Evaluating the ADRF5141 Silicon, Transmit and Receive Switch with Limiter, 6 GHz to 12 GHz

FEATURES

► Full featured evaluation board for the ADRF5141
► Simple connection to the test equipment
► Thru line for calibration

EQUIPMENT NEEDED

► DC power supplies
► Network analyzer

GENERAL DESCRIPTION

The ADRF5141 is a transmit and receive switch with limiter manufactured in the silicon process.

This user guide describes the ADRF5141-EVALZ evaluation board, designed to simply evaluate the features and performance of the ADRF5141. The ADRF5141 is pin compatible with the ADRF5144. A photograph of the evaluation board is shown in Figure 1.

The ADRF5141 data sheet provides full specifications for the ADRF5141. Consult the ADRF5141 data sheet in conjunction with this user guide when using the ADRF5141-EVALZ.
TABLE OF CONTENTS

Features .. 1
Equipment Needed .. 1
General Description .. 1
Evaluation Board Photograph 1
Evaluation Board Hardware 3
 Overview ... 3
 Board Layout .. 3
 Power-Supply and Control Inputs 3
RF Inputs and Outputs ... 4
Test Procedure .. 5
Biasing Sequence .. 5
Evaluation Board Schematic and Assembly
 Diagram .. 6
Ordering Information ... 7
 Bill of Materials .. 7

REVISION HISTORY

10/2022—Revision 0: Initial Version
EVALUATION BOARD HARDWARE

OVERVIEW

The ADRF5141-EVALZ is a connectorized board, assembled with the ADRF5141 and its application circuitry. All components are placed on the primary side of ADRF5141-EVALZ. An assembly drawing for the ADRF5141-EVALZ is shown in Figure 7, and an evaluation board schematic is shown in Figure 6.

BOARD LAYOUT

The ADRF5141-EVALZ is designed using RF circuit design techniques on an 8-layer printed circuit board (PCB). The PCB stack-up is shown in Figure 2.

Figure 2. Evaluation Board Stack-Up

The outer copper layers are 1.5 mil thick and the inner layers are 1.3 mil thick.

The top dielectric material is 8 mil Rogers 4003C, which provides 50 Ω controlled impedance and optimizes the high-frequency performance. All RF traces are routed on the top layer, and the second layer is used as the ground plane for RF transmission lines. The remaining six layers are also ground planes filled with FR4 material to manage the thermal rise during high-power operations, and are supported with dense and filled vias to the PCB bottom for thermal relief. The overall board thickness is approximately 62 mil for mechanical strength.

The RF transmission lines are designed using a coplanar waveguide (CPWG) model with a width of 14 mil and ground spacing of 7 mil to have a characteristic impedance of 50 Ω. Ground via fences are arranged on both sides of a CPWG to improve isolation between nearby RF lines and other signal lines.

The exposed ground pad of the ADRF5141, which is soldered on the PCB ground pad, is the main thermal conduit for heat dissipation. The PCB ground pad is densely populated with filled, through vias to provide the lowest possible thermal resistance path from the top to the bottom of the PCB. The connections from the package ground leads to ground are kept as short as possible.

POWER-SUPPLY AND CONTROL INPUTS

The ADRF5141-EVALZ has two power-supply inputs, one control input, and a ground, as shown in Table 1. The DC test points are populated on VDD, VSS, CTRL, and GND. A 3.3 V supply is connected to the DC test points on VDD, and a −3.3 V supply is connected to the DC test points on VSS. Ground reference can be connected to GND. Connect the control input (CTRL) to 3.3 V or 0 V. The typical total current consumption for the ADRF5141 is 380 μA.

The VDD supply pin of the ADRF5141 is decoupled with 100 pF and 1000 pF capacitors, while the VSS supply pin and the CTRL control pin are decoupled with a 100 pF capacitor.

<table>
<thead>
<tr>
<th>Test Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Positive supply voltage</td>
</tr>
<tr>
<td>VSS</td>
<td>Negative supply voltage</td>
</tr>
<tr>
<td>CTRL</td>
<td>Control Input</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 1. Power-Supply and Control Inputs
RF INPUTS AND OUTPUTS

The ADRF5141-EVAL has five edge-mounted, 2.92 mm connectors for the RF inputs and outputs, as shown in Table 2.

<table>
<thead>
<tr>
<th>2.92 mm Connectors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC</td>
<td>Antenna port</td>
</tr>
<tr>
<td>RF1</td>
<td>Transmit port</td>
</tr>
<tr>
<td>RF2</td>
<td>Receive port</td>
</tr>
<tr>
<td>THRU1</td>
<td>Thru line input and output</td>
</tr>
<tr>
<td>THRU2</td>
<td>Thru line input and output</td>
</tr>
</tbody>
</table>

The through calibration line, connecting the THRU1 and THRU2 RF connectors, calibrates out the board loss effects from the measurements of the ADRF5141-EVAL to determine the device performance at the pins of the IC. Figure 3 and Figure 4 show the typical board loss for the ADRF5141-EVAL at room temperature, as well as the embedded and de-embedded insertion loss for the ADRF5141.
BIASING SEQUENCE

To bias up the ADRF5141-EVALZ, perform the following steps:

1. Ground the GND test point.
2. Bias up the VDD test point.
3. Bias up the VSS test point.
4. Bias up the CTRL test point.
5. Apply an RF input signal.

The ADRF5141-EVALZ is shipped fully assembled and tested. Figure 5 provides a basic test setup diagram to evaluate the s-parameters using a network analyzer. Perform the following steps to complete the test setup and verify the operation of the ADRF5141-EVALZ:

1. Connect the GND test point to the ground terminal of the power supply.
2. Connect the VDD test point to the voltage-output terminal of the 3.3 V supply.
3. Connect the VSS test point to the voltage-output terminal of the −3.3 V supply.
4. Connect the CTRL test point to the voltage-output terminal of the 3.3 V supply. The ADRF5141 can be configured in different modes by connecting the CTRL test point to 3.3 V or 0 V, as shown in Table 3.
5. Connect a calibrated network analyzer to the RFC, RF1, and RF2 2.92 mm connectors. If the network analyzer port count is not enough, terminate the unused RF ports with 50 Ω. Sweep the frequency from 4 GHz to 14 GHz and set the power to −10 dBm.

Table 3. Control Voltage Truth Table

<table>
<thead>
<tr>
<th>Digital Control Input</th>
<th>RF Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>TX to ANT</td>
</tr>
<tr>
<td>Low</td>
<td>Insertion loss (on)</td>
</tr>
<tr>
<td>High</td>
<td>Isolation (off)</td>
</tr>
</tbody>
</table>

Additional test equipment is needed to fully evaluate the device functions and performance.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high isolation power combiner is also recommended.

For power compression and power handling evaluations, use a 2-channel power meter and a signal generator. A high enough power amplifier is also recommended at the input. Test accessories, such as couplers and attenuators, must have enough power handling.

The ADRF5141-EVALZ comes with a support plate attached to the bottom side. To ensure maximum heat dissipation and to reduce thermal rise on the board during high-power evaluations, this support plate must be attached to a heatsink using thermal grease.

Note that the measurements performed at the 2.92 mm connectors of the ADRF5141-EVALZ include the losses of the 2.9 mm connectors of the PCB. The thru line must be measured to calibrate out the effects on the ADRF5141-EVALZ. The thru line is the summation of an RF input line and an RF output line that are connected to the device and equal in length.
Figure 6. ADRF5141-EVALZ Evaluation Board Schematic

Figure 7. ADRF5141-EVALZ Evaluation Board Assembly Diagram
EVAL-ADRF5141

ORDERING INFORMATION

Table 4. Bill of Materials for ADRF5141-EVALZ

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C8, C9, C14</td>
<td>Capacitors, 100 pF, 50 V, C0402 package</td>
<td>Murata</td>
<td>GCM1555C1H101JA16D</td>
</tr>
<tr>
<td>1</td>
<td>C10</td>
<td>Capacitor, 1000 pF, 25 V, C0402 package</td>
<td>TDK</td>
<td>CGBJ282X7R11E02K050BA</td>
</tr>
<tr>
<td>2</td>
<td>C7, C13</td>
<td>Capacitor, 1000 pF, 25 V, C0402 package (do not insert, DNI)</td>
<td>TDK</td>
<td>CGBJ282X7R1E02K050BA</td>
</tr>
<tr>
<td>3</td>
<td>C6, C11, C12</td>
<td>Capacitor, 1 μF, 16 V, C0402 package (DNI)</td>
<td>TDK</td>
<td>CGB2A1J81C105M033BC</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>Resistor, 0 Ω, 0.1 W, 0402 package</td>
<td>Panasonic</td>
<td>ERJ-2GE0R0X</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>Resistor, 10 kΩ, 0.1 W, 0402 package</td>
<td>Panasonic</td>
<td>ERJ-2RKF1002X</td>
</tr>
<tr>
<td>5</td>
<td>RFC, RF1, RF2, THRU1, and THRU2</td>
<td>Edge-mount 2.92 mm connectors</td>
<td>Hirose Electric CO.</td>
<td>HK-LR-SR2(12)</td>
</tr>
<tr>
<td>4</td>
<td>GND, CTRL, VDD, and VSS</td>
<td>Surface-mount test points</td>
<td>Components Corporation</td>
<td>TP104-01</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Silicon, transmit and receive switch with limiter, 6 GHz to 12 GHz</td>
<td>Analog Devices</td>
<td>ADRF5141BCCZN</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>ADRF5141-EVALZ</td>
<td>Analog Devices</td>
<td>BR-069450</td>
</tr>
</tbody>
</table>

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.