

ADV212 JPEG2000

Programming Guide

Revision 2.0
February 26, 2007

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 2 of 55

COPYRIGHT INFORMATION
© 2007 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced
in any form without prior, express written consent from Analog Devices, Inc.
Printed in the USA.

DISCLAIMER
Analog Devices, Inc. reserves the right to change this product without prior notice. Information
furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under the
patent rights of Analog Devices, Inc.

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 3 of 55

ABOUT THIS DOCUMENT

Purpose
This document provides detailed instructions for implementing specific applications by initializing and programming
the ADV212 single-chip JPEG2000 codec. This document also provides an explanation of the ADV212 firmware
parameters implemented in the ADV212.

It is assumed that the ADV212 host interface is in either 32-bit or 16-bit mode, that you know which interface mode
you will use, and that the interface is connected properly so that all direct registers are accessible.

This document applies to the ADV212 engineering samples that are branded as follows:

 ADV212xx
 SURF®

Interface Modes
This document contains encode and decode routines for these interface modes:

 Normal host mode using the threshold registers
 Dedicated chip select (DCS) mode
 DMA DREQ/DACK modes
 JDATA mode
 Custom-specific mode
 Raw video mode

Audience
This document is intended for software engineers who write applications for systems that include the ADV212. This
document is also intended for hardware engineers working on systems that include the ADV212.

Recommended Reading
Before you initialize the part, you should be familiar with the following documents available at http://www.analog.com

Under ADV202 Technical Documentation:

 AN-790, How To Use The ADV202, gives an overview and description of the interface modes mentioned in this
guide. This document is written for the ADV202, but the information also applies to the ADV212.
This is the first document you should look at when you are determining how to use the ADV212.

 AN-799, ADV202 Test Modes, contains instructions to verify correct hardware configuration and functional
register access for the ADV202 and ADV212.

Under ADV212 Technical Documentation:

 ADV212 datasheet — This document contains the package specifications and all electrical and timing
specifications.

 ADV212 User’s Guide — A reference guide for the ADV212, the User’s Guide contains detailed description of
the ADV212 functionality and register descriptions and an overview of application examples and firmware
parameters, as well as software and hardware configurations.

 Firmware — Up-to-date firmware can be downloaded from http://www.analog.com under ADV212 Technical
Documentation.

 Product Change Notices and Errata sheets

http://www.analog.com/

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 4 of 55

Conventions
This document uses certain conventions to assist you in identifying, locating, and understanding information.

Timing Diagrams
The timing diagrams in this document show relative timing only. Setup and hold times cannot be inferred from or
implied by these diagrams. The ADV212 datasheet provides precise timing information.

Numbering Systems
Hexadecimal values are represented with the prefix “0x” followed by the value. For example: 0xFFFF.
Binary values are represented with the prefix “0b” followed by the value. For example: 0b1111.

Typographic Notation
The following typographic notations are used throughout this document:

Example Description

SIGNAL
SIGNAL/

An overbar or following slash indicates an active low signal.

[n] A number enclosed in brackets represents a single bit in a register or in memory.

[n:m] Numbers enclosed in brackets and separated by a colon represent the endpoints of a
continuous range of bits in a register or in memory.

A note provides supplementary information on a related topic.

riate usage of the product that could lead to
undesirable results or product damage.

A caution identifies conditions or inapprop

Special Terms
The following term cial meanings: s have spe

Term Meaning

assert
 (1).
).

Refers to the state of a signal as follows:
• An active-high signal is asserted when high
• An active-low signal is asserted when low (0

deassert
l is deasserted when low (0).

deasserted when high (1).

Refers to the state of a signal as follows:
• An active-high signa
• An active-low signal is

byte An 8-bit data object

half-word A 16-bit data object

word A 32-bit data object

REVISION HISTORY
2/07—Revision 2.0

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 5 of 55

TABLE OF CONTENTS
Table of Figures..6
Basic Encode and Decode Initialization Routines...7

Confirming Correct Firmware Load...9
LCODE Signal in Encode Mode..11

LCODE (SCOMM[4]) Pin Timing ..11
32-bit Normal Host Mode Encode and Decode Routines ...12

CODE FIFO Threshold Register ...13
16-bit Normal Host Mode Encode and Decode Routines ...16
DMA Modes ..19

32-bit DCS Encode and Decode Routines..19
32-bit DMA DREQ/DACK Modes Encode and Decode Routines ...23

16-bit Host JDATA Mode Encode and Decode Routines ...28
Custom-Specific Mode Encode and Decode Routines ...31

Encode Mode..32
Decode Mode..32
Custom-Specific Mode Configuration Example ..33

Raw Pixel Mode Encode and Decode Routines ...36
Raw Pixel Mode Configuration Example...36

Raw Pixel Mode Encode...36
Raw Pixel Mode Decode...36

Raw Pixel Mode – JDATA Mode...40
Appendix...43

PLL Settings and Internal Clocks..43
BUSMODE and MMODE Register Settings..43
ADV212 Firmware Parameter Encode Settings..43
ADV212 Firmware Parameter Decode Settings ...47
ADV212 Firmware Parameter Descriptions ..49

VFORMAT ..49
CBSIZE ...49
ATTRTYPE ...49
RCTYPE and RCVAL ...50

No Truncation..50
Target Size per Video Field or Image ...50
Target Quality per Video Field or Image ...50
Multilayer Target Size ...50
Multilayer Target Quality ...50

J2KPROG ...52
QFACT, STEPSIZES, and LOAD_SS...52
COD_STYLE...53

COD_STYLE [2:0]...53
COD_STYLE [7:4]...53

Visual Weighting: LOAD_VW, VW_Y, VW_CB, and VW_CR...53
LTARGET [1:16] ...54

RCTYPE = 3 ...54
RCTYPE = 4 ...54

Code Example ..54

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 6 of 55

TABLE OF FIGURES
Figure 1. Direct Register Access After Power-Up (Relative Timing) ..7
Figure 2. General Encode Routine ...8
Figure 3. General Decode Routine ...10
Figure 4. LCODE Relative Timing Example (DMA Set to Single Transfer) ..11
Figure 5. LCODE Relative Timing Example (DMA Set to Burst Transfer)..11
Figure 6. 32-bit Normal Host Mode Encode Relative Timing Example...12
Figure 7. 32-bit Normal Host Mode Decode Relative Timing Example ..12
Figure 8. IRQ Asserted in Encode Mode (Threshold Set to 64 Words)..13
Figure 9. IRQ Asserted in Decode Mode (Threshold Set to 64 Words)..13
Figure 10. Example of 32-Bit Normal Host Mode Encode Routine With Threshold14
Figure 11. Example of 32-Bit Normal Host Mode Decode Routine With Threshold15
Figure 12. Example of 16-bit Normal Host Mode Encode Routine With Threshold......................................17
Figure 13. Example of 16-bit Normal Host Mode Decode Routine With Threshold......................................18
Figure 14. 32-bit DCS Encode Mode Relative Timing Example ...19
Figure 15. Example of 32-bit DCS Mode Encode Routine ...20
Figure 16. 32-bit DCS Mode Decode Relative Timing Example...21
Figure 17. Example of 32-bit DCS Mode Decode Routine ...22
Figure 18. DMA DREQ/DACK Burst Mode Encode Relative Timing Example...24
Figure 19. Example of DMA DREQ/DACK Burst Mode Encode Routine ...25
Figure 20. DMA DREQ/DACK Burst Decode Relative Timing Example...26
Figure 21. Example of DREQ/DACK DMA Burst Mode Decode Routine ...27
Figure 22. JDATA Mode Encode/Decode Relative Timing Example..28
Figure 23. Example of JDATA Mode Encode Routine..29
Figure 24. Example of JDATA Mode Decode Routine ...30
Figure 25. Custom-specific Mode Encode and Decode Relative Timing Example.......................................33
Figure 26. Example of Custom-specific Mode Encode Routine ...34
Figure 27. Example of Custom-specific Mode Decode Routine ...35
Figure 28. Raw Pixel Mode Encode Relative Timing Example...36
Figure 29. Raw Pixel Mode Decode Relative Timing Example ..36
Figure 30. Example of Raw Pixel Mode Encode Routine (DCS) ..38
Figure 31. Example of Raw Pixel Mode Decode Routine (DCS)..39
Figure 32. Raw Pixel Mode Encode Relative Timing Example (JDATA)..40
Figure 33. Raw Pixel Mode Decode Relative Timing Example (JDATA)..40
Figure 34. Example of Raw Pixel Mode Encode Routine (JDATA) ..41
Figure 35. Example of Raw Pixel Mode Decode Routine (JDATA) ..42

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 7 of 55

BASIC ENCODE AND DECODE INITIALIZATION ROUTINES
The ADV212 initialization routine follows a specific order of instructions. These instructions require direct register
accesses.

To perform direct register accesses, the target system must be properly connected to the following pins on the
ADV212:

 ADDR[3:0]—Up to 16 addresses
 CS—Chip select
 WE—Write enable
 RD—Read enable
 ACK—Acknowledge
 HDATA[15:0]—Read/write data half-word
 HDATA[31:16]—Optional extended data bus for 32-bit accesses

The target system must hold the state of the input pins ADDR, CS, WE, RD, DACK, and HDATA (for writes) until the
ADV212 asserts the ACK signal (the ACK signal goes LOW). The access is not completed until the ACK is asserted.
Thus for Read operations, the HDATA should not be sampled until after ACK is asserted. This is only necessary for
asynchronous reads of the direct registers, and is not needed for DMA accesses. Also, the DACK0 and DACK1 pins
must be held high at all times unless a true DMA or JDATA access occurs.

Figure 1 shows a normal host timing diagram with the pin settings required for operating the ADV212. The PLL_LO
register and BOOT MODE register are set.

Hold HIGH

0x0004

0x000F

20 us delay

0x000D

0x008A

PLL_LO BOOT MODE

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet
provides precise tim ing information.

ADDR[3:0]

CS/

WE/

ACK/

HDATA[31:0]

DACK0/

DACK1/

RESET/

Figure 1. Direct Register Access After Power-Up (Relative Timing)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 8 of 55

Figure 2 shows a generic ADV212 encode flow. Normal host mode initialization starts with direct register accesses of
the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register, followed by firmware load.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot,
and then configure the BUSMODE and MMODE registers and application-specific registers. Next, you confirm that the
correct firmware is loaded by reading the application ID. Correct firmware load can be confirmed by an interrupt or poll
routine of the EIRQFLG register. Encoding starts after you confirm the correct firmware load and clear the EIRQFLG
register.

Figure 2. General Encode Routine

Confirming Correct Firmware Load
There are two procedures for confirming whether the correct firmware is loaded just prior to executing the application,
one that uses the ADV212 IRQ pin, and one that relies on polling. The version that relies on polling is used for
systems that are not using the IRQ pin. Both procedures set up a handshake with the running program to make sure
the program is executing correctly. If the procedure times out, then the program probably did not load correctly, or
there was another problem in the boot procedure.

 Initialization Procedure Using the IRQ Pin:
1. Write 0x0400 to EIRQIE (address 0x5) to unmask the SWIRQ0 interrupt (EIRQIE[10]).
2. Wait for IRQ to be asserted (the pin goes LOW).
3. Check that EIRQFLG[10] is set.
4. Read the application ID from the SWFLAG register (address 0x7) to ensure the program has correctly

initialized. For encode, SWFLAG is set to 0xFF82. For decode, SWFLAG is set to 0xFFA2.

 Initialization Procedure Using Polling:
1. Write 0x0400 to EIRQIE (address 0x5) to unmask the SWIRQ0 interrupt.
2. Poll EIRQFLG[10].
3. Check that EIRQFLG[10] is set to ‘1’.
4. Read the application ID from the SWFLAG register (address 0x7) to ensure the program has correctly

initialized. For encode, SWFLAG is set to 0xFF82. For decode, SWFLAG is set to 0xFFA2.

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 10 of 55

Figure 3 shows a generic ADV212 decode flow. Normal host mode initialization starts with direct register accesses of
the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register, followed by firmware load.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot,
and then configure the BUSMODE and MMODE registers and application-specific registers. Next, you confirm that the
correct firmware is loaded by reading the application ID. Correct firmware load can be confirmed by an interrupt or poll
routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.
Decoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 3. General Decode Routine

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 11 of 55

LCODE SIGNAL IN ENCODE MODE
When you use the ADV212 in encode mode, the firmware uses the SCOMM[4] pin (enabled by default) to enable the
LCODE function. The LCODE signal is active for the last word of the block and indicates that the last 32-bit word of
each field or frame is being read from the ADV212. For example, if you are using burst DMA DREQ/DACK mode with
a burst length of 8, the ADV212 JPEG2000 output is generated in blocks of 8 x 32-bit words. The end-of-code (EOC)
marker (0xFFD9) indicates the end of a field or frame in the JPEG2000 codestream. When the EOC marker falls in
the middle of an 8-word block of data, zero-byte padding is added to complete the 8-word block.

The example below shows data being read from the ADV212 and the relative position of the LCODE indication:

Example: Data from ADV212 CODE FIFO
0xXXXXXXXX
0xXXXXXXFF
0xD9000000 <-- EOC marker
0x00000000 <-- 8x32-bit boundary : LCODE is asserted and zero-byte padding added
0xFFFFFFF1 <-- Start of next field/frame
0xXXXXXXXX

LCODE (SCOMM[4]) Pin Timing
The LCODE (SCOMM[4]) pin timing is similar to the data pins (HDATA[31:0]), and it should be sampled on the rising
edge of the RD signal.

Figure 4 shows the LCODE timing relative to the HDATA pins when the external DMA is set to single transfer mode.
The DMA is programmed with the EDMODx registers.

0xD9000000 0x00000000 0xFFFFFFF1

Setup and hold times cannot be inferred from and are not implied by this diagram. The ADV212 datasheet provides
precise timing information.

DREQ/

DACK/

RD/

HDATA

LCODE

Figure 4. LCODE Relative Timing Example (DMA Set to Single Transfer)

The LCODE indication is a mode-independent tag associated with the end of a field or frame. LCODE is also asserted
when the CODE FIFO is read via indirect read access or when JDATA (streaming) mode is used. LCODE indicates
the last 32-bit word of a field or frame. This means that when the host interface is set to 16-bit data width, LCODE is
asserted for two read accesses. Similarly, when using 8-bit data width (including JDATA), LCODE is asserted for 4
accesses.

Figure 5 shows an example of LCODE timing relative to the HDATA pins when the external DMA is set to burst
transfer mode (burst length = 8).

0xD9000000

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

0x00000000 0xFFFFFFF1

DREQ/

DACK/

RD/

HDATA

LCODE

Figure 5. LCODE Relative Timing Example (DMA Set to Burst Transfer)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 12 of 55

32-BIT NORMAL HOST MODE ENCODE AND DECODE ROUTINES
Normal host mode accesses are used for direct register access, firmware loads, and parameter loads, and can also
be used for transferring compressed data in normal host mode. Figure 6 shows sample pin settings for 32-bit normal
host mode encode when you start the program and read compressed data out of the CODE FIFO.

EIRQFLG=SWIRQ0 EIRQFLG=DFTH

data1 data20x0402h

0x0005h 0x0001h0x0006h

0xFFFFh

0x0001h

Setup and hold times cannot be inferred from and are not impl ied by this diagram. T he ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA[31:0]

DACK0/

DREQ0/

DACK1/

DREQ1/

MCLK

Figure 6. 32-bit Normal Host Mode Encode Relative Timing Example

Figure 7 shows sample pin settings for 32-bit normal host mode decode when you start the program and write
compressed data into the CODE FIFO.

EIRQFLG=SWIRQ0 EIRQFLG=DFTH

data1 data20x0402h

0x0005h 0x0001h0x0006h

0xFFFFh

0x0001h

Setup and hold times cannot be inferred from and are not impl ied by this diagram. T he ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA[31:0]

DACK0/

DREQ0/

DACK1/

DREQ1/

MCLK

Figure 7. 32-bit Normal Host Mode Decode Relative Timing Example

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 13 of 55

CODE FIFO Threshold Register
The CODE FIFO threshold register, FFTHRC, is accessed at address location 0xFFFF141C. The FFTHRC register
sets the threshold value for a threshold-specific interrupt that is asserted on the IRQ pin when the threshold conditions
are met. This indicates that the ADV212 is ready for a compressed data transfer of the number of words programmed
in the FFTHRC register.

Figure 8 shows an encode mode example where the IRQ is asserted when the number of data words in the FIFO is
greater than or equal to the threshold value.

62 63 64 65 66 67 68 69

64 WORDS IN FIFO

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

IRQ/

CODE FIFO count

Figure 8. IRQ Asserted in Encode Mode (Threshold Set to 64 Words)

Figure 9 shows a decode mode example of a 512-entry FIFO. The IRQ is asserted when the number of available
word locations is greater than or equal to the threshold value.

453 452 451 450 449 448 447 446

64 EMPTY WORD
LOCATIONS IN FIFO

Setup and hold times cannot be inferred from and are not implied by this diagram. The ADV212 datasheet provides precise timing information.

IRQ/

CODE FIFO count

Figure 9. IRQ Asserted in Decode Mode (Threshold Set to 64 Words)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 14 of 55

Figure 10 shows an example of a 32-bit normal host mode encode flow that uses a 64-word threshold for compressed
data out. Normal host mode initialization starts with direct register accesses of the PLL registers, the BOOT register,
the MMODE register, and the BUSMODE register. In this example, the BUSMODE register is set to enable a 32-bit
host interface and a 32-bit wide data bus. The MMODE register is set to enable 32-bit indirect register access
capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configuring the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the encode parameters. For more information on setting the
encode parameters, see Table 8 on page 43. Next, you set the threshold register. Then, you confirm that the correct
firmware is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be
confirmed by an interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9
for detailed instructions. Encoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

You can initiate data transfer after you check that the IRQ pin is asserted and that EIRQFLG[1] (DFTH) is set to 1. A
setting of EIRQFLG[1] = 1 indicates that the CODE FIFO contains data and that the threshold condition for the CODE
FIFO has been met.

Figure 10. Example of 32-Bit Normal Host Mode Encode Routine With Threshold

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 15 of 55

Figure 11 shows an example of a 32-bit normal host mode decode flow that uses a 64-word threshold for compressed
data in. Normal host mode initialization starts with direct register accesses of the PLL registers, the BOOT register,
the MMODE register, and the BUSMODE register. In this example, the BUSMODE register is set to enable a 32-bit
host interface and a 32-bit wide data bus. The MMODE register is set to enable 32-bit indirect register access
capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configuring the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the decode parameters. For more information on setting the
decode parameters, see Table 9 on page 47. Next, you set the threshold register. Then, you confirm that the correct
firmware is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be
confirmed by an interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9
for detailed instructions. Decoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

You can initiate data transfer after you check that the IRQ pin is asserted and that EIRQFLG[1] (DFTH) is set to 1. A
setting of EIRQFLG[1] = 1 indicates that the CODE FIFO contains data and that the threshold condition for the CODE
FIFO has been met.

Figure 11. Example of 32-Bit Normal Host Mode Decode Routine With Threshold

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 16 of 55

16-BIT NORMAL HOST MODE ENCODE AND DECODE ROUTINES
If you are using 16-bit normal host mode, you must take the following into account:

 When using a 16-bit host-control bus to access 32-bit resources, such as when reading or writing to the IADDR
or IDATA registers, you must use the STAGE register. See the ADV212 User’s Guide for more details.

 When performing 32-bit accesses in 16-bit mode when reading internal memory (0x50000 to 0x57FFF) and
when using indirect address auto-increment, the data read-back value is halfword-swapped. That is, the write
order is big-endian while the read order is little-endian.

 The FIFO count is in 32-bit words even when 16-bit mode is used. A threshold setting of 64 is met if 128 16-bit
data words are present in the CODE FIFO (in encode mode) or 128 16-bit locations are available in the CODE
FIFO (in decode mode).

See Table 7 on page 43 for a list of BUSMODE and MMODE register settings.

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 17 of 55

Figure 12 shows an example of a 16-bit normal host mode encode flow that uses a threshold for compressed data
output. Normal host mode initialization starts with direct register accesses of the PLL registers, the BOOT register, the
MMODE register, and the BUSMODE register. In this example, the BUSMODE register is set to enable a 16-bit host
interface and a 16-bit wide data bus. The MMODE register is set to enable 16-bit indirect register access capability.
After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configuring the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the encode parameters. For more information on setting the
encode parameters, see Table 8 on page 43. Next, you set the threshold register. Then, you confirm that the correct
firmware is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be
confirmed by an interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9
for detailed instructions. Encoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

You can initiate data transfer after you check that the IRQ pin is asserted and EIRQFLG[1] (DFTH) is set to 1. A
setting of EIRQFLG[1] = 1 indicates that the CODE FIFO contains data and that the threshold condition for the CODE
FIFO has been met. Reading 64 32-bit words from the CODE FIFO in 16-bit data mode requires 128 accesses.

ASSERT RESET PIN

SET INTERNAL
CLOCKS (PLL_HI AND
PLL_LO REGISTERS)

WAIT 20 μs
FOR PLL LOCK

ENTER NO-HOST
BOOT MODE

BOOT = 0x008A

LOAD FIRMWARE
STAGE = 0x0005
IADDR = 0x0000

IDATA = FIRMWARE

SET
BUSMODE = 0x0005

MMODE = 0x0005

SOFT REBOOT
SET BOOT = 0x008D

SET ENCODE
PARAMETERS:

STAGE = 0x0005
IADDR = 0x7F00

IDATA = PARAMETERS

ENABLE EIRQIE[1]
(DFTH) AND EIRQIE[10]

(SWIRQ0):
EIRQIE = 0x0402

SET THRESHOLD =
64 WORDS:

STAGE = 0xFFFF
IADDR = 0x141C
IDATA = 0x0040

CHECK IRQ/
ASSERTED OR
EIRQFLG[10]?

SET
BUSMODE = 0x0005

MMODE = 0x0005

CLEAR FLAGS:
EIRQFLG = 0xFFFF

TO BEGIN ENCODING

CHECK FIRMWARE
CORRECTLY LOADED:

SWFLAG = 0xFF82

CHECK
IRQ/ ASSERTED

AND
EIRQFLG[1]=1?

CLEAR FLAGS:
EIRQFLG = 0x0002

READ 64 WORDS
(128 16-BIT VALUES)

FROM CODE FIFO

NO

64 (32-BIT) WORDS
IN CODE FIFO

NO

YES

YES

Figure 12. Example of 16-bit Normal Host Mode Encode Routine With Threshold

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 18 of 55

Figure 13 shows an example of a 16-bit normal host mode decode flow that uses a threshold for compressed data
input. Normal host mode initialization starts with direct register accesses of the PLL registers, the BOOT register, the
MMODE register, and the BUSMODE register. In this example, the BUSMODE register is set to enable a 16-bit host
interface and a 16-bit wide data bus. The MMODE register is set to enable 16-bit indirect register access capability.
After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configuring the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the decode parameters. For more information on setting the
decode parameters, see Table 9 on page 47. Next, you set the threshold register. Then, you confirm that the correct
firmware is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be
confirmed by an interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9
for detailed instructions. Decoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

You can initiate data transfer after you check that the IRQ pin is asserted and EIRQFLG[1] (DFTH) is set to 1. A
setting of EIRQFLG[1] = 1 indicates that the CODE FIFO contains data and that the threshold condition for the CODE
FIFO has been met. Writing 64 32-bit words to the CODE FIFO in 16-bit data mode requires 128 accesses.

Figure 13. Example of 16-bit Normal Host Mode Decode Routine With Threshold

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 19 of 55

DMA MODES
This document provides examples of two types of DMA modes: dedicated chip select (DCS) mode and DREQ/DACK
mode. You use an EDMODx register to select a DMA channel. DMA provides fast, low-overhead data transfer
between the host processor and the ADV212 data FIFOs.

In general, only one DMA channel is used for compressed data transfer, so only DMA Channel 0 is used and only the
EDMOD0 register is configured.

32-bit DCS Encode and Decode Routines
In DCS mode, direct register configuration, firmware loads, and parameter loads function as in normal host mode.
DCS mode provides information on the data FIFOs based on the FIFO threshold registers (FFTHRP, FFTHRC,
FFTHRA). The FSRQx (DREQx pins) signals are asserted when the number of data words or spaces in the FIFOs is
greater than the value in the corresponding threshold register.

Figure 14 shows example pin settings for DCS encode mode when you start the program and read data from the
CODE FIFO. In encode mode, DREQ0 is asserted as long as there is data in the CODE FIFO.

EIRQFLG=SWIRQ0

data1 data20x0400

0x0005 0x0006

0xFFFF data3

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA[31:0]

DACK0/

DREQ0/

DACK1/

DREQ1/

MCLK

Figure 14. 32-bit DCS Encode Mode Relative Timing Example

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 20 of 55

Figure 15 shows an example of a 32-bit DCS mode encode flow. DCS mode initialization starts with direct register
accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this example,
the BUSMODE register is set to enable a 32-bit host interface and a 32-bit wide data bus. The MMODE register is set
to enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the encode parameters. For more information on setting the
encode parameters, see Table 8 on page 43. Next, you set the EDMODx register. The EDMODx register configures
the ADV212 to use external DMA channels to transfer compressed data. Then, you confirm that the correct firmware
is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an
interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed
instructions.

The CODE FIFO threshold register, FFTHRC, is also set in DCS mode. Encoding starts after you confirm the correct
firmware load and clear the EIRQFLG register.

Figure 15. Example of 32-bit DCS Mode Encode Routine

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 21 of 55

Figure 16 shows example pin settings for DCS decode mode when you start the program and write data to the CODE
FIFO. In decode mode, DREQ0 is asserted as long as there is space available in the CODE FIFO to take in data.

EIRQFLG=SWIRQ0

data1 data20x0400

0x0005 0x0006

0xFFFF data3

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA[31:0]

DACK0/

DREQ0/

DACK1/

DREQ1/

MCLK

Figure 16. 32-bit DCS Mode Decode Relative Timing Example

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 22 of 55

Figure 17 shows an example of a 32-bit DCS mode decode flow. DCS mode initialization starts with direct register
accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this example,
the BUSMODE register is set to enable a 32-bit host interface and a 32-bit wide data bus. The MMODE register is set
to enable 32-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the decode parameters. For more information on setting the
decode parameters, see Table 9 on page 47. Next, you set the EDMODx register. The EDMODx register configures
the ADV212 to use external DMA channels to transfer compressed data. Then, you confirm that the correct firmware
is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an
interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed
instructions.

The CODE FIFO threshold register, FFTHRC, is also set in DCS mode. Decoding starts after you confirm the correct
firmware load and clear the EIRQFLG register.

Figure 17. Example of 32-bit DCS Mode Decode Routine

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 23 of 55

32-bit DMA DREQ/DACK Modes Encode and Decode Routines
In 32-bit DMA DREQ/DACK modes, direct register configuration, firmware loads, and parameter loads function as in
normal host mode. There are two types of DMA DREQ/DACK mode, single and burst. You can see the ADV212 data
sheet for detailed timing diagrams of the following modes:

 Single DMA DREQ/DACK mode—DREQ is asserted for every data access to the data FIFO.
 Burst DMA DREQ/DACK mode—DREQ is asserted once at the beginning of the burst.

For each of these modes, the DREQ pulse width can be configured using EDMOD0[14:11], the DR0PULS bit field:

 When DR0PULS is set to 0b0000, DREQ is asserted until the host responds by asserting DACK and RD (for
encode) or WE (for decode).

 When DR0PULS is set to a non-zero value (0b0001 to 0b1111), this represents the DREQ signal pulse in terms
of JCLK cycles. JCLK is the ADV212 internal processing clock. JCLK is configured by the PLL register settings.
For more information on JCLK and the PLL registers, see the ADV212 datasheet.

In single DMA DREQ/DACK encode mode, the ADV212 asserts DREQ when there is at least one data transfer
available in the assigned FIFO. In decode mode, the ADV212 asserts DREQ when the ADV212 is ready to receive at
least one data transfer to the assigned FIFO.

In burst DMA DREQ/DACK encode mode, the ADV212 asserts DREQ as soon as enough data, as set by the burst
size, is present in the assigned FIFO. In decode mode, the ADV212 asserts DREQ when the ADV212 is ready to
receive data, as set by the burst size, to the assigned FIFO. (Burst size is set in EDMOD0[8:6].)

Table 1 shows examples of EDMOD0 register settings for various DMA DREQ/DACK modes and configurations.
Table 1. DMA CONFIGURATION PARAMETERS AND EDMOD0 REGISTER SETTINGS

Routine DREQ Pulse Configuration DMA Mode Burst Cycles EDMOD0
Encode Controlled by DACK and RD Single n/a 0x000A
Encode Fixed pulse width to 4 JCLK cycles Single n/a 0x200A
Decode Controlled by DACK and WE Single n/a 0x000A
Decode Fixed pulse width to 4 JCLK cycles Single n/a 0x200A
Encode Controlled by DACK and RD Burst 16 0x0052
Encode Fixed pulse width to 4 JCLK cycles Burst 16 0x2052
Decode Controlled by DACK and WE Burst 16 0x0052
Decode Fixed pulse width to 4 JCLK cycles Burst 16 0x2052

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 24 of 55

Figure 18 shows example pin settings for DMA DREQ/DACK burst mode encode relative timing when you start the
program and read the first burst out of the CODE FIFO (EDMOD0 = 0x0012, set for a burst length of 8):

EIRQFLG=SWIRQ0

0x0005 0x0006

0x0400 0xFFFF

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA[31:0]

DACK0/

DREQ0/

DACK1/

DREQ1/

MCLK

Figure 18. DMA DREQ/DACK Burst Mode Encode Relative Timing Example

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 25 of 55

Figure 19 shows an example of a 32-bit DMA DREQ/DACK burst mode encode flow. DMA DREQ/DACK burst mode
encode initialization starts with direct register accesses of the PLL registers, the BOOT register, the MMODE register,
and the BUSMODE register. In this example, the BUSMODE register is set to enable a 32-bit host interface and a 32-
bit wide data bus. The MMODE register is set to enable 16-bit indirect register access capability. After loading these
registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the encode parameters. For more information on setting the
encode parameters, see Table 8 on page 43. Next, you set the EDMODx register. The EDMODx register configures
the ADV212 to use external DMA channels to transfer compressed data. Then, you confirm that the correct firmware
is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an
interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed
instructions. Encoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 19. Example of DMA DREQ/DACK Burst Mode Encode Routine

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 26 of 55

Figure 20 shows example pin settings for DMA DREQ/DACK burst mode decode relative timing when you start the
program and write the first burst into the CODE FIFO (EDMOD0 = 0x0012, set for a burst length of 8):

EIRQFLG=SWIRQ0

0x0005 0x0006

0x0400 0xFFFFF

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA[31:0]

DACK0/

DREQ0/

DACK1/

DREQ1/

MCLK

Figure 20. DMA DREQ/DACK Burst Decode Relative Timing Example

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 27 of 55

Figure 21 shows an example of a 32-bit DMA DREQ/DACK burst mode decode flow. DMA DREQ/DACK burst mode
decode initialization starts with direct register accesses of the PLL registers, the BOOT register, the MMODE register,
and the BUSMODE register. In this example, the BUSMODE register is set to enable a 32-bit host interface and a 32-
bit data bus. The MMODE register is set to enable 32-bit indirect register access capability. After loading these
registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the decode parameters. For more information on setting the
decode parameters, see Table 9 on page 47. Next, you set the EDMODx register. The EDMODx register configures
the ADV212 to use external DMA channels to transfer compressed data. Then, you confirm that the correct firmware
is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an
interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed
instructions. Decoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 21. Example of DREQ/DACK DMA Burst Mode Decode Routine

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 28 of 55

16-BIT HOST JDATA MODE ENCODE AND DECODE ROUTINES
JDATA mode allows streaming transfer of compressed data using the VALID/HOLD protocol and the JDATA[7:0] pins.
When JDATA mode is enabled, 32-bit data and host modes are not available. Only 16-bit host mode is available with
JDATA, because the 8-bit JDATA code stream uses the HDATA[31:24] pins. JDATA compressed data transfers are
synchronized to the MCLK. (See the ADV212 data sheet for JDATA mode timing specifications.) JDATA requires that
the frequency of JCLK be at least four times the frequency of MCLK. This means that for 150 MHz parts, the
maximum MCLK can be 37.25 MHz.

Set BUSMODE[1:0], the DWIDTH bit field, to 8-bit; set BUSMODE[3:2], the HWIDTH bit field, to 16-bit. Set
BUSMODE[6:4], the BCFG (bus configuration) bit field to JDATA, which assigns the HDATA [31:24] pins to
JDATA[7:0].

When JDATA mode is used, the CODE FIFO is dedicated to DMA Channel 0. The other data FIFOs (PIXEL or ATTR)
are not available when JDATA mode is used. Attempting to access these FIFOs interferes with JDATA operation.
However, direct and indirect registers can be accessed during JDATA transfers.

The VALID signal always functions as an output from the ADV212 and the HOLD signal always functions as an
input to the ADV212. Data transfers occur at the rising edge of MCLK when the VALID signal is asserted and
the HOLD signal is deasserted.

Set all of the EDMOD0 mode bits (DR0POL, DA0POL, DMSEL0, and so on) before you enable the DMA channel with
EDMOD0[0], the DMEN0 bit field.

Use the DR0POL bit field (EDMOD0[9]) to set the polarity of the VALID (DREQ0 pin) and the DA0POL bit field
(EDMOD0[10]) to set the polarity of the HOLD (DACK0 pin). Set the DMA channel 0 to use the CODE FIFO by setting
the DMSEL0 bit field (EDMOD0[2:1] to ‘01’ and set DMA channel 0 to use JDATA mode by setting the DMMOD0 bit
field (EDMOD0[5:3]) to ‘011’.

Figure 22 shows example pin settings for JDATA mode encode and decode timing when VALID and HOLD are set to
active high. The difference on the JDATA bus is that in encode, the ADV212 drives the data; in decode, the external
device drives the data.

EIRQFLG=SWIRQ0

0x0005 0x0006

0x0400 0xFFFF

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

ADDR[3:0]

CS/

RD/

WE/

ACK/

IRQ/

HDATA [15:0]

HDATA [31:24]_JDATA[7:0]

DACK0/_HOLD_I/P

DREQ0/_VALID_O/P

DACK1/

DREQ1/

MCLK

Figure 22. JDATA Mode Encode/Decode Relative Timing Example

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 29 of 55

Figure 23 shows an example of a JDATA mode encode flow. JDATA mode encode initialization starts with direct
register accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this
example, the BUSMODE register is set to enable a 16-bit host interface and an 8-bit data bus. The MMODE register
is set to enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the encode parameters. For more information on setting the
encode parameters, see Table 8 on page 43. Next, you set the EDMODx register. The EDMODx register configures
the ADV212 to use external DMA channels to transfer compressed data. Then, you confirm that the correct firmware
is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an
interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed
instructions. Encoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 23. Example of JDATA Mode Encode Routine

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 30 of 55

Figure 24 shows an example of a JDATA mode decode flow. JDATA mode decode initialization starts with direct
register accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this
example, the BUSMODE register is set to enable a 16-bit host interface and an 8-bit data bus. The MMODE register
is set to enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters with the IADDR and IDATA registers. IADDR must be set to the memory
location 0x00057F00 and IDATA must be written with the decode parameters. For more information on setting the
decode parameters, see Table 9 on page 47. Next, you set the EDMODx register. The EDMODx register configures
the ADV212 to use external DMA channels to transfer compressed data. Then, you confirm that the correct firmware
is loaded by setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an
interrupt or poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed
instructions. Decoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 24. Example of JDATA Mode Decode Routine

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 31 of 55

CUSTOM-SPECIFIC MODE ENCODE AND DECODE ROUTINES
Custom-specific mode is used for any input format that does not comply to the standards listed for VFORMAT in
Table 8 on page 43 and Table 9 on page 47.

Custom-specific mode has the following limitations:

 Maximum image input size: 1.048 Msamples/image. For YCbCr 4:2:2 data, there are 2 samples per pixel.
 Maximum number of code blocks per image: 610. The number of code blocks per image can be controlled with

the CBSIZE ADV212 firmware parameter (see Table 8). Also see the technical note “How to estimate the
number of codeblocks/image”.

 Data input rate: see the ADV212 data sheet.
 Minimum of six lines of vertical blanking
 Minimum of 16 pixels of horizontal blanking
 H and V should not be asserted simultaneously.

In custom-specific mode, the pixel interface register settings override the firmware parameter settings for PREC, UNI,
and PICFG. See the ADV212 User’s Guide for more information about the PMODE1 register, the PMODE2 register,
and the VMODE register.
Table 2. CUSTOM-SPECIFIC REGISTER SETTINGS
Firmware Parameter Setting Register Setting
PREC PMODE1[10:8] PREC. Precision
UNI PMODE2[4] YUNI. Y unipolar

PMODE2[5] CUNI. C unipolar
PICFG PMODE2[0] VCLK_POL. VCLK active edge

PMODE2[1] VSYNC_POL. VSYNC active edge
PMODE2[2] HSYNC_POL. HSYNC active edge
PMODE2[3] FIELD_POL. FIELD active edge

— PMODE1[4:0] PFMT. Pixel format

The VMODE register must be fully specified.

Table 3 lists the dimension registers for nonstandard video input that are configured in custom-specific mode. For a
detailed bit description of each register, see the ADV212 User’s Guide.

Table 3. ADV212 DIMENSION REGISTERS
Indirect Register Address Name Description
0xFFFF0400 PMODE1 Pixel/video format
0xFFFF040C XTOT Total samples per line
0xFFFF0410 YTOT Total lines per frame/field
0xFFFF0414 F0_START Start line of Field 0
0xFFFF0418 F1_START Start line of Field 1
0xFFFF041C V0_START Start of active video Field 0
0xFFFF0420 V1_START Start of active video Field 1
0xFFFF0424 V0_END End of active video Field 0
0xFFFF0428 V1_END End of active video Field 1
0xFFFF042C PIXEL_START Horizontal start of active video
0xFFFF0430 PIXEL_END Horizontal end of active video
0xFFFF0448 PMODE2 Pixel Mode 2 Register
0xFFFF044C VMODE Video mode

In custom-specific mode, the video is expected to be input on VDATA [11:0] with HVF syncs or with EAV/SAV codes.
Polarities for H, V, and F are programmed in the PMODE2 register. If HVF syncs are used, only the first active
HSYNC transition at the start of active video is recognized, and that transition starts the horizontal counters. There is
no HSYNC pulse-width requirement; HSYNC must be asserted at the start of each active line.

ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_212_Misc_Appnotes/ADV202_212_Codeblocks_1.pdf
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_212_Misc_Appnotes/ADV202_212_Codeblocks_1.pdf

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 32 of 55

For vertical synchronization, the ADV212 uses the inactive edge of VSYNC. In progressive modes, the VSYNC
inactive edge occurs in Field 0. In interlaced modes, a VSYNC inactive edge occurs in both Field 0 and Field 1, but
the ADV212 ignores the Field 0 VSYNC inactive edge and re-synchronizes to the Field 1 VSYNC inactive edge on
every frame.

When you use raw video mode, the pixel data is expected to be input left-justified on VDATA [15:0] with VFRM,
VRDY, and VSTRB syncs.

For noninterlaced formats or frame-based input formats such as still images, you do not need to set the F1_START,
V1_START or V1_END registers.

F0_START and F1_START are used in decode mode to identify the line number at which the field bit transitions from
0 to 1. In decode master mode, the field register settings determine the field output transition. In decode slave mode,
the field register settings and the input field bit determine the location of the pixel interface field transition.

Encode Mode
In encode mode, the part is always in a slave configuration. Input data must be accompanied by separate H, V, and F
signals or embedded EAV/SAV timing codes. In both cases, the dimension registers must reflect the video standard of
the input.

The active video region to be processed is calculated using the values of the Vx_START, Vx_END, PIXEL_START,
PIXEL_END, XTOT, and YTOT registers. However, this only applies to input video modes using the VDATA bus. For
HIPI or raw video modes, only the values for XTOT and YTOT need to be programmed; all other dimension register
values are ignored. (For more information on HIPI mode, see “ADV202 HIPI mode” and “Using the ADV202 in HIPI
mode”.)

Decode Mode
In decode mode, the part can be in either slave mode or master mode. In decode slave mode, video output is
synchronized to the incoming HVF signals. The dimension register settings must match the input format as
determined by the HVF inputs. In decode master mode, HSYNC, VSYNC, and FIELD or EAV/SAV codes are
generated according to the settings of these registers:

 XTOT
 YTOT
 F0_START
 F1_START
 F0_END
 F1_END

 V0_START
 V1_START
 V0_END
 V1_END
 PI XEL_START
 PIXEL_END

The VMODE register must be programmed to decode master mode to enable the generation of these timing signals.

ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_HIPImode_Still_Image_Application/HIPI_mode_overview_2.pdf
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_HIPImode_Still_Image_Application/ADV202_HIPI_mode_rev03.pdf
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_HIPImode_Still_Image_Application/ADV202_HIPI_mode_rev03.pdf

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 33 of 55

Custom-Specific Mode Configuration Example
In this example, custom-specific mode is configured for VGA, progressive video, 10-bit YCbCr data with 800 × 525 @
60 Hz total and 640 × 480 @ 60 Hz active resolution. The input VCLK frequency is 25.2 MHz. The PMODE2 register
is set to VSYNC polarity '0' , HSYNC polarity '0' and VCLK polarity '1'.

active video last active videoHblank Vblank1280 VCLKs 320 VCLKs

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

VDATA[11:2]

HSYNC

VSYNC

FIELD

VCLK=25.2 MHz

Figure 25.

Table 4.

 Custom-specific Mode Encode and Decode Relative Timing Example

CUSTOM-SPECIFIC EXAMPLE—DIMENSION REGISTER SETTINGS FOR HVF PROGRESSIVE VIDEO MODE

Indirect Register Address Name Register Setting for Encode Register Settings for Decode
0xFFFF0400 PMODE1 0x0005 0x0005
0xFFFF040C XTOT 0x0640 [1600] 0x0640
0xFFFF0410 YTOT 0x020D [525] 0x020D
0xFFFF0414 F0_START 0x0001 [1] 0x0001
0xFFFF0418 F1_START 0x0000 [0] 0x0000
0xFFFF041C V0_START 0x002E [46] 0x002E
0xFFFF0420 V1_START 0x0000 [0] 0x0000
0xFFFF0424 V0_END 0x020D [525] 0x020D
0xFFFF0428 V1_END 0x0000 [0] 0x0000
0xFFFF042C PIXEL_START 0x0001 [1] 0x0001
0xFFFF0430 PIXEL_END 0x0500 [1280] 0x0500
0xFFFF0448 PMODE2 0x0031 for polarity as in Figure 25. 0x0031
0xFFFF044C VMODE 0x0086 HVF mode 0x0085 (Decode Master)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 34 of 55

Figure 26 shows an example of a custom-specific mode encode flow using DCS mode for compressed data output.
(DCS mode is an example; you can use any mode.) Custom-specific mode encode initialization starts with direct
register accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this
example, the BUSMODE register is set to enable a 32-bit host interface and a 32-bit data bus. The MMODE register
is set to enable 32-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters and the EDMODx register. The EDMODx register configures the ADV212 to
use external DMA channels to transfer compressed data. Next, you confirm that the correct firmware is loaded by
setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an interrupt or
poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.

The CODE FIFO threshold register, FFTHRC, is also set in DCS mode. Encoding starts after you confirm the correct
firmware load and clear the EIRQFLG register.

Figure 26. Example of Custom-specific Mode Encode Routine

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 35 of 55

Figure 27 shows an example of a custom-specific mode decode flow using DCS mode for compressed data input.
(DCS mode is an example; you can use any mode.) Custom-specific mode decode initialization starts with direct
register accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this
example, the BUSMODE register is set to enable a 32-bit host interface and a 32-bit data bus. The MMODE register
is set to enable 32-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters and the EDMODx register. The EDMODx register configures the ADV212 to
use external DMA channels to transfer compressed data. Next, you confirm that the correct firmware is loaded by
setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an interrupt or
poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.

The CODE FIFO threshold register, FFTHRC, is also set in DCS mode. Decoding starts after you confirm the correct
firmware load and clear the EIRQFLG register.

Figure 27. Example of Custom-specific Mode Decode Routine

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 36 of 55

RAW PIXEL MODE ENCODE AND DECODE ROUTINES
In raw pixel mode, pixel data is transferred on the VDATA bus. The transfer data is expected to have no timing
information or blanking region associated with it. The region to be captured and the frame transitions are determined
by VRDY (HSYNC), VFRM (VSYNC), VSTRB (FIELD), and the dimension registers XTOT and YTOT. Pixel data
should be transferred on VDATA[15:0] with one pixel data sample per VCLK cycle.

Raw pixel mode must be enabled in the VMODE register and the ADV212 parameter VFORMAT must be set to
custom-specific. Raw pixel mode only supports single-component transfers or 3-component 4:2:2 in YCbYCr format.
32-bit host mode is not available with raw pixel mode.

Raw Pixel Mode Configuration Example
In these examples, raw pixel mode is configured for VGA, single-component, 8-bit Y data with 640 × 480 @ 60 Hz
active resolution.

Raw Pixel Mode Encode
Figure 28 shows HSYNC_VRDY, VSYNC_VFRM, and FIELD_VSTRB programmed for active high polarity.

HSYNC_VRDY (output): When this signal is asserted high, the ADV212 is ready to accept pixel data.

VSYNC_VFRM (input): This signal must be asserted high for one VCLK cycle, at the start of a frame, on the first pixel
sample.

FIELD_VSTRB (input): When this signal is asserted high, there is valid pixel data on the VDATA bus for the ADV212
to capture.

pix 1 pix 2 pix xx last pix pix 1 pix 2 pix xx last pixpix xx pix xx pix xx

Setup and hold times cannot be inferred from or impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

VDATA[15:8]

HSYNC_VRDY [o/p]

VSYNC_FRM [o/p]

FIELD_VSTRB [i/p]

VCLK=18.432 MHz

Figure 28. Raw Pixel Mode Encode Relative Timing Example

Raw Pixel Mode Decode
Figure 29 shows HSYNC_VRDY, VSYNC_VFRM, and FIELD_VSTRB programmed for active high polarity.

HSYNC_VRDY (input): When this signal is asserted high, the ADV212 has valid pixel data to output.

VSYNC_VFRM (output): The ADV212 asserts this signal for one VCLK cycle, at the start of a frame, on the first pixel
sample.

FIELD_VSTRB (input): When this signal is asserted high, the host is ready to accept pixel data from the ADV212.

pix 1 pix 2 pix xx last pix pix 1 pix 2 pix xx last pixpix xx pix xx pix xx

Setup and hold times cannot be inferred from and are not impl ied by this diagram. The ADV212 datasheet provides precise tim ing information.

VDATA[15:8]

HSYNC_VRDY [o/p]

VSYNC_VFRM [i/p]

FIELD_VSTRB [i/p]

VCLK=18.432 MHz

Figure 29. Raw Pixel Mode Decode Relative Timing Example

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 37 of 55

Table 5. DIMENSION REGISTER SETTINGS FOR RAW PIXEL MODE EXAMPLE
Indirect Register Address Name Register Setting for Encode Register Settings for Decode
0xFFFF0400 PMODE1 0x0004 0x0004
0xFFFF040C XTOT 0x0280 [640] 0x0280 [640]
0xFFFF0410 YTOT 0x01E0 [480] 0x01E0 [480]
0xFFFF0414 F0_START 0x0000 0x0000
0xFFFF0418 F1_START 0x0000 0x0000
0xFFFF041C V0_START 0x0001 0x0001
0xFFFF0420 V1_START 0x0000 0x0000
0xFFFF0424 V0_END 0x01E0 0x01E0
0xFFFF0428 V1_END 0x0000 0x0000
0xFFFF042C PIXEL_START 0x0001 0x0001
0xFFFF0430 PIXEL_END 0x0280 0x0280
0xFFFF0448 PMODE2 0x003F for polarity as in Figure 28. 0x003F for polarity as in Figure 29.
0xFFFF044C VMODE 0x0022 0x0021

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 38 of 55

Figure 30 shows an example of a raw pixel mode encode flow using DCS mode for compressed data output. (DCS
mode is an example; you can use any mode.) Raw pixel mode encode initialization starts with direct register accesses
of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this example, the
BUSMODE register is set to enable a 16-bit host interface and a 16-bit data bus. The MMODE register is set to
enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters and the EDMODx register. The EDMODx register configures the ADV212 to
use external DMA channels to transfer compressed data. Next, you confirm that the correct firmware is loaded by
setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an interrupt or
poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.

The CODE FIFO threshold register, FFTHRC, is also set in DCS mode. Encoding starts after you confirm the correct
firmware load and clear the EIRQFLG register.

Figure 30. Example of Raw Pixel Mode Encode Routine (DCS)

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 39 of 55

Figure 31 shows an example of a raw pixel mode decode flow using DCS mode for compressed data input. (DCS
mode is an example; you can use any mode.) Raw pixel mode decode initialization starts with direct register accesses
of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this example, the
BUSMODE register is set to enable a 16-bit host interface and a 16-bit data bus. The MMODE register is set to
enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters and the EDMODx register. The EDMODx register configures the ADV212 to
use external DMA channels to transfer compressed data. Next, you confirm that the correct firmware is loaded by
setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an interrupt or
poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.

The CODE FIFO threshold register, FFTHRC, is also set in DCS mode. Decoding starts after you confirm the correct
firmware load and clear the EIRQFLG register.

Figure 31. Example of Raw Pixel Mode Decode Routine (DCS)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 40 of 55

Raw Pixel Mode – JDATA Mode
The synchronous 8-bit JDATA interface can be used to transfer compressed data. In Figure 32, encode, the
VSYNC_VFRM signal is input. In Figure 33, decode, the VSYNC_VFRM signal is output.

pix 1 pix 1 pix 1 pix 1

frame 1 frame 2 frame 3

Setup and hold tim es cannot be inferred from and are not impl ied by this diagram. T he ADV212 datasheet provides precise tim ing information.

VDATA[15:8]

VCLK=18.432 MHz

HSYNC_VRDY[o/p]

VSYNC_VFRM [o/p]

FIELD_VSTRB [i/p]

DACK0/_HOLD [i/p]

DREQ0/_VALID [o/p]

DACK1/

DREQ1/

HDATA[31:24]_JDATA[7:0]

MCLK

Figure 32. Raw Pixel Mode Encode Relative Timing Example (JDATA)

pix 1 pix 1

frame 1 frame 2

Setup and hold times cannot be inferred from and are not im pl ied by this diagram. T he ADV212 datasheet provides precise tim ing information.

VDATA[15:8]

VCLK=18.432 MHz

HSYNC_VRDY[o/p]

VSYNC_VFRM [o/p]

FIELD_VSTRB [i/p]

DACK0/_HOLD [i/p]

DREQ0/_VALID [o/p]

DACK1/

DREQ1/

HDATA[31:24]_JDATA[7:0]

MCLK

Figure 33. Raw Pixel Mode Decode Relative Timing Example (JDATA)

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 41 of 55

Figure 34 shows an example of a raw pixel mode encode flow using JDATA mode for compressed data output.
(JDATA mode is an example; you can use any mode.) Raw pixel mode encode initialization starts with direct register
accesses of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this example,
the BUSMODE register is set to enable a 16-bit host interface and an 8-bit data bus. The MMODE register is set to
enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the encode parameters and the EDMODx register. The EDMODx register configures the ADV212 to
use external DMA channels to transfer compressed data. Next, you confirm that the correct firmware is loaded by
setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an interrupt or
poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.
Encoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 34. Example of Raw Pixel Mode Encode Routine (JDATA)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 42 of 55

Figure 35 shows an example of a raw pixel mode decode flow using JDATA mode for compressed data input. (JDATA
mode is an example; you can use any mode.) Raw pixel mode decode initialization starts with direct register accesses
of the PLL registers, the BOOT register, the MMODE register, and the BUSMODE register. In this example, the
BUSMODE register is set to enable a 16-bit host interface and an 8-bit data bus. The MMODE register is set to
enable 16-bit indirect register access capability. After loading these registers, the firmware can be loaded.

After you load the firmware and the ADV212 firmware parameters into ADV212 memory, you perform a soft reboot by
setting the BOOT register, and then configure the BUSMODE and MMODE registers and any application-specific
registers. You set the decode parameters and the EDMODx register. The EDMODx register configures the ADV212 to
use external DMA channels to transfer compressed data. Next, you confirm that the correct firmware is loaded by
setting the EIRQIE register and reading the application ID. Correct firmware load can be confirmed by an interrupt or
poll routine of the EIRQFLG register. See “Confirming Correct Firmware Load” on page 9 for detailed instructions.
Decoding starts after you confirm the correct firmware load and clear the EIRQFLG register.

Figure 35. Example of Raw Pixel Mode Decode Routine (JDATA)

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 43 of 55

Table 6.

APPENDIX

PLL Settings and Internal Clocks
See the ADV212 datasheet for a detailed description of the ADV212 internal clock and PLL register settings.

The tables in this section show recommended register settings for most common MCLK frequencies used.
RECOMMENDED PLL REGISTER SETTINGS

Video Standard MCLK Input [MHz] PLL_HI Address = 0xE PLL_LO Address = 0xF
ITU.R.BT656 27 0x0008 0x0004
1080i, SMPTE274M 74.25 0x0008 0x0084
1080i, SMPTE274M 37.125 0x0008 0x0004
1080i, SMPTE274M 25 0x0008 0x0006
525p, SMPTE293M 27 0x0008 0x0004
625p, ITU.R.BT1358 27 0x0008 0x0004

BUSMODE and MMODE Register Settings
Table 7. BUSMODE AND MMODE REGISTER SETTINGS

Interface BUSMODE Address = 0x8 MMODE Address = 0x9
32-bit 0x000A 0x000A
16-bit 0x0005 0x0005
JDATA mode 0x0015 0x0005 or 0x0009
Raw pixel mode 0x0025 0x0005 or 0x0009

ADV212 Firmware Parameter Encode Settings
Table 8. ENCODE CONFIGURATION PARAMETER SETTINGS

Big-endian
Byte Offset Number of Bytes Name Parameter Description
0x0 1 VFORMAT Video Standard

0 = NTSC 4:2:2
1 = PAL 4:2:2
2 = 1080i/60 luminance
3 = 1080i/60 chrominance
4 = Custom-specific
5 = 720/60p luminance
6 = 720/60p chrominance
7 = Reserved
8 = NTSC de-interlaced
9 = PAL de-interlaced

0x1 1 PREC Precision
0 = 8-bit
1 = 10-bit
2 = 12-bit

0x2 1 XFORMLEV Number of Wavelet Transform Levels
1 = 1 level of transform
2 = 2 levels of transform
3 = 3 levels of transform
4 = 4 levels of transform
5 = 5 levels of transform
6 = 6 levels of transform (not recommended)

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 44 of 55

Big-endian
Byte Offset Number of Bytes Name Parameter Description
0x3 1 UNI Component Polarity

0 = Bipolar C, Bipolar Y
1 = Unipolar C, Bipolar Y
2 = Bipolar C, Unipolar Y
3 = Unipolar C, Unipolar Y
Should be set to '3' for most applications.

0x4 1 CBSIZE Code Block Dimensions
0 = 32 × 32 (does not work for 1080i or 720p)
1 = 64 × 32
2 = 64 × 64
3 = 128 × 32 (recommended setting)

0x5 1 WKERNEL Wavelet Kernel
0 = Irreversible 9 × 7 using fixed table (lossy)
1 = Reversible 5 × 3 (lossless)
2 = Irreversible 5 × 3 (lossy)

0x6 1 STALLPAR Skip Fields in Encode Mode
0 = Capture all fields
1 to 63 = After capturing a field, skip this number of fields
255 = Stop capture

0x7 1 ATTRTYPE Attribute Data Output Format
0 = Do not output attribute data
1 = Use ADV-JP2000 attribute data format
2 = Log2 convex hull without adjustments
3 = Log2 convex hull with quantization adjust
4 = ADV212 field header output to ATTR FIFO
5 = ADV212 field header and packet byte length output to ATTR
FIFO

0x8 1 RCTYPE Rate Control Algorithm
0 = None (no truncation)
1 = Target size per video field or image within 5% of RCVAL
2 = Target quality per video field or image.
3 = Multilayered target size per video field or image. Requires
RCVAL and LTARGET parameters also.
4 = Multilayered target quality per video field or image. Requires
RCVAL and LTARGET parameters also.

0x9 3 RCVAL Target Size or Quality Factor
If RCTYPE = 0, then RCVAL = n/a
If RCTYPE = 1, then RCVAL = Size of field or image in bytes
If RCTYPE = 2, then RCVAL = Quality factor
If RCTYPE ≥ 3, then RCVAL = Number of layers

0xC 1 J2KPROG JPEG2000 Progression Style
0 = LRCP
1 = RLCP
2 = RPCL
3 = PCRL
4 = CPRL

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 45 of 55

Big-endian
Byte Offset Number of Bytes Name Parameter Description
0xD 1 PICFG Pixel Interface Bit Configuration Settings

Bit 7 = Reserved (write 0)
Bit 6 = HVF or EAV/SAV

1 = Use external HVF pins
0 = Use embedded SAV/EAV

Bit 5 = Reserved (write 0)
Bit 4 = Reserved (write 0)
Bit 3 = FIELD polarity (1 = positive, 0 = negative)
Bit 2 = HSYNC polarity (1 = positive, 0 = negative)
Bit 1 = VSYNC polarity (1 = positive, 0 = negative)
Bit 0 = VCLK polarity (1 = positive, 0 = negative)

0xE 1 QFACT Quantization Factor
255 = 255/256 factor
254 = 254/256 factor
…
2 = 2/256 factor
1 = 1/256 factor
0 = 256/256 factor (1×)

0xF 1 COD_STYLE Output Code Stream Format
COD_STYLE [7:4] applies to J2C or JP2 formats only
COD_STYLE [7]:

0 = Packet headers with packet body
1 = Use PPT

COD_STYLE [6]:
0 = No PLT
1 = Include PLT

COD_STYLE [5]:
0 = No SOP
1 = Include SOP

COD_STYLE [4] :
0 = No EPH
1 = Include EPH

COD_STYLE [3]: Reserved
COD_STYLE [2:0]:

0 = ADV212 raw format
1 = J2C format
2 = JP2 format YCbCr (for 4:2:2 mode only)
3 = JP2 format Greyscale

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 46 of 55

Big-endian
Byte Offset Number of Bytes Name Parameter Description
0x10 2 x 19 STEPSIZES

[18:0]
Quantization Step Sizes Using 5 Exponent Bits Plus 11
Mantissa Bits
For more detail see the ISO/IEC15444-1 specification, section
Annex E.
There is one step size assigned per subband (note there is only
one set of step sizes defined which all components use). The
order of subband step sizes for this parameter list is as follows
for 6 transform levels:
 LL
1HL (for > 0 transform levels)
1LH (for > 0 transform levels)
1HH (for > 0 transform levels)
2HL (for > 1 transform levels)
2LH (for > 1 transform levels)
2HH (for > 1 transform levels)
3HL (for > 2 transform levels)
3LH (for > 2 transform levels)
3HH (for > 2 transform levels)
4HL (for > 3 transform levels)
4LH (for > 3 transform levels)
4HH (for > 3 transform levels)
5HL (for > 4 transform levels)
5LH (for > 4 transform levels)
5HH (for > 4 transform levels)
6HL (for > 5 transform levels)
6LH (for > 5 transform levels)
6HH (for > 5 transform levels)

0x36 1 LOAD_SS Step Sizes Load Options
Bit 0 of this byte must be 0 prior to loading the step sizes and/or
QFACT.
After writing the step sizes or QFACT, set Bit 0 to 1 to tell the
firmware that the step sizes or QFACT are valid and ready for
use. After the firmware loads the new step sizes or QFACT, this
bit is again reset to ‘0’.

0x37 1 LOAD_VW Visual Weighting Options
0 = No visual weighting or use previously loaded visual weights.
1 = Load custom visual weights using VW_Y, VW_CB and
VW_CR parameters.
2 = Load visual weights as recommended in ISO/IEC 15444-3
Standard for Motion JPEG2000

0x38 2 x 19 VW_Y Visual weighting factors for luminance.
0x5E 2 x 19 VW_CB Visual weighting factors for Cb
0x84 2 x 19 VW_CR Visual weighting factors for Cr
0xAA 6 RESERVED Reserved
0xB0 4 x 16 LTARGET [1:16] Target size or target quality for each layer in multilayer mode

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 47 of 55

Table 9.

ADV212 Firmware Parameter Decode Settings
 DECODE CONFIGURATION PARAMETER SETTINGS

Big-Endian Byte
Offset

Number of Bytes
in Parameter

Parameter
Name Description

0x0 1 VFORMAT Video Standard
0 = NTSC 4:2:2
1 = PAL 4:2:2
2 = 1080i Luminance
3 = 1080i Chrominance
4 = Custom-specific
5 = 720/60p Luminance
6 = 720/60p Chrominance
7 = Reserved
8 = NTSC de-interlaced
9 = PAL de-interlaced

0x1 1 PREC Precision
0 = 8-bit
1 = 10-bit
2 = 12-bit

0x2 1 Reserved
0x3 1 UNI Component polarity

0 = Bipolar C, Bipolar Y
1 = Unipolar C, Bipolar Y
2 = Bipolar C, Unipolar Y
3 = Unipolar C, Unipolar Y
Should be set to '3' for most applications.

0x4 1 Reserved
0x5 1 Reserved
0x6 1 Reserved
0x7 1 Reserved
0x8 1 Reserved
0x9 1 PICFG Pixel Interface Configuration Settings

Bit 7 = Reserved (always write 0)
Bit 6 = Use HVF pins

1 = Use external HVF pins
0 = Use embedded SAV/EAV

Bit 5 = Reserved (write 0)
Bit 4 = Decode (1 = master, 0 = slave)
Bit 3 = FIELD polarity (1 = positive, 0 = negative)
Bit 2 = HSYNC polarity (1 = positive, 0 = negative)
Bit 1 = VSYNC polarity (1 = positive, 0 = negative)
Bit 0 = VCLK polarity (1 = positive, 0 = negative)

0xA 1 DRES Decode Resolution Settings
Bit 7 = Scale image size enable

0 = Keep image size the same
1 = Scale image down to desired resolution size. See bits
[2:0] for settings.

Bits[6:3] = Reserved (write 0)
Bits[2:0] = Highest resolution level to decode (up to maximum of

XFORMLEV parameter)
0 = Decode all resolutions
1 = Decode to 1/4 resolution
2 = Decode to 1/16 resolution
3 = Decode to 1/64 resolution
4 = Decode to 1/256 resolution
5 = Decode to 1/1024 resolution
6 = Decode to 1/4096 resolution

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 48 of 55

Big-Endian Byte
Offset

Number of Bytes
in Parameter

Parameter
Name Description

0xB 1 COD_STYLE Output Code Stream Format:
COD_STYLE [2:0]

0 = ADV212 raw format
1 = J2C Format
2 = JP2 YCbCr
3 = JP2 Greyscale

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 49 of 55

ADV212 Firmware Parameter Descriptions

VFORMAT
NTSC 4:2:2 This setting should be used only for a resolution of 720 × 243 @ 60 fields/sec.
PAL 4:2:2 This setting should be used only for a resolution of 720 × 288 @ 50 fields/sec.
1080i Luminance This setting should be used only for a resolution of 1920 × 540 @ 60 fields/sec.
1080i Chrominance This setting should be used only for a resolution of 1920 × 540 @ 60 fields/sec.
Custom-specific This setting must be used for all settings that do not conform to VFORMAT 0, 1, 2, 3, 5, 6, 7, 8 or 9.
720/60p Luminance This setting should be used only for a resolution of 1280 × 720 @ 60 frames/sec.
720/60p Chrominance This setting should be used only for a resolution of 1280 × 720 @ 60 frames/sec.
NTSC De-interlaced This setting should be used only for NTSC standard definition at a resolution of 720 × 243@60

fields/sec. The input is in interlaced format, but the compression is on a frame-by-frame basis. The
ADV212 compresses an odd and even field together. This can improve compression efficiency by up to
40-50%. De-interlaced mode can only handle 8-bit pixel component samples. VDATA[3:0] is ignored in
encode and is set to 0 in decode.

PAL De-interlaced This setting should be used only for PAL standard definition at a resolution of 720 × 288 @ 50 fields/sec.
The input is in interlaced format, but the compression is on a frame-by-frame basis. The ADV212
compresses an odd and even field together. This can improve compression efficiency by up to 40-50%.
De-interlaced mode can only handle 8-bit pixel component samples. VDATA[3:0] is ignored in encode
and is set to 0 in decode.

CBSIZE
Code stream generation is facilitated with large code blocks, but code block height should be small to minimize
ADV212 memory usage. For this reason, a code block size of 32 × 32 does not work for 1080i or 720p modes. The
most robust code block size for 1080i and 720p modes is 128 × 32. This CBSIZE also provides the lowest latency.

The smaller the code blocks, the larger the number of code blocks that are generated. The CPU bandwidth required
to perform rate control and J2K generation are directly related to the number of code blocks present.

For recommendations on how to estimate the number of code blocks per image, see the technical note “How to
estimate the number of codeblocks/image”.

ATTRTYPE
The ADV212 is configured to output code block attribute data via the ATTR FIFO if the ATTRTYPE parameter is set to
1, 2, or 3. Also, the host must enable both DMA channels when using this feature. One DMA channel is assigned to
the CODE FIFO, and the other DMA channel is assigned to the ATTR FIFO.

If ATTRTYPE is set to 4, the 16-byte ADV212 compressed image header is output to the ATTR FIFO instead of being
placed at the beginning of each compressed image. This allows systems to obtain this header information without the
need to parse the code stream data.

If ATTRTYPE is set to 5, then a more detailed byte-length summary is output to the ATTR FIFO to support external
merging of HD Luminance and HD Chrominance streams from two different ADV212s.

ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_212_Misc_Appnotes/ADV202_212_Codeblocks_1.pdf
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_212_Misc_Appnotes/ADV202_212_Codeblocks_1.pdf

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 50 of 55

RCTYPE and RCVAL
This version of the firmware has five options for performing the rate-control algorithm. The first option does not
truncate the compressed code block. The four other options truncate the compressed code block.

The options for the rate-control algorithm are as follows:

 No truncation
 Target size per video field or image
 Target quality per video field or image
 Multilayer target size
 Multilayer target quality

NO TRUNCATION
Each compressed code block is assembled into the code stream without being truncated, which provides the
maximum possible quality. This also results in large variations in the number of bytes generated per compressed
image.

TARGET SIZE PER VIDEO FIELD OR IMAGE
The number of bytes per compressed field or image is provided in the RCVAL parameter. If target size is chosen as a
parameter, the data output rate must be within +5% to -100% of the programmed value.

For example, to achieve 12 Mbps (assuming NTSC 60 fields/sec), RCVAL should be set to (12,000,000/(8 ×60)) =
25,000 bytes per field = 0x0061A8. The rate-control algorithm tries to achieve this size with the best possible quality,
but there are variations from field to field.

TARGET QUALITY PER VIDEO FIELD OR IMAGE
The target quality value is provided in the RCVAL parameter. As this value increases, the quality actually decreases,
while the number of bytes per compressed field or image also decreases. If target quality is chosen as a parameter,
the picture quality is held at a constant while the data output rate changes.

Assuming the default quantization step sizes are being used, highest quality is achieved at RCVAL = 0x000100 or
below, and lowest quality is achieved at RCVAL = 0x000A00 and above.

MULTILAYER TARGET SIZE
This option allows the user to program bytes per compressed field or image per layer when using multilayered
codestream output. The number of layers should be programmed into the RCVAL parameter. The target byte length
for each layer must also be programmed. This is done by setting LTARGET.

To use Multilayer Target Size, perform the following procedure:

1. Set RCTYPE to 3.
2. Program RCVAL for the number of layers. RCVAL can be programmed from a minimum value of 1 up to a

maximum of 16.
3. Set LTARGET values to the bytes per image for each layer.

MULTILAYER TARGET QUALITY
To use Multilayer Target Quality, perform the following procedure:

1. Set RCTYPE to 4.
2. Program RCVAL for the number of layers. RCVAL can be programmed from a minimum value of 1 up to a

maximum of 16.
3. Set LTARGET values to the target quality for each layer.

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 51 of 55

Table 10. RCVAL SETTINGS FOR VARIOUS DATA OUTPUT RATES FOR TARGET SIZE
Video Horizontal Pixels per

Field
Lines per
Field

Field
Rate

Data Output Rate Mbps Bytes per
Field

RCVAL

NTSC 720 243 59.94 20 41708 0x00A2EC
NTSC 720 243 59.94 15 31281 0x007A31
NTSC 720 243 59.94 10 20854 0x005176
NTSC 720 243 59.94 9 18750 0x00493E
NTSC 720 243 59.94 8 16683 0x00412B
NTSC 720 243 59.94 7 14598 0x003906
NTSC 720 243 59.94 6 12513 0x0030E1
NTSC 720 243 59.94 5 10417 0x0028B1
NTSC 720 243 59.94 4 8342 0x002096
NTSC 720 243 59.94 3 6256 0x001870
NTSC 720 243 59.94 2 4167 0x001047
NTSC 720 243 59.94 1 2085 0x000825
PAL 720 288 50 20 50000 0x00C350
PAL 720 288 50 15 37500 0x00927C
PAL 720 288 50 10 25000 0x0061A8
PAL 720 288 50 9 22500 0x0057E4
PAL 720 288 50 8 20000 0x004E20
PAL 720 288 50 7 17500 0x00445C
PAL 720 288 50 6 15000 0x003A98
PAL 720 288 50 5 12500 0x0030D4
PAL 720 288 50 4 10000 0x002710
PAL 720 288 50 3 7500 0x001D4C
PAL 720 288 50 2 5000 0x001388
PAL 720 288 50 1 2500 0x0009C4

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 52 of 55

Table 11. RCVAL SETTINGS FOR TARGET QUALITY
RCVAL Description
0x0100 Near mathematically lossless
0x0300 Visually lossless
0x0500 Noticeable artifacts for busy images, visually lossless for soft images
0x0700 Noticeable artifacts but details of image are still present
0x0900 Very noticeable artifacts; used for low bit rate applications

J2KPROG
This value selects one of the five progression styles defined in the ISO/IEC15444-1 standard. If
J2KPROG is programmed to LRCP, then the layer information, the resolution, the component,
and the position are decoded from the JPEG2000 stream in that order.

 LRCP : Layer-Resolution-Component-Position
 RLCP : Resolution-Layer-Component-Position
 RPCL : Resolution-Position-Component-Layer
 PCRL : Position-Component-Resolution-Layer
 CPRL : Component-Position-Resolution-Layer

QFACT, STEPSIZES, and LOAD_SS
One step size is assigned to each subband by default. After the host boot procedure, the ADV212
checks the LOAD_SS parameter. If the LOAD_SS parameter is set to 0, the default step sizes
are written automatically to the STEPSIZES parameters.

The QFACT parameter provides a simple method to scale the quantization factors (inverse step
sizes) by a fraction that is determined by dividing the QFACT parameter by 256 (if QFACT = 0,
the quantization factor is set to 1). If custom step sizes are not to be used at startup (LOAD_SS =
0 after initialization), the QFACT parameter is applied to the default step sizes after they are
written to the STEPSIZES parameters. Future changes to QFACT require the same procedure as
changing the STEPSIZES parameters.

To use custom step sizes at startup, follow this procedure:

1. After writing the firmware to memory and before re-booting with 0x008D, write the new
step sizes to the STEPSIZES parameters using the standard JPEG2000 step-size
format.

2. Write 0x0001 to the LOAD_SS parameter.
To change the STEPSIZES or QFACT parameters during the encode capture process, follow this
procedure:

1. Poll the LOAD_SS parameter (indirect address 0x00057F36) until it reads 0x0000.
2. Write the new step sizes to the STEPSIZES parameters using the standard JPEG2000

step-size format.
3. Write the new quantization factor to the QFACT parameter.
4. Write 0x0001 to the LOAD_SS parameter.

Just before the start of the next input video field, the program loads the new step sizes and/or
QFACT, and then resets the LOAD_SS parameter to 0.

If custom step sizes are to be used at startup, these parameters must be provided and the
LOAD_SS parameter must be written to 1.

 ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 53 of 55

COD_STYLE

COD_STYLE [2:0]
ADV212 compressed data output formats are described in “ADV202 Output Formats and
Attribute Data Format”.

COD_STYLE [7:4]
PPT = Packed packet headers for a tile. For more detail, see the ISO/IEC15444-1 specification.

PLT = Packet length header for a tile. For more detail, see the ISO/IEC15444-1 specification.

SOP = Start of packet header. For more detail see the ISO/IEC15444-1 specification.

EPH = End of packet header. For more detail see the ISO/IEC15444-1 specification.

Visual Weighting: LOAD_VW, VW_Y, VW_CB, and VW_CR
Initially, all wavelet subbands are weighted only by their contribution to the mean-square-error
(MSE) of the decoded image. This is also called the L2Norm of the subband. However, you can
reduce image compression artifacts by applying an additional weighting factor to each subband
based on that subband’s contribution to visual perception.

The weighting factor is typically a floating-point number between 0 and 1, but can also be larger
than 1. However, the ADV212 requires a signed, twos-complement, 16-bit log2 representation of
this value with 9,7 precision. A factor that is less than 1 results in a negative log2 value, while a
factor that is larger than 1 results in a positive log2 value.

The LOAD_VW parameter is used to load the appropriate visual weighting table on startup. If this
parameter is set to 0, no weighting is used. At any time, the user can have the firmware load
either a predefined visual weighting table or a custom table for the VW_Y, VW_CB, VW_CR
parameters:

1. Poll the LOAD_VW parameter [indirect register address 0x00057F37] until it reads
0x0000.

2. Write the visual weight to the VW_Y, VW_CB, and VW_CR parameters using the format
previously described.

3. Load the visual weights.
To load the custom visual weights, write 0x0001 to the LOAD_VW parameter.

To load the predefined visual weights recommended in the ISO/IEC15444-3 standard for
motion JPEG2000, write 0x0002 to the LOAD_VW parameter.

After the firmware loads the visual weights, LOAD_VW is reset to 0.

ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_212_Output_Format/TechNote_ADV202_output_format_1.pdf
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_212_ApplicationNotes/ADV202_212_Output_Format/TechNote_ADV202_output_format_1.pdf

ADV212 JPEG2000 Programming Guide

Rev 2.0 | Page 54 of 55

LTARGET [1:16]
These 16 values contain the desired target size for each layer in the code stream and are used
with multilayer rate control programmed with RCTYPE.

LTARGET [1] represents a 32-bit word for layer 1, LTARGET [2] represents a 32-bit word for
layer 2 etc.

RCTYPE = 3
LTARGET represents the target byte length of the layer. This includes bytes in all layers up to
and including the specified layer.

RCTYPE = 4
LTARGET represents the target quality for each layer.

Code Example
A source code example for ADV212 standard definition encode/decode application can be found
at:

ftp://ftp.analog.com/pub/Digital_Imaging/ADV212_Eval_P160SD_FPGA_SYSTEM/P160SD_syst
em/projects/Spartan3SLC400/video_pipe/edk71/. See the latest revision.

The main function is contained in the TestApp.c file.

ADV212 configuration and initialization is contained in the ADV212.c file.

The code contains configuration information for a 32-bit normal host mode interface to transfer
compressed data to and from the ADV212.

ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_Eval_P160SD_FPGA_SYSTEM/P160SD_system/projects/Spartan3SLC400/video_pipe/edk71/
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_Eval_P160SD_FPGA_SYSTEM/P160SD_system/projects/Spartan3SLC400/video_pipe/edk71/

 ADV212 JPEG2000 Programming Guide

NOTES

Rev 2.0 | Page 55 of 55

	 ABOUT THIS DOCUMENT
	Purpose
	Interface Modes
	Audience
	Recommended Reading
	 Conventions
	Timing Diagrams
	Numbering Systems
	Typographic Notation
	Special Terms

	 REVISION HISTORY
	 TABLE OF CONTENTS
	 TABLE OF FIGURES
	 BASIC ENCODE AND DECODE INITIALIZATION ROUTINES
	Confirming Correct Firmware Load

	 LCODE SIGNAL IN ENCODE MODE
	LCODE (SCOMM[4]) Pin Timing

	 32-BIT NORMAL HOST MODE ENCODE AND DECODE ROUTINES
	 CODE FIFO Threshold Register

	 16-BIT NORMAL HOST MODE ENCODE AND DECODE ROUTINES
	 DMA MODES
	32-bit DCS Encode and Decode Routines
	 32-bit DMA DREQ/DACK Modes Encode and Decode Routines

	 16-BIT HOST JDATA MODE ENCODE AND DECODE ROUTINES
	 CUSTOM-SPECIFIC MODE ENCODE AND DECODE ROUTINES
	Encode Mode
	Decode Mode
	 Custom-Specific Mode Configuration Example

	 RAW PIXEL MODE ENCODE AND DECODE ROUTINES
	Raw Pixel Mode Configuration Example
	Raw Pixel Mode Encode
	Raw Pixel Mode Decode

	 Raw Pixel Mode – JDATA Mode

	 APPENDIX
	PLL Settings and Internal Clocks
	BUSMODE and MMODE Register Settings
	ADV212 Firmware Parameter Encode Settings
	 ADV212 Firmware Parameter Decode Settings
	 ADV212 Firmware Parameter Descriptions
	VFORMAT
	CBSIZE
	ATTRTYPE
	 RCTYPE and RCVAL
	No Truncation
	Target Size per Video Field or Image
	Target Quality per Video Field or Image
	Multilayer Target Size
	Multilayer Target Quality

	J2KPROG
	QFACT, STEPSIZES, and LOAD_SS
	COD_STYLE
	COD_STYLE [2:0]
	COD_STYLE [7:4]

	Visual Weighting: LOAD_VW, VW_Y, VW_CB, and VW_CR
	 LTARGET [1:16]
	RCTYPE = 3
	RCTYPE = 4

	Code Example

