

Evaluating the AD4086/AD4087 14-Bit, 40/20 MSPS, Differential SAR ADC

FEATURES

- ▶ Full featured evaluation board for [AD4086/AD4087](#)
- ▶ [Analysis | Control | Evaluation \(ACE\) Software](#) plugin available for device configuration, data capture, and performance evaluation
- ▶ Flexible analog front end
- ▶ On-board power solution and precision reference
- ▶ On-board clock generation circuitry with sampling frequency control via the ACE software
- ▶ FMC compatible

EVALUATION BOARD KIT CONTENTS

- ▶ EVAL-AD4086-FMCZ evaluation board
- ▶ Micro-SD memory card with SD adapter, containing system board boot software and Linux OS

EQUIPMENT NEEDED

- ▶ PC running Windows® 10 operating system or higher
- ▶ Digilent ZedBoard with 12V wall adapter power supply
- ▶ Precision signal source
- ▶ SMA cables to connect a signal source to the EVAL-AD4086-FMCZ

GENERAL DESCRIPTION

The EVAL-AD4086-FMCZ is designed to demonstrate the performance of the AD4086 analog-to-digital converter (ADC) and provide access to a limited set of device configuration features through the **ACE Software** environment. The EVAL-AD4086-FMCZ evaluation kit supports the following AD4086 features:

- ▶ Low voltage digital signaling (LVDS) data output interface.
- ▶ ADC configuration via serial peripheral interface (SPI).
- ▶ Internal or external generation of 1.1V regulated supply rails.
- ▶ Sampling rate capability between 1.25MSPS and up to 40MSPS, depending on the specific ADC.

The EVAL-AD4086-FMCZ evaluation board was designed for use with the Digilent ZedBoard via the field programmable gate array (FPGA) mezzanine card (FMC) connector. The ZedBoard uses a Xilinx Zynq7000 system on chip (SoC) running Analog Devices, Inc., Kuiper Linux and LIBIIO (included on the SD card supplied in the evaluation board kit) to facilitate communication with the EVAL-AD4086-FMCZ, enabling ADC configuration, capturing data, and providing the communication link to the host PC and the **ACE Software** plugin.

The AD4086 that is physically mounted on the board can be evaluated with any sampling frequency range from 1.25MHz to 40MHz. However, performance of the AD4087 can also be estimated using this board by setting the sampling frequency to 20MHz. Note, the captured results for AD4086 running at the reduced sample rate should only be taken as indications of the signal-to-noise ratio (SNR) rather than the actual measurement; nevertheless, measured SNR for the AD4087 will not be worse.

Table 1. EVAL-AD4086-FMCZ Evaluation Board

Evaluation Board	Featured ADC	ADC Resolution	ADC Maximum Sampling Rate
EVAL-AD4086-FMCZ	AD4086/AD4087	14-bit	40MSPS

TABLE OF CONTENTS

Features.....	1	Host PC Software.....	10
Evaluation Board Kit Contents.....	1	Evaluating the AD4086 with the ACE Software...	11
Equipment Needed.....	1	AD4086 Memory Map.....	11
General Description.....	1	Analysis Tab.....	11
Evaluation Board Photograph.....	3	Time Domain (Waveform) Plot.....	12
Evaluation Board Hardware Guide.....	4	Frequency Domain (FFT) Plot.....	12
Hardware Overview.....	4	Histogram Plot.....	12
Analog Input Circuit.....	5	Configuring the AD4086 Integrated Digital	
Input Stage (Stage 1).....	5	Filter.....	13
Fully Differential Amplifier Stage (Stage 2).....	5	Supported Configurations.....	14
Additional ADC Driver Stage (Stage 3).....	6	Analog Front-End.....	14
Voltage Reference.....	6	Common-Mode CMO Output Buffering.....	15
Common-Mode Circuit.....	6	Voltage Reference.....	15
Power Supplies.....	7	Power Supply Rails.....	15
ADC Power Supplies.....	7	Clock Circuitry.....	16
Amplifier Power Supply.....	7	Link Configuration Options.....	18
Conversion and Data Clock Generation		Analog Front End (AFE) Considerations.....	21
Circuit.....	7	Input Signal Filtering.....	21
Digital Interface.....	8	Power vs. Bandwidth vs. Noise.....	21
Evaluation Hardware Setup Procedure.....	9	Gain.....	21
Software Support.....	10	ADC Driver Stage.....	21
Evaluation Software.....	10	Evaluation Boards.....	22
Embedded Software.....	10		

REVISION HISTORY**1/2026—Revision 0: Initial Version**

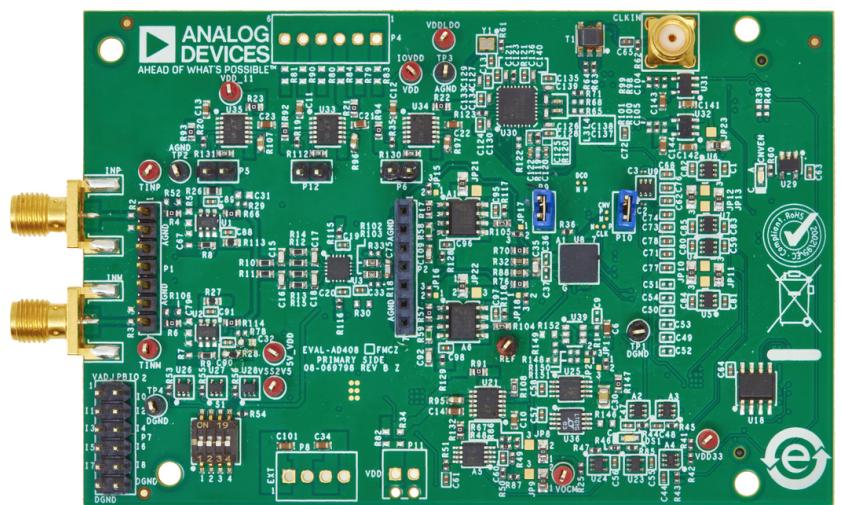
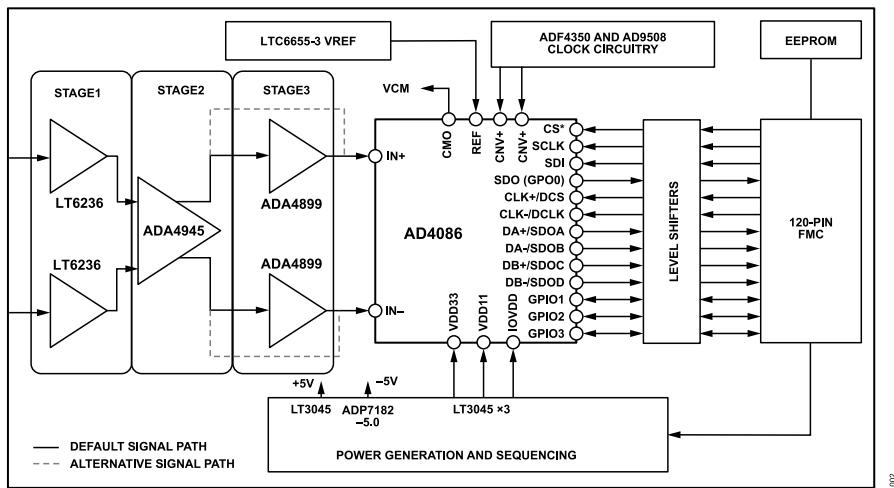

EVALUATION BOARD PHOTOGRAPH

Figure 1. EVAL-AD4086-FMCZ Photograph


EVALUATION BOARD HARDWARE GUIDE

HARDWARE OVERVIEW

A simplified block diagram of the EVAL-AD4086-FMCZ hardware is shown in [Figure 2](#). This evaluation board showcases the performance and features of the AD4086/AD4087 and highlights the recommended companion components.

The EVAL-AD4086-FMCZ enables simple evaluation of the AD4086. All circuitry necessary to operate the ADC is included

on the EVAL-AD4086-FMCZ. See the [Analog Input Circuit](#) section, [Voltage Reference](#) section, [Power Supplies](#) section, [Conversion and Data Clock Generation Circuit](#) section, and [Digital Interface](#) section for detailed specifics on each circuit block shown in [Figure 2](#). For those blocks that can be modified to achieve different configurations, see the [Supported Configurations](#) section for additional details on how to implement these changes.

Figure 2. Simplified Block Diagram of the EVAL-AD4086-FMCZ

EVALUATION BOARD HARDWARE GUIDE

ANALOG INPUT CIRCUIT

The EVAL-AD4086-FMCZ includes a three stage, precision signal conditioning circuit. The design was partitioned in this fashion to allow the greatest flexibility in optimizing signal chain performance for the targeted signal bandwidth in both evaluation and prototyping.

With the default configuration of the evaluation hardware, a differential 6V p-p input signal with the common mode set to 1.5V results in a full-scale measurement from the ADC. The typical supported input frequency range is DC to 4MHz.

Recommendations regarding signal chain configuration for particular signal bandwidths of interest can be found in the [Analog Front End \(AFE\) Considerations](#) section.

INPUT STAGE (STAGE 1)

The input stage consists of a pair of [LT6236](#) op amps (U1 and U2). The LT6236 was selected for its exceptional wideband (90MHz), low noise, favorable distortion performance and low power consumption. The stage is configured for differential input, differential output, noninverting, unity-gain operation, ensuring that a preceding signal source or sensor is presented with a high impedance. With supply rail values of +5V and -2.5V, the valid range for the LT6236 inputs (INP and INM) is approximately -0.8V to +4V, which means that a common-mode voltage of 1.5V (available at V_{OCM}) for the inputs is close to ideal to allow maximum voltage excursion and minimize distortion.

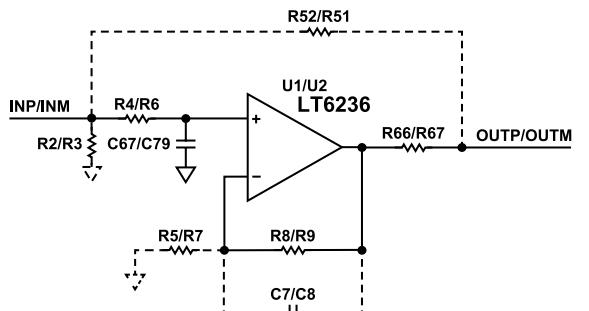


Figure 3. Stage 1 Simplified Schematic

The following can be configured in this stage:

- ▶ Stage bandwidth
 - ▶ No explicit bandwidth limiting (default)
 - ▶ Band limiting through RC input filter and/or capacitors across amplifier feedback
- ▶ Stage gain
 - ▶ Unity gain (default)
 - ▶ Noninverting gain setting
- ▶ Stage bypass
 - ▶ No bypass (default)
 - ▶ Bypass Stage 1

- ▶ Bypass Stage 1 along with Stage 2 to use an amplifier mezzanine card (AMC) instead
- ▶ Input signal type
 - ▶ Differential (default)
 - ▶ Single-ended

FULLY DIFFERENTIAL AMPLIFIER STAGE (STAGE 2)

Stage 2 is based around an [ADA4945-1](#) (U3) fully differential amplifier configured for unity gain.

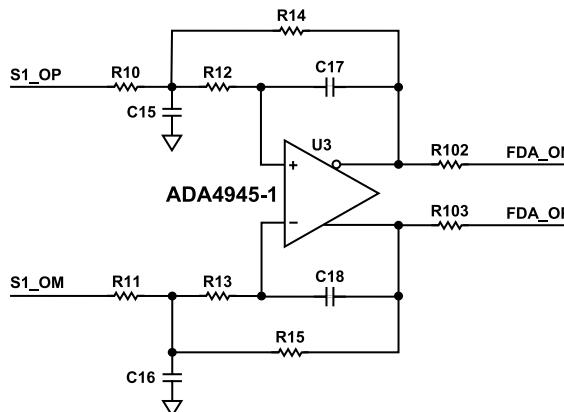


Figure 4. Stage 2 Simplified Schematic

The clamp pins of the ADA4945-1 ($-V_{CLAMP}$ and $+V_{CLAMP}$) are connected to the GND and VREF nodes, respectively, which limits the range at the output of the fully differential amplifier (FDA) of ~ 500 mV beyond those node voltages, protecting the ADC from hard overdrive.

The common-mode input of the ADA4945-1 is floating by default, meaning that the output common-mode value is internally biased at a voltage equal to the midpoint between the output voltage clamps, that is, 1.5V.

With the default configuration, this stage presents a 3dB cutoff frequency of 5.5MHz at the output (measured at FDA_ON and FDA_OP nodes).

The following can be configured in this stage:

- ▶ Stage bypass
 - ▶ No bypass (default)
 - ▶ Bypass Stage 2
- ▶ ADA4945-1 power mode
 - ▶ Full power mode (default) achieves the maximum device bandwidth and best distortion performance
 - ▶ Low-power mode minimizes power at the cost of distortion performance and reduces the amplifier bandwidth
- ▶ Alternative amplifier installation
 - ▶ [ADA4940-1](#)
 - ▶ [ADA4932-1](#)

EVALUATION BOARD HARDWARE GUIDE

- ▶ Stage bypass
 - ▶ No bypass (default)
 - ▶ Bypass along with Stage 1 for using the AMC

ADDITIONAL ADC DRIVER STAGE (STAGE 3)

Stage 3 is an optional stage consisting of two [ADA4899-1](#) (A1 and A6) high-speed, low distortion op amps. This stage allows users to achieve the lowest distortion possible; however, it is at the expense of higher power consumption. Stage 3 is enabled by default, but this stage can be disabled to save power.

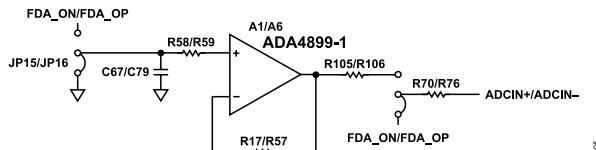


Figure 5. Stage 3 Simplified Schematic

The following can be configured in this stage:

- ▶ Stage bypass:
 - ▶ Bypass stage
 - ▶ Enable stage (default)

VOLTAGE REFERENCE

The [AD4086](#) requires an external 3V voltage reference. To achieve the specified performance, a suitable precision, low noise voltage reference must be used. The ADC includes an internal reference buffer and capacitor that simplifies reference selection and eliminates the need for an external buffer.

The following can be configured in this circuit:

- ▶ Reference selection
 - ▶ The [LTC6655-3](#) is the default voltage reference source. The evaluation hardware includes LTC6655-3 (U25) as the primary recommended option, providing exceptional noise performance (0.1Hz to 10Hz noise specification of 0.25ppm p-p), combined with an initial accuracy specification of 0.025%, and a low temperature drift of 2ppm/°C.
 - ▶ The [LT6657-3](#) (U36) is also mounted and provided as a second option. See [Table 2](#) for a comparison of recommended references.

Table 2. 3V Reference Comparison of the LT6657 and LTC6655

Parameter	LT6657	LTC6655
Accuracy	0.10%	0.025%
Temperature Coefficient (ppm/°C)	1.5	2
0.1Hz to 10Hz Noise (ppm p-p)	0.5	0.25
Maximum Load (mA)	±10	±5
Load Regulation (ppm/mA)	0.7	3
Maximum Supply	40V	13.2V
Shutdown	Yes	Yes
Reverse Supply Protected	Yes	No

Table 2. 3V Reference Comparison of the LT6657 and LTC6655 (Continued)

Parameter	LT6657	LTC6655
Reverse Output Protected	Yes	No
Current Limit	Yes	Yes
Thermal Protection	Yes	No
Shunt Mode	Yes	No
Supply Current, I_S (mA)	1.2	5
T_A	-40°C to +125°C	-40°C to +125°C
100% Tested Temperatures	5	3

COMMON-MODE CIRCUIT

The [AD4086/AD4087](#) devices include a common-mode voltage generation feature. The generated common-mode voltage is equal to half the reference voltage, $(V_{REF})/2$, and is provided through the CMO pin of the ADC. This feature is generally useful for biasing front-end stages. In this instance, it is optional to use this feature because the [ADA4945-1](#) can use an internal biasing circuit to set the output common mode to the midpoint of the output clamping pins ($-V_{CLAMP}$ and $+V_{CLAMP}$).

The following can be configured in this circuit:

- ▶ FDA common-mode setting
 - ▶ Internal (default): The ADA4945-1 sets the output common-mode level to the output clamps midpoint.
 - ▶ External: Use the CMO voltage provided by the ADC to set the FDA output common-mode level.
- ▶ Common-mode signal buffering
 - ▶ No buffering (default).
 - ▶ Buffering through the [ADA4807-2](#) (A5) amplifier, which is only necessary if additional load is placed on the ADC CMO output pin. Note that this output has an output impedance of 700Ω; consult the ADC data sheet for additional details.

EVALUATION BOARD HARDWARE GUIDE

POWER SUPPLIES

The EVAL-AD4086-FMCZ is designed to operate from a 12V supply provided from the host controller board via the FMC connector. The 12V power supply is regulated down using a combination of switching regulators and linear dropout (LDOs) regulators to generate the necessary power rails for the on-board circuitry.

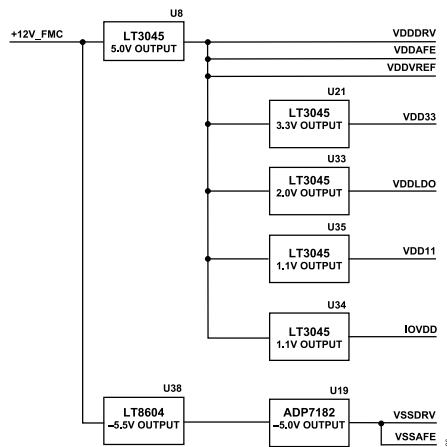


Figure 6. Power Circuitry Simplified Schematic

ADC POWER SUPPLIES

The AD4086/AD4087 require three major power supplies:

- ▶ VDD33: 3.3V analog supply rail.
- ▶ VDD11: 1.1V ADC core supply.
- ▶ IOVDD: 1.1V digital interface supply.

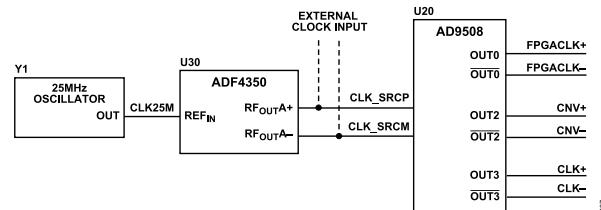
The AD4086 include integrated power supply decoupling; therefore, no external power supply decoupling was included on the evaluation board for the ADC power supply rails.

The following can be configured in this circuit:

- ▶ 1.1V rails (VDD11 and IOVDD) source
 - ▶ On-board generated rails (default). The rails are taken in from the LT3045 regulators (U34 and U35), as shown in Figure 6.
 - ▶ Internal AD4086 LDO regulator. An LDO regulator internal to the ADC can be enabled and used to power both 1.1V rails. Refer to the ADC data sheet for more details pertaining to the power supply rails and requirements.
 - ▶ Off-board external supply.
- ▶ 3.3V rail source
 - ▶ On-board generated rail (default). The rail is supplied by an LT3045 LDO regulator (U21), as shown in Figure 6.
 - ▶ Off-board external supply.

AMPLIFIER POWER SUPPLY

The signal conditioning circuitry of the EVAL-AD4086-FMCZ was designed to operate from +5V and -5V rails. The positive and negative rails of the U1 and U2 amplifiers are supplied from the +5V VDDDAFE rail and the -5V VSSAFE rail.


The positive and negative rails of the fully differential (U3) amplifier, and the optional third stage A1 and A2 amplifiers, are supplied from the +5V VDDDRV rail and the -5V VSSDRV rail. The common-mode buffer (A5) amplifier is configured for a unipolar power supply; the positive supply rail of A5 is provided from the +5V VDDDRV rail, and the negative supply rail is connected to ground.

CONVERSION AND DATA CLOCK GENERATION CIRCUIT

The EVAL-AD4086-FMCZ contains the necessary circuits to generate low jitter data (CLK+ and CLK-) and conversion (CNV+ and CNV-) clocks across the full operating range of the AD4086. This low jitter circuitry allows processing with fidelity, full-scale input signals up to 4MHz.

The circuit consists of a 25MHz complementary metal-oxide semiconductor (CMOS) reference oscillator (Y1), the ADF4350 wide-band synthesizer, and the AD9508 clock fanout buffer, as shown in Figure 7. The synthesizer takes the 25MHz signal from the oscillator and produces a higher frequency output with the frequency multiplication factor being programmable by the software. The synthesizer output is then fed to the clock buffer that generates the clock (CLK+ and CLK-) and convert (CNV+ and CNV-) signals, and from which, it can apply separate programmable frequency division factors. Therefore, the software sets the CLK and CNV signal frequencies by programming the ADF4350 and AD9508 through their serial interfaces. In practice, the user changes the sample rate through the interface offered by the [ACE Software](#).

The 25MHz oscillator and synthesizer can be bypassed, and an external data clock reference supplied instead (through the CLKIN Subminiature Version A (SMA) connector) to the AD9508 to allow synchronization with an existing system clock solution. See the [Using an External Clock Source](#) section for details regarding bypassing the oscillator and synthesizer circuits.

EVALUATION BOARD HARDWARE GUIDE

By default, the EVAL-AD4086-FMCZ conversion control is configured to operate in LVDS mode; therefore, the [AD9508](#) drives the CNV+ and CNV- pins differentially. The hardware includes provisions to allow using a single-ended CMOS signal instead, see the [Configuring for CMOS CNV Mode](#) section for further details.

DIGITAL INTERFACE


Communication with the EVAL-AD4086-FMCZ is established through the FMC connector (P3) to the attached ZedBoard carrier. This connection facilitates device configuration via the 4-wire SPI, conversion result access using the LVDS interface, and conversion control via the LVDS configured conversion clock (CNV \pm). The ZedBoard acts as the conduit for communication between the [ACE Software](#) plugin and the EVAL-AD4086-FMCZ hardware.

The digital interface of the [AD4086/AD4087](#) devices are powered from a 1.1V digital interface supply voltage (IOVDD). To translate between this 1.1V level and the digital interface voltage level of the ZedBoard (VADJ), SN74AVC1T45DCKR bidirectional level translators (U4, U5, U6, U7, U11, U12, U13, U14, U15, U16, and U17) are used on all single-ended, LVCMOS signal traces on the EVAL-AD4086-FMCZ hardware. By default, the inputs to U4, U5, U6, and U7 should be connected to the ground option to facilitate LVDS data interface connectivity.

EVALUATION HARDWARE SETUP PROCEDURE

The following procedure must be followed to ready the hardware for evaluation:

1. Insert the SD card from the EVAL-AD4086-FMCZ kit into the SD card slot (J12) of the ZedBoard.
2. Ensure that the ZedBoard boot configuration jumpers (JP7 to JP11) are set as shown in [Figure 8](#).

008

Figure 8. ZedBoard JP7 to JP11 Settings for the SD Card Mode

3. Ensure that the VADJ SELECT jumper (J18) is in the **2V5** position.
4. Connect the FMC connector (P3) of the EVAL-AD4086-FMCZ to the FMC connector (J1) of the ZedBoard.
5. Connect the 12V power supply included in the ZedBoard kit to the DC barrel jack (J20) of the ZedBoard. One USB cable connects between the PC and the USB on the go (OTG) connector (J13), and the other USB cable connects between the PC and the USB universal asynchronous receiver-transmitter (UART) connector (J14).
6. Slide the power switch (SW8) to the **ON** position to power up the ZedBoard and evaluation hardware.
 - a. If using any external power supplies for the evaluation hardware, turn these supplies on with the ZedBoard.
7. The hardware is now ready to be used through the [ACE Software](#).

SOFTWARE SUPPORT

EVALUATION SOFTWARE

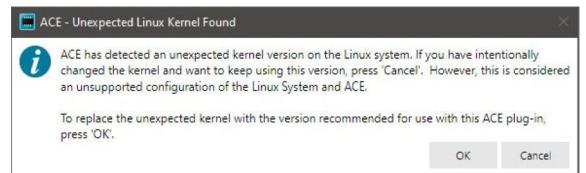
The EVAL-AD4086-FMCZ hardware is controlled and configured through the [ACE Software](#). ACE is a desktop software application that allows the evaluation and control of multiple evaluation systems from across the Analog Devices product portfolio. The controller board supported by ACE for use with the EVAL-AD4086-FMCZ evaluation board is the ZedBoard.

For ACE installation and documentation instructions, see the [ACE Software](#) product page. Follow the instructions to install the necessary EVAL-AD4086-FMCZ board plugin.

- ▶ If the machine that ACE is installed on has internet access, you can find, install, and update plugins directly from the ACE application. For environments without internet access, you can download these plugins from the previous link to portable storage and install them into ACE.
- ▶ Note that product specific documentation for the evaluation software can be found within the ACE plugin.

EMBEDDED SOFTWARE

The embedded software used for evaluation is built using open-source firmware examples, drivers, and hardware description language (HDL). When available, links can be found in the software section on the relevant the product page.


If the embedded software you are looking for is not available, you can submit a request via the product page.

The EVAL-AD4086-FMCZ evaluation board comes with an SD card in the box. The SD card provides a version of the Analog Devices Kuiper Linux for evaluation image that can boot the controller board. The ACE evaluation board plugin is capable of interacting with the installed image to identify the connected hardware and provide target specific configuration data and files.

If there is an issue with the provided SD card or you have an outdated version, a download of the latest version of the Analog Devices Kuiper Linux for evaluation image can be found at [Linux Software](#). This page also provides details on how to format and set up your SD card correctly.

The latest version of the Analog Devices Kuiper Linux for evaluation contains support for Linux run-time configuration (LRC) of ACE plugins, via the [ACE Software](#) application. Once connected to the PC, the ACE application automatically detects the EVAL-AD4086-FMCZ evaluation board that is connected to the ZedBoard. If the Analog Devices Kuiper Linux kernel running from the SD card is not configured for the connected evaluation board, a window as shown in [Figure 9](#) is displayed. The user must click **OK** to install the updated kernel to establish connectivity with the connected hardware.

Note that once you click **OK**, the kernel update is downloaded to the carrier board (ZedBoard), and the kernel is then reinitialized. Initialization takes approximately 60 to 80 seconds to complete. Once completed, the ACE plugin opens, as described in the [Evaluating the AD4086 with the ACE Software](#) section.

Figure 9. ACE LRC Reconfiguration of Kuiper Linux Prompt on Detection of EVAL-AD4086-FMCZ Board

HOST PC SOFTWARE

The embedded Linux stack is based on the IIO (Industrial I/O) architecture. This enables tools such as Python, through the pyadi-iio package, or MATLAB, with the precision toolbox license, to communicate with the evaluation and controller board without the need for ACE. When supported, links to example code can be found in the software section on the ADC product page.

If Python or MATLAB software support is unavailable for the product you are interested in, you can submit a request via the product page.

There are generic, not product specific, IIO tools such as IIO oscilloscope, scope, and IIO command line tools that provide basic, low level functionality and work with any IIO platform.

EVALUATING THE AD4086 WITH THE ACE SOFTWARE

After the hardware setup is complete as per the [Evaluation Hardware Setup Procedure](#) section, and the software is installed as specified in the [Software Support](#) section, the ACE software can be run for evaluation.

When ACE opens, the EVAL-AD4086-FMCZ is automatically detected and displayed in the **Attached Hardware** panel, as highlighted in yellow in [Figure 10](#).

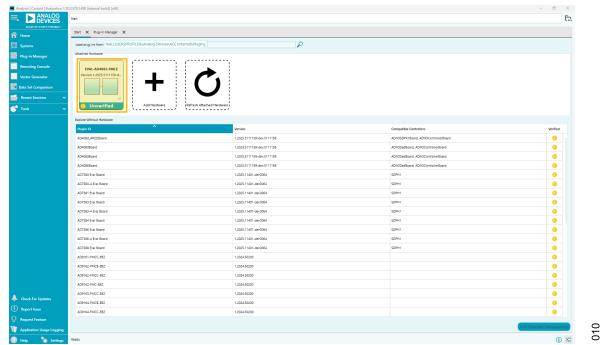
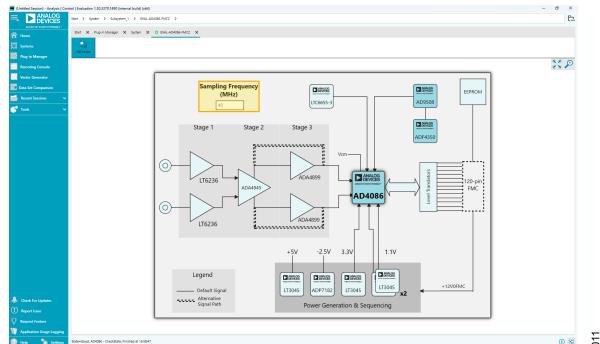
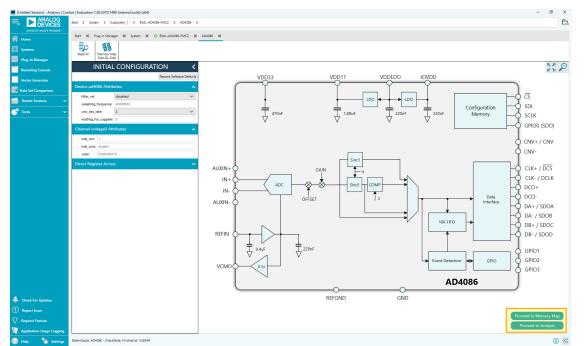


Figure 10. Autodetection of the EVAL-AD4086-FMCZ in the ACE Start Tab

Double-click the **EVAL-AD4086-FMCZ** icon, and a new tab, **EVAL-AD4086-FMCZ**, opens that displays a block diagram of the EVAL-AD4086-FMCZ as shown in [Figure 11](#).



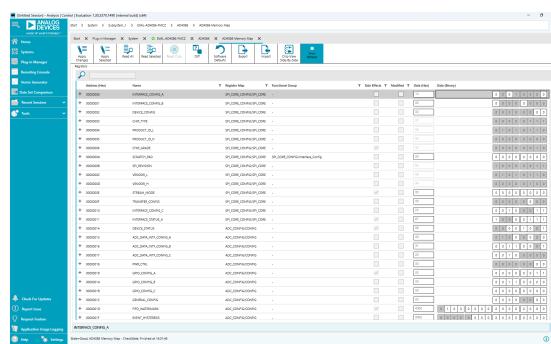

Figure 11. EVAL-AD4086-FMCZ Tab Open in the ACE Software

This offers a **Board Level** view of EVAL-AD4086-FMCZ. Control of the sampling frequency is configured within this view, which is decoded by the plugin to determine the required configuration fields to update in the supporting clocking components, **ADF4350** and **AD9508**. Once the clock component configurations have been updated, the plugin synchronizes the EVAL-AD4086-FMCZ data capture with the ZedBoard. As a default, the **Sampling Frequency (MHz)** field is configured for 40MHz. Any desired update to the sampling frequency, in the range of 1.25MHz to 40MHz, can be made by updating the control.

Double-click the **AD4086** component in the board view block diagram to open the **AD4086** tab. This tab displays an **INITIAL CONFIGURATION** pane, a block diagram of the AD4086 device, and two buttons in the lower-right corner (**Proceed to Memory**

Map and **Proceed to Analysis**), which are highlighted in yellow in [Figure 12](#).

Figure 12. AD4086 Tab in the ACE Software


012

The tabs that are accessed through these two buttons provide the means to configure and to evaluate the AD4086. See the [AD4086 Memory Map](#) section and the [Analysis Tab](#) section for additional details.

AD4086 MEMORY MAP

Click **Proceed to Memory Map** within the AD4086 tab to open the [AD4086 Memory Map](#) tab, shown in [Figure 13](#).

Figure 13. AD4086 Memory Map Tab in the ACE Software

013

This tab displays the current register content from the AD4086 and facilitates content updates to the memory map through serial read or write (if applicable) operations. For normal operation of the evaluation kit, no modifications to the ADC register content are required.

ANALYSIS TAB

Click **Proceed to Analysis** within the AD4086 tab to open the **Analysis** tab. This tab is used for capturing data from the evaluation board and displaying the obtained data and corresponding analysis results.

EVALUATING THE AD4086 WITH THE ACE SOFTWARE

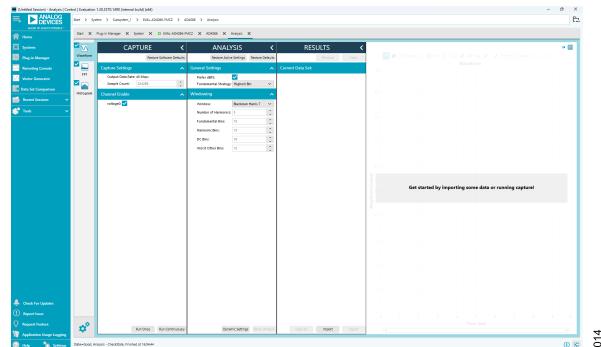


Figure 14. Analysis Tab in the ACE Software

014

The **Analysis** tab contains three collapsible panels (**CAPTURE**, **ANALYSIS**, and **RESULTS**) and a data plot area to the right. Collapsing any of the three panels is done by clicking the arrow located to the right of the panel name and is useful to leave more space for the data plot area when needed.

- ▶ The **CAPTURE** panel allows setting the number of samples to be captured per dataset, triggering the acquisition of a single dataset, and initiating or stopping the continuous acquisition of multiple datasets.
- ▶ The **ANALYSIS** panel displays options related to the frequency domain analysis.
- ▶ The **RESULTS** panel provides metrics for the current dataset being displayed in the plot area. Different metrics are provided depending on the kind of plot that was selected (see the [Time Domain \(Waveform\) Plot](#) section, [Frequency Domain \(FFT\) Plot](#) section, and [Histogram Plot](#) section for additional details). This panel also allows navigating between the datasets acquired during the session, and importing and exporting datasets in the internal format used by the **ACE Software** is also facilitated.

The user has the option to display the acquired datasets as a time domain waveform (default option), a frequency domain plot through a fast Fourier transform (FFT), or as a histogram, which is selected by clicking on any of the three corresponding buttons located to the left of the **CAPTURE** panel (see [Figure 14](#)).

TIME DOMAIN (WAVEFORM) PLOT

The active dataset can be displayed as a time domain waveform by clicking on the **Waveform** area highlighted in yellow in [Figure 15](#), which is the default view. Note how the **CAPTURE** and **ANALYSIS** panels are collapsed for an improved display of the plot.

When the dataset is plotted as a time domain waveform, the **RESULTS** panel displays metrics relevant to time domain analysis: minimum, maximum, average, RMS, and so forth.

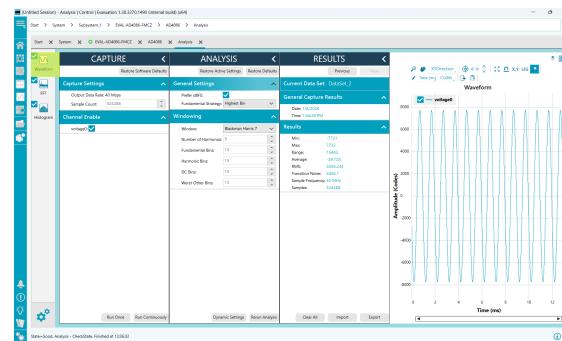


Figure 15. Dataset Plotted as a Time Domain Waveform

015

FREQUENCY DOMAIN (FFT) PLOT

The active dataset can be displayed as a frequency domain waveform by clicking on the **FFT** area highlighted in yellow in [Figure 16](#). The plot then displays the FFT of the active dataset. In this case, the **Log Scale** is selected for the **Frequency (MHz)** axis above the graph.

When the dataset is plotted as a frequency domain waveform, the **RESULTS** panel displays metrics relevant to frequency domain analysis: signal-to-noise ratio (SNR), total harmonic distortion (THD), and so forth.

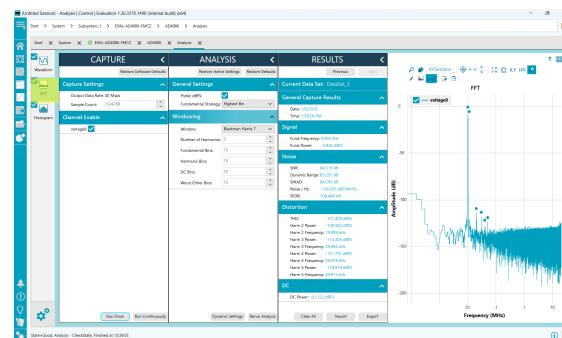
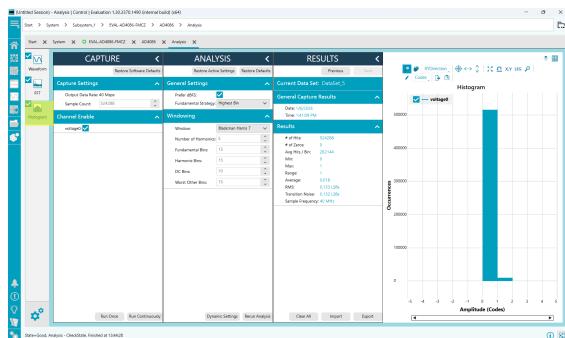


Figure 16. Dataset Plotted in the Frequency Domain


016

HISTOGRAM PLOT

The active dataset can be displayed as a histogram by clicking on the **Histogram** area highlighted in yellow in [Figure 17](#). In this view, the vertical axis represents occurrences (bin hits) and the horizontal one can be set to display either code or volt amplitude bins.

When the dataset is plotted as a histogram, the **RESULTS** panel displays metrics relevant to histogram analysis, such as minimum code, maximum code, RMS, and so forth.

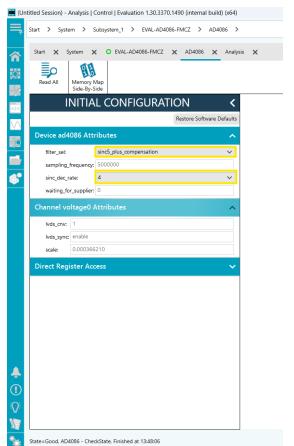
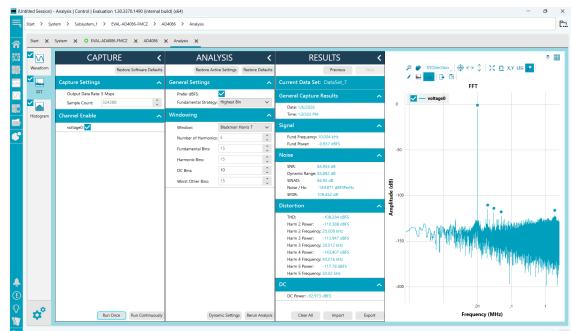

EVALUATING THE AD4086 WITH THE ACE SOFTWARE

Figure 17. Dataset Plotted as a Histogram


CONFIGURING THE AD4086 INTEGRATED DIGITAL FILTER

The AD4086 and AD4087 include the option of enabling an integrated digital filter for applications where noise rejection by bandwidth limiting is desired. Further detail on the function and performance of these flexible filters can be found in the AD4086 product data sheet. These filters can be configured on the AD4086 tab as shown in Figure 18.

Figure 18. Digital Filter Configuration from the AD4086 Tab in the ACE Software

Setting both the **filter_sel** and the **sinc_dec_rate** fields in the configuration window allows the user to evaluate the benefits of using the integrated digital filters, as is evident in [Figure 19](#).

Figure 19. Increasing SNR with the Integrated Digital Filter

SUPPORTED CONFIGURATIONS

The following sections describe the hardware and software configurations that the EVAL-AD4086-FMCZ supports.

ANALOG FRONT-END

Stage 1 Bypass

Stage 1 can optionally be bypassed to allow direct drive of the second stage (FDA) from the SMA connectors.

To bypass Stage 1, do the following:

- ▶ Remove R4, R6, R66, and R114 to disconnect the Stage 1 amplifiers from the stage input and output.
- ▶ Populate R52 and R106 with 0Ω resistors to create the bypass path.
- ▶ Close Switch 1 and Switch 2 from the Switch Array S1 (see [Table 4](#)) to power down the now unused U1 and U2 amplifiers.

Stage 1 Gain

Stage 1 amplifiers are arranged for unity gain by default; however, this gain can be changed to a noninverting gain configuration.

To set the desired gain choose a feedback resistance (R_{FB}) to gain resistance (R_G) ratio according to the following equation:

$$Gain = 1 + \frac{R_{FB}}{R_G} \quad (1)$$

The necessary changes follow:

- ▶ Change the R8 and R9 feedback resistors for a value of R_{FB} .
- ▶ Populate R5 and R7 with a value of R_G .
- ▶ Populate 0Ω R29 and R78 resistors.
- ▶ For the JP7 and JP14 solder links, link Pad 1 to Pad 2.

Stage 1 Filtering

A differential, first-order, RC filter can be implemented at the input of Stage 1 to bandwidth limit and reduce noise.

To obtain the desired 3dB cutoff frequency, set values to the frequency capacitance (C_F) and frequency resistance (R_F) as shown in the following equation:

$$f_{3dB} = \frac{1}{2\pi R_F C_F} \quad (2)$$

The necessary changes follow:

- ▶ Change R4 and R6 to a R_F value.
- ▶ Populate C67 and C79 with a C_F value.

In addition to (or instead of) the RC filter, the C7 and C8 capacitors across the feedback networks can be populated for further filtering.

Stage 1 Alternative Input Signal Sources

Differential Signal Source

In the default board configuration, the signal chain input (that is, Stage 1) is designed to be driven by a fully differential signal source with 0V common mode applied at the SMA inputs (INP and INM). Because the default total gain of the signal chain is 1 by default, an amplitude of 6V p-p in the differential signal results in a full-scale measurement at the ADC (-3V to +3V).

Note that compliance to common-mode input requirement for the [AD4086](#) and [AD4087](#) ($1.5V \pm 50mV$) does not apply to the signal at the input of the board because the [ADA4945-1](#) driving the ADC sets its output common mode independently of the common mode at the input.

Single-Ended Input Source

A single-ended (ground referenced) AC signal can be fed to one of the EVAL-AD4086-FMCZ inputs (for example, INP), while the other input is grounded. An amplitude of 6V p-p results in a full-scale measurement at the ADC (-3V to +3V).

When a single-ended signal source is applied at INP, the U2 amplifier that buffers the other input (INM) can be optionally disabled and bypassed. The necessary changes to do this follow:

- ▶ Remove R6 and R114 to disconnect the amplifier input and output from the circuit.
- ▶ Populate R106 with a 0Ω resistor to enable the bypass path.
- ▶ Close Switch 2 (**ON** position) from Switch Array S1 (see [Table 4](#)) to power down the now unused U2 amplifier.

Stage 2 Alternative Amplifiers

By default, Stage 2 houses an ADA4945-1 low distortion, fully differential amplifier. Note that it is possible to use alternative amplifiers; however, these amplifiers are not included on the EVAL-AD4086-FMCZ.

The [ADA4940-1](#) can be used to achieve the lowest power consumption in this stage. When using the ADA4940-1, the noise and distortion performance are expected to degrade relative to the ADA4945-1.

The [ADA4932-1](#) can be used for applications where distortion performance is critical or applications where distortion performance is required up to 10MHz. However, the improved distortion performance comes at the expense of higher power consumption.

Both the ADA4940-1 and ADA4932-1 are footprint compatible with ADA4945-1, although some pin connections must be changed. The necessary changes to use an alternative amplifier are as follows:

- ▶ Remove ADA4945-1 from the U3 footprint.
- ▶ Populate U3 with the ADA4940-1 or ADA4932-1.

SUPPORTED CONFIGURATIONS

- ▶ For the JP3, JP4, JP5, and JP6 solder links, remove the default linkage (Pad 2 to Pad 3) and link Pad 1 to Pad 2 instead.

Stage 2 Bypass

By default, Stage 2 is enabled in the signal chain. To disable (bypass) Stage 2, the following hardware modifications are required:

- ▶ Remove R10 and R11 to disconnect the Stage 2 input from the Stage 1 output.
- ▶ Remove R102 and R03 to disconnect the Stage 2 output from the Stage 3 input.
- ▶ Remove C75.
- ▶ Populate R33 and R18 with 0Ω resistors to bypass Stage 2.

Using an AMC (Stage 1 and Stage 2 Bypass)

The AMC is an Analog Devices standard format for boards containing an amplifier stage. Some examples of amplifiers available on an AMC board follow:

- ▶ [AMC-ADA4940-1ARZ](#)
- ▶ [AMC-ADA4896-2ARMZ](#)
- ▶ [AMC-ADA4807-2ARMZ](#)
- ▶ [AMC-ADA4805-2ARMZ](#)
- ▶ [AMC-ADA4841-2ARMZ](#)

The EVAL-AD4086-FMCZ includes the necessary connectors so that an AMC can be fitted at the AFE, bypassing Stage 1 and Stage 2, which requires Stage 1 and Stage 2 to be disabled and disconnected.

The following must be done to use an AMC:

- ▶ Remove R4, R6, R102, and R103 to disconnect Stage 1 from the signal chain input and Stage 2 from output.
- ▶ Remove the C75 capacitor.
- ▶ Populate the footprints of C67 and C79 with 0Ω resistors to ground the inputs of Stage 1.
- ▶ Close Switch 1 and Switch 2 from Switch Array S1 (see [Table 4](#)) to power down the now unused U1 and U2 amplifiers.
- ▶ To provide the correct power supply to the AMC for the JP19 and JP20 solder links, do the following:
 - ▶ If using a fully differential amplifier AMC, link Pad 1 to Pad 2.
 - ▶ If using a single-ended amplifier AMC, link Pad 2 to Pad 3.

Stage 3 Bypass

By default, Stage 3 amplifiers are enabled in the signal chain. To disable Stage 3, the following hardware modifications are required:

- ▶ For the JP15, JP16, JP17, and JP18 solder links, remove the default linkage (Pad 2 to Pad 3) and link Pad 1 to Pad 2 instead.
- ▶ Remove C75, and replace R102 and R103 by shorts.

COMMON-MODE CMO OUTPUT BUFFERING

By default, the common-mode voltage output from the ADC (the CMO pin) is unbuffered and not connected to the V_{OCM} pin of the [ADA4945-1](#). To make that connection, the following hardware modification is required:

- ▶ Populate R30 with a 0Ω resistor.

To buffer the CMO output of the [AD4086](#) using an [ADA4807-2](#) amplifier, the following hardware modifications are required:

- ▶ For the JP8 and JP9 solder links, remove the default linkage (Pad 1 to Pad 2) and link Pad 2 to Pad 3 instead.
- ▶ Remove R86.

VOLTAGE REFERENCE

Secondary Voltage Reference, LT6657-3

The default reference is the [LTC6655-3](#) (U25). To instead use the [LT6657-3](#) (U36) secondary on-board reference, do the following:

- ▶ Remove the R147 resistor to disconnect the U25 output from the reference path.
- ▶ Populate R146 with a 0Ω resistor to connect U36 to the reference path.

POWER SUPPLY RAILS

Internal AD4086 LDO Regulators for the 1.1V Rails

By default, the two 1.1V supply rails (VDD11 and IOVDD) required by the [AD4086](#) are supplied by on-board LDO regulators (U34 and U35). The rails can be alternatively powered by two on-chip LDO regulators internal to the ADC; however, this requires disconnecting the externally generated supplies from VDD11 and IOVDD and connecting a voltage source in the 1.5V to 2.75V range at the VDDLDO pin. The presence of this external voltage at the VDDLDO pin automatically triggers the start up of the internal regulators. A 2V, LDO regulator (U33) generated rail on the EVAL-AD4086-FMCZ is prepared for this function.

Therefore, to enable use of the on-chip LDO regulators, do the following:

- ▶ Remove the P9 and P10 jumpers to disconnect the ADC 1.1V supply inputs from the on-board generated rails.
- ▶ Place a jumper across P6 to connect the 2V rail to the VDDLDO pin.

Off-Board Powering of Individual Power Rails

Any, or all of, the on-board power rails shown in the [Power Supplies](#) section can be externally supplied to the evaluation hardware, which can be useful for evaluating the [AD4086](#) with different power solutions or for measuring the supply currents with benchtop

SUPPORTED CONFIGURATIONS

equipment. When providing power to power rails individually from an alternative source, the user must ensure that the selected source can provide the required voltage and current to properly bias the rail. Failure to do so can result in damage to the on-board components.

CLOCK CIRCUITRY

Using an External Clock Source

The EVAL-AD4086-FMCZ allows bypassing of the [ADF4350](#) synthesizer to supply the [AD9508](#) directly with an external clock. The following hardware changes must be applied:

- ▶ Remove the C137 and C138 capacitors.
- ▶ Populate R65 and R68 with 0Ω resistors.

The user is still required to enter the desired sampling frequency in the [EVAL-AD4086-FMCZ](#) tab in the [ACE Software](#). However, as the ACE Software plugin is unaware of the external clock frequency, the user must take into account the divider factors that the ACE Software applies to the AD9508 and adjust the external clock frequency accordingly to effectively achieve the desired sampling rate. [Table 3](#) describes how to choose the required external clock frequency for a desired sampling frequency. Entering a new sampling frequency in the ACE Software graphical user interface (GUI) also resynchronizes the [AD4086](#) LVDS data with the ZedBoard host controller that mandates that the external frequency be set before inputting the desired sample rate value through the ACE Software GUI. For example, for 40MHz sampling, the input CLKIN frequency is first set to 400MHz, and then, the ACE Software GUI is set to the desired 40MHz frequency.

Table 3. Sampling Frequency Configuration with an External Clock Source (CLKIN)

Desired Sampling Frequency

(Value Input in ACE Software

GUI	AD9508 Clock Dividers	Steps	External CLKIN Range
40MSPS to 20MSPS	CNV_P , CNV_N (OUT2, <u>OUT2</u>): CLKIN divide by 10, CLK_P, CLK_N (OUT3, <u>OUT3</u>): CLKIN divide by 1	1. Set the external CLKIN frequency to the desired sampling frequency $\times 10$. 2. Input the desired sampling frequency in MHz into the ACE Software GUI.	400MHz to 200MHz, CLKIN = 400MHz for 40MSPS, CLKIN = 200MHz for 20MSPS
19.999MSPS to 10MSPS	CNV_P , CNV_N (OUT2, <u>OUT2</u>): CLKIN divide by 20, CLK_P, CLK_N (OUT3, <u>OUT3</u>): CLKIN divide by 2	1. Set the external CLKIN frequency to the desired sampling frequency $\times 20$. 2. Input the desired sampling frequency in MHz into the ACE Software GUI.	399.98MHz to 200MHz, CLKIN = 399.98MHz for 19.999MSPS, CLKIN = 200MHz for 10MSPS
9.999MSPS to 5MSPS	CNV_P , CNV_N (OUT2, <u>OUT2</u>): CLKIN divide by 40, CLK_P, CLK_N (OUT3, <u>OUT3</u>): CLKIN divide by 4	1. Set the external CLKIN frequency to the desired sampling frequency $\times 40$. 2. Input the desired sampling frequency in MHz into the ACE Software GUI.	399.96MHz to 200MHz, CLKIN = 399.96MHz for 9.999MSPS, CLKIN = 200MHz for 5MSPS
4.999MSPS to 2.5MSPS	CNV_P , CNV_N (OUT2, <u>OUT2</u>): CLKIN divide by 80, CLK_P, CLK_N (OUT3, <u>OUT3</u>): CLKIN divide by 8	1. Set the external CLKIN frequency to the desired sampling frequency $\times 80$. 2. Input the desired sampling frequency in MHz into the ACE Software GUI.	399.92MHz to 200MHz, CLKIN = 399.92MHz for 4.999MSPS, CLKIN = 200MHz for 2.5MSPS
2.499MSPS to 1.25MSPS	CNV_P , CNV_N (OUT2, <u>OUT2</u>): CLKIN divide by 160, CLK_P, CLK_N (OUT3, <u>OUT3</u>): CLKIN divide by 16	1. Set the external CLKIN frequency to the desired sampling frequency $\times 160$. 2. Input the desired sampling frequency in MHz into the ACE Software GUI.	399.84MHz to 200MHz, CLKIN = 399.84MHz for 2.499MSPS, CLKIN = 200MHz for 1.25MSPS

SUPPORTED CONFIGURATIONS

Configuring for CMOS CNV Mode

The hardware changes required to operate in CMOS CNV mode are as follows:

- ▶ Remove the 100Ω termination resistor (RTCNV).
- ▶ Populate R38 with a 0Ω resistor to tie CNV- to GND.
- ▶ Then both the [AD4086](#) and [AD9508](#) must be configured for CMOS input and output mode, respectively, as follows:
 - ▶ The AD4086 must be configured to accept CMOS level CNV signaling. Refer to the LVDS_CNV_EN bit in the ADC_DA-TA_INTF_CONFIG_B register (Register 0x16, Bit 0) in the ADC data sheet for additional details.
 - ▶ The AD9508 OUT2 channel must then be reconfigured for CMOS level signaling. Refer to Register 0x1F (OUT1 driver) and Register 0x20 (OUT1 CMOS) of the AD9508 data sheet for further detail on configuring the output drivers.

SUPPORTED CONFIGURATIONS

LINK CONFIGURATION OPTIONS

The EVAL-AD4086-FMCZ contains multiple solder links, jumpers, and a switch array to enable various configurations on the evalua-

tion hardware. [Table 4](#) through [Table 9](#) summarize the functions and default settings of these components.

Table 4. Amplifier Power Mode and Power Down Switch Array (S1) Functionality

Switch	Function	S1 Closed (ON)
S1-1	Stage 1 amplifier U1 enable or disable	U1 disabled
S1-2	Stage 1 amplifier U2 enable or disable	U2 disabled
S1-3	Stage 3 A1 and A6 enable or disable	A1 and A6 disabled
S1-4	Stage 2 FDA power mode select	Low power mode

Table 5. Solder Link Settings: Analog Front End

Link	Default Pads	Function	Comment
JP3	Pad 2 to Pad 3	Selects the signal connected to Pin 16 (digital ground, D_{GND}) of the default FDA (ADA4945-1 , U3). This pin is the ground reference for the disable signal. By default, R124 is bridging Pad 2 to Pad 3; therefore, Pin 16 of U3 is connected to the AGND of the hardware. The hardware supports the replacement of the default amplifier with an alternative such as ADA4932-1 which has a slightly different footprint.	The jumper ensures compatibility of the FDA footprint with both the default ADA4945-1 and optional ADA4932-1. If installing ADA4932-1 in the U3 location, then modify the connection at JP3 to short from Pad 1 to Pad 2, and connect U3, Pin 16, to VSSDRV. The physical implementation requires moving R124 from the default bridging position into the position described above.
JP4	Pad 2 to Pad 3	Selects the signal connected to Pin 5 (power mode selection, MODE) of the FDA (ADA4945-1 , U3). By default, R125 is bridging Pad 2 to Pad 3; therefore, Pin 5 of U3 is connected to the PMSEL signal.	The jumper ensures compatibility of the FDA footprint with both the default ADA4945-1 and optional ADA4932-1. If installing ADA4932-1 in the U3 location, then modify the connection at JP4 to short from Pad 1 to Pad 2, and connect U3, Pin 5, to VDDDRV. The physical implementation requires moving R125 from the default bridging position into the position described above.
JP5	Pad 2 to Pad 3	Selects the signal connected to Pin 13 of the FDA. For the ADA4945-1 (U3), Pin 13 selects the negative clamp voltage. By default, R126 bridges Pin 2 to Pin 3; therefore, Pin 13 of U3 is connected to AGND.	The jumper ensures compatibility of the FDA footprint with both the default ADA4945-1 and optional ADA4932-1. If installing ADA4932-1 in the U3 location, then modify the connection at JP5 to short Pad 1 to Pad 2, and connect U3, Pin 13, to VSSDRV. The physical implementation requires moving R126 from the default bridging position into the position described above.
JP6	Pad 2 to Pad 3	Selects the signal connected to Pin 8 of the FDA. For the ADA4945-1 (U3), Pin 8 is used to select the positive clamp voltage. By default, R126 is bridging Pad 2 to Pad 3; therefore, Pin 8 of U3 is connected to REF.	The jumper ensures compatibility of the FDA footprint with both the default ADA4945-1 and optional ADA4932-1. If installing ADA4932-1 in the U3 location, then modify the connection at JP6 shorting Pad 1 to Pad 2 to connect Pin 8 to VDDDRV. The physical implementation requires moving R127 from the default position into the position required above.
JP7 and JP14	Pad 2 to Pad 3	These jumpers are used to set the amplifier feedback configuration for the first stage amplifiers, U1 and U2. JP7 and JP14 create a low impedance path to either AGND or VOCM as the reference for the feedback network created by R29, R5 and R8 (U1) and R78, R7, U9 (U2). By default, this pin is connected to AGND.	By default, this link should be populated to short Pad 1 to Pad 2, selecting AGND. In this configuration, the user can create a non-inverting gain configuration around amplifiers U1 and U2. See the Stage 1 Gain section for more details.
JP15 and JP16	Pad 2 to Pad 3	These jumpers select the input source to Stage 3 amplifiers (ADA4899-1 , A1 and A6). By default, the input is connected to the output of Stage 2.	Bypassing Stage 3, for example to drive the data converter directly with the FDA, requires modifying JP15 and JP16 disconnecting the Stage 3 amplifiers from the default source and driving the inputs to ground. To do so short remove any connection between Pad 2 and Pad 3 and instead connect across Pad 1 to Pad 2.
JP17 and JP18	Pad 2 to Pad 3	Selects the input path of the ADC to be connected to either the output of Stage 2 or the output of Stage 3. By default, Stage 3 is connected to the ADC input.	To bypass the Stage 3 amplifiers, A1 and A6, modify both JP17 and JP18 connections to select Position A, by applying a short between Pad 1 to Pad 2. This configuration

SUPPORTED CONFIGURATIONS

Table 5. Solder Link Settings: Analog Front End (Continued)

Link	Default Pads	Function	Comment
			bypasses the amplifier and connects the input of the ADC to the Stage 2 output.
JP19	No link	Selects the source of the power supply for Pin 3 of the AMC connector (P1).	See the Stage 3 Bypass section.
JP20	No link	Selects the source of the power supply for Pin 5 of the AMC connector (P1).	See the Stage 3 Bypass section.

Table 6. Solder Link Settings: External Reference Buffering

Link	Default	Function	Comment
JP1 and JP2	JP1: Position A, short Pad 1 to Pad 2 JP2: Position B, short Pad 2 to Pad 3	Optionally bypass or select to use the external reference buffer, U39. The default selection is to bypass the external buffer amplifier.	<p>Default (bypass external buffer):</p> <ul style="list-style-type: none"> ▶ JP1 is in Postion A, and Pad 1 and Pad 2 are shorted. ▶ JP2 is in Position B, and Pad 3 and Pad 2 are shorted. <p>External buffer option:</p> <ul style="list-style-type: none"> ▶ JP1 is moved to Position B, and Pad 3 and Pad 2 are shorted. ▶ JP2 is moved to Position A, and Pad 1 and Pad 2 are shorted.

Table 7. Solder Link Settings: Common-Mode Buffering

Link	Default	Function	Comment
JP8 and JP9	JP8: Position A, short Pad 1 to Pad 2 JP9: Position A, short Pad 1 to Pad 2	These solder links determine if the common-mode output voltage generated at the data converter are buffered or unbuffered. By default, the unbuffered path is selected.	<p>Default (bypass common-mode buffer):</p> <ul style="list-style-type: none"> ▶ JP8 and JP9 are in Position A, and Pad 1 and Pad 2 are shorted. <p>Use common-mode buffer option:</p> <ul style="list-style-type: none"> ▶ JP8 and JP9 move to Position B, and Pad 3 and Pad 2 are shorted.

SUPPORTED CONFIGURATIONS

Table 8. Solder Link Settings: Digital Interface

Link	Default	Function	Comment
JP10 to JP13	JP10 to JP13, Position B, Pad 2 and Pad 3 shorted	LVDS/Quad SPI data interface hardware selectors. By default, the evaluation kit is configured continuous acquisition in the LVDS data interface mode. Thus, all jumpers are soldered into Position B, Pad 2 and Pad 3 are shorted. To use the SPI data interface mode, the jumpers are first moved to Position A. This functionality is not currently supported by the evaluation software for this hardware.	<p>Default (LVDS data interface mode):</p> <ul style="list-style-type: none"> ▶ JP10 to JP13 are in Position B, and Pad 2 and Pad 3 are shorted. <p>Option (SPI data interface mode, not supported):</p> <ul style="list-style-type: none"> ▶ JP10 to JP13 are in Position A, and Pad 2 and Pad 3 are shorted.

Table 9. Jumper Settings: Internal LDOs

Jumper	Default	Function	Comment
P6	Disconnected	Select whether the 2V on-board supply rail is connected to the ADC internal LDO regulators supply pin or not.	Connect to supply the internal LDO regulators.
P9 and P10	Connected	Select whether the 1.1V supply rails are supplied by the on-board LDO regulators (U34 and U35) or the internal LDO regulators from the ADC.	Disconnect to stop using the on-board LDO regulators and use the internal LDO regulators instead.

ANALOG FRONT END (AFE) CONSIDERATIONS

The AFE of EVAL-AD4086-FMCZ can be modified to suit the needs of specific applications. Applying changes to the AFE usually involves trade-offs, and designing the right AFE for an application requires careful consideration. The following sections discuss some of the items that must be taken into consideration when designing or modifying the AFE for this hardware evaluation platform.

INPUT SIGNAL FILTERING

Limiting the bandwidth at the input of the signal chain to the region where the signal of interest lies helps reduce excess noise. This reduction of noise can be achieved by the provided mechanisms in the form of the RC filter at the board input, the addition of the do not install (DNI) capacitors in the amplifier feedback network bandwidth adjustment in Stage 1, or the increasing of the capacitance value for the existing capacitors in the FDA feedback loop. Note that the value of filter resistors may have an impact on the overall SNR.

The internal digital filters available inside the AD4086 and AD4087 are a useful feature when considering the filtering in the signal chain as a whole. The user can programmatically set a low pass filter, choosing a simple sinc1 filter or a higher order sinc5 with a sharp roll-off to compliment the AFE filter or to help relax its design requirements.

POWER VS. BANDWIDTH VS. NOISE

Choosing the lowest noise, lowest distortion, highest precision, wider bandwidth amplifiers may require more power to be consumed in the AFE to reach the required target performance. Therefore, power constrained applications must carefully consider the choice of each amplifier.

GAIN

Care must be taken in the signal chain to consider where it is optimum to place gain to maximize the SNR. As an example, it may be better to add the required signal gain in a preceding low noise amplifier stage rather than in the FDA that is tasked with driving the AD4086 because the FDA noise gain may have a bigger impact on the signal chain SNR than the gain set by the preceding lower noise stage.

ADC DRIVER STAGE

See the Easy Drive Analog Inputs section in the ADC data sheet for details about this topic.

EVALUATION BOARDS

Table 10. Evaluation Boards

Model ¹	Description
EVAL-AD4086-FMCZ	Evaluation Board

¹ Z = RoHS-Compliant Part.

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Analog Way, Wilmington, MA 01887-2356, U.S.A. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed. All Analog Devices products contained herein are subject to release and availability.