FEATURES

► Full-featured evaluation board for the ADRF5023
► Easy connection to the test equipment
► Thru line for calibration

EQUIPMENT NEEDED

► DC power supplies
► Network analyzer

GENERAL DESCRIPTION

The ADRF5023 is a single-pole, double-throw (SPDT) switch manufactured in the silicon process.

This user guide describes the ADRF5023-EVALZ evaluation board, designed to evaluate the features and performance of the ADRF5023. Figure 1 shows a photograph of the evaluation board.

The ADRF5023 data sheet provides full specifications for the ADRF5023. Refer to the ADRF5023 data sheet with this user guide when using the ADRF5023-EVALZ.

Figure 1. Evaluation Board Photograph
TABLE OF CONTENTS

Features.. 1
Equipment Needed... 1
General Description.. 1
ADRF5023-EVALZ Evaluation Board Photograph 1
Evaluation Board Hardware.............................. 3
 Overview.. 3
 Board Layout.. 3
 Power-Supply and Control Inputs....................... 3

 RF Inputs and Outputs 4
 Test Procedure.. 5
 Biasing Sequence... 5
Evaluation Board Schematic and Assembly
 Diagram... 6
Ordering Information....................................... 7
 Bill of Materials... 7

REVISION HISTORY

1/2023—Revision 0: Initial Version
EVALUATION BOARD HARDWARE

OVERVIEW

The ADRF5023-EVALZ is a connectorized board, assembled with the ADRF5023 and its application circuitry. All components are placed on the primary side of ADRF5023-EVALZ. An assembly drawing for the ADRF5023-EVALZ is shown in Figure 6, and an evaluation board schematic is shown in Figure 5.

BOARD LAYOUT

The ADRF5023-EVALZ is designed using RF circuit design techniques on a 4-layer printed circuit board (PCB). The PCB stack-up is shown in Figure 2.

Figure 2. Evaluation Board Stack-Up

The outer copper layers are 1.5 mil thick and the inner layers are 0.7 mil thick.

All RF and DC traces are routed on the top copper layer, whereas the inner and bottom layers are grounded planes that provide a solid ground for the RF transmission lines. The top dielectric material is 8 mil Rogers RO4003, offering optimal high-frequency performance. The middle and bottom dielectric materials provide mechanical strength. The total board thickness is 62 mil, which allows 2.4 mm RF edge launch connectors to be placed at the board edges.

The RF transmission lines are designed using a coplanar waveguide (CPWG) model with a width of 14 mil and ground spacing of 7 mil to have a characteristic impedance of 50 Ω. Ground via fences is arranged on both sides of a CPWG to improve isolation between nearby RF lines and other signal lines.

POWER-SUPPLY AND CONTROL INPUTS

The ADRF5023-EVALZ has two power-supply inputs, two control inputs, and a ground, as shown in Table 1. The DC test points are populated on VDD, VSS, CTRL, and GND. A 3.3 V supply is connected to the DC test points on VDD, and a −3.3 V supply is connected to the DC test points on VSS. Ground reference can be connected to GND. Connect the control input, CTRL, to 3.3 V or 0 V. The typical total current consumption for the ADRF5023 is 670 μA.

The VDD and VSS supply pin of the ADRF5023 are decoupled with 100 pF capacitors.

Table 1. Power-Supply and Control Inputs

<table>
<thead>
<tr>
<th>Test Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Positive supply voltage</td>
</tr>
<tr>
<td>VSS</td>
<td>Negative supply voltage</td>
</tr>
<tr>
<td>CTRL</td>
<td>CONTROL input voltage</td>
</tr>
<tr>
<td>EN</td>
<td>EN input voltage</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>
EVALUATION BOARD HARDWARE

RF INPUTS AND OUTPUTS

The ADRF5023-EVALZ has five edge-mounted, 2.4 mm connectors for the RF inputs and outputs, as shown in Table 2.

<table>
<thead>
<tr>
<th>2.4 mm Connectors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC</td>
<td>RF common port</td>
</tr>
<tr>
<td>RF1</td>
<td>RF Throw Port 1</td>
</tr>
<tr>
<td>RF2</td>
<td>RF Throw Port 2</td>
</tr>
<tr>
<td>THRU1</td>
<td>Thru line input and output</td>
</tr>
<tr>
<td>THRU2</td>
<td>Thru line input and output</td>
</tr>
</tbody>
</table>

The through calibration line, connecting the THRU1 and THRU2 RF connectors, calibrates out the board loss effects from the measurements of the ADRF5023-EVALZ to determine the device performance at the pins of the IC. Figure 3 shows the typical board loss for the ADRF5023-EVALZ at room temperature, as well as the embedded and de-embedded insertion loss for the ADRF5023.
TEST PROCEDURE

BIASING SEQUENCE
To bias up the ADRF5023-EVALZ, perform the following steps:

1. Ground the GND test point.
2. Bias up the VDD test point.
3. Bias up the VSS test point.
4. Bias up the CTRL test point.
5. Bias up the EN test point.
6. Apply an RF input signal.

The ADRF5023-EVALZ is shipped fully assembled and tested. Figure 4 provides a basic test setup diagram to evaluate the s-parameters using a network analyzer. Perform the following steps to complete the test setup and verify the operation of the ADRF5023-EVALZ:

1. Connect the GND test point to the ground terminal of the power supply.
2. Connect the VDD test point to the voltage-output terminal of the 3.3 V supply.
3. Connect the VSS test point to the voltage-output terminal of the −3.3 V supply.
4. Connect the CTRL test point to the voltage-output terminal of the 3.3 V supply. The ADRF5023 can be configured in different modes by connecting the CTRL test point to 3.3 V or 0 V, as shown in Table 3.
5. Connect the EN test point to the voltage-output terminal of the 3.3 V supply. The ADRF5023 can be configured in different modes by connecting the EN test point to 3.3 V or 0 V, as shown in Table 3.
6. Connect a calibrated network analyzer to the RFC, RF1, and RF2 2.4 mm connectors. If the network analyzer port count is not enough, terminate unused RF ports with 50 Ω. Sweep the frequency from 10 MHz to 50 GHz and set the power to −10 dBm.

Additional test equipment is needed to fully evaluate the device’s functions and performance.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high-isolation power combiner is also recommended.

For power compression and power handling evaluations, use a 2-channel power meter and a signal generator. A high enough power amplifier is also recommended at the input. Test accessories, such as couplers and attenuators, must have enough power handling.

Note that the measurements performed at the 2.4 mm connectors of the ADRF5023-EVALZ include the losses of the 2.4 mm connectors and the PCB. The thru line must be measured to calibrate out the effects on the ADRF5023-EVALZ. The thru line is the summation of an RF input line and an RF output line that are connected to the device and equal in length.

Table 3. Control Voltage Truth Table

<table>
<thead>
<tr>
<th>EN</th>
<th>CTRL</th>
<th>RF1 to RFC</th>
<th>RF2 to RFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Isolation (off)</td>
<td>Insertion loss (on)</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>Insertion loss (on)</td>
<td>Isolation (off)</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Isolation (off)</td>
<td>Isolation (off)</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Isolation (off)</td>
<td>Isolation (off)</td>
</tr>
</tbody>
</table>
Figure 5. ADRF5023-EVALZ Evaluation Board Schematic

Figure 6. ADRF5023-EVALZ Evaluation Board Assembly Diagram
BILL OF MATERIALS

Table 4. Bill of Materials for ADRF5023-EVALZ

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C1, C4</td>
<td>Capacitors, 100 pF, 50 V, C0402 package</td>
<td>TDK</td>
<td>C1005NP01H101J050BA</td>
</tr>
<tr>
<td>2</td>
<td>C2, C5</td>
<td>Capacitors, 0.1 μF, 16 V, C0402 package (do not insert, DNI)</td>
<td>SAMSUNG</td>
<td>CL05B104K05NNNC</td>
</tr>
<tr>
<td>2</td>
<td>C3, C6</td>
<td>Capacitors, 10 pF, 10 V, C0402 package (DNI)</td>
<td>SAMSUNG</td>
<td>CL05A106MP5NUNC</td>
</tr>
<tr>
<td>2</td>
<td>R1, R2</td>
<td>Resistors, 0 Ω, 0.1 W, 0402 package</td>
<td>Panasonic</td>
<td>ERJ-2GE0R00X</td>
</tr>
<tr>
<td>5</td>
<td>RFC, RF1, RF2, THRU1, and THRU2</td>
<td>Edge-mount 2.4 mm connectors</td>
<td>Hirose Electric Co.</td>
<td>H2.4-LR-SR2(12)</td>
</tr>
<tr>
<td>5</td>
<td>GND, CTRL, EN, VDD, and VSS</td>
<td>Surface-mount test points</td>
<td>Components Corporation</td>
<td>TP104-01</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Silicon SPDT switch, 9 kHz to 45 GHz</td>
<td>Analog Devices, Inc.</td>
<td>ADRF5023BCCZN</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>ADRF5023-EVALZ</td>
<td>Analog Devices, Inc.</td>
<td>BR-070847</td>
</tr>
</tbody>
</table>

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at Subject to the terms and conditions of this Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board provided hereunder is provided “AS IS” and ADI makes no representations, endorsements, guarantees, or warranties, express or implied, related to the Evaluation Board including, but not limited to, the implied warranty of merchantability, title, fitness for a particular purpose or noninfringement of intellectual property rights. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). Export. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.