

Evaluating the AD7124-4/AD7124-8, 4-/8-Channel, Low Noise, Low Power, 24-Bit, Sigma-Delta ADC with PGA and Reference

FEATURES

- ► Fully-featured evaluation board for the AD7124-4/AD7124-8
- ► On-board 2.5V ADR4525 reference
- ► PC control with EVAL-SDP-CB1Z (SDP-B)
- ▶ PC software for control and data analysis (time domain and frequency domain)
- ► Compatible interface with AD7124-4/AD7124-8 Eval+ Software, IIO Scope, Python, and MATLAB

EVALUATION KIT CONTENTS

► EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board

ONLINE RESOURCES

- Documents needed
 - ► AD7124-4/AD7124-8 data sheet
 - Evaluation board schematics
 - ▶ Bill of materials
- ▶ Legacy user guides
 - ► EVAL-AD7124-4SDZ
 - ► EVAL-AD7124-8SDZ
- ▶ Required software
 - ► AD7124-4/AD7124-8 Eval+ Software

EQUIPMENT NEEDED

- ► EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board
- ▶ EVAL-SDP-CB1Z (SDP-B) system demonstration platform
- ▶ DC signal source
- ▶ USB cable
- ▶ PC running Windows® with USB 2.0 port

EVALUATION BOARD PHOTOGRAPH

GENERAL DESCRIPTION

The EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation kit features the AD7124-4/AD7124-8, which is a 24-bit, low power, multichannel, low-noise precision sigma-delta analog-to-digital converter (ADC).

The EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ connects to the USB port of the PC by connecting to the EVAL-SDP-CB1Z (SDP-B) motherboard. A 5V USB supply via the PC is regulated to supply the AD7124-4/AD7124-8 and support all necessary components.

The AD7124-4/AD7124-8 Eval+ Software fully configures the AD7124-4/AD7124-8 device register functionality and provides DC time domain analysis in the form of waveform graphs and associated noise analysis for ADC performance evaluation.

The EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ is an evaluation board that allows the user to evaluate the features of the ADC. The user PC software executable controls the AD7124-4/AD7124-8 over the USB through the EVAL-SDP-CB1Z (SDP-B) system demonstration platform (SDP) board.

Full specifications on the AD7124-4/AD7124-8 are available in the AD7124-4/AD7124-8 data sheets, available from Analog Devices, Inc., and must be consulted with this user guide when using the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board.

Figure 1. EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ Evaluation Board Photograph

User Guide

TABLE OF CONTENTS

Power Supplies	7
Reference Options	
Evaluation Board Setup Procedure	8
Evaluation Board Software	g
Software Installation Procedures	g
Software Operation	12
Configuration Tab	12
Waveform Tab	
Histogram Tab	16
Register Map Tab	17
Noise Test—Quick Start Demonstration	18
Notes	21
	Serial Interface

REVISION HISTORY

10/2025—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 21

EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ QUICK START GUIDE

To use the evaluation board, do the following steps:

- With the EVAL-SDP-CB1Z (SDP-B) board disconnected from the USB port of the PC, install the AD7124-4/AD7124-8 Eval+ Software. Restart the PC after the software installation is complete. For the complete software installation instructions, see the Evaluation Board Software section.
- Connect the EVAL-SDP-CB1Z (SDP-B) board to the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ board.
- Screw the two boards together using the plastic screw and washer set included in the evaluation board kit to connect the boards firmly together (see Figure 2 bottom image).
- 4. Connect the EVAL-SDP-CB1Z (SDP-B) board to the PC using the supplied USB cable. For the Windows XP operating system, search for the EVAL-SDP-CB1Z drivers. Choose to automatically search for the drivers for the EVAL-SDP-CB1Z (SDP-B) board if prompted by the operating system.
- From the Programs menu, go to the Analog Devices subfolder, and click AD7124 EVAL+ to launch the Eval+ Software (for more details, see the Launching the Software section).

Figure 2. Hardware Configuration, Setting Up the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ Evaluation Board

EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ BLOCK DIAGRAM

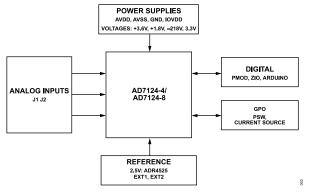


Figure 3. EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ Block Diagram

analog.com Rev. 0 | 3 of 21

EVALUATION BOARD HARDWARE

DEVICE DESCRIPTION

The AD7124-4/AD7124-8 is a low-noise, precision complete analog front end (AFE) for high-precision measurement applications. It contains a low noise, 24-bit Σ - Δ ADC. The AD7124-4/AD7124-8 can support four differential inputs, eight pseudodifferential or single-ended inputs. The on-chip low-noise instrumentation amplifier means that signals of small amplitude can interface directly to the ADC. Other on-chip features include a low drift 2.5V reference, excitation currents, reference buffers, multiple filter options, and many diagnostic features.

Full specifications on the AD7124-4/AD7124-8 are available in the AD7124-4/AD7124-8 data sheets available from Analog Devices,

Inc., and must be consulted with this user guide when using the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board. Full details on the EVAL-SDP-CB1Z (SDP-B controller board) are available at EVAL-SDP-CB1Z (SDP-B).

HARDWARE LINK OPTIONS

The default link options are listed in Table 1. By default, the board operates from the USB power supply via the EVAL-SDP-CB1Z (SDP-B). The 5V default supply required for the AD7124-4/AD7124-8 comes from the on-board ADP150 low-dropout regulators (LDOs), which generate its voltages from the EVAL-SDP-CB1Z (SDP-B).

Table 1. Default Link and Solder Link Options

Link Number	Color	Default Option	Description	Pitch (mm)
LK1	Red	Inserted	Noise test, Channel AIN0 + Channel AIN1	2.54
_K2	Red	1 Pin	Thermocouple, cold junction resistor bypass	2.54
LK3	Black	A	Position (Pos) A: REFIN+ to J2, Pos B: REFIN+ to J1	2.54
_K4	Red	Inserted	Short REFIN- to AVSS	2
.K5	Black	A	Pos A: REFIN+ to J2, Pos B: REFIN+ to J1	2.54
_K6	Black	Α	Pos A: REFIN+ to ADR4525, Pos B: REFIN+ to INTREF	2.54
_K7	Red	1 Pin	Short REFIN-/AVSS: Pos inserted = 4-wire bridge	2
_K8	Red	1 Pin	Short REFIN-/PSW: Pos inserted = 4-wire bridge	2
_K9	Red	1 Pin	Short REFIN+/AVDD: Pos inserted = 4-wire bridge	2
LK10	Black	Inserted	Short EXC+/AVDD: Pos inserted = 4-wire bridge	2.54
LK11 to LK12	Black	1 Pin	Inserts R97 into AVDD path: Pos inserted = AVDD current test	2
K13 to LK14	Black	1 Pin	Inserts R96 into IOVDD path: Pos inserted = IOVDD current test	2
_K15	Black	A	Pos A: AVDD to 3.3V LDO, Pos B: AVDD to external(EXT) AVDD	2.54
_K16	Black	Α	Pos A: AVSS to -1.8V LDO, Pos B: AVSS to EXT AVSS	2.54
_K17	Black	В	Pos A: AVSS to -1.8V LDO, Pos B: AVSS to DGND (Disconnect the LK31 to LK33 for Pos A)	2.54
_K18	Black	A	Pos A: AVDD to 3.3V LDO, Pos B: AVDD to +1.8V LDO (If LK15 is in Pos A)	2.54
-K19	Black	В	Pos A: IOVDD to EXT IOVDD, Pos B: AVDD to LDO supply	2.54
K27 to LK30	Black	A	Pos A: Arduino communication to P4, Pos B: Arduino communication to P3	2.54
K31 to LK33	Black	Inserted	Short AVSS/DGND	2
r_avdd	Black	A	Pos A: AVDD to AVDD pin directly, Pos B: AVDD to AVDD pin through R97 (for Pos B, insert the LK11 and LK12)	2.54
T_IOVDD	Black	A	Pos A: IOVDD to IOVDD pin directly, Pos B: IOVDD to IOVDD pin through R97 (for Pos B, insert the LK11 and LK12)	2.54

analog.com Rev. 0 | 4 of 21

EVALUATION BOARD HARDWARE

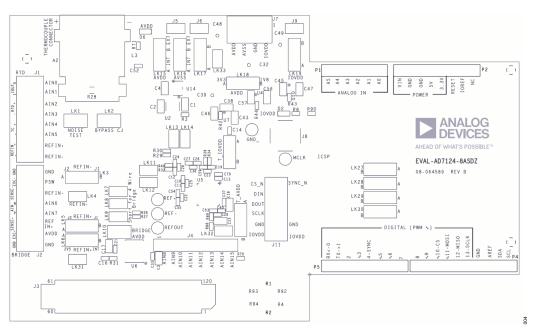


Figure 4. EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ Silkscreen

analog.com Rev. 0 | 5 of 21

EVALUATION BOARD HARDWARE

On-Board Connectors

Table 2 provides information about the external connectors on the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ.

Table 2. On-Board Connectors

Connector	Function	Pin Number	Pin Function
A2	Thermocouple	1	AIN2, TC+
		2	AIN3, TC-
J1 Analog inputs		1	AIN0, Excitation current IOUT0, noise test
	RTD and Thermocouple	2	AIN1, -Excitation current IOUT1, noise test
		3	AIN2, RTD+
		4	AIN3, RTD-
		5	AIN4, TC+
		6	AIN5, TC-
		7	External reference+ (REFIN1+)
		8	External reference– (REFIN1–)
J2	Analog inputs	1	Ground/shield connection
	Wire bridge	2	Excitation-/power switch function for wire bridge
		3	External reference-/sense-
		4	AIN6 (AINN) with DC filtering
		5	AIN5 (AINP) with DC filtering
		6	External reference+/sense+
		7	Excitation+/AVDD supply for wire bridge
		8	Ground/shield connection
J3	SDP-120	N/A ¹	N/A ¹
J4	Analog inputs	1	AIN8
	Only for the AD7124-8	2	AIN9
		3	AIN10
		4	AIN11
		5	AIN12
		6	AIN13
		7	AIN14
		8	AIN15
J5		1	DGND
		2	External AVSS
J6		1	External AVDD
		2	DGND
J7	External power	1	External IOVDD connection
		2	External GND connection
		3	External AVSS connection
		4	External AVDD connection
J8	External MCLK	1	External MCLK
		2, 3, 4, 5	DGND
J9		1	External IOVDD
		2	DGND
P1 to P5	Arduino connector	N/A ¹	N/A ¹
J11	PMOD connection	N/A ¹	N/A ¹

¹ N/A means not applicable.

analog.com Rev. 0 | 6 of 21

EVALUATION BOARD HARDWARE

POWER SUPPLIES

The EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board receives power through the controller board when connected to the PC via USB. Linear regulators generate the required power supply levels from the applied USB voltage (see Table 3).

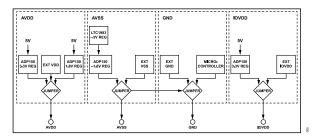


Figure 5. Block Diagram of Evaluation Board Power Supplies

AVDD (LK18) and AVSS (LK16) selections are as follows:

- ▶ 3.3V supply (default)
 - ▶ 3.3V regulator supplies AVDD
 - ▶ AVSS connected to GND (LK31 to LK33)
- ▶ ±1.8V split supply
 - ▶ +1.8V regulator supplies AVDD
 - ▶ -1.8V regulator supplied AVSS
- ► External AVDD/AVSS
 - Connections on connector J7

Table 3. AVDD/AVSS Regulators and Their Shutdown Links

Supply	Regulator	Shutdown Resistor
+3.3V regulator	ADP150A	R42
+1.8V regulator	ADP150A	R44
−1.8V regulator	ADP7182	R3

IOVDD (LK19) selection is as follows:

- ▶ 3.3V supply (default)
 - ▶ 3.3V regulator supplies IOVDD
 - ▶ GND connected to AVSS (LK31 to LK33)
- External IOVDD
 - ▶ Connections on connector J7

Table 4. IOVDD Regulator and Shutdown Link

Supply	Regulator	Shutdown Resistor
3.3V regulator	ADP150A	R43

SERIAL INTERFACE

There are four primary signals: $\overline{\text{CS}}$, SCLK, SDI, and SDO (all are inputs, except for SDO, which is an output). By default, the $\overline{\text{RDY}}$ function is also available on the SDO pin.

These are the following serial communication options:

▶ SDP-120 pin connection EVAL-SDP-CB1Z (SDP-B)

- ▶ PMOD connector
- Standalone mode
 - Moving LK27, LK28, LK29 and LK30 jumpers from Pos A to Pos B gives exposure to serial-peripheral interface (SPI) signals on the P3 connector. Using the pins from these links can then be used to flywire the signals to an alternative digital capture setup.

For more details on SPI, refer to the Introduction to SPI Interface.

REFERENCE OPTIONS

The EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ include an external 2.5V reference (the ADR4525) and an internal 2.5V reference. The default operation uses the external reference input, which accepts the 2.5V ADR4525 on the evaluation board.

Select the reference used for a conversion by choosing the reference in the configuration registers associated with Setup 0 to Setup 7. Switch between using the internal reference and external reference by accessing the AD7124-8 registers through the pop-up windows (for more details, see the Evaluation Board Software section) via the evaluation software. Figure 6 shows how to select the reference source for Setup 0 to Setup 7. Figure 7 shows the ADC Control register setting that enables the internal reference.

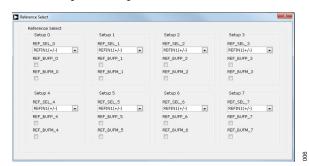


Figure 6. Selecting the Reference Source Using Pop-Up Windows

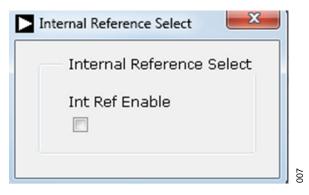


Figure 7. Enabling the Internal 2.5V Reference Using Pop-Up Windows

analog.com Rev. 0 | 7 of 21

EVALUATION BOARD HARDWARE

EVALUATION BOARD SETUP PROCEDURE

After following the instructions in the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ Quick Start Guide section, set up the evaluation and SDP boards.

Warning

The evaluation software and drivers must be installed before connecting the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board and the EVAL-SDP-CB1Z (SDP-B) board to the USB port of the PC to ensure the PC correctly recognizes the evaluation system.

analog.com Rev. 0 | 8 of 21

EVALUATION BOARD SOFTWARE

SOFTWARE INSTALLATION PROCEDURES

The EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation kit includes a CD, which contains a software that a user must installed before using the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board.

There are two parts to the installation:

- ► AD7124-4/AD7124-8 Eval+ Software installation.
- ▶ EVAL-SDP-CB1Z SDP board drivers installation.

Warning

The evaluation software and drivers must be installed before connecting the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ evaluation board and EVAL-SDP-CB1Z board to the USB port of the PC to ensure the PC correctly recognizes the evaluation system.

Installing the AD7124-4/AD7124-8 Eval+ Software

To install the AD7124-4/AD7124-8 Eval+ Software:

- 1. With the EVAL-SDP-CB1Z disconnected from the USB port of the PC, insert the installation CD into the CD-ROM drive.
- Double-click the setup.exe file to begin the evaluation board software installation. The software then installs to the following default location: C:\Program Files\Analog Devices\AD7124 EVAL+.
- A dialog box appears asking for permission to allow the program to make changes to the PC. Click Yes.



Figure 8. AD7124-4/AD7124-8 Eval+ Software Installation: Granting Permission for the Program to Make Changes to PC

4. Select a location to install the software, and then click Next. Figure 9 shows the default locations, which are displayed when the dialogue box appears, but a user can select another location by clicking Browse.

Figure 9. AD7124-4/AD7124-8 Eval+ Software Installation: Selecting the Location for Software Installation

5. A license agreement appears. Read the agreement and then select I accept the License Agreement, and click Next.

Figure 10. AD7124-4/AD7124-8 Eval+ Software Installation: Accepting the License Agreement

6. A summary of the installation displays. Click **Next** to continue.

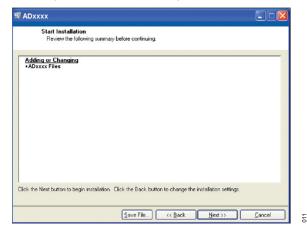


Figure 11. AD7124-4/AD7124-8 Eval+ Software Installation: Reviewing a Summary of the Installation

analog.com Rev. 0 | 9 of 21

EVALUATION BOARD SOFTWARE

The message in Figure 12 appears when the installation is complete. Click Next.

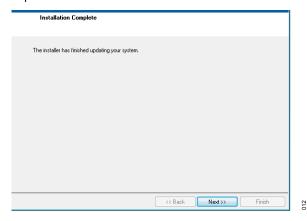


Figure 12. AD7124-4/AD7124-8 Eval+ Software Installation: Indicating When the Installation is Complete

Installing the EVAL-SDP-CB1Z System Demonstration Platform Board Drivers

After the installation of the evaluation software is complete, a welcome window appears for the installation of the EVAL-SDP-CB1Z SDP board drivers.

1. With the EVAL-SDP-CB1Z board still disconnected from the USB port of the PC, make sure that all other applications are closed, and then click **Next** (see Figure 13).

Figure 13. EVAL-SDP-CB1Z Drivers Setup: Beginning the Drivers Installation

Select the location to install the drivers, and then click Next (see Figure 14).

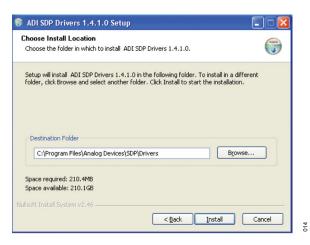


Figure 14. EVAL-SDP-CB1Z Drivers Setup: Selecting the Location for Drivers Installation

Click Install to install the drivers (see Figure 15).

Figure 15. EVAL-SDP-CB1Z Drivers Setup: Granting Permission to Install

4. To complete the drivers installation, click **Finish**, which closes the installation Setup Wizard (see Figure 16).

Figure 16. EVAL-SDP-CB1Z Drivers Setup: Completing the Drivers Setup
Wizard

analog.com Rev. 0 | 10 of 21

EVALUATION BOARD SOFTWARE

5. Before using the evaluation board, restart the PC (see Figure 17).

Figure 17. EVAL-SDP-CB1Z Drivers Setup: Restarting the PC

Setting Up the System for Data Capture

After completing the steps in the Software Installation Procedures and the Evaluation Board Hardware sections, set up the system for data capture as follows:

- Allow the Found New Hardware Wizard to run after connecting the EVAL-SDP-CB1Z board to the PC. Note that for the Windows XP, search for the EVAL-SDP-CB1Z drivers. Choose to automatically search for the drivers for the EVAL-SDP-CB1Z board if prompted by the operating system.
- 2. Check the board is connecting to the PC correctly using the **Device Manager** of the PC.
- 3. Access the **Device Manager** as follows:
 - a. Right-click My Computer, and then click Manage.
 - **b.** A dialog box appears asking for permission to allow the program to make changes to the PC. Click **Yes**.
 - c. The Computer Management box appears. Click Device Manager from the list of System Tools (see Figure 18).
 - d. The EVAL-SDP-CB1Z board then appears under ADI Development Tools. This indicates the driver software is installed and the board is connecting to the PC correctly.

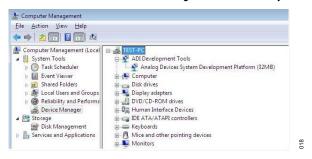


Figure 18. Device Manager: Checking the Board is Connected to the PC Correctly

Launching the Software

After completing the steps in the Setting Up the System for Data Capture section, launch the AD7124-4/AD7124-8 Eval+ Software as follows:

 From the Start menu, click Programs > Analog Devices > AD7124 Eval+ > AD7124 Eval+. The dialog box in Figure 22

- appears, select **EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ**, and the main window of the software then displays, as shown in Figure 23.
- 2. If the AD7124-4/AD7124-8 evaluation system is not connected to the USB port via the EVAL-SDP-CB1Z when the software is launched, a connectivity error appears, as shown in Figure 19. Connect the evaluation board to the USB port of the PC, wait a few seconds, click Rescan, and then follow the on-screen instructions.

Figure 19. Connectivity Error Alert

3. When the software starts running, it searches for hardware connected to the PC. A dialog box indicates when the generic SDP attached to the PC is detected, the main window appears (see Figure 21). Press the RESET button on the SDP board, as highlighted in Figure 20.

Figure 20. SDP Connectivity Board—RESET Button

4. Pressing the RESET button enables the software to rescan for a connected SDP board. If the board is connected correctly, the message appears, as shown in Figure 21.

Figure 21. Connectivity when SDP and Evaluation Boards are Found

analog.com Rev. 0 | 11 of 21

EVALUATION BOARD SOFTWARE

SOFTWARE OPERATION

Overview of the Main Window

The evaluation software supports both the AD7124-4 and the AD7124-8 devices.

When running the software, select the specific evaluation board connected to the PC, as shown in Figure 22. For the AD7124-4/AD7124-8, select the AD7124-4 Evaluation Board/AD7124-8 Evaluation Board from the Select Evaluation Hardware area, as shown in Figure 22.

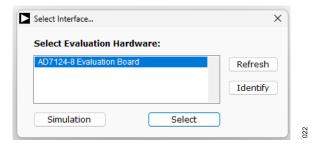


Figure 22. AD7124 Evaluation Board Selection

When selecting the EVAL-AD7124-4ASDZ/EVAL-AD7124-8ASDZ, the main window of the evaluation software appears, as shown in Figure 23. Figure 23 shows the control buttons and analysis indicators of the AD7124-4/AD7124-8 Eval+ Software. The main window of the AD7124-4/AD7124-8 Eval+ Software contains four tabs:

- ▶ Configuration
- ▶ Waveform
- Histogram
- Register Map

CONFIGURATION TAB

The **Configuration** tab shows a block diagram of the AD7124-8. It allows the user to set up the ADC, reset the ADC, read the diagnostics to view errors present, as well as configure the device for different demo modes. Figure 23 shows the **Configuration** tab in more detail, and the following sections discuss the different elements on the **Configuration** tab of the software window.

ADC RESET Button

Click **ADC RESET** (Label 2) to perform a software reset of the AD7124-8. There is no hardware reset pin on the AD7124-8.

To perform a hard reset, remove power from the board. However, the software reset has the same effect as a hard reset.

Selecting External Reference

There are two options to select the external reference on the AD7124-4/AD7124-8 Eval+ Software: **AVdd** and **Refin1(+/-)** (La-

bel 3). The **Refin1(+/-)** field sets the external reference voltage that is connected between REFIN1+ and REFIN1-. The **AVdd** field sets the AV_{DD} voltage level for the AD7124-8. Using EVAL-AD7124-8ASDZ evaluation board, the AV_{DD} voltage is 3.3V. Either of these voltage levels can be used to calculate the results on the **Waveform** and **Histogram** tabs. The evaluation board has an external 2.5V ADR4525 reference, this reference selection can be bypassed on the evaluation board. If bypassing the ADR4525 on board, change the external reference voltage value in **Refin1(+/-)** to ensure correct calculation of results in the **Waveform** and **Histogram** tabs.

TUTORIAL Button

Click the **TUTORIAL** button (Label 4) to open a tutorial on using the software and additional information on using the AD7124-4/AD7124-8 Eval+ Software.

Functional Block Diagram

The functional block diagram of the ADC (Label 5) shows each of the functional blocks within the ADC. Clicking a configuration button on this graph opens the configuration pop-up window for that block.

Configuration Pop-Up Button

Each configuration pop-up button (Label 6) opens a different window to configure the relevant functional block.

CONFIG SUMMARY Button

Clicking the **CONFIG SUMMARY** button (Label 7) displays the channel configuration information on each of the individual setups as well as information on any error present. These tabs can be used to quickly check how the ADC channels are configured, as well as any errors that are present.

DEMO MODES

The AD7124-4/AD7124-8 Eval+ Software supports a number of demo modes (Label 8). These demo modes configure the AD7124-8 for each of the modes shown. A help file is available for each demo mode, to access this help file, click the question mark button.

Status Bar

The status bar (Label 9) displays the status updates such as **Analysis Completed**, **Reset Completed**, and **Configuring Demo Mode** during software use, as well as the software version and the **Busy** indicator.

analog.com Rev. 0 | 12 of 21

EVALUATION BOARD SOFTWARE

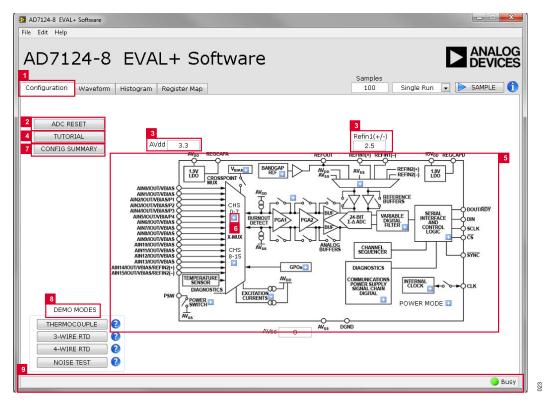


Figure 23. Configuration Tab of the AD7124-8 Eval+ Software

analog.com Rev. 0 | 13 of 21

EVALUATION BOARD SOFTWARE

WAVEFORM TAB

The **Waveform** tab graphs the conversions gathered and processes the data, calculating the peak-to-peak noise, rms noise, and resolution (see Figure 24).

Waveform Graph and Controls

The data waveform graph (Label 1) shows each successive sample of the ADC output. Zoom in on the data in the graph using the control toolbar (Label 2). Change the scales on the graph by typing values into the x-axis and y-axis.

Analysis Channel

The **Noise Analysis** (Label 10) section and histogram graph show the analysis of the channel selected via the **Analysis Channel** control (Label 3).

Samples

The **Samples** numeric control (Label 4) and batch control (Label 5) set the number of samples gathered per batch. Batch control sets whether a single batch or multiple batches of samples are gathered. This control is unrelated to the ADC mode. A user can capture a defined sample set or continuously gather batches of samples. In both cases, the number of samples set in the **Samples** (Label 4) numeric input shows the number of samples.

SAMPLE Button

Click the **SAMPLE** button (Label 6) to start gathering ADC results. Results appear in the waveform graph (Label 1).

Channel Selection

The channel selection control (Label 7) selects which channels display on the data waveform and shows the analog inputs for the channel labeled next to the on and off controls.

These controls only affect the display of the channels and have no effect on the channel settings in the ADC register map.

Display Units and Axis Controls

Click the **Display Units** drop-down menu (Label 8) to select whether the data graph displays in units of voltages or codes. This control affects both the waveform graph and the histogram graph. The axis controls switch between dynamic and fixed. When **Dynamic** is selected, the axis automatically adjusts to show the entire range of the ADC results after each batch of samples. A user can program the axis ranges when selecting **Fixed**, however, these ranges do not automatically adjust after each batch of samples.

CRC Error and Overall Error

The CRC Error LED indicator (Label 9) illuminates on the Waveform tab when a cyclic redundancy check (CRC) error is detected in the communications between the software and the AD7124-8. The CRC functionality on the AD7124-8 is disabled by default and must be enabled for this indicator to work. The Error Present LED (Label 9) indicates if an overall error is present in the diagnostics register. For this indicator to work, the check for the different diagnostic errors must be enabled in the Error EN register.

Noise Analysis

The **Noise Analysis** (Label 10) section displays the results of the noise analysis for the selected analysis channel, which includes both noise and resolution measurements.

analog.com Rev. 0 | 14 of 21

EVALUATION BOARD SOFTWARE

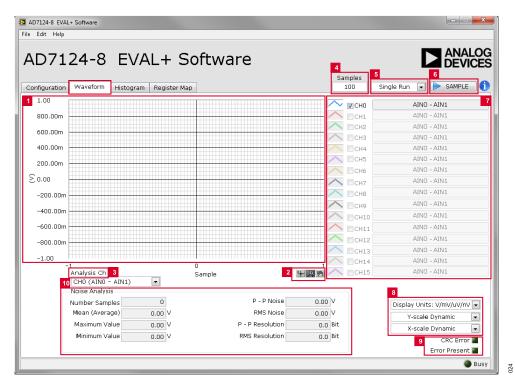


Figure 24. Waveform Tab of the AD7124-8 Eval+ Software

analog.com Rev. 0 | 15 of 21

EVALUATION BOARD SOFTWARE

HISTOGRAM TAB

The **Histogram** tab generates a histogram using the gathered samples and processes the data, calculating the peak-to-peak noise, rms noise, and resolution (see Figure 25).

Histogram Graph and Controls

The data histogram graph (Label 1) shows the number of times each sample of the ADC output occurs. Zoom in on the data using the control toolbar (Label 6) in the graph. Change the scales on the graph by typing values into the x-axis and y-axis.

Analysis Channel

The **Noise Analysis** (Label 3) section and histogram graph show the analysis of the channel selected via the **Analysis Channel** (Label 2) control.

Noise Analysis

The **Noise Analysis** (Label 3) section displays the results of the noise analysis for the selected analysis channel, which includes both noise and resolution measurements.

Display Units and Axis Controls

Click the **Display Units** drop-down menu (Label 4) to select whether the data graph displays in units of voltages or codes. This control affects both the waveform graph and the histogram graph. The axis controls can be used to switch between dynamic and fixed range. When **Dynamic** is selected, the axis automatically adjusts to show the entire range of the ADC results after each batch of samples. A user can program the axis ranges when selecting **Fixed**, however, these ranges do not automatically adjust after each batch of samples.

CRC Error and Overall Error

The CRC Error LED indicator (Label 5) illuminates on the Histogram tab when a CRC error is detected in the communications between the software and the AD7124-8. The CRC functionality on the AD7124-8 is disabled by default and must be enabled for this indicator to work. The Error Present LED (Label 5) indicates if an overall error is present in the diagnostics register. For this indicator to work, the check for the different diagnostic errors must be enabled in the Error EN register.

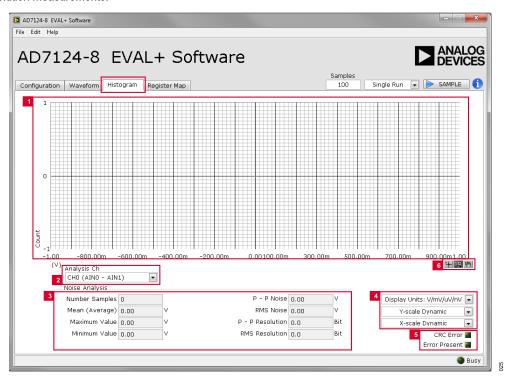


Figure 25. Histogram Tab of the AD7124-8 Eval+ Software

analog.com Rev. 0 | 16 of 21

EVALUATION BOARD SOFTWARE

REGISTER MAP TAB

Use the **Register Map** tab to access the registers of the AD7124-8. Figure 26 shows the **Register Map** tab. This tab changes register settings and shows additional information about each bit in each individual register.

Register Map

On the top of Figure 26, there are the registers of the AD7124-8. Click any register to read the register value. Access each register of the AD7124-8 using the register map (Label 1).

Save and Load Buttons

The **Save** and **Load** buttons (Label 2) on the **Register Map** tab allow the user to save and load register settings. Click **Save** to save all the current register settings to a file for later use. Click **Load** to load a previously saved register map.

Register

The **Register** section (Label 3) shows the value that is set in the selected register. Check the value of the register in this window by clicking on the bits.

Clicking any individual bit changes the bit from 1 to 0 or 0 to 1, which depends on the initial state of the bit. The register value can also be changed by writing the hexadecimal value in the input field to the right of the individual bits.

Bit fields

The **Bit fields** section (Label 4) shows the individual bit field of the selected register. The register is broken by name into its bit fields, name of the bit fields, a description of each bit field, and access information. View the options for the individual bit fields by clicking on the arrow next to the bit field. Change the bit field value through this drop-down menu or by writing the appropriate hexadecimal value in the associated **Value** input field on the far right of the bit field.

Documentation

The **Documentation** section (Label 5) shows information relating to the different bit fields when selected from the register map section on the left. This information is similar to the information mentioned in the AD7124-8 data sheet.

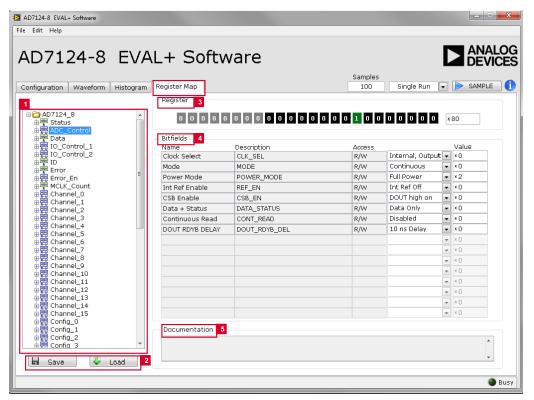


Figure 26. Register Map Tab of the AD7124-8 Eval+ Software

analog.com Rev. 0 | 17 of 21

EVALUATION BOARD SOFTWARE

NOISE TEST—QUICK START DEMONSTRATION

Click the **NOISE TEST** demo button (see Figure 23) to configure the device for the noise test. The AD7124-8 is now configured for the noise test demo, where the output data rate is 9.38SPS, where the sinc⁴ digital filter, full power mode of operation, and external reference REFIN1(±) is selected. Gain and offset are the default factory values following a reset.

To gather samples, change the **Samples** field to the number of samples required, then click the **SAMPLE** button to acquire the samples from the ADC. Figure 27 shows an example of the main window after running a noise test.

Reading Samples From the ADC

The evaluation board is set up to use the external 2.5V on-board reference (ADR4525). To read samples from the ADC, do the following steps (see Figure 23):

- The value in the Refin1(+/-) field on the Configuration tab is set to 2.5V by default to use the external 2.5V on-board reference (ADR4525). If a different reference is used to the AD7124-8, the Refin1(+/-) field must be updated accordingly. The analysis results are based on the value set in this input field.
 - a. When selecting Single Run, a batch of samples is read when clicking the SAMPLE button, the batch size is set by the value in the Samples field.

- b. When selecting Continuous Read, the software performs a continuous capture from the ADC by clicking the SAMPLE button. Click the SAMPLE button again to stop capturing data.
- **2.** Use the navigation tools within each graph to control the cursor, zooming, and panning.

Waveform

Find the waveforms resulting from the gathered samples in the **Waveform** tab (see Figure 27). The waveform graph shows each successive sample of the ADC output (input referred). The indicators beside this graph show the channels converting. The navigation tools allow a user to control the cursor, zooming, and panning. A user can also display the conversions as voltages or codes.

Below the graph are parameters, such as peak-to-peak noise and rms noise, in the **Analysis** section for the current batch of samples. If there are several enabled analog input channels, then a user can select each enabled channel and the conversions through the analyzed channel using the **Analysis Channel**.

Save the conversion data in a text file using **File** at the top of the window. To save the data into an Excel file, right-click the waveform graph and select **Export Data** from the drop-down menu that appears. A **Save** dialog box appears, which prompts the user to save the data to an appropriate folder location.

analog.com Rev. 0 | 18 of 21

EVALUATION BOARD SOFTWARE

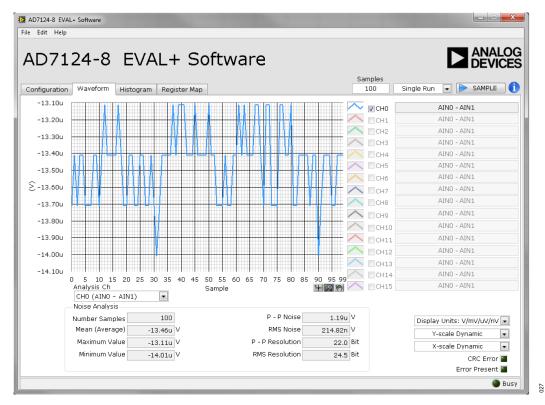


Figure 27. Example of the Waveform Tab after Running a Noise Test

analog.com Rev. 0 | 19 of 21

EVALUATION BOARD SOFTWARE

Histogram

This tab shows the histogram analysis (see Figure 28). The indicators beside this graph show the channels converting. The navigation tools allow a user to control the cursor, zooming, and panning. A user can also display the conversions as voltages or codes.

Parameters such as peak-to-peak noise and rms noise are displayed in the **Analysis Results** section for the current batch of samples.

Save the conversion data in a text file using **File** at the top of the window. To save the data into an Excel file, right-click the waveform graph and select **Export Data** from the drop-down menu that appears. A **Save** dialog box appears, which prompts the user to save the data to an appropriate folder location.

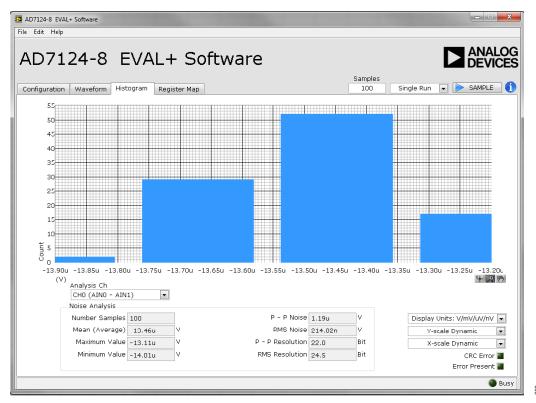


Figure 28. Example of the Histogram Tab after Running a Noise Test

analog.com Rev. 0 | 20 of 21

NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Analog Way, Wilmington, MA 01887-2356, U.S.A. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL. SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed. All Analog Devices products contained herein are subject to release and availability.

