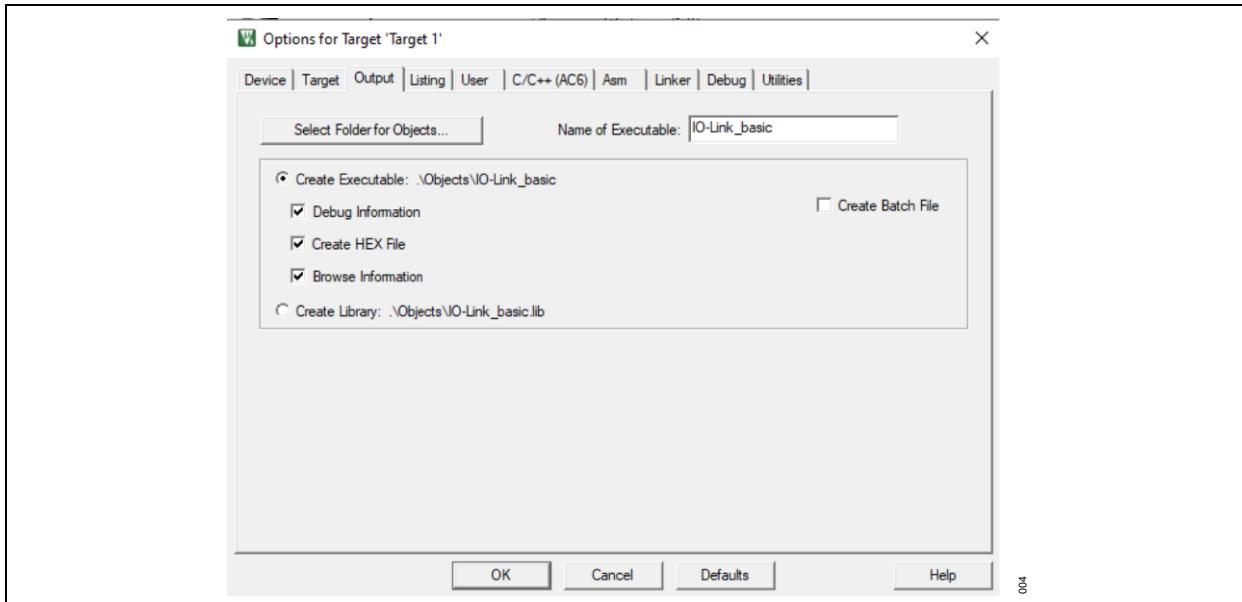


Figure 3. Keil μVision Settings – Output Tab

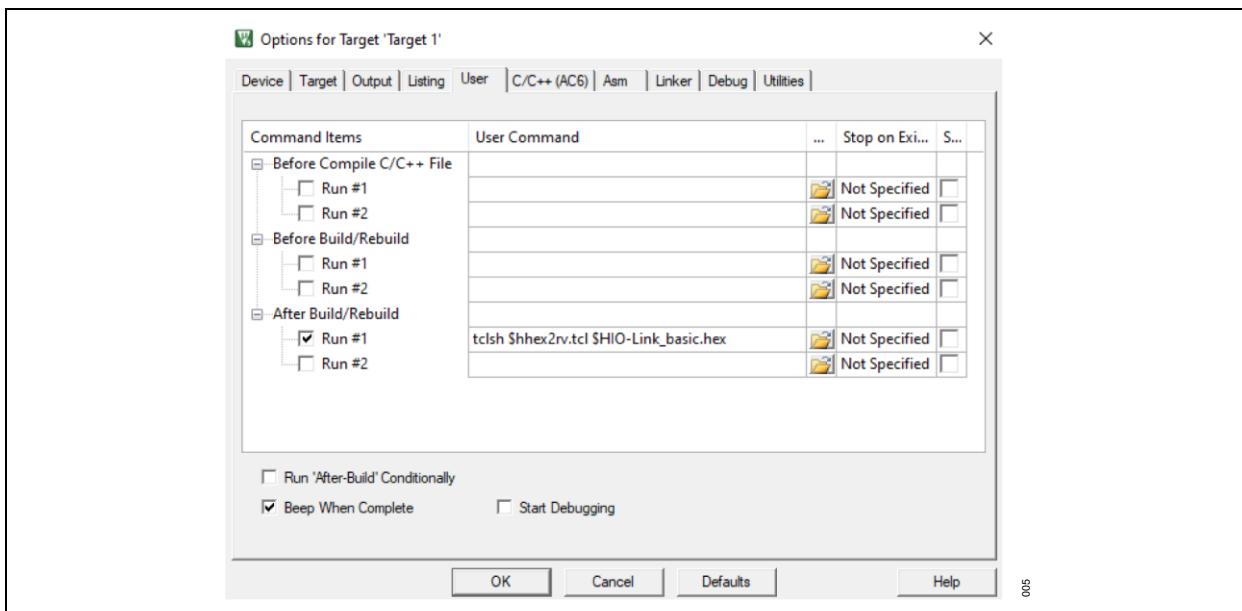


Figure 4. Keil μVision Settings – User Tab

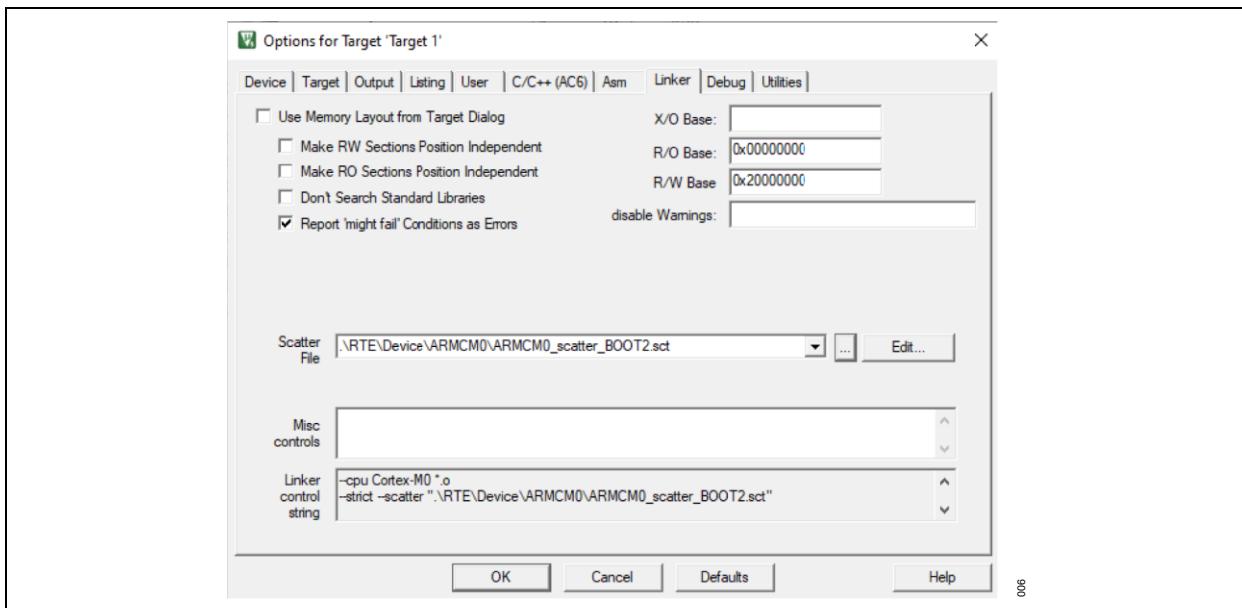


Figure 5. Keil μVision Settings – Linker Tab

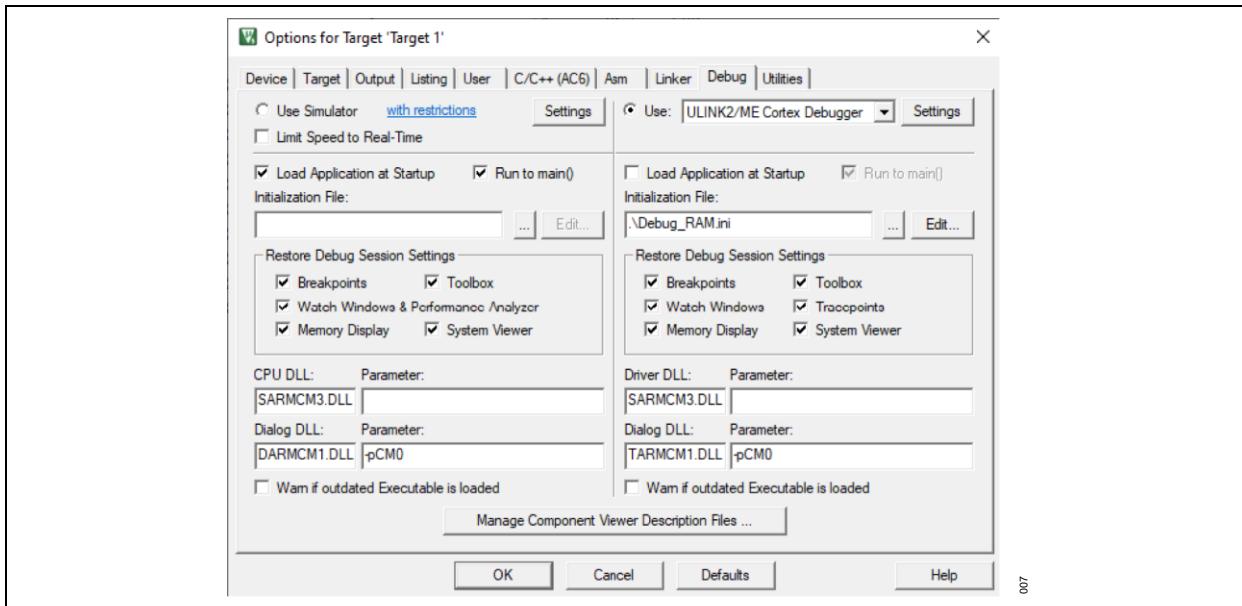


Figure 6. Keil μVision Settings – Debug Tab

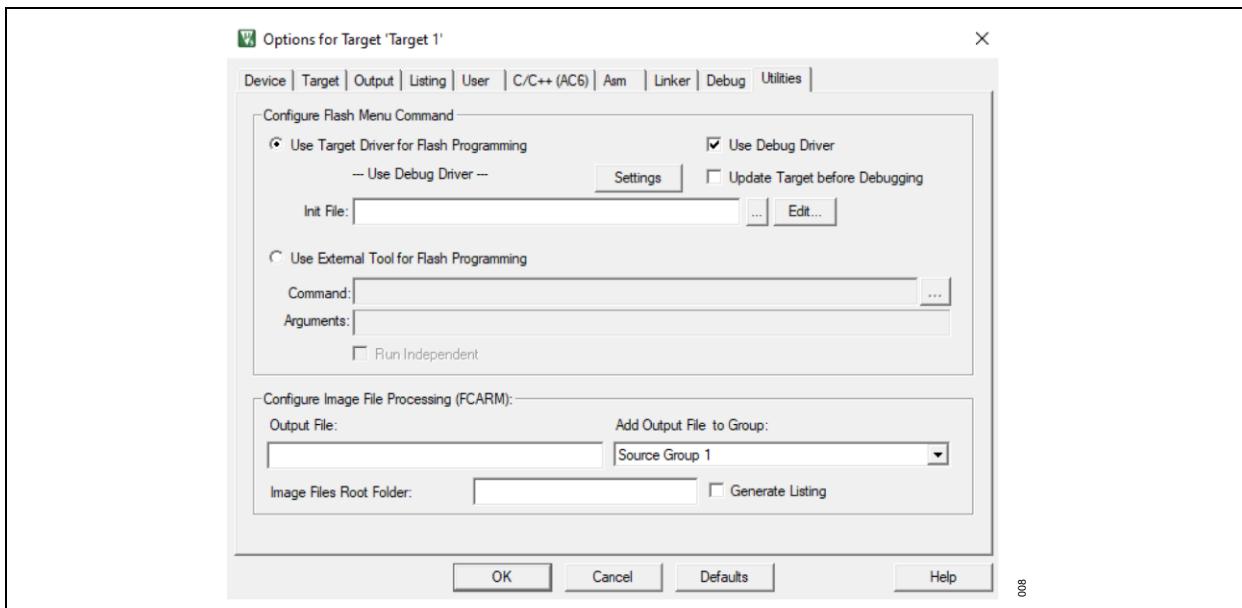


Figure 7. Keil μVision Settings – Utilities Tab

4. Modify the code as required.
5. Build and compile the project.
6. Open the debugger and run the code.

Programming the MAX22522 EV Kit through EEPROM

When the MAX22522 EV kit is powered up, it boots up using the firmware programmed into connected EEPROM over the SPI interface.

Once a new program has been verified using debug mode (SWD interface), use an SPI controller to program the on-board EEPROM with the required program. Cycle power to restart the MAX22522 EV kit with the application programmed in the EEPROM.

To program the device using the external EEPROM, do the following steps (the SPI controller used in this example is the [USB2PMB2](#)):

1. Connect the SPI controller to the J25 header (see [Figure 8](#)). Signals on the J25 header are laid out using the standard Pmod connector pinout.

Figure 8. USB2PMB2 Connection to Program On-Board EEPROM

2. Open the **MAX22522 EEPROM Tool** and select the **EEPROM – USB2PMB2 (direct)** tab. Click the **EEPROM Connect** button to connect to the EEPROM. The connection status is shown in the bottom right of the GUI screen. See [Figure 9](#).

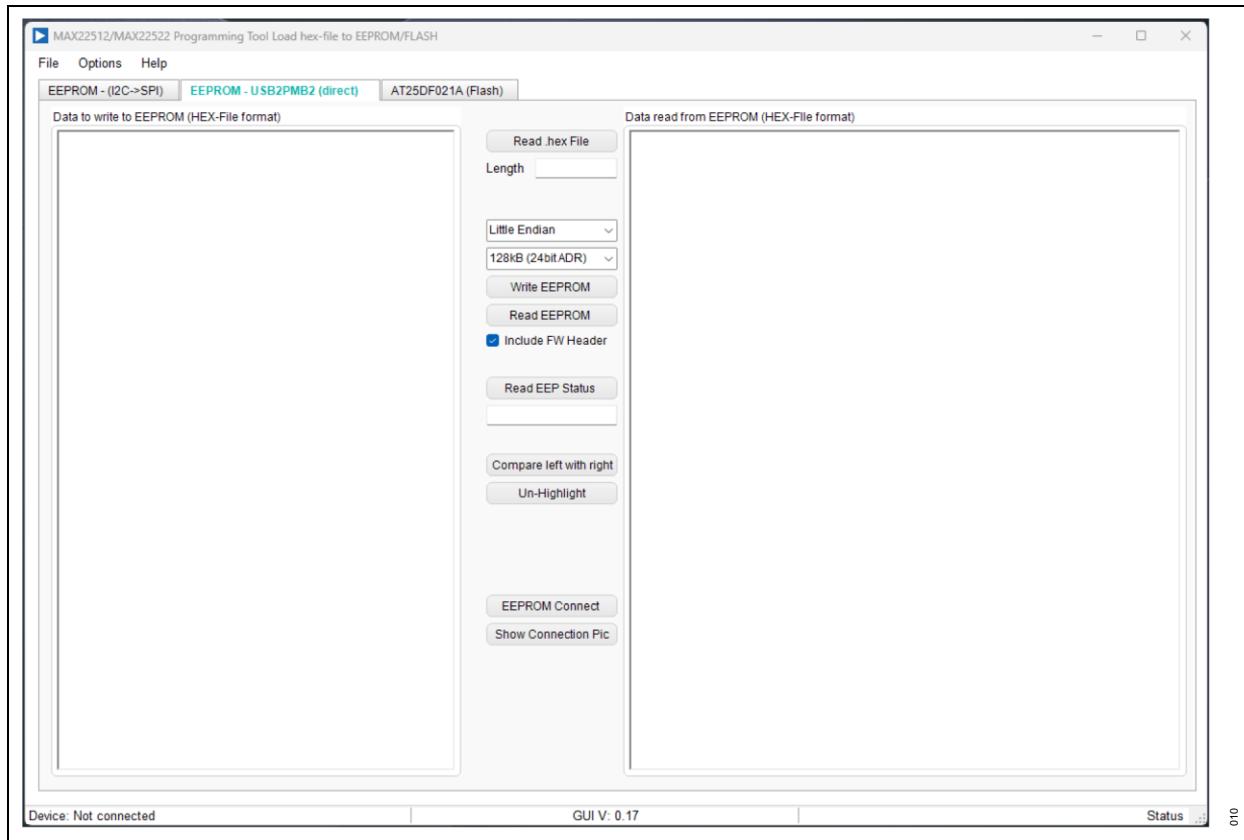


Figure 9. MAX22522 OTP/EEPROM GUI – EEPROM – USB2PMB2 (direct) Tab

3. Using the drop-down, select **Little Endian** and **128kB (24-bit ADR)** settings.
4. Click the **Read .hex File** button and select the hex file for the information to program into the EEPROM. Once the hex file is select, the window on the left side of the GUI, **Data to write to EEPROM (HEX-File format)** fills with the data to write. The length of the hex file appears in the **Length** box. See [Figure 10](#).

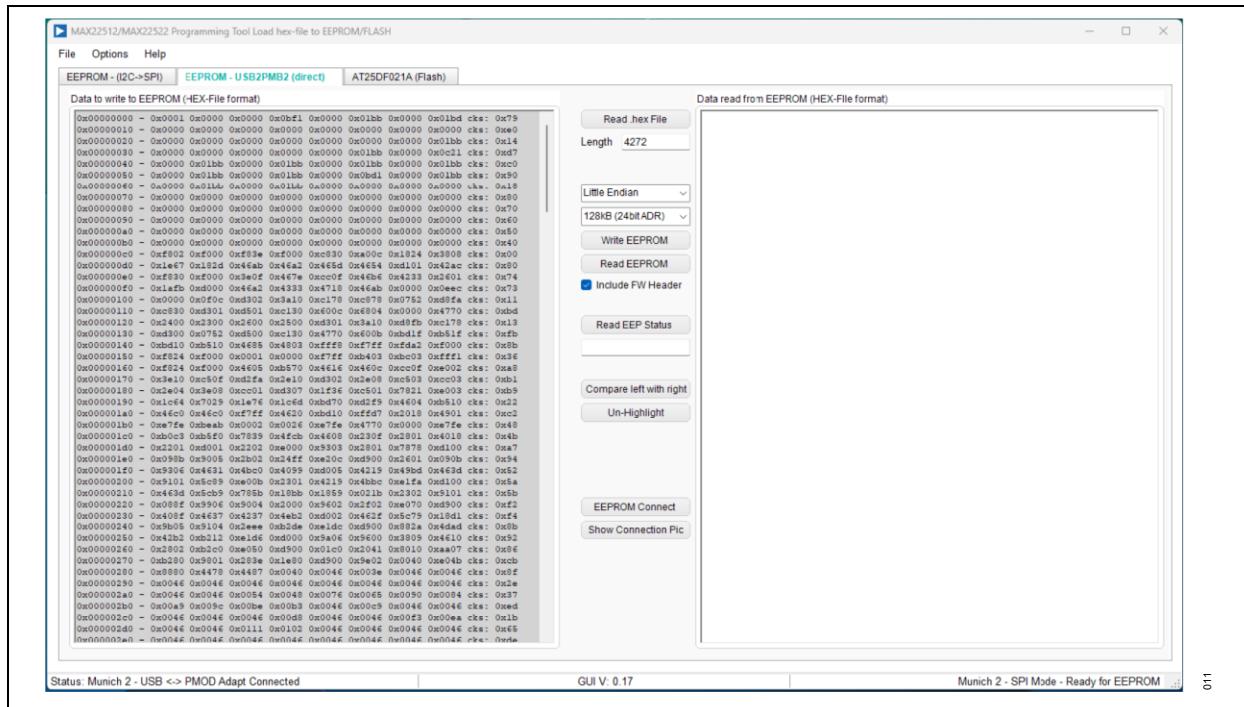


Figure 10. Data to Write to EEPROM Window in GUI before Write is Started

- Click the **Write EEPROM** button to write the information to the EEPROM. The background of the left window turns bright green when data has been programmed. See [Figure 11](#).

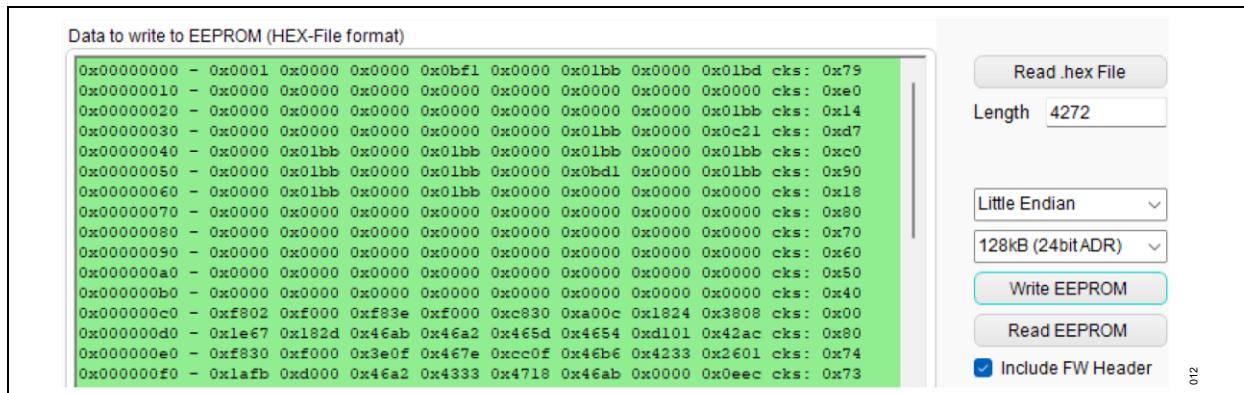


Figure 11. Data to Write to EEPROM Window in GUI after Write is Complete

- To verify data is programmed to the EEPROM, click the **Read EEPROM** button. Data from the EEPROM is read and printed in the right-side window, **Data read from EEPROM (HEX-File format)**. Click the **Read EEP Status** or **Compare left with right** button to verify the data read from EEPROM is the same as the data written to the EEPROM. See [Figure 12](#).

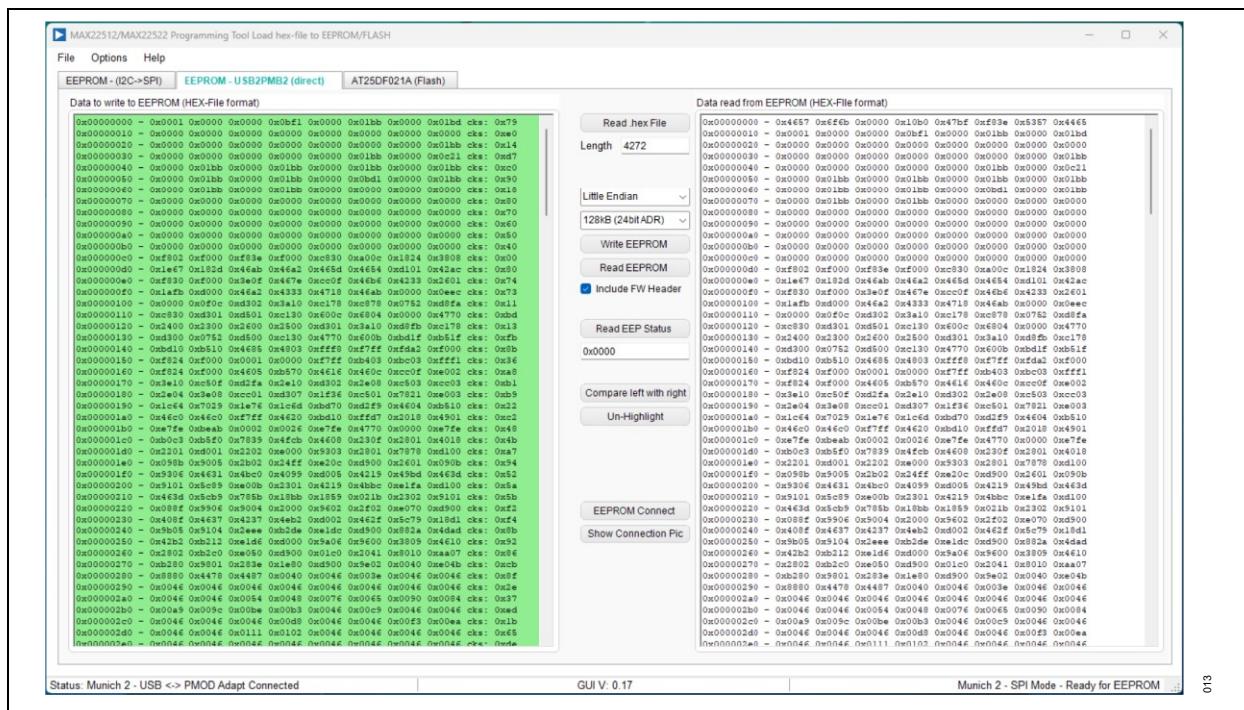


Figure 12. Data Read from EEPROM Window after EEPROM Write

7. Remove the SPI controller and replace shunts across the J25 header.
8. Cycle power to the MAX22522 EV kit and the device boots up using the application programmed into the EEPROM.

EV Kit Package

Analog Devices provides useful documentation and sample code that serve as a guide for evaluation and development. The package includes examples of code for basic peripheral functionality. For more details, refer to the MAX22522 User Guide.

Ordering Information

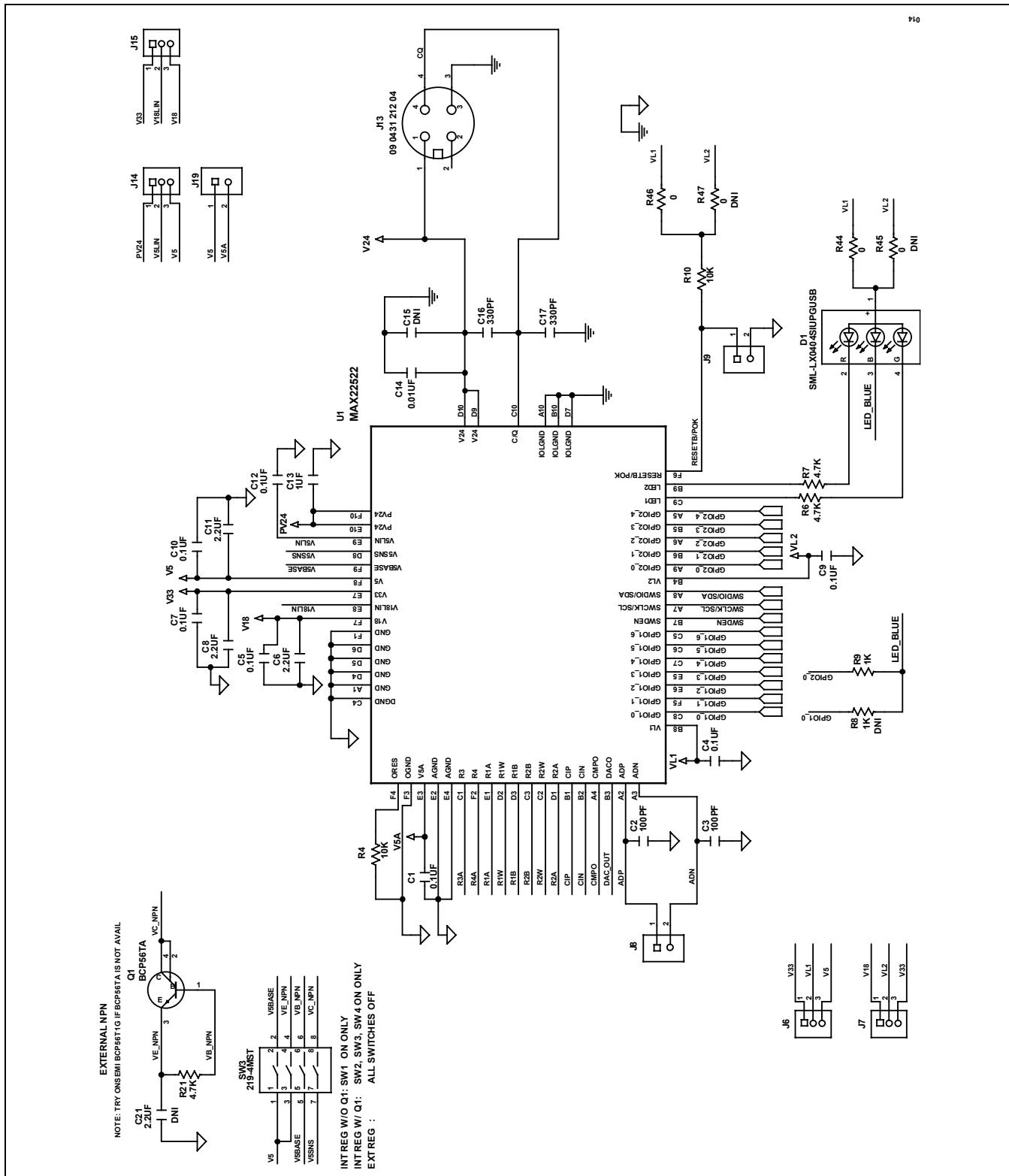
PART	TYPE
MAX22522EVKIT#	EV Kit

#Denotes RoHS-compliant.

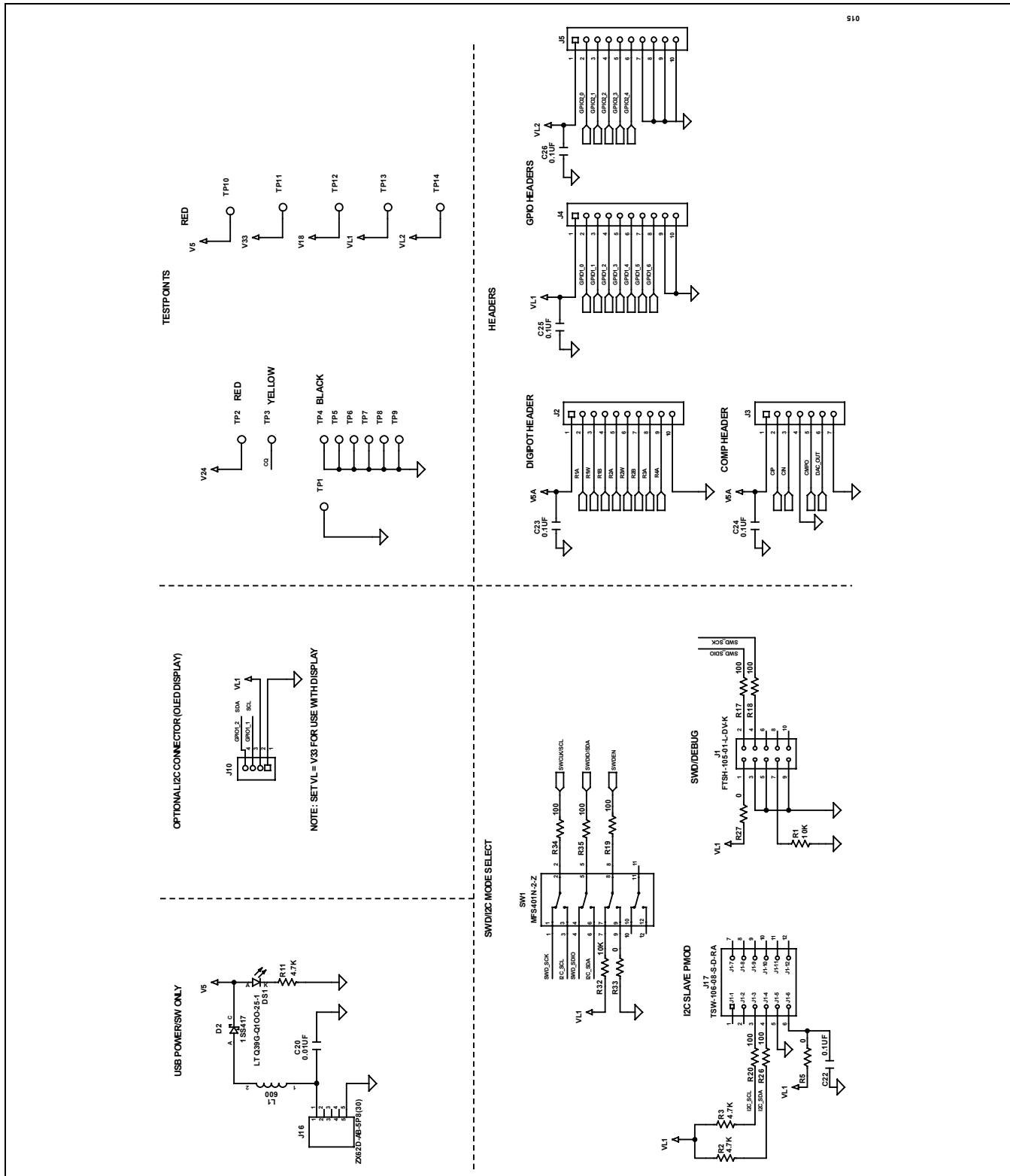
MAX22522 EV Kit Bill of Materials

ITEM	REF_DES	QTY	MFG PART #	MANUFACTURER	DESCRIPTION
1	C1, C4, C5, C7, C9, C10, C18, C19, C22 to C26	13	C0402C104J4RAC, GCM155R71C104JA55, C0402C104J4RACTU	Kemet, Murata, Kemet	Ceramic capacitors, SMT (0402), 0.1µF, 5%, 16V, X7R
2	C2, C3	2	C0402C101J5GAC, NMC0402NPO101J, CC0402JRNPO9BN101 GRM1555C1H101JA01, C1005C0G1H101J050BA	Kemet, NIC Components Corp., Yageo Phicomp, Murata, TDK	Ceramic capacitors, SMT (0402), 100pF, 5%, 50V, C0G
3	C6, C8, C11	3	GRM155Z71A225KE01	Murata	Ceramic capacitors, SMT (0402), 2.2µF, 10%, 10V, X7R
4	C12	1	CC0603KRX7R0BB104, GRM188R72A104KA35, HMK107B7104KA, 06031C104KAT2A, GRM188R72A104K	Yageo, Murata, Taiyo Yuden, AVX, Murata	Ceramic capacitor, SMT (0603), 0.1µF, 10%, 100V, X7R
5	C13	1	08051C105K4Z2A	AVX	Ceramic capacitor, SMT (0805), 1µF, 10%, 100V, X7R
6	C14	1	C1005X7S2A103K050BB	TDK	Ceramic capacitor, SMT (0402), 0.01µF, 10%, 100V, X7S
7	C16, C17	2	C0603C0G500-331JNE, GRM1885C1H331JA01	Venkel Ltd., Murata	Ceramic capacitors, SMT (0603), 330pF, 5%, 50V, C0G
8	C20	1	GRM188R71C103KA01, ECJ-1VB1C10, CL10B103KO8NNN, GCJ188R71C103KA01	Murata, Panasonic, Samsung, Murata	Ceramic capacitor, SMT (0603), 0.01µF, 10%, 16V, X7R
9	D1	1	SML-LX0404SIUPGUSB	Lumex Optocomponents Inc.	Diode, LED, SML, full color, water clear lens, red-green-blue, SMT, $V_F = 2.95V$, $I_F = 0.1A$
10	D2	1	1SS417	Toshiba	Diode, SCH, SMT (SOD-923), $PIV = 45V$, $I_F = 0.1A$
11	DS1	1	LT Q39G-Q1OO-25-1	Osram	Diode, LED, true green, SMT (0603), $V_F = 2.85V$, $I_F = 0.005A$
12	J1	1	FTSH-105-01-L-DV-K	Samtec	Connector, male, SMT, 0.05 (1.27mm) SMT micro header, straight, 10-pins
13	J2, J4, J5	3	PEC10SAAN	Sullins Electronic Corp.	Connectors, male, through hole, breakaway, straight, 10-pins
14	J3	1	PEC07SAAN	Sullins Electronic Corp.	Connector, male, through hole, breakaway, straight, 7-pins, $-65^{\circ}C$ to $+125^{\circ}C$
15	J6, J7, J14, J15	4	PCC03SAAN	Sullins Electronic Corp.	Connectors, male, through hole, breakaway, straight, 3-pins, $-65^{\circ}C$ to $+125^{\circ}C$
16	J8, J9, J19	3	PCC02SAAN	Sullins Electronic Corp.	Connectors, male, through hole, breakaway, straight, 2-pins, $-65^{\circ}C$ to $+125^{\circ}C$
17	J10	1	PPTC041LFBN-RC	Sullins Electronic Corp.	Connector, female, through hole, female header, straight, 4-pins
18	J12	1	CS-ANAVI-DISPLAY-1	Anavi Technology	Module, Anavi macro pad 8, 5.32in \times 1.86in
19	J13	1	09 0431 212 04	Binder	Connector, male, threaded, male receptacle, PCB solder, straight; 4-pins

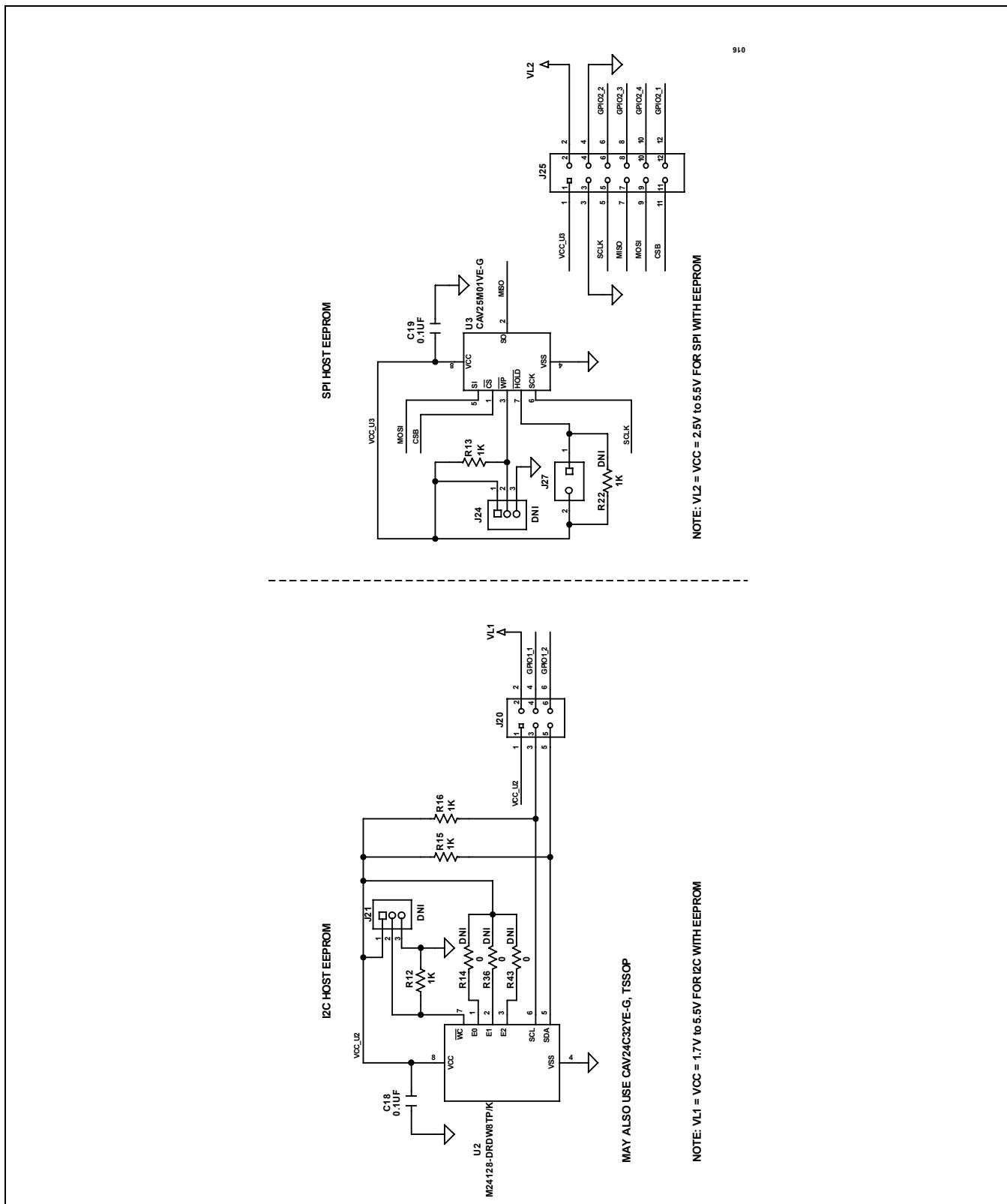
MAX22522 EV Kit Bill of Materials (continued)

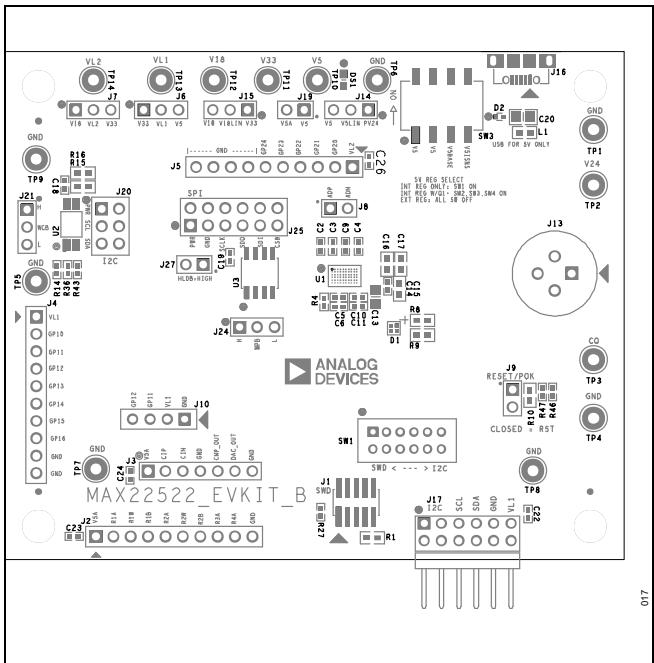

ITEM	REF_DES	QTY	MFG PART #	MANUFACTURER	DESCRIPTION
20	J16	1	ZX62D-AB-5P8(30)	Hirose Electric Co. Ltd.	Connector, female, SMT, USB micro connector, right angle, 5-pins
21	J17	1	TSW-106-08-S-D-RA	Samtec	Connector, through hole, double row, right angle, 12-pins
22	J20	1	PEC03DAAN	Sullins Electronic Corp.	Connector, male, through hole, breakaway, straight through, 6-pins, -65°C to +125°C
23	J25	1	PEC06DAAN	Sullins Electronic Corp.	Connector, male, through hole, breakaway, straight, 12-pins, -65°C to +125°C
24	L1	1	BLM21AG601SN1	Murata	Inductor, SMT (0805), ferrite-bead, 600, TOL = +/-25%, 0.2A
25	Q1	1	BCP56TA	Diodes Incorporated	Transistor, NPN silicon planar medium power transistor, SOT-223, power (max) = 2.0W, current – collector (I_C (max)) = 1A, voltage – collector emitter breakdown (max) = 80V
26	R1, R10	2	CRCW060310K0FK, ERJ-3EKF1002, AC0603FR-0710KL, RMCF0603FT10K0	Vishay, Panasonic, Yageo, Stackpole	Resistors, SMT (0603), 10kΩ, 1%, +/-100ppm/°C, 0.1000W
27	R2, R3, R6, R7, R11	5	CRCW04024K70FK, MCR01MZPF4701	Vishay Dale, Rohm Semiconductor	Resistors, SMT (0402), 4.7kΩ, 1%, +/-100ppm/°C, 0.0630W
28	R4	1	TNPW040210K0BE	Vishay Dale	Resistor, SMT (0402), 10kΩ, 0.10%, +/-25ppm/°K, 0.0630W
29	R5, R27, R33, R44, R46	5	CRCW04020000Z0EDHP, RCS04020000Z0	Vishay Draloric, Vishay Dale	Resistors, SMT (0402), 0Ω, jumper, 0.2000W
30	R9, R12, R13, R15, R16, R22	6	CRCW06031K00FK, ERJ-3EKF1001, CR0603AFX-1001ELF, RMCF0603FT1K00	Vishay, Panasonic, Bourns, Stackpole Electronics Inc.	Resistors, SMT (0603), 1kΩ, 1%, +/-100ppm/°C, 0.1000W
31	R17 to R20, R26, R34, R35	7	9C04021A1000FL, RC0402FR-07100RL	Panasonic, Yageo Phycomp	Resistors, SMT (0402), 100Ω, 1%, +/-100ppm/°C, 0.0630W
32	R21	1	CRCW06034K70FK	Vishay Dale	Resistors, SMT (0603), 4.7kΩ 1%, +/-100ppm/°C, 0.1000W
33	R32	1	AT0402FRE0710KL	Yageo	Resistor, SMT (0402), 10kΩ, 1%, +/-50ppm/°K; 0.0630W
34	SPACER 1 to SPACER 4	4	9032	Keystone	Machine fabricated, round-thru hole spacers, no thread, M3.5, 5/8in, nylon
35	SW1	1	MFS401N-2-Z	Nidec Copal Electronics Corp.	Switch, 4PDT, through hole, straight, +5V to +30V, 0.01A to 0.3A, MFS series, RCONTACT = 0.02Ω, RINSULATION = 100MΩ
36	SW3	1	219-4MST	CTS	Switch, SPST, SMT, straight, 20V, 0.1A, surface mount DIP switch-auto placeable, RINSULATION = 1000MΩ

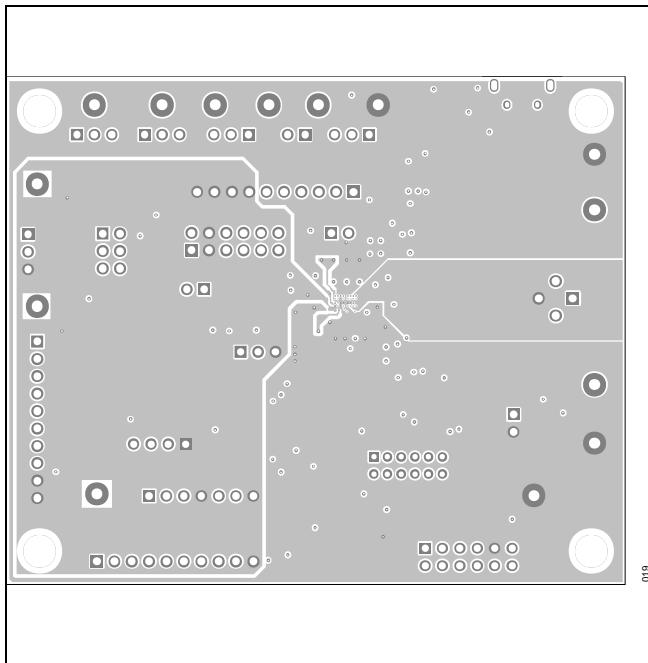
MAX22522 EV Kit Bill of Materials (continued)

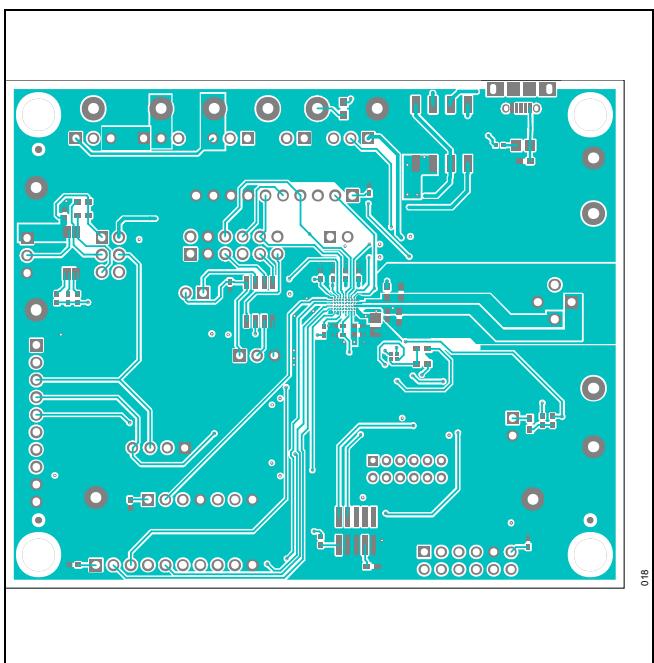

ITEM	REF_DES	QTY	MFG PART #	MANUFACTURER	DESCRIPTION
37	TP1, TP4 to TP9	7	5011	Keystone	Test points, pin dia = 0.125in, total length = 0.445in, board hole = 0.063in, black, phosphor bronze wire silver plate finish
38	TP2, TP10 to TP14	6	5010	Keystone	Test points, pin dia = 0.125in, total length = 0.445in, board hole = 0.063in, red, phosphor bronze wire silver plate finish
39	TP3	1	5014	Keystone	Test point, pin dia = 0.125in, total length = 0.445in, board hole = 0.063in, yellow, phosphor bronze wire silver plate finish
40	U1	1	MAX22522	Analog Devices, Inc.	EV kit part – IC, MAX22522 , package outline drawing: 21-100691 , package code: W602B4+1
41	U2	1	M24128-DRDW8TP/K	ST Microelectronics	IC, EEPROM, 128kb serial I ² C bus EEPROM, TSSOP8
42	U3	1	CAV25M01VE-G	ON Semiconductor	IC, EEPROM, EEPROM serial 1MB SPI automotive GRADE 1, NSOIC8
43	PCB	1	MAX22522	Analog Devices, Inc.	PCB: MAX22522
44	C15	0/DNP	CC0603KRX7R0BB104, GRM188R72A104KA35, HMK107B7104KA, 06031C104KAT2A, GRM188R72A104K	Yageo, Murata, Taiyo Yuden, AVX, Murata	Ceramic capacitor, SMT (0603), 0.1µF, 10%, 100V, X7R
45	C21	0/DNP	CGA3E1X7R0J225K080AC, GCM188R70J225KE22J	TDK;MURATA	Ceramic capacitor, SMT (0603), 2.2µF, 10%, 6.3V, X7R
46	J21, J24	0/DNP	PCC03SAAN	Sullins Electronic Corp.	Connectors, male, through hole, breakaway, straight through, 3-pins, -65°C to +125°C
47	J27	0/DNP	PCC02SAAN	Sullins Electronic Corp.	Connector, male, through hole, breakaway, straight through, 2-pins, -65°C to +125°C
48	R8	0/DNP	CRCW06031K00FK, ERJ-3EKF1001, CR0603AFX-1001ELF, RMCF0603FT1K00	Vishay, Panasonic, Bourns, Tackpole Electronics Inc.	Resistor, SMT (0603), 1kΩ, 1%, +/-100ppm/°C, 0.1000W
49	R14, R36, R43, R45, R47	0/DNP	CRCW04020000Z0EDHP, RCS04020000Z0	Vishay Draloric, Vishay Dale	Resistors, SMT (0402), 0Ω, jumper, 0.2000W

DNP = Do not procure.

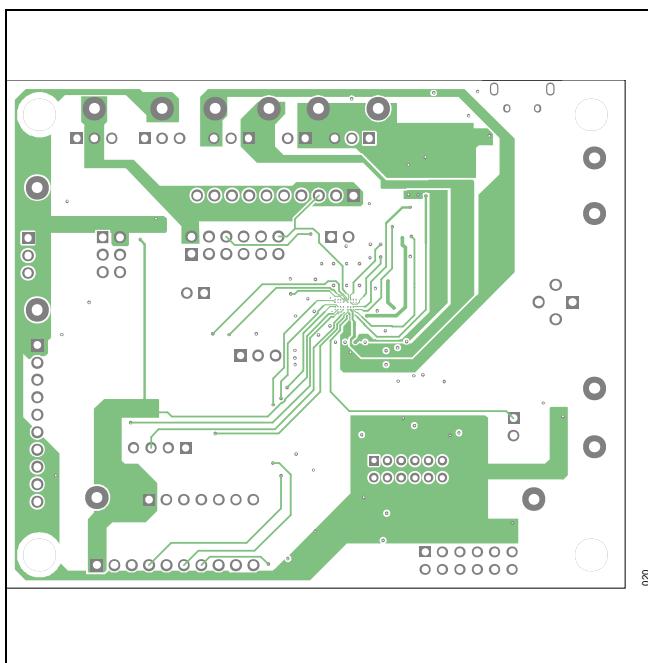

MAX22522 EV Kit Schematic


MAX22522 EV Kit Schematic (continued)

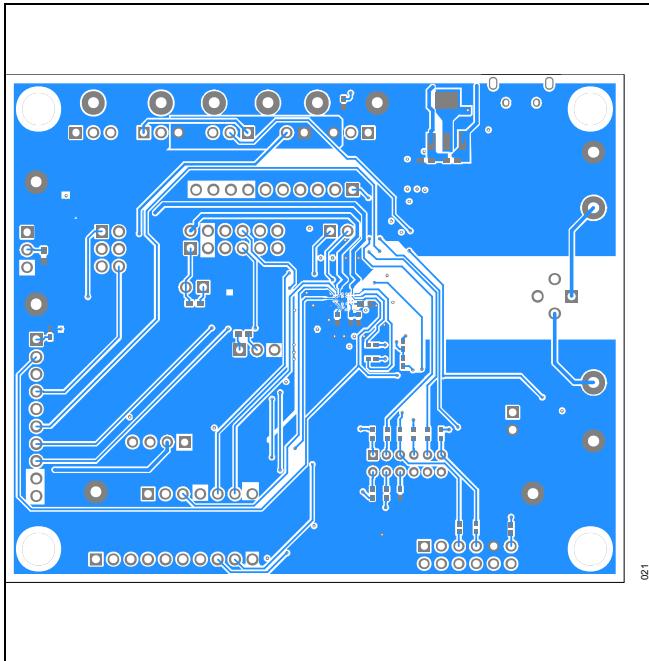

MAX22522 EV Kit Schematic (continued)

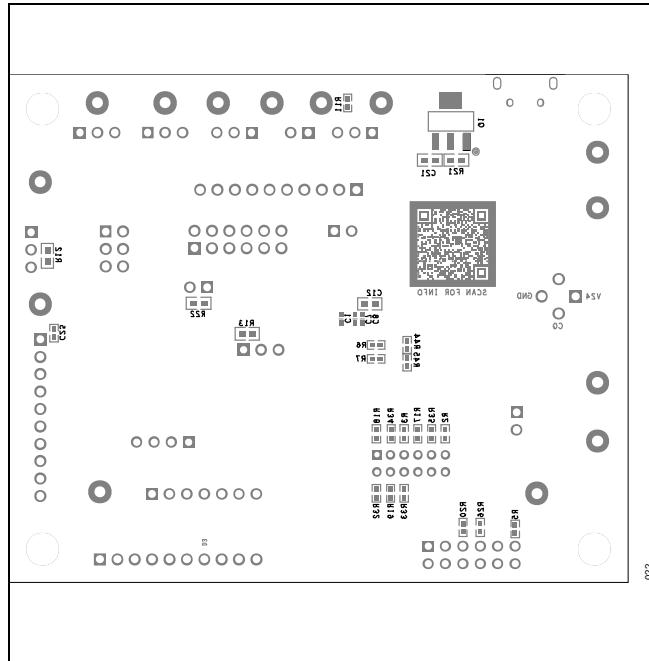

MAX22522 EV Kit PCB Layout

MAX22522 EV Kit Component Placement Guide—Top Silkscreen



MAX22522 EV Kit PCB Layout—Layer 2


MAX22522 EV Kit PCB Layout—Top



MAX22522 EV Kit PCB Layout—Layer 3

MAX22522 EV Kit PCB Layout (continued)

MAX22522 EV Kit PCB Layout—Bottom

MAX22522 EV Kit Component Placement Guide—Bottom Silkscreen

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/25	Initial release	—

Notes

ALL INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENSE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS, IN WHICH ADI PRODUCTS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. ALL ANALOG DEVICES PRODUCTS CONTAINED HEREIN ARE SUBJECT TO RELEASE AND AVAILABILITY.