ANALOG
DEVICES ADRV903x

ADRV903x System Development User Guide

INTRODUCTION

This document is the main source of information for system engineers and software developers using the Analog Devices ADRV903x
software-defined radio transceiver family. This document is organized to make it easy to find the relevant information. These sections include:

» System Overview — explains the capability of the part and an introduction to all the subsystems and functions, including block diagrams and
interfaces.

» Software Architecture Description — explains software design approach using APIs and all details needed to develop code to operate the
device.

» Software Integration — explains the structure of the Analog Devices APl and how to integrate into the customer’s code.

» Serial Peripheral Interface (SPI) Control — main control interface between the baseband processor (BBP — also referred to as BBIC) and the
device.

» System Initialization — sequence of steps needed at startup.

» JESD204B/C Interface — describes the high-speed digital interface that transfers data to/from a baseband processor.

» Synthesizer Configuration — describes the design, control, and versatility of the synthesizer subsystem.

» ARM Processor and Device Calibration — explains how the ARM schedules and controls the calibrations.

» Stream Processor and System Control — explains the stream processor functions and how they are implemented.

» Tx Overview and Path Control — describes operation of the Tx attenuation settings and available software API used for control.

» Tx Power Amplifier Protection — describes the protection circuitry and how it works in conjunction with the general purpose interrupt feature
to enable Tx attenuation and notify the BBIC that such an event has taken place.

» Rx Gain Control and Gain Compensation — describes automatic and manual gain control options.

» Digital Filter Configuration — describes the digital processing portion of each receiver and transmitter and provides details on configuration
options.

» General Purpose Input/Output Configuration — describes the different GPIO capabilities and how to configure them for different functions.

» General Purpose Interrupt — describes the various interrupt options that can be routed to the GPINT pins for monitoring purposes.

» RF Port Interface Overview — describes the RF port impedance matching process and explains different topologies that can be used to
achieve proper impedance matching.

» Power Management Considerations — explains how to connect power supplies to the device, what inputs supply which blocks, and what
precautions to take when completing a schematic and layout for power routing implementation.

» PCB Layout Considerations — provides guidelines for proper printed circuit board (PCB) layout and techniques for maximizing performance
and minimizing channel-to-channel interference.

» ACE Software - explains setup and control or the device using the graphical user interface (GUI) software.

Additional information will be added to this document as new features and functions are implemented in the ADRV903x device family.

analog.com PLEASE SEE THE LAST PAGE FOR AN IMPORTANT WARNING AND Rev. B | 1 of 207
LEGAL TERMS AND CONDITIONS.

http://www.analog.com/en/index.html
https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

TABLE OF CONTENTS

INtroduction............cooiii i 1
System OVervieW.........oocccviiiiiiieeiiiiieeeeeee e 4
Software Integration............cccoiiii i 6
Software Deliverables...............cccceeeiiiiinn. 6
Software Integration Process Overview............. 6
Software Architecture............ccccceeiviiiiiiiennnn. 6
Resource Files.........oveeiiiiiiiiieccc e, 9
APl Integration...........cooooiiiiiiiiie 16
Developing an Application.........ccccccevvveviennnnen. 36
Compilation.........cooeiiiiiiii e 40
Serial Peripheral Interface (SPI)..........cccccceeee. 43
SPI BUS Signals........ccoeeeiiiiiiiiiiieeee e 43
SPI Data Transfer Protocol..............cvvvvvvveeneeee. 43
SPI APl Funclions...........cccvvvvvvviviniiiiiiieiiininnns 45
Timing Diagram Examples........ccccccccvveiinnnnnn. 46
Auxiliary SPlI Overview..........cccccccveeviiiiiieeeneenn. 48
Auxiliary SPI API Functions...........ccccccceeeeeenn. 48
Serializer/Deserializer (SERDES) Interface........ 49
JESD204 Standard.........cccccoeiiiiiiiiie 49
Overview of the Differences Between
JESD204B and JESD204C........cceevviurnnnnnn. 50
JESD204B/C Framers..........ccccceeeeieeeiieeieeeeenn, 50
JESD204B/C Deframers.......ccccccvvvvveevveeviennnnn. 62
JESD PHY Layer.......ccccuiiiiiiieiiiiiiieeeee e 69
Link Initialization and Debugging..................... 76
First Time System Bring Up—Checking Link
Integrity.....ooorii 77
Sample Iron Python Code for PRBS Testing....77
PRBS EITOrS....ccovviiiiieiieeieeeeieeeeeeeeeee e 79
Selecting the Optimal LMFC/LEMC Offset
fora Deframer............ccccc 80
JESD API Functions..............ccccceeeiiiie, 85
Stream Processor and System Control............... 87
Slice and Core Stream Processors.................. 87
Stream Processor API Functions..................... 87
System Control..........cccvveieiiiiiiie e 87
System Control APl Functions........................ 90
TX To ORX Mapping........ccceeeevierieieeeeeeeeeiieeee 91
Tx to ORx Mapping: Pin Interface.................... 91
Tx to ORx Mapping API Functions................... 93
Front End Analog Signal Path............................. 95
Transmit Path.........cccoooiii e 95
Tx Attenuation Control..........cccccceeieiiiiiiiiinnnne. 95
Tx Attenuation APl Functions.......ccccccceoeeeeene. 95
Receiver Path...........coiiiiiici e, 96
Rx Manual Gain API Functions........................ 96
Observation Path............cevvviiiiiiiiiiiiiiieieeeeeeeee, 97
ORXx Attenuation API Functions.........cccccc......... 97
Synthesizer Configuration..............ccccccceeiiinnnee. 98
analog.com

OVEIVIEW. ..., 98
DEVCLK ..ot 98
SYSREF...... e 101
Clock Synthesizer..........ccooviiiiiiiiiiiiiiiiee, 102
RF Synthesizer.........cccooiiiiiiee 102
L0 e 103
LO Configuration Using API Functions........... 105
Multichip Synchronization (MCS)................... 106
RF PLL Phase Synchronization..................... 106
ARM Processor and Device Calibrations.......... 108
Arm ProCessOor......coovivvivieiiicciee e 108
ARM API Functions...........ccoevvvceiiiiieeeneeiiennnn 109
Device Calibrations............ccccvvvvvvvvvivviivenninns 109
Initial Calibrations...........cccccecvviieeinnniiniiiniinnns 109
Tracking Calibrations............cccccceiiiiiiiiieenn.n. 112
System Considerations for Calibrations......... 112
Tx LO Leakage Calibration............ccccccceernnene 112
Tx LOL Initial Calibration..........ccccccvvvvvvennnnn.. 112
Tx LOL Tracking Calibration.............cccceeee.... 113
Tx QEC Calibration............cccoooeeiie. 115
Tx QEC Initial Calibration..........ccccccevvvveennen. 115
Tx QEC Tracking Calibration.............ccccccc...... 115
Rx QEC Calibration...........cccccccvvvvvnninniinnnnnnnn. 116
QEC and LOL Calibration API Functions....... 117
Tx Analog LPF Calibration...............cccuvveeee... 117
Loopback Path Delay Initial Calibration.......... 118
RX DC Offset Calibration..........cccccevvvvveverenenee. 119
Rx DC Offset Configuration API Functions.... 120
Antenna Calibration..........ccccccovvvviiviiiiiieiiennee. 120
Antenna Calibration API Functions................ 124
Calibration Guidelines After RF LO
Frequency Changes........cccccccooiiuiiiiieeeennnns 124
PA Protection.........ccooooiiiiiiiicci e 126
PA Protection — Peak Power............ccccouuueee.. 126
PA Protection — Average Power..................... 128
Slew Rate Detection and Limiting.................. 129
PA Protection API Functions............ccccueeee... 130
Rx Gain Control and Gain Compensation......... 132
Glossary of Important Terms............cccccuvenees 132
Receiver Datapath.........................co . 133
ORXx Gain Control........c.cccccevvvvviiiiiiiiiiiie 135
Gain Control Modes............cccceeeeiiieiiiiiieenn. 135
Manual Gain Control (MGC)..........ccccvvveeeeennn. 135
Automatic Gain Control (AGC)........ccccccevneeeee 135
AGC Clock and Gain Block Timing................ 143
Peak and Power Detectors..........ccccevvvveennn.n. 144
AGC API Functions............ccccceeeviii . 147
Rx and ORx Power Measurement API
FUNCLIONS......coiiiiiiiecc e 148

Rev. B | 2 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

TABLE OF CONTENTS

AGC Sample Script.......ccceeeeveeiiiiiiiiieeeee, 148 Power Supply Domain Connections............... 177
Gain Compensation, Floating Point Power Supply Sequence...........cccccceeeeeeinnnns 181
Formatter and Slicer...........ccccccceeeeininnnnee. 149 Power Supply Architecture............cccccceeenniee 181
Rx Data Formatter API Functions................. 155 RBIAS Setup.......ccevviiiiiiiiiiiiieeee e 182
Digital Filter Configuration...............ccccccceinnns 156 Power Saving Modes...........coocciieieiieeiiinnnes 182
OVEIVIEW. ... 156 Power Saving Modes API Functions.............. 184
Receiver Signal Path...........ccccccoeiiiiiinne. 156 RF Port Impedance Matching............................ 185
Rx Datapath APl Functions............ccccccuu.e. 159 RF Port Impedance Data.....................oooee. 185
Transmitter Signal Path..............ccccccceis 159 ADS Setup Using Data Access Component
Tx Datapath API Functions...........cccccccceee. 163 and SEDZ File.......ccooooiiiiiiiiieeieee 185
Observation Receivers Signal Path.............. 163 Transmitter Bias and Port Interface................ 185
ORXx Datapath API Functions....................... 166 General Receiver Path Interface.................... 188
NCO Frequency Change Procedure............ 166 PCB Layout Considerations..............cccccceeeeen. 189
General Purpose Input/Output Configuration.... 168 PCB Layout Overview...............ccccoeeeeeeeeeenn. 189
Digital GPIO Operation............ccccouvveeeeeeennns 168 PCB Material and Stack Up Selection............ 189
Digital GPIO API Functions...........ccccccceeenne. 168 Fanout and Trace Spacing Guidelines........... 191
Analog GPIO Operation...........ccccceeeeviiinnnen. 169 Component Placement and Routing
Analog GPIO API Functions.............cccuuueeeee. 169 GuIidelines.........ceeeveeeiiiiie e 193
General Purpose Interrupt.................ooooo. 169 RF and JESD Transmission Line Layout....... 195
GP Interrupt API Functions............ccccceeeeeen. 172 Isolation Techniques.............ccooeiiiiiiiiiiiiiinnnne. 199
JTAG Boundary Scan.........cccooeeuvvviieeeeeeeinnns 173 Power Management Layout Design............... 201
Thermal Considerations.............cccccvveeeeeernnnnn. 174 Digital Signal Routing Considerations............ 206
DELPHI Compact Model..........c..cccceeuvunnneen. 175 Analog GPIO Signal Routing Considerations.206
Maximum Junction Temperature.................. 175 RBIAS Routing Considerations...................... 206
Thermal API Functions................cccceieen. 175 Unused Pin Instructions.............cccccvvviiiiinnne. 207
Power Management Considerations................ 177
REVISION HISTORY
9/2025—Rev. A to Rev. B
Changes to EXternal LO SECHON.ooiiiiiiiiieee et e e et e e e e e e e nneeeees 104
Added Table 48; Renumbered Sequentially..............oeeiiii e 104
Added External LO Setup SECHON.......oo e e e e e e e as 105
L0 g F= o =TT (o T = o 1= 0t I 0 PRSPPI 207

2/2025—Revision A: Initial Version

analog.com

Rev. B | 3 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYSTEM OVERVIEW

The ADRV903x is a highly integrated RF agile transceiver designed for use in a wide variety of high-performance applications. The ADRV903x
device contains up to eight independently controlled transmitters and receivers, two observation receivers for monitoring transmitter channel
outputs, integrated synthesizers including two RF LO's, and digital signal processing functions to provide a complete transceiver solution. The
device provides the advanced radio performance and low power consumption for various applications such as instrumentation, aerospace and
defense and general-purpose secure communications. This document includes descriptions of all superset functions available in the ADRV903x
platform. Some ADRV903x variants may be developed for specific design targets that do not include all available functions, so refer to the data
sheet for the specific device to determine which features are included. To avoid confusion, the term device or ADRV903x is used throughout
this document to refer to any variant that employs a specific function. Products within the ADRV903x platform are listed in Table 1.

The ADRV903x family is designed to operate over the wide frequency ranges, from 450 MHz to 7.1 GHz, using either internal phase locked
loop (PLL) synthesizers or external local oscillator (LO) sources. The receiver channels support bandwidths up to 660 MHz with data transfer
across (up to) eight JESD204B/JESD204C serializer-deserializer (SERDES) lanes at rates up to 32.44 Gbps. Internal LO routing allows some
receivers to operate on a different LO frequency than others, allowing use in multichannel systems. The transmit channels operate over the
same frequency range as the receivers. Each transmitter channel supports up to 800 MHz synthesis bandwidth with data input across (up

to) eight SERDES lanes at rates up to 32.44 Gbps. Different transmitter channels can operate using the same LO frequency or a different
frequency. In addition, LO routing allows the transmitters to operate at different frequencies than the receivers for additional flexibility. Two
observation receiver channels provide the capability to monitor feedback from the transmitter outputs. The feedback loops can be used

to implement error correction, calibration, and signal enhancing algorithms. These receivers operate in the same frequency range as the
transmitter channels, and they support up to 800 MHz channel bandwidth to match the output synthesis bandwidth of the transmitter channels.
These channels provide digital datapaths to the internal ARM processor for use in calibration and signal enhancement algorithms, and they can
also be muxed with the Rx channels to output data to a BBIC over the Rx SERDES output lanes.

Multiple fully integrated PLLs provide a high level of flexibility and performance. Two are high performance, low power fractional-N RF
synthesizers that can be configured to supply the transmitters and receivers in different configurations. A clock and serdes PLL are included to
generate the converter and digital clocks for signal processing and communication interfaces respectively.

Power supplies for the device are: 1.8V, 1.0 V, and 0.8 V. These supplies are connected directly to the power inputs for some blocks and
buffered by internal LDO regulators for other functions for maximum performance. The 0.8 V supplies the digital processing blocks. The 1.8 V
supplies all the GPIO and interface ports that connect with the BBIC.

Table 1. Product Subset Features

Feature ADRV9032R

Tx 2

Rx 2

ORx 2

Tunable LO Range 450 MHz to 7125 MHz
RF Range 350 MHz to 7225 MHz
Tx Large Signal BW or Instantaneous BW 200 MHz

Tx Synthesis BW 450 MHz

Rx BW 200 MHz

ORx BW 450 MHz
JESD204B/C Lane Rate 16.5 Gbps

Figure 1 is a high-level view of the functions in the ADRV903x. Descriptions of each block with setup and control details are provided in
subsequent sections of this document.

analog.com Rev. B | 4 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html
https://www.analog.com/adrv9032r

ADRV903x

SYSTEM OVERVIEW

Clock Generation [+ DEVCLKPMN

and

Synchronization

+ SYSREFP/N

GPIO_ANA [0-15]
GPIO
GPIO_[0-23] |«
VDDA _1P8
VDDA _1P0|
VDIG_ 0P8 LO Generation Dual ARM
- Option —LO0-» Processors
EXT_LOOP/N » @ o1
EXT_LO1P/N P
RX0... RX7, TX0... TX7, ORX0, ORX1
RX7
RX0
RX7P + Decimation,
RXTN g pFIR,
' AGC,
' < DC-offset,
RX0P > £ QEC,
RXON > Tuning,
RSSI,
- Overload
X 8, .~ |
. “
TX0
TXTP +
TXTN |*
H pFIR,
: -+ LO Leakage,
TXOP | /?' QEC,
TXON Tuning,
Interpolation
ORX1]
ORX0 Direct RF Conversion
ORX1P| >
» Decimation,
OR).(1N OFIR,
H DDCINCO
: T oc
ORXO0P > I <\ ADC uning,
Overload
ORXON ™

analog.com

le—— spi_cLk
SPIp [+— SPI_EN
ot 1 5| spipo
le—p| SPI DIO
GPINT[0-1]
Control L
Interface TRX[A-H]_CTRL
< ORX[A-B] CTRL
-+ RESET
« TEST_EN
JESD204B/C
Serial |4— SYNCIN[0-Z]P/N
Interface

—»{ SERDOUT[D-7]P/N
|4—— SERDIN[0-7]P/N
| SYNCOUT[0-1]P/N

VDDA_1P8 REPRESENTS VVCO0_1P8, VVCO1_1P8, VANAD_1P8, VANA1_1P8, VSYS_1P8, VCONVO_1P8, VCONV1_1P8, VCONV2_1P8, VCONV3_1P8,
VORX0_1P8, VORX1_1P8, VIF_1P8, VSERVCO_1P8, VCLKVCO_1P8, VTX0_1P§, AND VTX1_1P8.

VDDA_1P0 REPRESENTS VRXLO0_1P0, VTXLOO_1P0, VLOO_1P0, VLO1_1P0, VTXLO1_1P0, VRXLO1_1P0, VBBO0_1P0, VBB1_1P0, VCONVO_1P0,
VCONV1_1P0, VCONVZ_1P0, VCONV3_1P0, VSCLK0_1P0, VSCLK1_1P0, VORX0_1P0, VORX1_1P0, VCLKSYN_1P0, VCLKGEN_1P0, VSERSYN_1P0,
VSYNO_1P0, VSYN1_1P0, VDEV_1P0, VSER_1P0, and VDES_1P0.

Figure 1. ADRV903x Functional Block Diagram

Rev. B | 5 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

This section provides information about the software deliverables from ADI, including the ADI developed Application Programming Interface
(API) and resource files essential for the functioning of the transceiver. This section outlines the overall architecture, folder structure, and
methods for using AP software on a platform. This document does not explain the API library functions. Detailed information regarding the API
functions is in the doxygen document included with the API software.

SOFTWARE DELIVERABLES
The software package consists of three main folders

» api - Contains the API ‘C’ source code for controlling the ADRV903x family of transceiver devices which can be integrated into a user
application running on a baseband processor.

» firmware - Contains pre-compiled binaries for the dual-core embedded ARM processor in the ADRV903x family of devices.

» gain_tables — Contains the programmable gain table for the receivers. The transmitter attenuation table is hard coded into the ADRV903x
and is not programmable.

NOTE: The stream processor binary and the profile binary resource files are required for programming the ADRV903x. The stream binary and
the profile binary resource files targeting a specific use case are generated with an ADI provided evaluation software. Therefore, the stream and
profile binary resource files are not delivered as part of the software package.

SOFTWARE INTEGRATION PROCESS OVERVIEW

An overview of the software integration process is in Figure 2. A more detailed explanation of the integration process is provided in the sections
to follow.

Download Software Package

Y
Generate resource files essential for
programming ADRV903x Transceiver

Y
Implement Platform HAL functions, and
integrate user HAL functions with ADR903x API

Integrate ADRV903x APl Source Files into user
application

A 4

Develop user application

Figure 2. Software Integration Process Overview

SOFTWARE ARCHITECTURE

The ADRV903x contains dedicated signal processing blocks, ADCs, DACs, two ARM processor cores, and a co-processor called the stream
processor. A simplified logical partitioning of a typical software architecture designed with the ADRV903x firmware and API is in Figure 3. The
firmware for the ARM cores is a pre-compiled binary. The stream co-processor binary is user generated. The process to generate a stream
binary is described in the Resource Files.

analog.com Rev. B | 6 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

BEIC (Application)

Baseband
Processor

ADRVA03x APl (Middieware)

Y
A

ADRVI0D3x Firmware, Stream (FW)

ADRVI03x
Device
ADRWVI03x Hardware Drivers
(Hardware Access)

v

Figure 3. Logical Partitioning/Layering of the ADRV903x Software Application

An ADRV903x user application commands the ADRV903x through the API. The API C-source code is delivered as part of the software
package. The APl is processor and operating system agnostic and can be deployed on a bare-metal processor as well as a processor running
an operating system. ADI recommends using a platform running an operating system such as Linux, which provides a sufficiently large memory
footprint, and can take advantage of ADI utility functions. Refer to the API Integration for information regarding integrating the ADRV903x API
into a user application.

Figure 4 shows a more detailed ADRV903x based system software architecture. A baseband processor running an ADRV903x based
application controls the transceiver through the ADRV903x API. The APl integrated with the user application relies on a SPI interface in the
baseband processor to interact with the ADRV903x. The ARM firmware running on a dual core embedded ARM processor consists of the
algorithms for transceiver calibrations, controlled through the ADRV903x AP in the baseband processor. The API transacts with the firmware
through a well-defined set of commands via common memory (mailbox interface). The firmware contains drivers to interact with the transceiver
hardware. The transceiver hardware is memory mapped to the dual core embedded ARM processor through an AHB interface.

The stream co-processor sets up and manages the transmit/receive chains of the ADRV903x on occurrence of certain events (such as
Tx/Rx/ORx enable). A stream command tied to an event is invoked by the ARM processor or directly by the baseband processor via GPIO
inputs. The stream processor accesses the ADRV903x hardware resources through AHB memory mapped registers. There is one core stream
processor and eighteen slice stream processors, one each for the eight Tx and Rx datapaths, and two for the ORx datapaths. The existence of
individual slice stream processors for each datapath enables true real-time parallel operation of all unique Tx and Rx datapaths.

The control commands issued to the embedded ARM processor and the stream co-processor in the ADRV903x are accompanied by
corresponding status responses from the firmware. The user application retrieves the command statuses through the API. The user application
also monitors critical system parameters through the GP interrupt status pins. Detailed Software Architectural View of an ADRV903x Software
Application.

analog.com Rev. B | 7 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

BB
<
AP|
SPI Interface —
Iy
Device Stream
T/Ry/Orx Cmds/ Profile Image
Enable Status
signals CORE STREAM
PROCESS0R
FfW cmds/ Ffw Tt/ Re/Orx
Image SEWs Image Enable JESD
Signals
Stream
Image Interrupts
Statu
Stream e . GP
Triggars interrupts
L
¥ h 4 ¥ Y Y Y ¥ h 4 Y
Stream
STREAM FIRMWARE Status FIRMWARE Triggers STREAM
PROCESSORS COREO CORE1 PROCESSORS
4-RX, 4-TX, 1-ORX (master) (slave) Satus/ | 4-RX, 4-TX, 1-ORX
Error
T ? L Interrupts
AHB AHB AHBR/W
Interrupts ~ R/W RIW
AHBR/W ¢ Interrupts
|
RADIO H/W

Figure 4. A Detailed Software Architectural View of an ADRV903x Software Application

ADI Evaluation System Software Architecture

The software architecture of the ADRV903x ADI evaluation system is in Figure 5. The software architecture of the ADI evaluation system
broadly follows a client-server model, with the server residing in the baseband processor. The client application software can be a PC based
application such as MATLAB or an application running on the baseband processor itself. A PC based application client interacts with the server
through a transport layer interface link called Enhanced Remote Procedure Calling interface (ERPC) over a TCP/IP protocol.

The baseband processor consists of an SOC-FPGA host integrated with an embedded processor running a Linux operating system. The
ADRV903x API is integrated with the baseband processor software to control the ADRV903x. The platform Hardware Abstraction Layer
(HAL) interface (SP!, timer, etc.) is implemented for the ADI ADRV903x evaluation system, which in turn is used by the ADRV903x’s AP for
interacting with the ADRV903x.

In a typical use case of the ADI evaluation system, the command flows from a PC based application client to the server running on the
baseband processor through the ERPC transport layer interface. The command gets decoded into an AP call in the server. The API call
interacts with the ADRV903x through a SP! interface, returns the status to the calling function in the baseband API, which is sent back to the
application layer through the ERPC transport layer link.

analog.com Rev. B | 8 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

s:::i&érﬁg:w Lc’t-fc:::ilgltl:a&i::?oo%t"} (LabView }[MATLAB }{ Python }

Rx Gain Table
Device Profile binary,

} Resides in PC

7

[C# Client DLL {Evaluation Board Layér]]

HERPC/TCPIP Link

(Application/Server (C++)

(Utility Functions: Uses Filesystem]

@i_adrvSOSx API (publicm_ AD9528 CLK | |
adrv903x AP (private) I API
Register Bitfield code

adrv9030_hal.c
SPI streaming/ Paging
SPI caching
SPI byte packing

ADI HAL Layer, Error handling, Logging
k wrapperlayer to call platform

Drivers for other
devices in system

FPGA/
ASICIE

Idevices/adrva03x/public

Resides in BBIC

/devices/adrva03x/private

ad9528_hal.c
SPI byte packing

Icommon/adi_hal

Platform Libraries & Hardware Abstractionr Léyer

”Logging 'FPGA Regs FPGADDR Mem” oo
fprintf to UIO Kemel Driver Rx/Tx Waveforms (EEPROM)
file system UIO Kernel Driver

Iplatfornvads10 r :

ADI uses Linux OS Timer
Linux rt library
nanosleep()

" File Sysl/em1 SPI
SPIDEV Or (UIO)
TCP/IP Stack

Physical hardware ADI Transceivers Clock/SYSREF Chip Platform Hardware

Figure 5. ADRV903x Based ADI Evaluation System Software Architecture

RESOURCE FILES
The following are the resources required for an ADRV903x software package:

» ADRV903x firmware binaries
» Stream co-processor binary
» Profile binary

» Rxgain tables

This section goes through the steps to generate resource files, which are essential for the ADRV903x to function. The resource files are
programmed into the transceiver during the initialization phase. A brief description of the resource files are in Table 2. The resource files require
approximately ~730 kB of memory.

Table 2. ADRV903x Platform Files

ADRV903x Platform File

Purpose

Generation Mechanism

Size

ADRV903x_FW.bin

stream_image.bin

profile.bin

RxGainTable.csv

The pre-compiled firmware binary for the embedded
dual core ARM processors in the ADRV903x, which
mainly consists of ADI proprietary algorithms used to
calibrate the transceiver.

The binary file for the stream co-processor in the
ADRV903x, which is mainly used for setting up and
managing the transmit/receive chains on occurrence
of certain events, such as transmit/receive enable.

The ADRV903x configuration for a particular use
case is programmed through the profile binary. The
profile consists of the filter coefficients, clock rates,
signal processing resources to enable/disable for a
particular use case.

The front end gain look up tables for the ADRV903x
receiver.

Delivered as part of the ADRV903x
software package

User generated with ADI evaluation
software

User generated with ADI evaluation
software

Default table delivered as part of the
ADRV903x software package. User can
generate custom gain tables

641 KiloBytes total

88 KiloBytes

3176 Bytes

Less than 10 KiloBytes

NOTE: The resource file versions must match with the API software version delivered in the same package. Using mismatched versions of
resource files and the AP is not supported.

analog.com

Rev. B | 9 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Firmware Binaries

The firmware for dual core embedded ARM processors in the ADRV903x is delivered in the form of pre-compiled binary files. The firmware in
the ADRV903x mainly consists of ADI proprietary algorithms used for calibration, and drivers to access the ADRV903x hardware resources.

The firmware binaries are delivered in the software package under the folder firmware. It is required to program both the firmware binaries as
part of the ADRV903x initialization. Refer to the programming section for information on initializing ADRV903x.

Stream Binary

The ADRV903x consists of a stream co-processor which helps setup/initialize the hardware on occurrence of certain events such as
transmitter/receiver enable. The stream processor manages programming of registers across different hardware blocks in the processing chain
and offers a simple command interface to perform the task of setting up the hardware on occurrence of certain events. There is one core
stream processor and eighteen slice stream processors, one each for the eight Tx, Rx datapaths, and two for the ORx datapaths. The existence
of individual slice stream processors for each datapath enables true real-time parallel operation of all unique Tx and Rx datapaths.

Please refer to the “Resource File Generation Using ACE” section of the ADRV903x Evaluation System User Guide for a procedure to generate
a stream binary.
Profile Binary

The profile consists of the ADRV903x configuration generated for a particular use case in binary format. The profile consists of the filter
coefficients, clock rates, signal processing resources to enable/disable in the transceiver for a particular use case, and the JESD configuration.
The profile binary is programmed into the ADRV903x during initialization.

The user is required to supply the parameters listed in Table 3 as input to an ADI provided tool in order to generate a programmable profile
binary. Refer to the Software Resource Files section in the Evaluation System User Guide document for information on how to generate these.

Table 3. User Provided Inputs to Generate an ADRV903x Profile Binary

Parameter Description
Tx/Rx CHANNELS ENABLE The ADRV903x consists of eight Tx, eight Rx and two ORx channels. The user can choose the Tx, Rx and ORx channels to
initialize through this parameter. The Tx and Rx enables are 8-bit masks, while the ORx is a 2-bit mask.
ENABLE JESD 204C MODE The ADRV903x supports JESD204B and JESD204C protocols for datapath interface with the baseband processor. The user
can configure the part to use either JESD204B/C depending on the lane rates required.
TRANSMITTER CONFIGURATION
Tx LO frequency RF frequency setting of the Local Oscillator driving the transmitter channel
Tx LO frequency select User can choose between LO1 and LO2 to drive the mixer on the transmit side
Tx Center frequency The transmit RF carrier frequency
Tx Bandwidth The primary signal bandwidth of the transmitter in which a carrier can be placed. The bandwidth value cannot exceed 80% of
sampling rate at the JESD deframer input of the ADRV903x.
Tx Sampling Rate Transmit signal IQ sample rate at the JESD deframer input of the ADRV903x
Tx Synthesis Bandwidth The transmit side analysis bandwidth for DPD implemented in the baseband processor
Tx Synthesis Freq upper edge Upper frequency edge of the synthesis bandwidth
Tx Synthesis Freq lower edge Lower frequency edge of the synthesis bandwidth
ORx Sampling Rate Observation receiver signal IQ sample rate at the JESD framer output of the ADRV903x
RECEIVER CONFIGURATION
Rx LO frequency RF frequency setting of the Local Oscillator driving the receiver channel
Rx LO frequency select User can choose between LO1 and LO2 to drive the mixer on the receive side
Rx Center frequency — Band0 The receiver RF carrier frequency on Band0
Rx Bandwidth — Band0 Large signal receiver bandwidth on Band0
Rx Sampling Rate- Band0 The Rx 1Q sample rate at the output of the JESD framer in the ADRV903x for Band0
Rx Center frequency — Band1 The receiver RF carrier frequency on Band1
Rx Bandwidth — Band1 Large signal receiver bandwidth on Band1
Rx Sampling Rate- Band1 The Rx 1Q sample rate at the output of the JESD framer in the ADRV903x for Band1

analog.com Rev. B | 10 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Table 3. User Provided Inputs to Generate an ADRV903x Profile Binary (Continued)

Parameter Description
JESD DEFRAMER (Tx Side)
CONFIGURATION
Deframer Lane Xbar Lane crossbar settings between the deserializer and the deframer in the Tx path.
DAC Sample Xbar Sample crossbar settings between the deframer output and the DAC input.
M Number of Digital to Analog converters on the transmitter side
Np Digital to Analog converter sample bit-width
L Number of input lanes at the ADRV903x de-serializer input
F Number of DAC bytes per frame of data
K Number of frames per multi-frame
S Number of samples per clock per Digital to Analog Converter
E(JESD 204C) Extended multi-block setting for JESD 204C use case, usually set to 1

Serializer Lanes Enabled

8-hit mask which indicates the serializer lanes enabled on the ADRV903x deframer input

JESD FRAMER(Rx Side) CONFIGURATION
Framer Lane Xbar
ADC Sample Xbar
M
Np

»w X M -

E(JESD204C)
Serializer Lanes Enabled

Lane crossbars settings between the framer and the serializer in the Rx path

Sample crossbar settings between the ADC output and framer input

Number of Analog to Digital converters on the receiver side

Analog to Digital converter sample bit-width

Number of output lanes at the ADRV903x serializer output

Number of ADC bytes per frame of data

Number of frames per multi-frame

Number of samples per clock per Digital to Analog Converter

Extended multi-block setting for JESD 204C use case, usually set to 1

8-bit mask which indicates the serializer lanes enabled on theADRV903x framer input

Consider an example shown in the section below for a use case with 100 MHz Tx/Rx primary signal bandwidth, 245.76 MSPS sample rate for
the transmitter data at the ADRV903x deframer input, and 245.76 MSPS sample rate for the receiver data at the ADRV903x framer output. In
this example, the system supports a JESD lane rate of 9.8 Gbps, and JESD 204B is used as the link protocol for the baseband processor to the
ADRV903x data interface. The example derives the parameters to input to an ADI provided tools to generate a programmable profile binary.

Transmitter Configuration for Profile Generation

In this example, we derive the transmitter side profile configuration for a 100 MHz carrier IBW signal transmitted on transmit channels Tx0-Tx3
at +50 MHz offset with respect to the LO, and on transmit channels Tx4-7 at -50 MHz offset with respect to the LO as shown in Figure 6.

analog.com

Rev. B | 11 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Tx LO Freq = 2GHz
A

Tx[0:3] Cente‘FrEq =2.05GHz

Tx[0:3] Synthesis lower edge =

|

| T

| |

| |

| |

| |

195GHz ' :

Tl |

Tx[0:3] Synthesis Freq upperedge =

/ 2.15GHz

]

- >
~-4—Tx[0:3] BW = 100MHz—» Freq
-—————Tx[0:3] Synthesis BW = 200MHz————»
Tx LO Freq = 2GHz
Tx[4:7] Center Freq = 1.95GHz
A
|
[T==-—~~————==7 I 2
| T |
| I !
| | |
| 1 :
Tx[4:7] Synthesis lower edge = | | 1 Tx[4:7] Synthesis freq upperedge =
1.85GH2 : : \ 2.05GHz
« A . s .
-—Tx[4:7] BW = 100MHz—» 'Freq

-————Tx[4:7] Synthesis BW = 200 MHz———

Figure 6. Example Transmit Carrier Configuration for Generating a Profile Binary

The Tx signal sample rate at the JESD deframer input is 245.76 MSPS in this example. The DPD analysis bandwidth is 200 MHz. This
information is used in the transmitter configuration table (Table 4).

Table 4. Example Transmitter Configuration to Generate an ADRV903x Profile

TRANSMITTER PROFILE CONFIGURATION

Tx LO frequency 2 GHz
Tx LO Select LO1
Tx Channel Enable Mask OxFF

TRANSMITTER CHANNELS[0:3] CONFIGURATION

Tx[0:3] center frequency 2.05 GHz
Tx[0:3] Bandwidth 100 MHz
Tx[0:3] Sampling Rate 245.76 MSPS
Tx[0:3] Synthesis Bandwidth 200 MHz
Tx[0:3] Synthesis Bandwidth upper edge 2.15GHz
Tx[0:3] Synthesis Bandwidth lower edge 1.95 GHz

TRANSMITTER CHANNELS[4:7] CONFIGURATION

Tx[4:7] center frequency 1.95 GHz
Tx[4:7] Bandwidth 100 MHz
Tx[4:7] Sampling Rate 245.76 MSPS
Tx[4:7] Synthesis Bandwidth 200 MHz
Tx[4:7] Synthesis Bandwidth upper edge 2.05 GHz
Tx[4:7] Synthesis Bandwidth lower edge 1.85 GHz

To configure the JESD settings in the transmit path, assume that the system supports a lane rate of 9.8 Gbps in JESD 204B mode. The
ADRV903x supports up to eight deserializer input lanes, and 16 bits per DAC sample (Np = 16). We have all eight transmit channels enabled in
this example, therefore a total of 16 digital to analog converters (one converter per | sample and one converter per Q sample) are active (M =
16). For this example, assume an 8b/10b encoding scheme.

The number of deserializer lanes input to ADRV903x is calculated as:

analog.com

Rev. B | 12 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

M x S x Np x (1'70) X TxSamplingRate 16 x 1 x 16 x (17'0) X 245.76M)
= Lane Rate = 9830.4M =
We can now proceed to calculate the number of DAC bytes per frame as follows:
_ MXxSXNp _ 16 x1 x16 _
F= 8xL - 8x8 =4 (2)

The transmitter side JESD parameters for profile generation can be plugged into the configuration table (Table 5).

Table 5. JESD Deframer (Tx side) Profile Configuration Example
JESD DEFRAMER (Tx Side) CONFIGURATION

Deframer Lane Xbar Default (Please refer to the JESD204 Standard section)
DAC Sample Xbar Default (Please refer to the JESD204 Standard section)
M 16

Np 16

L 8

F

K 32

S 1

Serializer Lanes Enabled OxFF (SERDINO-SERDIN7)

The JESD configuration for this profile is captured in Figure 7.

No. of Bits/

Converters, SE/EE'E DAC SAMPLE 1 Multi-Frame =32 Frames(K) LANE XBAR
M=16 - l XBAR <«———1 Frame =4 Bytes(F)——»

TxO_I L H oacosyteo [pacosyier | pacieyeo | oactsyter | - [[oacospers [oacosyiess [oacieneis | paciopiess |4 l—] -—— SERDINO
]'x070 - || oacasyeo [pacasier | pacsspeo | oacsmner | [[oacz syters [oaca ereets [oacasytes [oacs avets [—y < t«—— SERDIN1
s o] |]

Ta_aoacs | —

S LSS —L-8
SERIALIZER

6.1 N=167

T%6_Q 1

Tx7_1 N=16> | {{ oacizsyteo | pacizpyter | paciasyteo | pacizspter | - [oact2syters [oacizoers [pacisonters [oacisoyteis |4 l—| <¢—— SERDING
Tx7.Q <N-16 t paciasyteo | DaciaByter | DACIsByteo | DACISByter | - [oacie sytere [pacta pyeets [acis sytere [pacts et | l—| ~¢—— SERDIN7

Figure 7. JESD Deframer(Tx Side) Configuration for the Example Profile

Receiver Configuration for Profile Generation

In this example, we derive the receiver side profile configuration for a 400 MHz carrier IBW signal in Figure 8 which has

» Band0 centered at 1.85 GHz with 100 MHz carrier bandwidth.
» Band1 centered at 2.15 GHz with 100 MHz carrier bandwidth.

The two bands are down-converted separately and serialized in the ADRV903x before sending it across to the baseband processor. The
received signal output from the ADRV903x framer is sampled at 122.88 MSPS. These values are included for the receiver configuration in
Table 6.

analog.com Rev. B | 13 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Rx LO Freq = 2GHz
Rx BandO Center Freq = 1.85GHz Rx BandO Center Freq = 2.15GHz

| |
| |
| |
Bia Bapd 1
| |
| 1

« |
< > P
Rx Band0 BW = 100Mhz Rx Band1 BW = 100Mhz
- Rx Total Carrier BW = 400MHz '

Figure 8. Wideband Receiver Carrier Configuration for an Example ADRV903x Profile Generation

Table 6. Receiver Configuration Example for the ADRV903x Profile Generation

RECEIVER CONFIGURATION
Rx LO frequency 2GHz
Rx LO frequency select LO2
Rx Center frequency — Band0 1.85 GHz
Rx Bandwidth - Band0 100 MHz
Rx Sampling Rate- Band0 122.88 MSPS
Rx Center frequency — Band1 2.15GHz
Rx Bandwidth — Band1 100 MHz
Rx Sampling Rate - Band1 122.88 MSPS

To configure the JESD settings in the receive path, assume that the system supports a lane rate of 9.8 Gbps at the serializer output lanes from
the ADRV903x. The ADRV903x supports up to eight serializer output lanes, and 16 bits per ADC sample (Np = 16). We have all eight receiver
channels enabled in this example, therefore a total of 16 Analog to Digital converters (one converter per | and one converter per Q sample) are
active (M = 16). For this example, assume an 8b/10b encoding scheme.

There are two digital down converters present in the ADRV903x receiver path. In this case, since the two bands are digitally down converted
individually in the ADRV903x receiver path before the data is framed, serialized and sent to the baseband through the ADRV903x framer and
JRx module. For each individual band, the digital down converter in the ADRV903x outputs 16 channels of data corresponding to the 16 ADCs.
The framer in the ADRV903x receives data from a total of 2 x 16 down converted channels corresponding to the two individual bands in this
example for framing and serialization. Therefore, the number of converters (M) must be multiplied by a factor of two in this example since the
framer receives data from two individual channels.

The number of serializer output lanes from the ADRV903x is calculated as:

NumBandsxM X S X Np X (1870) X RxSamplingRate

Lane Rate
10 3)
2% 16 x 1 x 16><(?) x 122.88M

9830.4M

We can now proceed to calculate the number of ADC bytes per frame as follows:

_ MXxXSXNp _ 16 x 1 x16 __
F= 8xL - 8x8 =4 (4)

The receiver side JESD parameters for profile generation can be plugged into the configuration table (Table 7).

Table 7. JESD Framer (Rx side) Configuration Example for the ADRV903x
JESD FRAMER (Rx Side) CONFIGURATION

Framer Lane Xbar ‘ Default (Please refer to the JESD204 Standard section)

analog.com Rev. B | 14 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Table 7. JESD Framer (Rx side) Configuration Example for the ADRV903x (Continued)

DAC Sample Xbar

M

Np

L

F

K

S

Serializer Lanes Enabled

16
16
8

4

32
1
OxFF (SERDOUTO0-SERDOUTY)

Default (Please refer to the JESD204 Standard section)

The JESD configuration for this profile is captured in Figure 9.

Bits/
Sample
ek,
1 XBAR

No. of
Converters,
M=16

ADC SAMPLE -
S -«——1 Frame =4 Bytes(F}——»

T
s
5

A

1 Multi-Frame = 32 Frames(K)

Al ADCO ByteD | ADCD Bytel ‘ ADC1ByteD | ADC1 Byte7 ‘

—| ADCZ Byte | ADC2 Bytel ‘ ADC3 Byted | ADC3 Bytel ‘

‘ ADCO Byteld ‘ ADCO Bytels ‘ ADCI Byteld ‘ ADCI Bytels ‘——»

[apczsyieis [apcsyreis | apcsbyters [apcasyters —ae|

<| ADC12 Byte® | ADC12Bytel ‘ ADC1S Byted | ADC13 Bytel ‘

B e

Rx7_I { ADC 14

t{ aoc1asyteo | ancisyter | ancis eyteo | apcissyten |

‘ ADC12 Byteld I ADC12 Bytels ‘ ADCL3 Byteld ‘ ADC13 Bytels F‘P

... [ADC18 Byte1s | ADC14 Byte1s | ADCIS Byte1s | ADCIS Bytels |+ 9|

X

LANE XBAR

—

—

- | SERIALIZER

—» SERDOUTO

—» SERDOUT1

— SERDOUTG

— SERDOUT7

Figure 9. JESD Framer (Rx side) Configuration Example for the ADRV903x Profile Generation

Once the settings for the binary file have generated, these settings can be plugged into an ADI command line interface (CLI) tool to generate a
programmable profile in a binary file format. The CLI tool is provided as part of the SW package.

Receiver Gain Table

The ADRV903x provides a 32 dB dynamic range for receiver gain control. The receiver gain is applied on the receiver front end through a
programmable look up table programmed into the ADRV903x during initialization. The receiver gain can be controlled through an automatic
gain control (AGC) or a manual gain control (MGC) mechanism by selecting an appropriate gain index. The receiver gain look up table consists
of a maximum of 256 entries corresponding to 256 steps of resolution for gain change. Each row in the gain table provides a combination of
front end attenuation and digital attenuation as shown in Figure 10.

Gain Index FE Control Word Ext Control Phase Offset Digital Gain

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

166
161
155
149
142
135
127
119
111
101
91
81
70
57
45
31
16
0

0 0

00000 CcO0O0O0DO0O0O0O0O0 0G0
OCDo0OO0OOD0DOCOOO0DOOOOOODOO
OO0 O0OO0ODOCOODOOOROOODOOR

Figure 10. Example Rx Gain Table Entries

The front end attenuation is given by:

analog.com

Rev. B | 15 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Front end gain(dB) = 20log; o 226=FE gg’étr"l Word (5)

ADI provides a default gain table in .csv format as part of the software package that can be programmed into the ADRV903x during
initialization. The default gain table provides 0.5 dB gain steps per gain index and uses gain indices from 255 to 192 providing a total of 32 dB
dynamic range.

The resource files (Firmware binary, Stream binary, Profile binary, Receiver gain tables) are provided as input to the APl adi_ADRV903x_Pre-
Mcslnit()while programming the device through the data structure adi_ADRV903x_TrxFilelnfo_t defined in the file api/src/c_src/devi-
ces/ADRV903x/public/include/adi ADRV903x_utilities_types.h. Please refer to the section Programming the Device for the ADRV903x
programming sequence. Shown below is the listing.

typedef struct adi ADRV903x TrxFileInfo
{

adi ADRV903x streamBinaryInfo t stream;
/*1< Stream File Settings and Path to stream binary*/
adi ADRV903x cpuBinaryInfo t Cpu;

/*1< CPU File Settings and Path to Firmware Binary */
adi ADRV903x CpuProfileBinaryInfo t cpuProfile;
/*1< CPU Profile File Settings and Path to Profile Binary */
adi ADRV903x RxGainTableInfo t rxGainTable [ADI ADRV903X RX GAIN TABLE ARR MAX];
/*!< Rx Gain Table Settings */
} adi ADRV903x TrxFileInfo t;

API INTEGRATION

The ADRV903x control commands are implemented through the ADRV903x AP!. This section explains the steps needed to integrate the
ADRV903x API with a user application. The ADRV903x API architecture is in Figure 11.

analog.com Rev. B | 16 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

ADRV903x User Application

ADRV903x API Top Level

ADRV903x API Functions

A J
Common Layer

HAL | [Logging [Error
L J
Platform HAL Interface(adi_platform.h)
<<Interface=> <=Interface>> <<Interfaces>
Platform SP1 Timer

adi_hal_DevHalCfgCreate() adi_hal_Spiwrite()

adi_hal_Wait_msi)

adi_hal_DecHalCfgFree() adi_hal_SpiRead|)

adi_hal_Wait_us()

adi_hal_HwOpen()
adi_hal_HwClose{)
adi_hal_HwReset()

=<Interface>>

Logging

<<|nterface=>

Multi-Threading

<<Interfaces=

Baseband Register Access

adi_hal_LogFileOpen() adi_hal_MutexInit()

adi_hal_BbicRegisterWritel)

adi_hal_LogFileClose|) adi_hal_MutexLock()

adi_hal_BbicRegisterRead()

adi_hal_LogLevelSet()
adi_hal_LogLevelGet()
adi_hal_LogConsoleSet|)
adi_hal_LogWrite()
adi_hal_LogStatusGet()

adi_hal_MutexUnlacki)
adi_hal_MutexDestroy()
adi_hal_TlsSet()
adi_hal_TlsGet()

Y

Platform HAL Layer Implementation

Platform SPI

Timer

Logging Multi Threading

Baseband Reg Access

Figure 11. ADRV903x API Architecture

A brief description of each layer in the ADRV903x AP is provided below.

» ADRV903x API Functions - This is the top-level interface to API functions called by the user application to configure and control the

ADRV903x functionality.

» Common Layer — Service layer software functions such as hardware resource access, logging and error reporting are grouped into a
common service layer. Platform specific implementations of hardware layer functions are invoked by the API through this layer.

analog.com

Rev. B | 17 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

» Platform HAL Interface — Platform refers to a radio system that includes the baseband processor and the ADRV903x. Platform Hardware
Abstraction Layer (HAL) refers to low level hardware abstraction layer/device drivers in the platform that are essential for the ADRV903x to
function.

An abstract interface of the platform/hardware specific functions (such as SPI drivers) are defined in the platform HAL Interface layer. The
platform HAL interface defines function pointers that need to be assigned to user defined concrete implementations that are platform or
hardware specific. Refer to the ADRV903x API Folder Structure section for an explanation on actions that a user needs to take in order to
integrate the platform HAL interface.

» Platform HAL Implementation — This layer consists of concrete implementation of the platform HAL interface functions that are specific to
a customer platform/hardware, such as SPI drivers, general purpose timers, logging, platform hardware initialization and baseband register
access. These functions are assigned to the platform HAL interface function pointers during initialization.

API Integration Checklist

The following are the steps needed to implement the API into system software:

1. Discern file APl file structure and copy the ADRV903x AP files into a user application project
2. Implement platform HAL layer functions
3. Implement multi-threading HAL layer functions

ADRV903x API Folder Structure

The top-level folder structure of the API software delivered in the ADRV903x software package is in Figure 12. Each subfolder is explained

in the following sections. ADI understands that the developer may desire to use a different folder structure. While ADI will provide API source
code releases for ADRV903x family of devices in the folder structure shown below, the developer may organize the ADRV903x APl into a
custom folder organization if required. Modifying the content of each ADRV903x API source file prevents easy updates to future ADRV903x API
releases.

analog.com Rev. B | 18 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

BB CustomerPkg

i

’Jl
I doc
B html

—
e

o)

adrvo03x.chm

| —_—

o

(] adrvo03x.html

m app

B common

m devices

m platforms

(] LICENSE.pdf

(] configUserExampleLinux.mak

Figure 12. ADRV903x API Folder Structure
The user can follow the same folder structure described above to integrate the AP into a user application. Shown below is the ADI evaluation

system project where the API source code is integrated into the ADI Evaluation System software project. The API folder structure is marked in
red in Figure 13.

analog.com Rev. B | 19 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

x| Solution "AdrvTr (1 project)
iM% AdrvTrxServer ADRVS03x Eval System Software Project

xternal Depende

P =B Keterences
"

P ADRVS03x API SW Package

o5 adi_hal
=l adi_logging ADRV903x APl Common Layer

H] ommaon.h

" prvate
"8 public
a

ADRVS03x Eval System Software Application Layer
Code which consumes the ADRVS03x AP

Figure 13. ADRV903x Based ADI Evaluation Software Project Integrated with the ADRV903x API

Devices Directory — Adi. ADRV903x.CustomerPkg/public/api/src/c_src/devices

The devices directory in the API folder structure contains the ADRV903x API that can be called by the user application for configuring and
controlling the ADRV903x. An expanded view of the ADRV903x AP folder is shown in Figure 14,

analog.com Rev. B | 20 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

= ap
B doc
| sic
I csic
I app
I common
W devices
B 2d9528
B adrv903x
B multiver
I private
Im public

makefile

Figure 14. ADRV903x Device API Folder Structure Expanded View

The /include folder inside private and public folders consists of C-API function prototypes in the adi ADRV903x_<API Files>.h header files, and
type definitions consisting of user defined structures and enumerations in adi_ADRV903x_<API File>_types.h files. The /src folder consists of
the AP function definitions of the prototypes declared in /include/adi_ADRV903x_<API File>.h header files.

The API files are logically partitioned, each file corresponds to one specific functionality of the ADRV903x. Table 8 consists of the list of AP files

and their corresponding functionality.

Table 8. List of Top Level ADRV903x API Files (Files with Functions) Delivered in the ADRV903x Software Package

API File

Description

adi_ADRV903x_cals.h

adi_ADRV903x_core.h
adi ADRV903x_cpu.h

adi_ADRV903x_error.h
adi_ADRV903x_hal.h

adi ADRV903x_radioctrl.h
adi_ADRV903x_rx.h
adi_ADRV903x_tx.h
adi_ADRV903x_utilities.h
adi_ADRV903x_user.h
adi_ADRV903x_agc.h

adi ADRV903x_datainterface.h
adi_ADRV903x_gpio.h

API functions that control the ADRV903x calibrations. The user can enable/disable and retrieve calibration status
through the API functions provided in this file.

API functions used to initialize the ADRV903x.

Low level API Functions for the dual core embedded ARM processor in the ADRV903x that are consumed by other
AP functions.

Error reporting functions for the ADRV903x.

AP functions that cover the ADRV903x SP! interface features.

API functions for the ADRV903x radio control functions such as transmit/receive enable and LO frequency setting.
API functions to control the ADRV903x receiver chain functionality such as gain control and formatter.

AP functions to control the ADRV903x transmitter chain functionality such as attenuation control and PA protection.
Utility API functions that can be used to program the ADRV903x.

Compile time constants/macros for the ADRV903x API.

API functions for the ADRV903x Automatic Gain Control functionality

API functions to control the ADRV903x JESD data interface

AP functions to setup GPIO pins on the ADRV903x. This also includes the GP Interrupt functions that provide the
ADRV903x diagnostic data to the user.

analog.com

Rev. B | 21 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

NOTE: The user is strictly forbidden from modifying the contents in the devices folder. The only file that a user can edit is the
adi_ADRV903x_user.h which contains compile time macros to adjust intended functionality of certain features, such as timeout values

for commands.

Common Layer — Adi.ADRV903x.CustomerPkg/api/src/c_src/common

The /c_src/common/ folder contains common layer functions highlighted in the API architecture (Figure 11). The common layer functions are the
set of service layer calls used by all API functions to abstract away low level functions such as Hardware Abstraction Layer calls. These service
layer functions include error reporting, logging and hardware abstraction layer access. An expanded view of the common layer code delivered
as part of the ADRV903x API package is shown in Figure 15.

i
| csrc
m app

I common

W adi_error

C adi_common_error.c

C adi_common_error.h

C adi_common_error_types.h
| adi_hal

C adi_common_hal.c

C adi_common_hal.h
Im adi_logging

C adi_common_log.c

C adi_common_log.h

C adi_common_log_types.h

EN

CMakelLists.txt
adi_common.h
adi_common_macros.h

adi_common_types.h

O O 0O 0

adi_common_user.h

] makefile

B devices

I platforms
Figure 15. Expanded View of the ADRV903x Common Layer Code Delivered in ADRV903x Software Package

Common Layer Logging Functions

The API provides a simple logging feature function that may be enabled for debugging purposes. The logging functions are contained in /
common/adi_logging folder. This feature requires a user implementation of the adi_hal_LogWrite interface function in the platform HAL im-
plementation. The adi_hal_LogWrite() platform layer function can found under api/src/c_src/platfrom/adi_platform.h. Directions to imple-

ment the ADI platform HAL functions are described in the next section. The APIs will optionally call to send debug information to the sys-

tem via the HAL. The function adi_hal_LogLevelSet may be used to configure HAL flags to configure how the HAL processes the various mes-
sage types from the API layer. ADI transceiver open-hardware function adi_hal_HwOpen will call this function to set the desired logging lev-

el. Available logging levels are given by the enum adi_common_LogLevel_e defined in /common/adi_common_log_types.h as shown in Table

9.

analog.com Rev. B | 22 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Table 9. ADRV903x Logging Levels

adi_common_LogLevel_e Enum value

Description

ADI_COMMON_LOG_NONE
ADI_COMMON_LOG_MSG
AD|_COMMON_LOG_WARN
ADI_COMMON_LOG_ERR
ADI_COMMON_LOG_API
AD|_COMMON_LOG_API_PRIV
ADI_COMMON_LOG_BF
ADI_COMMON_LOG_HAL
AD|_COMMON_LOG_SPI
ADI_COMMON_LOG_ALL

All types of log messages not selected

Log message type

Warning message type

Error message type

API function entry for logging purposes
Private API function entry for logging purposes
BF function entry for logging purposes

ADI HAL function entry for logging purposes
SPI transaction type

All types of log messages selected

The hierarchy of logging function calls are shown in Figure 16. The logging is initiated in the API, and it propagates through the common layer

and ultimately gets logged through a user implemented adi_hal_LogWrite() function.

API Function Call

Y

API Entry/Exit/Error Macro

Y

adi_common_hal_ApiEnter/Exit{),
adi_common_ErrLog()

Y

adi_common_LogWrite()

Y

adi_hal_LogWrite()

Y

User Implementation of Log Write
Function

Device API Layer

Common Layer

Platform HAL
Layer

Figure 16. Hierarchy of the ADRV903x Logging Function Calls

An illustration of logging function being invoked in the top level API function is shown in Figure 17. In this illustration, the RxGainSet() API calls
the macro ADI_API_ENTER_RTN() to log the function entry, and ADI_ERROR_REPORT() macro to log an error. The common layer logging
functions are invoked through the logging macros, and the log message is finally propagated to the user implemented HAL layer logging

function.

analog.com

Rev. B | 23 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

_API adi_adrv903x_ErrAction_e adi_adrv903x_RxTxEnableSet (adi_adrv903x_Device_t* const device,
const uint32_t orxChannelMask,

L orxChannelEnable,
rxChannelMask,
rxChannelEnable,
txChannelMask,
txChannelEnable)

adi_adrv903x_ErrAction_e recoveryAction = ADI_ADRV903X_ERR_ACT_CHECK_PARAM;

DIT_ADRV903X NULL DEVICE PTR RETURN(device) ;
ADI ADRVY903X API ENTRY (&device->common) ;

ADI ADRV903X RADIOCTRL RANGE CHECK > 0

recoveryAction = adrv903x_RxTxEnableSetRangeCheck (device, orxChannelMask, orxChannelFnable, rxChannelMask, rxChannelEnable, txChannelMask, txChannelEnable);
if (recoveryAction != ADI ADRV903X ERR ACT NONE)

{

ADI API ERROR REPORT (&device->common, recoveryAction, "RxlxEnableSetRangeCheck Issue");
goto cleanup;

}

dif

/*Enable requested Rx Channel signal chains*/
recoveryAction = adrv903x RxEnableSet(device, rxChannelMask, rxChannelEnable);
if (recoveryAction != ADT_ADRV903X ERR_ACT_ NONE)
{
ADI_API_ERROR_REPORT (&device->common, recoveryAction, "RxEnableS Issue");
goto cleanup;

}

/* Enable requested ORx Channel signal chains */
recoveryAction = adrv903x OrxEnableSet (device, orxChannelMask, orxChannelEnable);
if (recoveryAction != ADI_ADRV903X_ERR_ACT NONE)

ADI_API_ERROR REPORT (&device->common, recoveryAction, "OrxEnableSel Tssue");
goto cleanup;

}

/* Enable requested Tx Channel signal chains */
recoveryAction = adrv903x_TxEnableSet (device, txChannelMask, txChannelEnable);
if (recoveryAction != ADI ADRV903X ERR ACT NONE)
{
ADI API ERROR REPORT (&device->common, recoveryAction, "TxEnableSe
goto cleanup;

Issue”);
}

anup:
ADI_ADRVI03X_API_EXIT (&device->common, recoveryAction) ;

Figure 17. lllustration of Logging Functions Invoked from the ADRV903x Top Level API

Error Handling

The error handling functions are found in the /common/adi_error folder of the ADRV903x API software package. Each ADRV903x AP function
returns an enum adi_ ADRV903x_ErrorAction_e value representing a recovery action. The user is expected to handle the errors returned from
the APl in the application layer code. Error handling flow in a user application can be divided into two phases

» Development/Debug phase: In this phase, we would expect the user to debug errors through manual intervention by taking advantage of
the Error Handbook provided by ADI as part of the software package and other tools such as logging to develop error handling code in the
application software.

» Deployment phase: In this phase, the error handling code is built into the application software that is production ready and the errors
occurring during runtime are handled programmatically.

The general strategy to handle errors during the development and deployment phases is shown in Figure 18.

analog.com Rev. B | 24 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Error Handling Flow)

~ Deployment Phase

Development / Debug Phase i

1. Examine the recovery action of type adi_adrv903x_ErrorAction_¢
returned by the API. If the recovery action returned by the API is
NOT equal to ADI_COMMON_ERR_ACT_NONE, then obtain further
error information through the API adi_adrv903x_ErrorDataGet().

The user is also encouraged to look up the Error Handbook
delivered as part of the SW package to obtain specific error
information related to the calibrations running on the ADRV903x
transceiver

'

2. Grab a memory snapshot of the embedded ARM processors on
ADRV903x device

!

3. Examine the log. This can either be the log at the application
layer or the log file generated using ADI HAL.

'

4. Develop error handling code in the application software based
on the information obtained from Steps 1-3

v

5. Execute recovery actions.

In a multi-threaded application, ensure that recovery actions are
handled in an atomic code block

6. Proceed with subsequent ADRV903x API calls

1. Examine the recovery action of type adi_adrv903x_ErrorAction_g
returned by the API. If the recovery action returned by the API is
NOT equal to ADI_COMMON_ERR_ACT_NONE, then obtain further
error information through the API adi_adrv903x_ErrorDataGet().

v

2. Invoke error handling code in the user application software
developed in Step 4. of the development phase based on the error
information obtained from the previous step.

v

3. Execute recovery actions in the user application software.

In a multi-threaded application, ensure that recovery actions are
handled in an atomic code block

v

4. Proceed with subsequent ADRV903x API calls on successful
execution of recovery action

(End of Error Handling Flow)

Figure 18. General Error Handling Strategy for ADRV903x

The set of error recovery actions returned by each API are in Table 10. Each ADRV903x API function call responds to the application layer with
information on action that needs to be taken due to a possible error in the API function call. The error structure will contain further information in

order to take the adequate action.
Table 10. ADRV903x API Error Recovery Actions

Recovery Action Name Value Description
ADI_COMMON_ERR_ACT_NONE 0 AP function completed successfully — no error handling action is required.
ADI_COMMON_ERR_ACT_CHECK_PARAM -1 API OK - Invalid parameter detected in API
ADI_COMMON_ERR_ACT_OPEN_DEVICE -10 API OK - Device Not Open
ADI_COMMON_ERR_ACT_CHECK_INTERFACE -100 API OK - Interface is reporting an error (SPI/timer/Data Interface)
ADI_COMMON_ERR_ACT_CHECK_FEATURE -200 API OK - Feature is reporting an error. Feature refers to a logical partition of ADRV903x
functionality such as GPIO, PA Protection, GP Interrupt, gain control etc.
ADI_COMMON_ERR_ACT RESET INTERFACE -300 APINOT OK - Interface Not Working, device cannot be program or access
timer/I2C/SPI/Data interface
ADI_COMMON_ERR_ACT_RESET_FEATURE =400 APINOT OK - Reset device feature (for example ARM init cals)
ADI_COMMON_ERR_ACT_RESET DEVICE -500 APINOT OK - Full system Reset required

The API error structure is accessed via adi_ ADRV903x_Device t->adi_ common_Device t-> adi_common_ErrData_t data structure. The
adi_common_ErrData_t consists of a stack of error frames (adi_common_ErrFrame_t) that can be traced to the lowest level function in

analog.com

Rev. B | 25 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

which the error was first encountered. An example context diagram of an error stack frame is shown in Figure 19. In this example, an error
encountered in the ADRV903x bitfield access low level function is propagated to the top level API function call, and the error from all three
levels of function calls are captured in the error stack frame accessible to the user via device data structure (adi_ADRV903x_Device t).

adi_adrv903x_Device_t

adi_common_Device_t

adi_common_ErrData_t
\

| Errframefo]] Error msg from APl | }
| ErrFrame[l]l Error from low level function | Egg;fg;:i?ﬁ!g;?
| ErrFrame[Z]l Error from Bitfield | J

—

Figure 19. Example Context Diagram of Error Stack Frame Returned from the ADRV903x

Each error frame in the error stack trace contains members described below that can be used to narrow the action to be taken.

» errSrc: Current source of error detected, indicating the source file where the error.
» errCode: Current error code.

» line: Line of the source code where the error was returned.

» function: Function name where the error occurred.

» file: File name where the error occurred.

» varName: Variable name which has the error.

» varData: Variable data which has the error.

» errMsg: Error message to describe the error.

» action: Recovery action.

Debug Support

Error Handbook

ADI delivers a firmware error handbook as part of the software package under the firmware folder. The error handbook contains descriptions of
all possible error codes reported by the ADRV903x firmware and is intended to be used as reference documentation during development/debug
phase.

The entries in the firmware error handbook are organized as shown in Figure 20 where the user can look up the description and

recovery action for each error code. The error table contained in the error handbook documentation can also be accessed through the API
function adi_ADRV903x_ErrorDataGet() contained in the file /api/srcic_src/devices/ADRVI03x/public/include/adi_ADRV903x_error.h. The API
adi_ADRV903x_ErrorDataGet() is a service function to lookup the error table entry for handling error programmatically.

analog.com Rev. B | 26 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Error Code Description

0x0000 No error

0x0100 DCOFFsET
CALIBRATION

DCOffset:
Calibration was
aborted while
collecting data

0x0101

0x0102 DCOffset:

Calibration Timed
out due to errorin

data capture

Error Cause Recovery Action

ADI_COMMON_ERR_ACT_RERUN_FEATURE

Hardware was
unable to
capture enough
data within time
limit

ADI_COMMON_ERR_ACT_SOFT_RESET

Figure 20. Error Handbook Snapshot

Each error code entry in the error handbook can have multiple recovery actions and causes associated with it. The recovery actions

are organized in the descending order of priority. For example, the entry corresponding to error code 0x0103 has two recovery actions

and causes associated with it as shown in Figure 21. The highest priority must be given for handling the recovery action ADI_COM-
MON_ERR_ACT_SOFT_RESET followed by ADI_COMMON_ERR_ACT_RESET _DEVICE. The two error causes associated with error code
0x0103 are also arranged in descending order of their likelihood.

0x0103 DCOffset: Internal
Test to verify
calibration failed
due to error in data

capture

FSC was unable
to capture data
require to
confirm
calibration

ADI_COMMON_ERR_ACT_SOFT_RESET

completion

FSC data
capture was
aborted

ADI_COMMON_ERR_ACT_RESET_DEVICE

Figure 21. Example Entry in the Error Handbook with Multiple Recovery Actions Associated with It

Debugging Commonly Occurring Recovery Actions

The following section describes some debug steps that a user can take on occurrence of errors described in Table 10.

API Recovery Action: ADI_COMMON_ACT_NO_ACTION

The ADI_COMMON_ACT_NO_ACTION API recovery action is returned when an ADRV903x API function completes successfully. There is no
recovery action to be performed by the calling function in the application layer.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM

The ADI_COMMON_ACT_ERR_CHECK_PARAM API recovery action is returned if an ADRV903x API parameter range check or NULL
parameter check failed. If this recovery action is returned, the ADRV903x API function did not complete. It is expected that this recovery

action would only be found during the debug phase of development. During application software development, this recovery action informs the
developer to double check the value passed into the ADRV903x API function parameters. Once the parameters are corrected to be in the valid
range, or NULL pointers are corrected, recalling the function should allow the ADRV903x API function to complete.

For debug, the developer may access further information located in the error structure, like error code, file name, function name or variable
name, a message is stored in the error message variable describing the error in more detail.

If the application SW passes development test but this recovery action is returned in the field, a bug in the application layer is highly possible
causing an out of range or NULL pointer error.

analog.com Rev. B | 27 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE

The ADI_COMMON_ACT_ERR_RESET_INTERFACE API recovery action is returned if the ADIHAL layer reports a HAL error while attempting
a SPI read or write transaction. If the ADIHAL function returns a timeout error due to SPI hardware being busy or used by another thread, the
ADRV903x API will attempt to retry the SPI operation once. If the SPI transaction fails again, the ADRV903x API reports this recovery action.
This action is also returned if an ADIHAL error is returned due to inability to access the driver.

Suggested application layer action:

» Call to determine the specific ADIHAL error code and verify that ADIHAL is the error source.

» Log error code and source.

» If the ADIHAL error is a timeout, the ADRV903x API function may be retried.

» If the ADIHAL error is not a timeout, application should try resetting the SPI driver and retrying the function call.

» If recovery action persists, verify SPI communication with other SPI devices and assess the need for a BBIC system reset.

If an ADRV903x API function has detected a condition that only the BBIC can determine if it is a true error or not. An example would be a data
interface error counter threshold overflow. If a data interface counter were to overflow once an hour or once a month, only the BBIC would be
able to determine if the counter overflow constituted an actual error condition.

Suggested application layer action:

» Record the error.
» Perform any BBIC determined recovery actions.

If an ADRV903x API function has detected a condition in where the data interface (JESD) then further information can be attained by the error
structure.

Suggested application layer action:

» Record the error.
» Perform any BBIC determined recovery actions to reset the data interface.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE

The ADI_COMMON_ACT_ERR_RESET_FEATURE API recovery action is returned by the APl when an error has been detected that requires
the reset of a feature of the device. As well as resetting the feature it must also be reconfigured to the state needed.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE
The ADI_COMMON_ACT_ERR_RESET_MODULE API recovery action is returned if the ADRV903x API detects an issue any of the modules:

ARM processor module, that requires a complete reset and reload of the ARM firmware. This type of action might be required if the
communication interface to the ADRV903x ARM processor fails or the ARM watchdog timer reports an error. These events are not expected in
production code but are failsafe mechanisms in the event of a catastrophic error.

» Issue adi_ADRV903x_RxTxEnableSet() to disable transmitter to keep hardware in a safe state. If this fails, a full ADRV903x reset is required.
» Set PA and other RF front-end components in powered down / init state.

» Call adi_common_ErrorinfoGet() to determine the specific error code and verify the error source. Log error code and source.

» Dump ADRV903x ARM memory if necessary for debug.

» Dump ADRV903x SPI registers if necessary for debug.

» Reload the ADRV903x stream processor and ARM binary firmware files.

» Continue with normal init sequence to run init calibrations and enable tracking calibrations.

Platform Layer — Adi.Adrv903x.CustomerPkg/public/api/src/c_src/platforms

The folder structure of ADRV903x platform layer code is shown in Figure 22. Here, the platform refers to the radio system which includes the
baseband processor and the ADRV903x. The platform Hardware Abstraction Layer (HAL) refers to low level device drivers in the baseband
processor essential for the transceiver API to function.

analog.com Rev. B | 28 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

B csic
m app
I common

I devices

Im platforms
B ads10
I common

B platform_utils

posix

(k|

CMakelLists.txt
adi_fmc_eeprom.h
adi_library.c
adi_library.h
adi_library_types.h
adi_platform.c
adi_platform.h

adi_platform_impl.h

O O O O O O O O

adi_platform_impl_types.h
C adi_platform_types.h

1 makefile

Figure 22. Expanded View of the ADRV903x Platform Layer Code Delivered in ADRV903x Software Package

The user is required to take the following actions to integrate the Platform Hardware Abstraction Layer with the ADRV903x API.

1. Examining the Platform HAL interface used by ADRV903x API
2. Configuring the Platform HAL interface
3. Implementing the Platform HAL interface

The following sections will explain the three steps mentioned above.

Platform HAL Interface

The platform HAL interface is a set of abstract hardware interface functions defined in /platforms/adi_platform.h that is accessed by the
common layer code to provide services such as logging, platform SPI access, and timer to the ADRV903x API functions.

The platform HAL interface is implemented as C function pointers, that can be initialized with concrete implementations of the functions that are
specific to a platform. The platform HAL interface function pointers shipped as part of the ADRV903x software package are shown in Figure 23.

analog.com Rev. B | 29 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Platform HAL Interface(adi_platform.h)

<<Interface>>

Platform

<<Interface>>

SPI

<<Interface>>

Timer

adi_hal_DevHalCfgCreate()

adi_hal_SpiWrite()

adi_hal_Wait_ms()

:HalCfgFree()

adi_hal_SpiRead()

adi_hal_Wait_us()

adi_hal_HwOpen()

adi_hal_HwClose()

adi_hal_HwReset()

<<Interface>>

Logging

<<Interface>>

Multi-Threading

adi_hal_LogFileOpen()

<<Interface>>

Baseband Register Access

adi_hal_MutexInit()

adi_hal_LogFileClose()

adi_hal_BbicRegisterWrite()

adi_hal_MutexLock()

adi_hal_LogLevelSet()

adi_hal_BbicRegisterRead()

adi_hal_MutexUnlock()

adi_hal_LogLevelGet()

adi_hal_MutexDestroy()

adi_hal_LogConsoleSet()

adi_hal_TlsSet()

adi_hal_LogWrite()

adi_hal_TlIsGet()

adi_hal_LogStatusGet()

Figure 23. ADRV903x Platform HAL Interface Functions

A brief description of the platform HAL interface functions is provided in Table 11.
Table 11. ADRV903x Platform HAL Interface Function Description

Function Name

Purpose

adi_hal_HwOpen()

adi_hal_HwClose()
adi_hal_HwReset()
adi_hal_SpiWrite()

adi_hal_SpiRead()

adi_hal_Wait_us()
adi_hal_Wait_ms()
adi_hal_LogFileOpen()
adi_hal_LogLevelSet(
adi_hal_LogLevelGet(
adi_hal_LogWrite()
adi_hal_LogFileClose()
adi_hal_DevHalCfgCreate()

= =

adi_hal_DevHalCfgFreg()
adi_hal_BbicRegisterRead()
adi_hal_BbicRegisterWrite()
adi_hal_BbicRegistersRead()
adi_hal_BbicRegistersWrite()
adi_hal_MutexInit()
adi_hal_MutexDestroy()
adi_hal_MutexLock()
adi_hal_MutexUnlock()
adi_hal_TlsSet()

Open and initialize all platform drivers/resources and peripherals required to control the ADRV903x (SPI, timer, logging,
etc.)

Close any resources opened by adi_hal_HwOpen
Toggle the hardware reset signal for the ADRV903x

Write an array of data bytes on a targeted SPI device (Address bytes are packed into the byte array before calling this
function)

Read an array of data bytes from a targeted SPI device. (Address bytes are provided by a txData array which are packed
into the byte array before calling this function).

Perform a wait/thread sleep in units of microseconds

Perform a wait/thread sleep in units of milliseconds

Open afile for logging

Mask to set the severity of information to write to the log (Error/Warning/Message)
Get the current log level setting

Log a debug message (message, warning, error) from the AP to the platform log
Function to close the log file

This function allows the platform to allocate and configure the devHalCfg structure. The devHalCfg structure is described
in the next section.

This function allows the platform to deallocate the devHalCfg structure
These functions are used to communicate with the Baseband processor (typically FPGA).

Initializes the mutex into an unlocked state for multithreading applications

Signal to the HAL that a mutex is no longer required.

Acquires the mutex for a shared resource in a multithreaded application.

Releases a previously acquired mutex in a multithreaded application

Stores a value in the calling thread's thread local storage slot for the specified index

analog.com

Rev. B | 30 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Table 11. ADRV903x Platform HAL Interface Function Description (Continued)
Function Name Purpose

adi_hal_TIsGet() ‘ Retrieves the value in the calling thread's thread local storage slot for the specified index.

Configuring the Platform HAL

The platform HAL configuration is contained in adi_hal_Cfg_t data structure defined in /platform/adi_platform_types.h. The definition of platform
HAL configuration data structure for the ADI evaluation platform is shown below. All the substructures used in adi_hal_Cfg_t are defined
in /platform/adi_platform_types.h.

typedef struct adi hal Cfg
{

uint32 t interfacemask; /*!< Interface Mask Requested */
uint8 t openFlag; /*!< Device Open Status Flag */

char typeName [ADI HAL STRING LENGTH]; /*!< Type Name */
adi hal SpiCfg t spiCfg; /*!< SPI Configuration */

adi hal LogCfg t logCfg; /*!< LOG Configuration */

adi hal BbicCfg t bbicCfg; /*!< BBIC Configuration */

adi hal HwResetCfg t hwResetCfg; /*!< HW Reset Configuration */

adi hal I2cCfg t i2cCfg; /*!< I2C Configuration */

adi hal TimerCfg t timerCfg; /*!< Timer Configuration */

adi hal EepromCfg t eepromCfg; /*!< Eeprom Configuration */

int32 t error; /*!< QOperating System Error Code */

} adi hal Cfg t;

An instance of adi_hal_Cfg_t should be created and initialized to default values using adi_hal_DevHalCfgCreate() function during initialization.
Memory is allocated on the heap for each instance of adi_hal_Cfg_t created. To destroy the platform HAL configuration and de-allocate

the memory adi_hal_DevHalCfgDestroy() function can be called. Since the HAL configuration is opaque to ADI devices, the instance of
adi_hal_Cfg_t created via adi_hal_DevHalCfgCreate() is returned as a void pointer (void*). This pointer must be multiple instances of
adi_hal_Cfg_t can be created independently per platform. The lifetime of a platform HAL configuration instance is listed below.

» adi_hal_DevHalCfgCreate() -> Interfaces Defined are Hardware/Feature Specific
» adi_hal_HwOpen() -> Enable all Selected HAL Interfaces & Features

» Use Device -> Hardware Ready for Use

» adi_hal_HwClose() -> Release all Resources (clean-up task)

» adi_hal_DevHalCfgFree() -> Free Memory, that is, (clean-up task)

The platform HAL configuration stored in an instance of adi_hal_Cfg_t structure is supplied as an argument to each platform HAL function
described in Table 11 as (void* devHalCfg). For example, the platform HAL SPI write function can determine if the SPI transaction needs to
be in 3-wire or 4-wire mode by examining the devHalCfg.spiCfg.fourWireMode member. The flow of platform HAL configuration from a user
application to the platformHAL function is shown in Figure 24.

analog.com Rev. B | 31 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

A user application creates an instance of adi_adrv903x_Device_t, which
holds the overall device state of the transceiver. During initialization, the
platform HAL configuration is created using adi_hal_DevHalCfgCreate()
function, enabled via adi_hal_HwOpen(), and the platform HAL config i
stored in adi_adrv903x_Device_t.adi_common_Device_t.devHallnfo

ADRV903x API function called by user application

adi_adrv903x_<API Function>(adi_adrv903x_Device_t Inst)

ADRV903x API invokes common layer functions for servicing a
HAL function call

adi_common_<CommonLayerHal>(adi_adrv903x_Device_t.adi_common_Device_t Inst)

ADRV903x common HAL layer services the API by invoking the
platform HAL

adi_hal_<PlatformHallnterface>(adi_adrv903x_Device_t.adi_common_Device_t.devHallnfo Inst)

User implemented low level Platform HAL function integrated with
adi_hal_<PlatformHalinterface> has devHallnfo passed from the
user application which can be used by low level drivers to gather

HAL configuration information

adi_hal_<UserPlatformHalFunction>(devHallnfo inst)

Figure 24. Flow of Platform HAL Configuration from a User Application to the Platform HAL Layer Function

Implementing the Platform HAL

Users who develop code to target custom hardware platforms will use different drivers for the peripherals such as the SPI and timer specific

to their platform. Users can refer to the drivers developed for the ADI evaluation platform as reference. Implementation of platform HAL must
conform the function prototypes defined in /platforms/adi_platform.h. A user implementation of all the functions defined in Table 11 is mandatory
to guarantee the functionality of the ADRV903x.

The ADI HAL interface is a library of functions that the ADRV903x API uses when it needs to access the target platform hardware as described
in the previous section. The software package delivered by ADI contains drivers specific to ADI evaluation platform (ADS10). The ADS10
platform HAL functions can be found in /platforms/ads10 folder shown in Figure 25.

analog.com Rev. B | 32 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

& ads1

» E7 common

Figure 25. ADS10 Folder Containing Platform HAL Functions for ADI Evaluation Platform

The user implemented functions need to be assigned to the platform HAL interface functions during device initialization. The user can refer
to /platforms/adi_platform.c/adi_hal_PlatformSetup() function for reference code where the ADI evaluation system platform drivers are assigned
to the platform HAL interface functions listed in Table 10.

The code listing below is a snippet from adi_hal_PlatformSetup() function where the ADI evaluation platform HAL implementation functions are
assigned to the platform HAL interface functions.

#ifdef ADI ADS10 PLATFORM
adi hal HwOpen = adsl0 HwOpen;
adi hal HwClose = adsl0 HwClose;
adi hal HwReset = adsl0 HwReset;
adi hal DevHalCfgCreate = adsl0 DevHalCfgCreate;
adi hal DevHalCfgFree = adsl0 DevHalCfgFree;
adi hal SpiWrite = adsl0 SpiWrite;
adi hal SpiRead = adsl0 SpiRead;
adi hal LogFileOpen = adsl0 LogFileOpen;
adi hal LogLevelSet = adsl0 LogLevelSet;
adi hal LogLevelGet = adsl0 LogLevelGet;
adi hal LogStatusGet = adsl0 LogStatusGet;
adi hal LogConsoleSet = adsl0 LogConsoleSet;
adi hal LogWrite = adsl0 LogWrite;
adi hal LogFileClose = adsl0 LogFileClose;
adi hal Wait us = adsl0 TimerWait us;
adi hal Wait ms = adsl0 TimerWait ms;
/* only required to support the ADI FPGA*/
adi hal BbicRegisterRead = adsl0 BbicRegisterRead;
adi hal BbicRegisteriirite = adsl0 BbicRegisterWrite;
adi hal BbicRegistersRead adsl0 BbicRegistersRead;

analog.com Rev. B | 33 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

adi _hal BbicRegisterslirite = adsl0 BbicRegistersWrite;
adi hal ThreadSelf = posix ThreadSelf;
adi hal TlsGet = all TlsGet;
adi hal TlsSet = all TlsSet;
adi _hal MutexInit = posix MutexInit;
adi hal MutexLock = posix MutexLock;
adi hal MutexUnlock = posix MutexUnlock;
adi hal MutexDestroy = posix MutexDestroy;
error = all TlsInit();
telse
error = ADI HAL ERR NOT IMPLEMENTED;
#endif

Multi-Threading

The purpose of the multi-threading feature is to support multi-threaded applications using the ADRV903x API. It means that use of the API by
a multi-threaded application should be safe and function the same as a single-threaded application. Invoking API calls from several different
threads rather than just one must not lead to inconsistent or faulty operation.

The multi-threading feature is independent of the transceiver itself so is not configured at Init-time or run-time as such. If an application is
single-threaded and therefore does not require the multi-threading feature it should be possible to disable it to minimize resource usage and
any run-time overhead. The APl is intended to support multiple threads NOT multiple processes as shown in Figure 26. Multi-thread support
allows a single customer application process to divide tasks logically among several threads without having consider how the threads will safely
contend for API devices. Typically, a customer can use this feature to have some threads monitoring device status while other threads can deal
with device functionality.

NOTE: If a customer has their own multi-threading management environment and don’t wish to use ADI multi-threading HAL functions, then the
multi-threading HAL functions in adi_hal_PlatformSetup() can be implemented as empty function stubs.

User Application ProcesQ

Thread 1 Thread 2 Thread N

Global

Y ADRV903x API ADRV903x API . ADRV903x AP
ar

Figure 26. Multi-threaded User Application Process Using ADRV903x API

The multi-threading feature support depends on a user-supplied HAL layer being able to provide recursive mutexes. A recursive mutex means
a thread can lock the mutex multiple times without first unlocking it. It requires the same number of unlocks to release the mutex before another
thread can acquire the mutex.

A thread safe API functionality requires concrete implementations to the platform HAL interface functions described in Table 11.

Each ADRV903x will have its own mutex supplied by the HAL. This mutex is used to ensure that only one thread at a time is accessing the
device (both physically and its associated state information held in the adi ADRV903x_Device_t device structure). When a thread calls the API,
the APl function immediately locks the mutex associated with the device before proceeding with its operations, thus preventing any other thread
invoking the API from accessing the device while the operation is in progress. Each API call will release the mutex acquired at the beginning of
the AP call as it's last act before exiting.

analog.com Rev. B | 34 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

ADRVSDIX ADRVS03X HAL Mutex Each device has a mutex associated with it in
APl adi_adrv803x_device_t adi_common_Device_t devStatelnfo

Application

adi_adrv@03x_<API.

adi_hal_MutexLock{Mutex] + cquire Mutex:

ADRVED3x Davice API carries out
work by talking to the transeaiver
via HAL

:‘ adrv803x_=pviFunc=
L

adi_hal_MutexLock(Mutex T cquire Mutex:

Public AP functions call
private functions to carry out
it's function, while locking
the mutex recursively

adi_hal_MutexUnlock(Muiex’ ‘-=: Realase Mui; >

adi_hal_MutexUn \ock(MulexjH%iRea lase Mutex————

Figure 27. ADRV903x Mutex Operation Sequence

The following steps summarize the actions required to be taken by the user to implement thread safe API:

» Examine the multi-threading platform HAL functions in Table 11.
» Implement a recursive mutex that can be used to lock shared state information recursively.
» Integrate the user implemented platform HAL with ADI multi-threading functions in /platforms/adi_hal_platforms.c.

» Integrate the thread safe API functions into multiple threads in a user application. The API will invoke the user implemented platform HAL
mutex functions to acquire and release shared state information.

Error Handling Memory

Error handling was introduced previously in the Error Handling section of this document. In the context of a multi-threading application,

each thread must associate an error key with error handling memory on each thread. The user must implement the platform HAL functions
adi_hal_TlsGet() and adi_hal_TIsSet() functions for thread safe error handling. In the context of a multi-threading application, each thread must
associate an error key with error handling memory on each thread. The user must implement the platform HAL functions adi_hal_TIsGet() and
adi_hal_TlsSet() functions in order to implement thread safe error handling functions. This is illustrated in Figure 28.

Process

Thread 1 Thread 2
Thread Local Storage Thread Local Storage
——» ErrData ——— ErrData

adi_adrv903x_ErrData_t

ErrData

Figure 28. lllustration of Thread Local Storage

analog.com Rev. B | 35 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

In a typical use case, the user would call adi_hal_TIsSet() function in a user application to associate the error handling memory
(adi_ADRV903x_Device_t.adi_common_Device_t.error) with a specific thread. When an error occurs, the API function retrieves the error
handling memory associated with the thread via adi_hal_TlsGet() function, and updates the error value from the thread in which the error has
occurred.

Shown below is an example pseudo-code snippet in which the error handling code and error data retrieval in a thread is shown.

Ivoid* tlsThread{void* args) {
thread args t *thread args = (thread args t*) args;

while (time(NULL) < thread args-»end time)
[adi_hal TlsSet(HAL TLS_ERR, value_err);
retVal = adi_adrv903x API();
if (retval = ADI_ADRV903x_COMMON_ACT_NO_ACTION)
! /* If an error has occured, retrieve error data corresponding to this thread */

errorFromThread = adi_hal TlsGet({HAL TLS_ERR)

/* Handle recovery action in an atomic code block */
adi Hal MutexLock(adrv803x Device)

HandleError(errorFromThread);
adi_Hal MutexUnlock(adrv303x Device) ;
}
}

/* Bt the end of the thread, release all the thread local storage */
adi_hal TlsSet(HAL TLS_END, NULL);

return;

i¥
Figure 29.
DEVELOPING AN APPLICATION
Once the ADRV903x AP is integrated into a user software application project, the next step is to develop an application. This section goes
through some mandatory steps that a user needs to take to bring up the ADRV903x in order to run an application.
Instantiating the Device Data Structure

Device data structure holds all the state information of the ADRV903x. The device data structure is defined in /c_src/api/pub-
lic/adi_adrv903x_types.h. The device data structure instance is passed to each ADRV903x API function call. An overview of the device
data structure content is shown in Figure 30.

analog.com Rev. B | 36 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

adi_adrv903x_Device_t

adi_ common_Device t

devHallnfo(Platform HAL cfg)
adi_common_ErrData_t(Error State Infq)

adi_hal Mutex_t(Mutex info for multi-threadi n[F)

adi_adrv903x _Info_t

Contains the state of ADRV903x transceiver device which includes
transmit /[receive rates, clock divide ratios on the chip, initialized
channels, and certain feature specific state information

adi_adrv903x_SpiSettings t

MSB / LSB first
SPI Streaming Enable

Auto Increment Address
Drive Strength

Figure 30. ADRV903x Device Data Structure

To support multiple devices the application layer code would need to instantiate multiple adi ADRV903x_Device_t structures to describe each
physical ADRV903x.

The devHallnfo is defined as a void pointer and allows the user to define and pass any platform hardware settings to the platform HAL layer
functions (Refer to the section on configuring the platform HAL). For example, devHallnfo might contain information such as the SPI chip select
to be used for the physical ADRV903x SPI interface. Note that the API functions are shared across all instances of physical devices. The
devHallnfo structure defined by the developer identifies which physical ADRV903x is targeted (SPI chip select) when a particular ADRV903x
API function is called. The developer may need to store other hardware information unique to a particular ADRV903x in this structure such as
timer instances, log file information to allow for multithreading.

The devStatelnfo member is of type adi_adrv903x_Info_t and is a runtime state container for the ADRV903x API. The application layer must
allocate memory for this structure, but only the ADRV903x API writes to the structure. The application layer should allocate the devStatelnfo
structure with all zeroes. The API uses the devStatelnfo structure to keep up with the current state of the API (has it been initialized, ARM
loaded, etc.), as well as a debug store for any run-time data, such as error codes, error sources, etc. It is not intended for the application layer
to access the devStatelnfo member directly, as API functions will be provided to access the last error code and source information.

The adi_common_ErrData_t structure is used to contain the error information returned from the ADRV903x. The error structure is defined in
Error Handling Memory section. The user is also expected to initialize the ADRV903x SPI settings in the sub-structure adi_ ADRV903x_SpiCon-
figSettings_t in the device data structure.

Programming the Device
The summary of pre-requisites before attempting to program the device is listed below

1. Examine and integrate ADRV903x API source code with user application, implement platform HAL functions as described in the Platform
HAL Interface section. Associate the ADI platform HAL interface functions in adi_hal_PlatformSetup() defined in the source file api/src/
c_src/platforms/adi_platform.c.

analog.com Rev. B | 37 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

2. Generate ADRV903x resource files as described in the Resource Files section, instantiate a variable of type adi_ADRV903x_TrxFilelnfo_t
and initialize it with path to resource files and resource file settings.

3. Instantiate an ADRV903x device data structure as described in Instantiating the Device Data Structure section.
4. Architect error handling in the user application as described in the Error Handling section.

5. Instantiate an error data structure of type adi_common_ErrData_t and associate it with a thread using the API adi_hal_TlsSet() as
described in the Error Handling Memory section.

6. Instantiate a HAL configuration structure of type adi_hal_Cfg_t and initialize HAL configurations as described in the Configuring the Platform
HAL section.

7. Configure the BBIC to ADRV903x SPI bridge through the structure adi_ADRV903x_SpiConfigSettings_t as described in the SPI API
Functions section.

8. Ensure that a valid clock is being supplied to the ADRV903x transceiver.

After instantiating the device data structure, the next essential step is to program the ADRV903x. To program the device, the resource files
described in Error Handling Memory are necessary. The programming mainly involves five stages.

1. Creating the ADRV903x data structure, creating platform HAL configuration and enabling the platform HAL

2. Pre MCS initialization - In this stage, the ADRV903x hardware blocks are initialized, the resource files (Firmware binary, Stream binary,
Profile, Rx gain tables) are loaded and the embedded ARM processor boot up sequence is triggered.

3. MCS - In this stage, the device requests SYSREF pulses for synchronization from a clock device in the platform.

4. Post MCS initialization - In this stage, the ADRV903x init time calibrations are performed, the LO frequencies are setup and the radio
control mode is programmed.

5. JESD Bring up - In this stage, the JESD link between the baseband processor and the ADRV903x is initialized and the link is reset.
The sequence of events involved in programming the ADRV903x is shown in Figure 31. The JESD bring-up is further broken out in Figure 32.

analog.com Rev. B | 38 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Create adi_adrvgen6_Device_t Inst |

[}
i
adi_hal_DevHalCfgCreate()r

[} .
devHallnfo E-————————————- qm———————————— e — Return HAL Config
i >: Enable HAL Drivers

P Create HAL Config

adi_hal_HwOpen(dev
Verify that BBIC-ADRV903x SPI

1
adi_hal_SpiVerify() !

1
1
1
1
1
1
1
1
1
1
1 | 1
T T 1
I I I >
: : : : r: bridge is established correctly
I I I I 1
" 1 1 1 1 [
Pre-MCS Init i i ! ! i
. PPN | 1 I
adi_adrv903x_PreMcsInitq adi_adrv903x |): : ;: Initialize ADRV903x HW
1 di_adrv903 h d(1 [
1 ad)_adrvI03x_otr + oad() + P | Load the stream image
: adi_adrv903x_CpuImage|.oad() : _} Load dual bedded ARM table bi
! di_adrv903x_CpuProfilgBinarylmageload() ! 71 | -oacdual core embecce executable binary
: ad'_ p P - I ﬂ; 8 : #1 Load the profile binary generated for the use case
! ad{_adrv903x_RxGa|nTa.. eLoad() ! P! | Load Receiver Gain Tables
: adi_adrv903x_Cpustart(. : #1 Boot up the embedded ARM processors
1 T 1 1 |
1 1 1 1 1
! ! ! ! !
Pre-MCS Init Non-Broadcastj : : : :
- Pyl R R 1 1 I
adi_adrvo03x_PreMcslnit_Nd adi_adrv903x_CpuStartStatusCheck() | o . -
Broadcast() | T ®1 | Wait for CPU Boot up process to finish
i — CPUBootSuccessful 1 ______________ e !
1 Setup Tx 1] ol Tx Atten, Pwr Monitoring, PA
: : : ': Protection, Slew Rate Limiter
:< ______________ | Setup Rx : : >: Rx Gain, Data Formatter Setup
: Ready for MCS T : : :
1 1 1 1 1
| | | | |
T T T T T
Multi Chip Sync(MCS) : : : : :
Disable Sysref from clock outpu{lj i i i i
adi_adrv903x_MultiChipSyncSet()} ! ! ! L | Enable MCS on ADRV903x
:(—————————————— :- —————————————— :- —————————————— :- —————————————— Request SysRef
Sysref Puhes: : : :
adi_adrv903x_MuItiChipStatusGet(){ : : :
MCS Complete]<———————==——=—~— fm—— fm—— b —— 1 Return MCS Status
| 1 1 1
adi_adrv903x_MuItiChipSyncSet(;i ' ' ' | Disable MCS on ADRV903x
: : : : !
Post-MCS Init : : : : :
1 1 1 1 1
i () I 1 I
adl_adrv903x_PostMcsln|t(1 adi_adrv903x_RadioCtrI|CfgSet() : —‘Ir Set LO Frequency, Rx T
1 | 1 | | Control Mode(Pin vs SPI)
: adi_adrv903x_RadioCtrITxRxEnCfgSet() ! o Setup Tx/Rx Pins in TDD mod
+ + P | Setup Tx/Rx Pins in mode
: adi_adrv903x_StreamGnliongSet() : _Il X
1 T T Py | Setup Stream GPIO Pins
i adi_adrv903x_TxToORxW1appinglnit() ; " Setup Tx to ORx Mapping
: adrv903x_GpIntPostMcs|nit() : _Il
1]] P | Setup GP Interrupts
| adi_adrv903x_InitCalsRuh() | |
: : : =[l Run Init Cals
| _End of Post MCS Init | [<===========-~ e Fommmmmm e *+ | Init Cals Complete
JESD Bringup : : :
JESD Bringup : : ’Ir
1 1 1
1 1 [
1 1 1
1 1 1
1 1 1
1 1 1

Figure 31. ADRV903x Programming Sequence

analog.com Rev. B | 39 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

1 1 1 1 1
| 1 1 | 1
JESD Initialization : : : : :
1 1 1 1 1
1 1 1 I 1
adi_adrv903x_DeframerSysrefCtrISet(): : : : >: Disable SYSREF requests of all Deframers
| [} I I |
1 1 1 1 [
adi_adrv903x_FramerSysrefCtriSet() + + t t P | Disable SYSREF requests of all Framers
1 1 1 1 1
1 1 1 1 1
Disable SYSREF requests for BBIC Ij [} [} | |
1 1 1 1 1
framers and deframers I 1 1 | 1
1 1 1 1 1
adi_adrv903x_DeframerLink ’): : : : >: Disable all Deframers
1 1 1 1 1
adi_adrv903x_FramerLink ‘): : : : >: Disable all Framers
| I I I |
adi_adrv903x_SerializerReset() : : : : #: Reset the Serializer
| 1 1 | |
Tx Link Bringup : : : : :
| | | | |
Setup BBIC Framers | 1 1 I 1
1 1 1 1
| 1 1 1 [
adi_adrv903x_DeframerLink ()i H H f ?} Enable applicable Deframers
adi_adrv903x_DeframerSysrefCtriSet(1 : : : =l[Enable SYSREF requests of applicable Deframers
1 1 1 1 1
Sysref Pulses :4 : : : =: Sysref
| I I I |
1 1 1 1 1
adi_adrv903x_DeframerSysrefCtrISet(): : : : >: Disable SYSREF requests of applicable Deframers
] 1 1 1]
1 1 1] 1
Rx Link Bringup : : : : :
1 1 1 1 1
adi_adrv903x_FramerLinkStateSet() : : : : #: Enable applicable Framers
1 1 1 1 1
adi_adrv903x_FramerSysrefCtriSet() : : : : >: Enable SYSREF requests of applicable Framers
| I [} I |
Sysref Pulses L t i >l Sysref
1 1 1 1 1
adi_adrv903x_DeframerSysrefCtriSet() : : : : >: Disable SYSREF requests of applicable Framers
1 1 1 1 1
Setup BBIC DeframersD : : : :
I 1 1 1 1
1 1 | 1
1 1 1 [
I I I |
1 1 1 1
1 1 |

Figure 32. JESD Bring-Up Sequence with ADRV903x

GP Interrupts Setup

An important step that a user needs to take before proceeding to develop application code is to setup GP interrupts. The GP interrupts helps
a user to acquire ADRV903x diagnostic data, such as PLL unlock, which can be monitored on a dedicated GP interrupt pin output from
ADRV903x.

The user can create an interface that detects the GP interrupts in the hardware, invoke GP interrupt handlers provided by ADI that reside
in /devices/adrv903x/adi_ADRV903x_gpio.h. Please refer to the General Purpose Interrupt section of this user guide for more details on setting
up the GP Interrupts.

COMPILATION

Makefiles are delivered as part the ADI software package to assist in compilation of the API source files. The user can optionally compile the
API source files into static libraries that can then be consumed in an ADRV903x application project. A typical compilation flow of an ADRV903x
application using ADI provided makefiles is shown below.

analog.com Rev. B | 40 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

%—b ADRV903x makefiles

User supplied makefile
configuration ¢

Compile ADRV903x
source files into a static
library

'

ADRV903x Application
Project Compiler
Toolchain

ADRV9I03x Application
Code ¢

ADRVI03x application
executable

End
Figure 33. Compilation flow using ADRV903x Makefiles

Makefiles

There are four makefiles that are delivered as part of ADI software package shown in Table 12 which can be used to compile the ADRV903x
source files into a static library for consumption in an ADRV903x application project. The static libraries are generated in an output directory
whose name is specified by the user in the makefile configuration.

Table 12. ADRV903x Makefiles for Compilation

Target ADRV903x Source File Makefile Path Relative to API Directory Static Library Output File

ADRV903x Device API Isrclc_src/devices/adi_ ADRV903x Isrclc_src/devices/adi_ ADRV903x/<QutputDir>/
libadi_ADRV903x.a

ADRV903x Device Common Layer [src/c_src/common [src/c_src/common/<QutputDir>/libadi_common.a

ADRV903x Device Platform Layer Isrclc_src/platform [srclc_src/platform/<OutputDir>/libadi_platform.a

ADRV903x Bitfield Layer Isrclc_src/devices/adi_ ADRV903x/private/bf Isrclc_src/devices/adi_ ADRV903x/private/bf<OutputDir>/
libadi_bf.a

NOTE: <OutputDir> is specified by the user in the makefile configuration. The makefile configuration can be found in Configuring the Makefiles
section

In order to compile the makefile, the user can use the following command:
make all CONFIGFILE =<Absolute Path To Makefile> / <makefile configuration file>

Configuring the Makefiles

The user is required to setup the following toolchain configurations and pass them as input to the make commands in order to generate
a static library from the ADRV903x source files. The mandatory configurations required by ADRV903x makefiles are listed in Table 13.
The ADRV903x makefiles use C Compilers by default. As part of the SW package, and example makefile configuration file /api/src/c_src/
configUserExample.mak. The example configuration file is based on the GCC compiler and the configuration values used in the example
configuration file can be found in Table 13.

analog.com Rev. B | 41 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SOFTWARE INTEGRATION

Table 13. Configurations Required by ADRV903x Makefile

Configuration Description Value Used in ADI Example Config Files
BINARYDIR Output folder name for the static library to be created in the same directory | -
as the location of the makefile
USE_ADS_10 This configuration is only applicable for compiling source codes for ADI eval | 0
platform. A value of 1 enables compilation for ADI evaluation platform
cC C - Compiler gce
CXX C++ Compiler gt
LD Linker $(CXX)
AR Binary utility for archiving arexe
OBJCOPY Utility for reading / writing object files objcopy.exe
CFLAGS C Compiler Flags -ggdb -Wall -Wpedantic -Werror -ffunction-sections -O0
-x ct+ -fPIC
CXXFLAGS C++ Compiler Flags -Wall -Werror -Wpedantic -std=c++11 -ggdb -ffunction-
sections -00 -fPIC
ASFLAGS Assembler Flags -
LDFLAGS Linker Flags -WI,-gc-sections -Igcov

In addition to the mandatory configurations required by the ADRV903x makefiles, the user can include additional makefile configurations
specific to the user’s project. The complete example makefile configuration listing is shown in Figure 34. The additional configurations used in
the ADRV903x example project are included in the red box shown in Figure 34.

#Output folder for
BINARYDIR := Debug

#Set this t
USE_ADS_10 := 0
Toolchain
CC := gcc.exe
CXX := g++.exe
LD := §(CXX)

AR := ar.exe

binary

o 1, if ADS10 platform will be

configuration

files

used

OBJCOPY := objcopy.exe

CFLAGS := -ggdb -Wall -Wpedantic -Werror -ffunction-sections -00 -x c++ -fPIC
CXXFLAGS := -Wall -Werror -Wpedantic -std=c++ll -ggdb -ffunction-sections -00 -fPIC
ASFLAGS :=

-Wl,-gc-sections -lgcov

LDFLAGS :=

#Additic

PREPROC

ifeq ($(USE_ADS_10),

PREPROCESSOR_MACROS
jendif

#Additional options

[START_GROUP
[END_GROUP

S5O0R_MACROS := PRODUCT_ADRVS03x TPG_PRODUCT_ NAME=adrvSxxx TPG_PRODUCT_MACRO NAME=ADRVSxxx TPG_PRODUCT_ INCLUDE NAME=adrvgené

1)
+= _ADI_ADS10_PLATFORM

:= -Wl,--start-group
:= -Wl,--end-group

analog.com

Figure 34. ADRV903x Makefile Configuration Example

Rev. B | 42 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIAL PERIPHERAL INTERFACE (SPI)

The SPI bus allows a BBIC to control the ADRV903x. The SPI bus is the primary interface to setup and configure the device. SPI registers
contain control bits, status monitors, or other settings that control all functions of the device.

SPI register transactions can occur in 8-bit or 32-bit modes. Depending on the type of transaction, it may be necessary for an 8-bit read/write
operation or a 32-bit operation. The API determines what transaction size is necessary based on the information it needs to read and write.

This section is an information-only section to give the user an understanding of the hardware interface the BBIC uses to control the device. Al
control functions are implemented using the API detailed within this document. The following sections explain the specifics of this interface.

SPI BUS SIGNALS

The SPI bus consists of the following signals:
» SPI_EN

» SPI_CLK

» SPI_DIO
» SPI_DO

SPI_EN

SPI_EN is the active-low chip select that functions as the bus enable signal driven from the BBIC to the device. This signal is an input to the
SPI_EN pin. SPI_EN is driven low before the first SPI_CLK rising edge and is normally driven high again after the last SPI_CLK falling edge.
The device ignores the clock and data signals while SPI_EN is high. SPI_EN also frames communication to and from the device and returns the
SPl interface to the ready state when it is driven high.

Forcing SPI_EN high in the middle of a transaction aborts part, or all, of the transaction. If the transaction is aborted before the instruction is
complete or in the middle of the first data word, the state machine returns to the ready state. Any complete data byte transfers prior to SPI_EN
de-asserting are valid, but all subsequent transfers in a continuous SPI transaction are aborted.

SPI_CLK

SPI_CLK is the serial interface reference clock driven by the BBIC. This signal is an input to the SPI_CLK pin. It is only active while SPI_EN
is low. The maximum SPI_CLK frequency is 50 MHz. These limits are determined based on the practical timing requirements and the physical
limitations of the device.

SPI_DIO and SPI_DO

The SPl interface supports both 4-wire and 3-wire bus modes. When configured as a 4-wire bus, the SPI utilizes two data signals: SPI_DIO and
SPI_DO. SPI_DIO is the data input line driven from the BBIC. The signal is input to the device on the SPI_DIO pin. SPI_DO is the data output
from the device to the BBIC and is driven by the SPI_DO pin. When configured as a 3-wire bus, SPI_DIO is used as a bidirectional pin that
both receives and transmits serial data. The SPI_DO pin is disabled in this mode. Per ADI standards, the device defaults into 3-wire mode after
hardware/software reset and power cycling.

The data signals are launched on the falling edge of SPI_CLK and sampled on the rising edge of SPI_CLK by both the BBIC and the

device. SPI_DIO carries the control field from the BBIC to the device during all transactions, and it carries the write data fields during a write
transaction. In a 3-wire SPI configuration, SPI_DIO carries the returning read data fields from the device to the BBIC during a read transaction.
In a 4-wire SPI configuration, SPI_DO carries the retuming data fields to the BBIC.

The SPI_DO and SPI_DIO pins transition to a high impedance state when the SPI_EN input is high. The device does not provide any weak
pull-ups or pull-downs on these pins. When SPI_DO is inactive, it is floated in a high impedance state. If a valid logic state on SPI_DO is
required, an external weak pull-up/down (10 kQ value) should be added on the PCB.

SPI DATA TRANSFER PROTOCOL

The SPl s a flexible, synchronous serial communication bus allowing seamless interfacing to many industry standard microcontrollers and
microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel SSR protocols.
The control field width for this device is limited to 16 bits, and multi-byte 10 operation is allowed. This device cannot be used to control other
devices on the bus — it only operates as a target.

analog.com Rev. B | 43 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIAL PERIPHERAL INTERFACE (SPI)

There are two phases to a communication cycle:

» Phase 1 is the control cycle, which is the writing of a control word into the device. The control word provides the serial port controller with
information regarding the data field transfer cycle, which is Phase 2 of the communication cycle. The Phase 1 control field defines whether
the upcoming data transfer is read or write. It also defines the register address being accessed.

» Phase 2 can be either a single byte transfer to or from the device (depending on the Phase 1 instruction) or it can be a multi-byte data
transfer.

Phase 1 Instruction Format

The 16-bit control field contains the following information:

Table 14. SPI Transaction Phase 1 Instruction Format

Bit Position Short hand Interpretation
D15 R/Wb (Read/Write-Bar)
D14:D0 A<14:0> (Address word)

These are explained further below:

» D15 — Bit 15 of the instruction word determines whether a read or write data transfer occurs after the instruction byte write. Logic high
indicates a read operation; logic low indicates a write operation.

» D14:D0 - Bits A<14.0> specify the starting byte address for the data transfer during Phase 2 of the 10 operation.

All byte addresses, both explicitly specified and internally generated by address auto increment/decrement are assumed to be valid. That is,
if an invalid address (undefined register) is accessed, the 10 operation continues as if the address space were valid. For write operations, the
written bits are discarded, and read operations result in logic zeros at the output.

Single-Byte Data Transfer

When enSpiStreaming = 0, a single-byte data transfer is chosen. In this mode, SPI_EN goes active-low, the SPI_CLK signal activates, and the
address is transferred from the BBIC to the device. This mode is always used in direct communication between the BBIC and the device.

The API parameter msbFirst indicates the bit packing order of Phase 1 and Phase 2 data. Phase 1 is always transmitted first.

» If msbFirst = 0, then this is LSB first mode. In this mode, the LSB of the address is the first bit transmitted from the BBIC, followed by the
next 14 bits in order from next LSB to MSB. The final bit in the phase1 instruction signifies if the operation is read (set) or write (clear). If the
operation is a write, the BBIC will transmit the next 8 bits LSB to MSB. If the operation is a read, the device will transmit the next 8 bits LSB
to MSB.

» If msbFirst = 1, then this is MSB first mode. In this mode, the first bit transmitted is the RIWb bit that determines if the operation is a read
(set) or write (clear). The MSB of the address is the next bit transmitted from the BBIC, followed by the remaining 14 bits in order from next
MSB to LSB. If the operation is a write, the BBIC will transmit the next 8 bits MSB to LSB. If the operation is a read, the device will transmit
the next 8 bits MSB to LSB.

Single-byte data transfer can occur where a single address/data transaction occurs between the SPI_EN transition from low to high. This is

called single instruction mode as shown in Figure 35:
CS cs CS -------
high low high

Figure 35. SPI Transactions Under Single Instruction Operation
Alternatively, it is possible to make multiple address/data transactions between the SPI_EN transition from low to high. This is called the single
instruction buffered mode. This uses the transfer format of address followed by data (Byte Order: AAD AAD ...) until the SPI_EN signal is
driven high. The address must be written for each data byte transfer when using this mode as shown in Figure 36.

ADDRESS DATA
16 spi_clk 8 spi_clk

cs ADDRESS DATA
low 16 spi_clk 8 spi_clk

analog.com Rev. B | 44 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIAL PERIPHERAL INTERFACE (SPI)

ADDRESS DATA ADDRESS DATA cs
16 spi_clk 8 spi_clk 16 spi_clk 8 spi_clk high

Figure 36. SPI Transactions under Single Instruction Buffered Operation

cs
low

Multi-Byte Data Transfer (SPI Streaming)

Multi-byte data transfer (also called SPI streaming) is not utilized in standard communication between the BBIC and the device. When
enSpiStreaming = 1, data is transferred in multi-byte packets depending on the streaming mode that is enabled. This mode is used to transfer
data indirectly to internal ARM memory using a direct memory access (DMA) controller.

SPI APl FUNCTIONS
Table 15. List of SPI API Functions

API Method Name Comments
adi_ADRV903x_SpiCfgSet() Sets the configuration of the SP! interface.
adi_ADRV903x_SpiCfgGet() Get the configuration of the SP! interface.

Configure the SPI interface by calling adi ADRV903x_SpiCfgSet(). The adi ADRV903x_HwOpen() command is the first command called
before any other API interaction with the device, calls the adi_ADRV903x_HwReset() which issues a reset pin toggle followed by configuration
of the SPI interface via adi_ADRV903x_SpiCfgSet().

Users can configure SPI settings for the device with different SPI controller configurations by configuring member values of the
adi_ADRV903x_SpiSettings_t data structure. The adi_ ADRV903x_SpiSettings_t data structure is defined below:

typedef struct adi ADRV903x SpiSettings
{

uint8 t msbFirst;

uint8 t enSpiStreaming;
uint8 t autoIncAddrUp;
uint8 t fourWireMode;

adi ADRV903x CmosPadDrvStr e cmosPadDrvStrength;
} adi ADRV903x SpiSettings t;

The parameters for this structure are listed in Table 16.
Table 16. SPI Bus Setup Parameters

Structure Member Value Function Default
msbFirst 0x00 Least significant bit first 0x01
0x01 Most significant bit first
enSpiStreaming 0x00 Enable single-byte data transfer mode. All communication between the BBIC | 0x00
and the device uses this mode.
0x01 Enable streaming to improve SPI throughput for indirect data transfer using
an internal DMA controller.
autolncAddrUp 0x00 Auto-increment. Functionality intended to be used with SPI Streaming. 0x01
Sets address auto-increment -> next addr = addr+4
0x01 Auto-decrement. Functionality intended to be used with SPI Streaming.
Sets address auto-decrement -> next addr = addr -4
fourWireMode 0x00 SPI hardware implementation. Use 3-wire SPI (SPI_DIO pin is bidirectional). | 0x01
Figure 37 shows example of SPI 3-wire mode of operation.
0x01 SPI hardware implementation. Use 4-wire SPI. Figure 38 and Figure 39 show
examples of SPI 4 —wire mode of operation.
NOTE: Default mode for ADI's FPGA platform is 4-wire mode.
cmosPadDrvStrength 0x00 Applies to all output CMOS pins (GPIO, SPI_SDO, GPINT). 5 pF load @ 75 | 0x01
MHz

analog.com Rev. B | 45 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIAL PERIPHERAL INTERFACE (SPI)

Table 16. SPI Bus Setup Parameters (Continued)
Structure Member Value Function Default

ADI_ADRV903X_CMO-
SPAD_DRV_WEAK

0x01 Applies to all output CMOS pins (GPIO, SPI_SDO, GPINT). 100 pF load @
ADI_ADRV903X_CMO- 100 MHz
SPAD_DRV_STRONG

Table 17 lists the timing specifications for the SPI bus. The relationship between these parameters is in Figure 37. This diagram shows a 3-wire
SPI bus timing diagram with the device returning a value of 0xD4 from register 0x00A and timing parameters marked. Note that this is a single
read operation, so the bus-ready parameter after the data is driven from the device (tyzs) is not shown in the diagram.

Table 17. SPI Bus Timing Constraint Values

Parameter Min Typical Max Description

tep 20 ns 100 ns SPI_CLK cycle time (clock period)

twp 10ns SPI_CLK pulse width

tsc 4ns SPI_EN setup time to first SPI_CLK rising edge

the 0ns Last SPI_CLK falling edge to SPI_EN hold

ts 4ns SPI_DIO data input setup time to SPI_CLK

ty Ons SPI_DIO data input hold time to SPI_CLK

tco 10ns 16 ns SPI_CLK falling edge to output data delay (3-wire or 4-wire mode)

thzm ty tco (max) Bus turnaround time after BBIC drives the last address bit

thzs Ons tco (max) Bus turnaround time after device drives the last data bit
e M 1 e o

7*7

Figure 37. 3-Wire SPI Timing with Parameter Labels

TIMING DIAGRAM EXAMPLES

The diagrams in Figure 38 and Figure 39 illustrate the SPI bus waveforms for a single-register write operation and a single-register read
operation, respectively. In the first figure, the value 0x55 is written to register 0x00A. In the second value, register 0x00A is read and the value
returned is 0x55. If the same operations were performed with a 3-wire bus, the SPI_DO line in Figure 38 would be eliminated, and the SPI_DIO
and SPI_DO signal in Figure 39 would be combined on the SPI_DIO signal. Note that both operations use MSB-first mode and all data is
latched on the rising edge of the SPI_CLK signal.

SPI_EN \ [

SPI_DO

WRITE TO REGISTER 0x00A — value = 0x55

Figure 38. Nominal Timing Diagram, SPI Write Operation

analog.com Rev. B | 46 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIAL PERIPHERAL INTERFACE (SPI)

SPI_EN \ |

SPI_DO

WRITE TO REGISTER 0x00A — value = 0x55

Figure 39. Nominal Timing Diagram, SPI Read Operation

analog.com Rev. B | 47 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

AUXILIARY SPI OVERVIEW

The ADRV903x features an optional secondary SPI target instance. This is designated the Auxiliary SPI port. The Auxiliary SPI interface,
if enabled, uses the same configuration as the primary SP! interface. This interface is multiplexed with the digital GPIO pins, however only
specific GPIO pins must be used for the Auxiliary SPI feature. This is documented below.

Table 18. Allowed Pins for Auxiliary Interface

Aux SPI Signal Allowed Pin Configuration 1 Allowed Pin Configuration 2
SPI_DIO GPIO[0] GPIO[13]
SPI_DO GPIO[1] GPIO[14]
SPI_CLK GPIO[2] GPIO[15]
SPI_EN GPIO[3] GPIO[16]

The Auxiliary SP! interface cannot be used to initialize the device. It only serves as an alternate SPI port for runtime interactions. When the
Auxiliary SPI interface is enabled, the selected GPIO pins are reserved only for Auxiliary SPI utilization.

AUXILIARY SPI APl FUNCTIONS
Table 19. List of Auxiliary SPI Related API Functions

API Method Name Comments
adi_ADRV903x_AuxSpiCfgSet() Sets the enable/disable and configuration of the Auxiliary SPI interface
adi_ADRV903x_AuxSpiCfgGet() Returns the enable/disable status and current configuration of the Auxiliary SPI interface.

analog.com Rev. B | 48 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

The ADRV903x uses a SERDES high speed serial interface based on the JESD204B/C standards to transfer ADC and DAC samples between
the device and a BBIC. The device can support lane rates up to 32,440.32 Mbps. An external clock distribution solution provides a device clock
and SYSREF to both the device and the BBIC. The SYSREF signal ensures deterministic latency between the ADRV903x and the BBIC.

The ADRV903x supports the device subclass 0 and device subclass 1 operation modes. In subclass 0 deterministic latency is not supported. In
subclass 1 the SYSREF signal is used to achieve deterministic latency.

The JESD204C standard is backward compatible with JESD204B. It supports both 8B/10B encoding and 64B/66B encoding. JESD204B and
JESD204C with 8B/10B are considered the same when discussed here.

JESD204 STANDARD

The JESD204 specification defines four key blocks that implement the JESD protocol, as shown in Figure 40. The transport layer maps the
conversion between samples and framed, unscrambled octets. The scrambler/descrambler blocks (optional in JESD204B) scramble/descram-
ble the octets, spreading the spectral peaks to reduce EMI. The data-link layer handles link synchronization, setup, and maintenance, and
encodes/decodes the scrambled octets to/from 10-bit characters in the case of 88/10B encoding (204B and 204C) and 66-bit characters in the
case of 64B/66B encoding (204C only). The physical layer is responsible for transmission and reception of characters at the lane bit rate.

Tx
APPLICATION

LAYER

DATA LINK
LAYER

PHYSICAL (PHY)
LAYER

Rx
APPLICATION

LAYER

DATA LINK
LAYER

PHYSICAL (PHY)
LAYER

<z

5

HIGH-SPEED SERIAL LANES

Figure 40. Key Blocks of the JESD 204B/C Standard

Figure 41 and Figure 42 illustrate how the JESD204 transmit and receive protocols are implemented.

TRANSPORT LAYER LINK LAYER PHYSICAL LAYER
| | | I
FRAME/LANE |
PROCESSED 8B/10B (204B)
SAMPLE FRAME ALIGNMENT
SAMPLES -] consTRUCTION | consTRUCTION| | SCRAMBLER o chapacter [| 64B/668(204C) — SERIALIZER r»- OUTPUT
GENERATION ENCODER
Figure 41. JESD204B/C Framer (JTX)
PHYSICAL LAYER LINK LAYER TRANSPORT LAYER
[[| |
8B/10B (204B) FRAME/LANE
INPUT —| DESERIALIZER || 64B/668 (20ac) || ALIGNMENT ||ppocpamBIER [| DEFRAMER [+ SAMPLES
CHARACTER AMPLE
DECODER DETEGTION TO DAC(s)

Figure 42. JESD 204B/C Deframer (JRX)

The data interface blocks in the ADRV903x can operate in either 204B or 204C modes. Fewer number of lanes may be needed when operating
in 204C, which results in simpler PCB layout and lower power consumption.

analog.com

Rev. B | 49 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

OVERVIEW OF THE DIFFERENCES BETWEEN JESD204B AND JESD204C

The initial revision of the JESD204 interface (JESD204A) provided support for both single and multiple lanes per convertor device. Revision
B (JESD204B) added programmable deterministic latency, usage of device clock as main clock source and data rate up to 12.5 Gbps. In the
Revision C specification (JESD204C), the data rate is increased up to 32 Gbps and three link layers are defined as 8B/10B, 64B/66B and
64B/80B where the 8B/10B link layer is backward compatible to the JESD204B link layer.

In the 8B/10B link layer, the data is organized into frames and multiframes. The 8B/10B link layer uses a SYNCB feedback signal from deframer
to framer, along with the Code Group Synchronization (CGS) and Initial Lane Alignment Sequence (ILAS) steps to achieve lane and frame
alignment. A Local Multiframe clock (LMFC) is used to mark the multiframe boundaries. The 8B/10B link layer uses the LMFC to achieve
deterministic latency. In Subclass 1, the alignment between multiple converter devices is done through the alignment of their respective LMFCs
to an external SYSREF signal.

In the 64B/66B link layer, the data is organized into blocks, multiblocks and extended multiblocks. Each block contains eight octets, each
multiblock contains 32 blocks, and each extended multiblock contains one or more multiblocks. The concept of frames also exists in the
64B/66B protocol. No SYNCB feedback signal is used for the 64B/66B link layer, the transmission is entirely feed forward. The CGS and

ILAS steps are not used either. Sync header bits are instead used for block, multiblock and extended multiblock alignment, and as result lane
alignment. A Local Extended Multiblock clock (LEMC) is used to mark extended multiblock boundaries. The 64B/66B link layer utilizes the
LEMC to achieve deterministic latency. In Subclass 1, the alignment between multiple converter devices is done through the alignment of their
respective LEMCs to an external SYSREF signal.

In the 64B/66B link layer, one sync header per block is decoded to a single bit, and 32 of these bits across a multiblock makes a 32-bit sync
word. The sync word can contain the following information:

» Pilot signal (marks the borders of the multiblocks and extended multiblocks)

» CRC-12 signal or optional CRC-3 signal (used for error detection, ADRV903x deframers only support CRC-3)
» FEC signal (error detection and correction, only supported on ADRV903x framers)

» Command channel (transmitting commands and status information)

Refer to the JESD204B and JESD204C specifications for further details.
JESD204B/C FRAMERS

The main function of the framers consists of mapping converter data samples into octets spread across one or more lanes and performing
8B/10B (JESD204B) or 64B/66B (JESD204C) encoding on the data transported over the lanes.

The ADRV903x features three framers to allow flexibility in configuring the output data streams. These framers are highly configurable in terms
of interface rates and combinations of main RF receiver/observation receiver data streams, either separately or utilizing link sharing (Rx/ORx
data time-multiplexed on the same lane according to the Rx-Tx frame timing) for up to eight lanes. To assist in debugging, they contain internal
data generators allowing several test patterns and PRBS patterns to be sent across the link.

Figure 43 provides a high-level overview of the framers present in the ADRV903x. The data samples available to the framers come from the
main RF receiver (Rx) datapaths and from the observation receiver (ORx) datapaths. Further details are provided in the sections below.

analog.com Rev. B | 50 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Sample Source 0
Sample Source 1 ——,
L

.
Sample Source 62 —\
Sample Source 63 —

FRAMER 0
TEST DATA
GENERATOR
0 (o] >
[\ {0 0 P>
. »
M LANE >
. SAMPLE TRANSPORT LINK XBAR g
. XBAR LAYER LAYER g
. 8 lanes max P
»
P
[\ P63 63 64 samples 8lanes 77 >
max
Samples to Lanes 8B/108 or 64B/66B encoding
64
A" Sample FRAMER 1
Sources
TEST DATA
GENERATOR
N 0 (o] P 1 —» SERDOUTO
»{0 0 <N E |—» serpoOUT1
. B - ares] SERIALZER |—p- SERDOUT2
. LANE » —»| PHYSICAL |—J» SERDOUT3
SAMPLE TRANSPORT LINK g
: XBAR LAYER LAYER XBAR > — (PHY) — SERDOUT4
. 4 lanes max > —p| LAYER |[—J» SERDOUTS
. > > [—» serDoUTE
I\ »(63 63 4lanes 37 > —p! |—» serboOUT?
max
Samples to Lanes 8B/108 or 64B/66B encoding
FRAMER 2
TEST DATA
GENERATOR
0o o »
[\ {0 0 >
»
P
LANE »
. SAMPLE TRANSPORT LINK XBAR |
. XBAR LAYER LAYER g
. 2 lanes max P
. <
I\ »| 63 63 64 samples 2lanes 1 7 P
max
Samples to Lanes 8B/108 or 64B/66B encoding
DATA FLOW DIRECTION >

Figure 43. High Level Overview of the JESD204B/C Framers

JESD204B/C Framers Parameters

Table 20 provides a list of the supported framer parameter values. Note that not all combinations of those framer parameter values are

supported.

Table 20. List of JESD204B/C Framers Parameters

Parameter Parameter Description Possible Parameter Values'

M Number of converter devices 11016

L Number of Lanes to transmit and encode data on 1 (all framers),

2 (all framers),
4 (framer 0 and framer 1 only),
8 (framer 0 only)

F JESD204B: Number of octets per lane in a frame cycle 2,3,4,6,8,12,16,24, 32
JESD204C: Used in conjunction with K to set the extended multiblock period. Fis | 2, 3, 4, 6, 8, 12, 16, 24, 32
calculated as in JESD204B mode

S Number of samples per converter per frame cycle 1,2,4

N’ Number of bits in a sample 12,16, 24

K JESD204B: Number of frames in one multiframe 10 32. F x K must be a multiple of four and (20 < F x K < 256)
JESD204C: Used in conjunction with F to set the extended multiblock period KxF=256xE, K<256

E JESD204C only: Number of blocks in an extended multiblock 11032

CS Number of control bits per converter sample Oto3

analog.com

Rev. B | 51 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Table 20. List of JESD204B/C Framers Parameters (Continued)
Parameter Parameter Description Possible Parameter Values'
HD | High Density mode 0,1

! Not all combinations of the framer parameter values are supported.

Due to the DDC bands in the Rx datapaths and to the ORXx de-interleaver block, there are more data sample sources than the number of
actual converter devices (ADCs). For this reason, the M parameter can be viewed as a virtual number of converter devices, corresponding to
the number of sample sources provided to the transport layer. The possible M values can therefore be higher than the total number of actual
converters (ADCs).

Sample Data Sources and Sample Crossbars

A sample crossbar is present in each of the three framers in the ADRV903x to allow the selection and mapping of data samples from 64 data
sample sources. Figure 44 below illustrates the possible data sample sources available to each sample crossbars.

RXO_BAND_0_DATA_|
P Band 0
RXO_BAND_O_DATA_Q
Rx0 ADC Digital DDC 1
1 E
Processing |
(decimation,
- : ™
Rx0 ADC filtering, QEC, [RXO_BAND_1 DATA |
Q —> ete..) Band 1 >
ppc | RXo_BAND_1_paTa_q
. 4 E
-
* -
* -
. .
. RX7_BAND_0_DATA_| 28
P Band 0 >
RX7_BAND_O_DATA_Q
Rx7 ADC Digital DDC 29
1 E
Processing |
(decimation,
- N ™
Rx7 ADC filtering, QEC, [/ RX7_BAND_1DATAI |
Q —> ste..) Band 1 >
ppc | RX7_BAND_1_pata_q pls1 SAMPLE
XBAR
ORXO_DATA_I_0
P32
-
-
< ORx0 ADC ORXO_DATA_I_7
| > Digital —> 39
Processing ORX0_DATA_Q_0O 40
(decimation, .
ORx0 ADC filtering, etc...) .
a [! —» ORK0_DATA_Q_7
De a7
Interleaver ORX1_DATA_I_O > s
ORx1 ADC) .
1 Digital ’ .
Processing ORX1_DATA_I_7 55
(decimation, >
< ORx2 ADC filtering, ete... ORX1_DATA_Q_D
Q - B,) > - »!56
-
ORX1_DATA_Q_7
P63

Figure 44. Sample Data Sources Available to Each Sample Crossbar

The data sample sources can be categorized as follows:

» Data samples from one of the DDC bands within an Rx datapath (eight Rx datapaths, two DDC bands per Rx datapath and two data
samples going through each Rx datapath, resulting in 32 possible data sample sources)

analog.com Rev. B | 52 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

» Data samples from an ORx datapath (two ORXx datapaths, two data samples going through each ORx datapath at the |Q data rate and stored
in the de-interleaver, and up to 16 data samples per ORx datapath output at a lower data rate by the de-interleaver resulting in 32 possible
data sources)

Table 21 provides a list of all the sample crossbar input value along with the corresponding sample data sources.

Table 21. Sample Crossbar Input Selection Values

Sample Crossbar Input Value Data Sample Source

0 RX0_BAND_0_DATA |
1 RX0_BAND_0_DATA Q
2 RX0_BAND_1 DATA |
3 RX0_BAND_1_DATA_Q
4 RX1_BAND_0_DATA |
5 RX1_BAND 0 DATA Q
6 RX1_BAND_1_DATA |
7 RX1_BAND_1_DATA Q
8 RX2_BAND_0 DATA |
9 RX2_BAND_0_DATA_Q
10 RX2_BAND_1_DATA |
1 RX2_BAND 1 DATA Q
12 RX3_BAND_0_DATA |
13 RX3_BAND_0_DATA Q
14 RX3 BAND_1 DATA |
15 RX3_BAND_1_DATA Q
16 RX4 BAND_0 DATA |
17 RX4 BAND 0 DATA Q
18 RX4_BAND_1_DATA |
19 RX4_BAND_1_DATA Q
20 RX5 BAND 0 DATA |
21 RX5_BAND_0_DATA_Q
22 RX5 BAND_1_DATA |
23 RX5 BAND 1 DATA Q
24 RX6_BAND_0_DATA |
25 RX6_BAND_0_DATA_Q
26 RX6_BAND_1 DATA |
27 RX6_BAND_1_DATA_Q
28 RX7_BAND_0_DATA |
29 RX7_BAND 0 DATA Q
30 RX7_BAND_1_DATA |
31 RX7_BAND_1_DATA Q
32 ORX0_DATA | 0

33 ORX0_DATA | 1

34 ORX0_DATA | 2

35 ORX0_DATA | 3

36 ORX0_DATA | 4

37 ORX0_DATA | 5

38 ORX0_DATA | 6

39 ORX0_DATA | 7

40 ORX0_DATA Q 0

M ORX0 DATA Q 1

42 ORX0_DATA Q 2

43 ORX0_DATA Q_3

analog.com Rev. B | 53 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Table 21. Sample Crossbar Input Selection Values (Continued)

Sample Crossbar Input Value Data Sample Source
44 ORX0_DATA Q 4
45 ORX0_DATA Q 5
46 ORX0 _DATA Q 6
47 ORX0_DATA Q_7
48 ORX1_DATA | 0
49 ORX1_DATA | 1
50 ORX1_DATA | 2
51 ORX1_DATA | 3
52 ORX1_DATA | 4
53 ORX1_DATA | 5
54 ORX1_DATA | 6
55 ORX1_DATA | 7
56 ORX1_DATA Q_0
57 ORX1_DATA Q 1
58 ORX1 _DATA Q 2
59 ORX1_DATA Q_3
60 ORX1_DATA Q 4
61 ORX1_ DATA Q 5
62 ORX1_DATA Q_6
63 ORX1_DATA Q 7

ORXx De-Interleaving

A de-interleaver block is at the end of the ORXx digital datapaths and before the framer inputs, as illustrated in Figure 44. The de-interleaver
stores ORx data samples coming at the original ORx 1Q data rate and can output those data samples in parallel at a lower data rate. The
de-interleaver allows consecutive ORx ADC samples to be separated and placed anywhere in the frame. An overview of the de-interleaver
block is in Figure 45.

analog.com Rev. B | 54 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

De-Interleaver

I

1Ix

2x

A 4

h 4

Ix

< ORx0 ADC N Digital
1 Data Path
ORx0 ADC > Digital
< Q Data Path
ORx1 ADC > Digital
< 1 Data Path
ORx1 ADC) Digital
< Q Data Path

A 4

A 4

ORXO_DATA_I_0

Figure 45. ORx De-Interleaver

The de-interleaver can operate in 4 modes as described in Table 22.

Table 22. De-Interleaver Operating Modes

ORx0_I_0 p{22

oR. 00 ORWODATAQO]
ORXO_DATA_I_1

ORx0_I_1 p33

oo owopatAQt |
———— ORKO_DATA_| 2

ORx0_I_2 SEl

o, 02 oRwpATAQ2 |
—— ORX0_DATA_I3

ORx0_I_3 S ES

oRd. O3 ORODATAQS |
ORX0_DATA_I4

ORx0_I_4 SES

oR. 0.2 ORODATAQ4]
ORXO_DATA_I5

ORx0_I_S 37

R 0S ORX0ODATAQS |
————— ORKO_DATA_I_6

ORX0_I_6 p1s

ORD. 06 ORX0DATAQS |
ORXO_DATA_I7

ORx0_I_7 ZES

oRD. 0.7 ORWDATAQT |
ORX1_DATA_I0

ORx1_I_0 P43

oRL. L0 ORUDATAQO |
ORX1_DATA_I_1

ORx1_I_1 {49

Rl 01 ORUDATAQL |
ORXL_DATA_|2

ORx1_I_2 P50

TR ORXIDATAQ2 |
———— ORKL_DATA_I 3

ORx1_I_3 pis1

oRL 03 ORXDATAQS |
—— ORX1_DATA_I4

ORx1_I_4 P52

o 0. oRADATAQL]
ORXL_DATA_I5

ORx1_I_5 SEE

ORaL LS ORIDATAQS |
ORKL_DATA_I_6

ORx1_I_6 S

T ORXIDATAQS |
————— ORKL_DATA_I7

ORx1_I_7 p!ss
ORX1_DATA_Q_7

ORx1_Q_7 PATART e

SAMPLE
XBAR

De-Interleaver Mode

Mode Description

1x (bypass)
2x
4x

8x

divided by 8

This corresponds to a bypass mode. In this mode, only the ORx0_I/Q_0 and ORx1_/Q_0 samples are occupied in the de-interleaver and
are output at the same sample rate as the input IQ sample rate

In this mode, the ORx0_I/Q_0/1 and ORx1_1/Q_0/1 samples are occupied in the de-interleaver and are output in parallel at a sample rate
equal to the input IQ sample rate divided by 2

In this mode, the ORx0_I/Q_0/1/2/3 and ORx1_/Q_0/1/2/3 samples are occupied in the de-interleaver and are output in parallel at a sample
rate equal to the input IQ sample rate divided by 4

In this mode, all the samples are occupied in the de-interleaver and are output in parallel at a sample rate equal to the input IQ sample rate

The de-interleaver mode can be set independently for the ORx0 samples and for the ORx1 samples.

The de-interleaver allow the repetition of ORx ADC samples in the frame. For example, let's consider a case where the goal is to repeat every
sample in order to fill the lane, e.g. AABBCCDD. Using a standard mode with S set to two will not achieve this, it results in two consecutive
samples being repeated, i.e. ABABCDCD. Using the de-interleaver in 2x mode allows for the placement of consecutive samples in any pattern.

analog.com

Rev. B | 55 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

By connecting the output of the de-interleaver to the input of the sample crossbar, any selection can be created. This example is illustrated in
Figure 46.

De-Interleaver

ORXD_DATA_I_0
ORX0_I_O — pl32
CRd. 0.0 oRMbDATAQD]
[o011 ORXD_DATA_I_1 a
ORxD 1{ 1 ORXO_DATA_Q_1
Q. 41
b) ORX0_DATA_I_2 2
12 >
O Q2 ORX0_DATA_Q_2 "
v ORXD_DATA_ I3 | ws ORYD_DATA_LOD
13 | _DATA L > »
of G 3 orx0 DATA Q3 | ORX0_DATA 10
e ORx0_I_4 RO DATALS] ORXD_DATA_I_1 i
'ORx0 ADC Digital 1K > _DATA_I_|
P e [OR:0L1 | ORx0LO o0 64 omopaaas |
e ORXD_DATA_IS | - ORXD_DATA_I_1
s)_DATA I
Ofd O 5 DRXO_DATA_Q_S " ORX0_DATA_ Q0 _
ORx0 ADC Digital — ORXO DATA I 6 =
T PP batepath [ORwQ1 | ORX0 QO 0RO 1 6 o027 lag ORXD_DATA 0.0 _
OR0_Q6 oo DATA Q6]
ORXD _DATA I 7 ORKD_DATA_Q 1
ORx0_I_7 »{39 TRANSPORT
ORXO_DATA_Q_7 ORX0_DATA_Q_1 NSPO
Ofted Q 7 DARAT DATA Q. LAYER
8x SAMPLE +
ORX1 DATA 1 0 XBAR ORX1_DATA 10 LINK LAYER
ORx1_I 0 —— S PL » *
ORXL Q0 oRapatAQO | ORXL_DATA 10 SERIALIZER
1x| ORx1_I_1 ORODEALL 49 ORX1_DATA_I_1 i
ORx1 ADC Digital ORL Q1 ORX1_DATA_0_1 —
" FP Datepatn [ORxLL1 | ORxL1O L S AT 57 ORX1_DATA_I_1
2 ORx1_1 2 = == 50
Rl O 2 DRX1_DATA_0Q_2 s ORX1_DATA Q.0
ORx1_I 3 ORX1_DATA LS 51 ORX1_DATA_Q_0 i
‘ORx1 ADC Digital uE . DATA_ Q|
a P Datapath g USR] o e R 03 ORX1_DATA_Q_3 o >
a s ORX1_DATA I 4 - ORX1_DATA_Q_1
oL G 4 ORX1_DATA_0_4 o ORX1_DATA_0_1
o ORX1_DATA_I_5 -
OR Q5 DRX1_DATA Q5 6
e ORX1_DATA I 6 . 2% ORx Channels
= M=16
ORX1_DATA_Q_6
2% ORx Channels ORx1_0Q_6 . 62 N-16
M_d YEE ORX1_DATA_I7 = 5_1
1Q Sample Rate = 245.76 MHz S a7 ORX1_DATA_0_7 L=1
— 63 10 Sample Rate = 122.88 MHz
8 Lane Rate = 32.44032 Gbps
Serialized Data
0 1 2 | 3 4 5 6 | 7 8 9 o | n 12 13 u | s |

ORx0_| 0 | ORx0 | 0 | ORx0_ |1 ORx0_l1 | ORx0_Q. 0 | ORx0 G O | ORX0_Q 1 ORx0 Q1 | ORx1 10 | ORx1 10 | ORx1 |1 ORx1 |1 | ORx1 Q0 | ORx1 Q0 | ORx1 Q1 ORxl Q1

>

F

Frame Rate = 122.88 MHz
Lane Rate = 32.44032 Ghps

Figure 46. De-Interleaver 2x Mode Example

Transport Layer

The transport layer of a framer is responsible for mapping converter data samples, consisting each of N’ bits, into octets that are spread across
L lanes. Figure 47 illustrates the transport layer in a framer. The transport layer also handles the SYSREF signal that is used to achieve
deterministic latency.

analog.com Rev. B | 56 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

SYSREF

TEST DATA
GENERATOR

TRANSPORT - .
LAYER

Octets spread

across L lanes

SAMPLE

XBAR M converter data samples,

N’ bits per sample

Samples to Lanes

Figure 47. High-Level Overview of the Transport Layer in a Framer

The mapping changes depending on the number of lanes (L), the number of converters (M), the samples bit width (N’), and the number of
samples per converter (S). Figure 48 and Figure 49 provide two examples of converter data samples mapping by the transport layer for two

different sets of M, N, S and L parameters.
@ @

M=2 NS NS
N’ = 16 | pis.po | [pis.po |
S=1
L=2
F=2
Lane 1, Lane 1, Lane O, Lane O,
Octet1 | OctetO Octet1l | OctetO
! 1 ! 1
Lane 1 Lane 0

Figure 48. Converter Data Samples Mapping Example with M =2, N'=16,S=1,and L = 2

M=8
N’ =16
$=1
L=2
F=8
ADC7 ADCé ADCS ADC4 ADC3 ADC2 ADC1 ADCO
N . ~N ~N 7 N ~.7 ~N.7 .7
| D15...D0 " D15...D0 ” D15...D0 ” D15...D0 ” D15...D0 ” D15...D0 ” D15...D0 ” D15...D0 |
Lane 1, Lane 1, Lane 1, Lane 1, Lane 1, Lane 1, Lane 1, Lane 1, Lane O, Lane O, Lane 0, Lane 0, Lane O, Lane O, Lane 0, Lane 0,
Octet 7 | Octet6 Octet5 | Octet4 Octet3 | Octet 2 Octet1l | Octet0 Octet7 | Octet6 Octet5 | Octet4 Octet 3 | Octet2 Octet1 | Octet0
[1
Lane 1l Lane 0

Figure 49. Converter Data Samples Mapping Example with M =8, N'=16, S=1and L =2

analog.com Rev. B | 57 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

SYSREF Signal

The SYSREF signal provides a timestamp used to achieve deterministic latency and multichip synchronization. For all three framers in the
ADRV903x, the transport layer handles the SYSREF signal.

Link Layer

In JESD204B mode, the link layer of a framer is responsible for performing 8B/10B encoding on the data received from the transport layer. It
handles Code Group Synchronization (CGS), generates the Initial Lane Alignment Sequence (ILAS) when required, and it performs character
replacement during the transmission of user data. It can optionally perform data scrambling on the data received from the transport layer prior
to 8B/10B encoding. The link layer also handles the SYNCIN~ signal.

In JESD204C mode, the link layer of a framer is responsible for scrambling the data received from the transport layer, and then performing
64B/66B encoding by inserting a 2-bit sync header before a block of 64 bits of data. The 2-bit sync headers are used to transmit information
such as synchronization information, 12 CRC bits or FEC bits.

Figure 50 provides a high-level overview of the link layer in a framer.

SYNCIN~
Transport s > Link
Cdl
Layer Layer Encoded data
Octets spread across L lanes spread across L
lanes

8B/108B or 64B/66B encoding

Figure 50. High-Level Overview of the Link Layer in a Framer

SYNCIN~ Signal

In JESD204B mode, the SYNCIN~ signal is sent by the receiver to the transmitter to request the start of the synchronization process, which
begins with CGS. For all three framers in the ADRV903x, the SYNCIN~ signal is handled by the link layer in JESD204B mode. The ADRV903x
has three SYNCIN~ inputs, which can be mapped to any of the framers through a SYNCIN~ crossbar. Each framer has its own SYNCIN~ input
signal. This is illustrated in Figure 51 below.

analog.com Rev. B | 58 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

SYNCIN~0

SYNCIN~1

SYNCIN~2

FRO_SYNCIN~0_EN

1 0
MU

Y

FRO_SYNCIN~1_EN

1

:l)) FRO_SYNCIN~2_EN

1
MUX|

A 4
o,
\ 4

Lane Crossbars

FR1_SYNCIN~0_EN
1 0
MU
>— =l}) FR1_SYNCIN~1_EN
1 0
MUX| AN
> > > FR1_SYNCIN~2_EN
1 0
MUX|
Y nY
>— >
FR2_SYNCIN~0_EN
1 0
MU; >
FR2_SYNCIN~1_EN
1 0
MUX| AN
> » FR2_SYNCIN~2_EN
1 0
MUX|

»
»

» an FRAMERO_SYNCIN™

Framer 0

Framer 1

Framer 2

FRAMER1_SYNCIN~

FRAMER2_SYNCIN~

Figure 51. SYNCIN~ Crossbar

Each of the ADRV903x framers includes a lane crossbar after its link layer to enable the routing of the used logical lanes within the framer block
to the desired physical lanes. The framer 0 lane crossbar enables the mapping of any of the framer 0 link layer eight logical output lanes to any
of its eight output lanes. The framer 1 lane crossbar enables the mapping of any of the framer 1 link layer four logical output lanes to any of its
eight output lanes. The framer 2 lane crossbar enables the mapping of any of the framer 2 link layer 2 logical output lanes to any of its eight
output lanes. This is illustrated in Figure 52 for framer 0, Figure 53 for framer 1 and Figure 54 for framer 2.

Logical Lane O

TEST DATA

Link
Layer

Logical Lane 1

GENERATOR

Logical Lane 2

Logical Lane 3

Lo§|’ca| Lane 4

Logical Lane 5

Logical Lane 6

Encoded data spread

Logical Lane 7

YYVVVYVYY

across up to 8 logical lanes

analog.com

Figure 52. Framer 0 Lane Crossbar

N oupsWwWNEO

Lane
Crosshar

Nooups WwN e o

Rev. B | 59 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Link
Layer

Logical Lane O

TEST DATA
GENERATOR

Logical Lane 1

Logical Lane 2

Logical Lane 3

Encoded data spread
across up to 4 logical lanes

Figure 53. Framer 1 Lane Crossbar

TEST DATA

Link
Layer

GENERATOR

Logical Lane 0

Y v vy

2

3

Lane
Crossbar

~No Uk WNERELRO

Logical Lane 2

>

Encoded data spread
acrass up to 2 logical lanes

OR Gates

Figure 54. Framer 2 Lane Crossbar

P10

1

Lane
Crossbar

Nk wle R o

The lane crossbars outputs for all the framers get OR’ed together using OR gates before being provided to the physical layer. For example, the
lane 0 output of the framer 0 lane crossbar, the lane 0 output of the framer 1 lane crossbar and the lane 0 output of the framer 2 lane crossbar
all go the same OR gate. The output of that OR gate goes to the serializer physical layer and ultimately goes to the SERDOUTO output pin.
Similarly, the lane 1 output of the framer 0 lane crossbar, the lane 1 output of the framer 1 lane crossbar and the lane 1 output of the framer 2
lane crossbar all go the same OR gate. The output of that OR gate goes to the serializer physical layer and ultimately goes to the SERDOUT1
output pin. The same principle applies to all the other lanes. Only one of the three lanes going to an OR gate can therefore be used at a time.
Figure 55 illustrates this for lane 0.

analog.com

Rev. B | 60 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Logical Lane 0
Logical Lane 1
Logical Lane 2
Logical Lane 3
Logical Lane 4
Logical Lane 5
Logical Lane 6
Logical Lane 7

YYVYY

Framer 0
Lane
Crossbar

Noounk wNERL O
Nooubkh wWwNERL O

\AA 4

Logical Lane 0 »lo
Logical Lane 1 »|1 Framer1
Lane

Logical Lane 2 »|2 crossbar
Logical Lane 3 » 3

fppp SERDOUTO

A4

Serializer
Physical
(PHY)
Layer

NoOubkeWNERELO

Logical Lane 1

A 4
[=)

Framer 2
Lane

Logical Lane 2 Crosshar Only Lane 0 from each lane cossbar illustrated

here. The same applies to all the other lanes

Y
=

NOU R WNEREO

Figure 55. OR Gate Example for Lane 0

Test Data Generators
Each of the three framers feature a Test Data Generator that can be used to insert test data in either of the following two positions:

1. Atthe input of the Transport Layer (enables checking of transport layer, link layer and serializer PHY all together)
2. Atthe input of the Lane Crossbhar (enables checking of serializer PHY only)

The Test Data Generator can be set in the following modes:

» Disabled: Test Data Generator not used and data from the selected data sample sources used

» Checkerboard mode: Test Data Generator enabled, and checkerboard pattern transmitted at its output

» Word toggle mode: Test Data Generator enabled, and word toggle pattern transmitted at its output

» PRBS31 mode: Test Data Generator enabled, and PRBS31 pattern transmitted at its output

» PRBS15 mode: Test Data Generator enabled, and PRBS15 pattern transmitted at its output

» PRBS7 mode: Test Data Generator enabled, and PRBS7 pattern transmitted at its output

» Ramp mode: Test Data Generator enabled, and ramp pattern transmitted at its output

» User Repeat mode: Test Data Generator enabled, and user specified pattern transmitted repeatedly at its output
» User Single mode: Test Data Generator enabled, and user specified pattern transmitted one time at its output

Clocking

The SERDES PLL provides the clock that is used to generate the clocks that are used to provide timing to the Framers Link Layer blocks and to
the output of the Framer Transport Layer blocks.

1Q Sample Rate and Output Lane Data Rate Relationship Between Framers

The lane data rate at the output of the Serializer PHY depends on the on the number of lanes (L), the number of converters (M), the samples bit
width (N') and the 1Q sample rate.

analog.com Rev. B | 61 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

In JESD204B mode, the framer serialized output lane data rate is defined by the following equation:

Mx N x (10
Serialized Ouput Lane Data Rate = M X 1Q Sample Rate (6)

In JESD204C mode, the framer serialized output lane data rate is defined by the following equation:
[Mx v x (&)]
-
The three framers can operate at different IQ sample rates. The ratio of the 1Q sample rates between two framers must be a power of two (2x,
4x, 8x, efc...).

Similarly, the three framers can operate at different serialized output lane data rates. The ratio of the serialized output lane data rates between
two framers must also be a power of two (2%, 4x, 8x, etc...).

Serialized Output Lane Data Rate = X 1Q Sample Rate (7)

Link Sharing

Link sharing, only allowed in TDD mode, enables a reduction in the number of physical lanes used. Rx data is put on the lanes in the receive
time slot and the ORx data is put on the same lanes during transmit time slots.

Figure 56 shows an example where Framer 0 would be used to handle the Rx data and the ORx data in link sharing mode. The same four
physical lanes would be used to transmit the Rx data during the Receive time slots, and the ORx data during the Transmit time slots.

Receive Time Slot

RXO_BAND_O_DATA_| = |— sERDOUTO
RXO_BAND_0_DATA_Q —————»
RX1_BAND_O_DATA_| ey |— sERDOUT1

Carial:
Physical
[PHY) |——» SERDOUT2
Layer

RX1_BAND_0_DATA_Q ————»
RX2_BAND_O_DATA_| »
RX2_BAND_0_DATA_Q —————»

Framer 0

Y Y Y V%

RX3_BAND_0_DATA_| ————— |— serDOUTS
RX3_BAND_0_DATA_Q ——————»
Transmit Time Slot
ORXO_DATA_I 0 —————p] |— serpDOUTO
ORX0_DATA_Q 0 ————p
ORX1_DATA_I0 ————p] |— serDOUTL

ORX1_DATA_Q_0 =i} Physical
[PHY) |— SERDOUT2

Layer

Framer 0

Yy¥Y Y Y Y

—> SERDOUT3

Figure 56. Link Sharing Example

JESD204B/C DEFRAMERS

Deframers receive encoded data from the SERDIN lanes, establish the JESD link, perform 8B8/10B (JESD204B) or 64B/66B (JESD204C)
decoding on the data and unpack the decoded octets into converter samples for the transmitter paths’ DACs.

The ADRV903x has two deframers to allow flexibility in mapping SERDES inputs to transmitter DACs. A dual-deframer link configuration allows
for the possibility of powering down one deframer and its associated transmitters during times of low data traffic without disturbing the other
deframer and its associated transmitters. The deframers have highly configurable interface rates and supports up to eight SERDES lanes. To
assist in debugging, they contain an internal PRBS receiver allowing PRBS patterns to be verified to check the link’s signal integrity.

analog.com Rev. B | 62 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Figure 57 provides a high-level overview of the deframers in the ADRV903x. Further details are provided in the sections that follow. Note that
the flow of data in all figures in this section is from right to left.

RECEIVER

-

PRBS MUX

TXO | DATA PATH
TX0 Q DATA PATH ——

TX1 1 DATA PATH ¢——]
TX1 Q DATA PATH ¢—]

TX2 | DATA PATH ¢———
TX2 Q DATA PATH ¢———|

TX3 | DATA PATH —
TX3 Q DATA PATH ¢—|

TX4 | DATA PATH ¢—]
TX4 Q DATA PATH ——{

TXS | DATA PATH ——]
TX5 Q DATA PATH ¢—

TX6 | DATA PATH
TX6 Q DATA PATH]

TX7 | DATA PATH]
TX7 Q DATA PATH ¢——|

ELASTIC
BUFFER

A

DEFRAMER 0

\4
0 0

BUFFER | g

o | SAMPLE

A

CONTROLLER|

<
16 samples
max

16 samples XBAR

15 15

TRANSPORT
LAYER

8 lanes
max

LINK
LAYER

LANE
8 lanes XBAR

max

OR
GATES

ELASTIC
BUFFER

A

l€— SERDINO
l€— SERDIN1
[€— SERDIN2
l€— SERDIN3
|€— SERDING
[€4— SERDINS

DESERIALIZER
PHYSICAL
(PHY)
LAYER

8lanes

DEFRAMER 1

\ 4

0 o

A

BUFFER | ¢

l€— SERDING
[€4— SERDIN7

. | sampLe
XBAR

16 samples CONTROLLER|

<
16 samples
max

TRANSPORT
LAYER

4 lanes
max

LINK
LAYER

3 LANE
XBAR

4 lanes’
max

1|
|

DATA FLOW DIRECTION

y 3

Figure 57. High Level Overview of the JESD204B/C Deframers

JESD204B/C Deframers Parameters

Table 23 provides a list of the supported deframer parameter values. Note that not all combinations of those deframer parameter values are

supported.

Table 23. List of JESD204B/C Deframers Parameters

Parameter Parameter Description Possible Parameter Values'

M Number of converter devices 1t016

L Number of Lanes to receive and decode data from 1 (both deframers),

2 (both deframers),
4 (both deframers),
8 (deframer 0 only)

F JESD204B: Number of octets per lane in a frame cycle 2,3,4,6,8 12,16
JESD204C: Used in conjunction with K to set the extended multiblock period. Fis | 2, 3,4, 6, 8, 12, 16
calculated as in JESD204B mode.

S Number of samples per converter per frame cycle 1,2

N’ Number of bits in a sample 12,16, 24

K JESD204B: Number of frames in one multiframe. 110 32. F x K must be a multiple of four and (20 < F x K < 256)
JESD204C: Used in conjunction with F to set the extended multiblock period K xF=256xE, K< 256

E JESD204C only: Number of blocks in an extended multiblock 11032

CS Number of control bits per converter sample 0to3

HD High Density mode 0,1

! Not all combinations of the framer parameter values are supported.

Lane Crossbars

Each ADRV903x deframer has a lane crosshar before its link layer to enable the routing of physical lanes to the desired logical lanes within the
deframer block. The deframer 0 lane crossbar enables the mapping of any of the eight physical input lanes to any of its eight logical input lanes.

analog.com

Rev. B | 63 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

The deframer 1 lane crossbar enables the mapping of any of the eight physical input lanes to any of its four logical input lanes. Figure 58 shows

the lane crossbars in detail.

DEFRAMER 0
A 0 0 Ph s!cal Lane 0
Physical Lane 1
<+ 1 1 -
Physical Lane 2
< [—d 2 2 -
. Physical Lane 3
4 Link —3 Lane 3 -
Logical Lane 4 Physical Lane 4
< Layer —E==2200 "1, Crossbar 4 -
Physical Lane 5
< 5 5 -
Physical Lane 6
6 6 Physical Lane 7
<4 [t 7 7
8 lanes
DEFRAMER 1
¢ ¢ Logical Lane 0 0 0 Ph s!cal Lane O
Physical Lane 1
<4 1 1 n
Physical Lane 2
< ¢ ——2 2 o]
<4 Link lg————3 Lane 3 Physical Lane 3 f—
L c b 4 Physical Lane 4
ayer rossbar 5 Physical Lane 5
o Physical Lane 6
- Physical Lane 7
Figure 58. Deframer 0 and 1 Lane Crossbars
Link Layer

The link layer of a deframer is responsible for establishing the JESD link.

[— SERDINO
[— SERDIN1
DESERIALIZER [«—— SERDIN2

PHYSICAL |@— SERDIN3
(PHY) €— SERDINA
LAYER |€— SERDINS

. &— SERDING

. @— SERDIN7

In JESD204B mode, the link layer controls the SYNCOUT~ signal, synchronizes to Code Group Synchronization (CGS), receives and verifies
the Initial Lane Alignment Sequence (ILAS) and performs 8B/10B decoding on the data received from the SERDES input lanes. It also performs
character re-insertion as necessary during the reception of user data and can optionally perform data descrambling on the received data after

8B/10B decoding.

In JESD204C mode, the link layer detects the location of the 2-bit sync headers, performs 64B/66B decoding by removing the 2-bit sync

headers before each block of 64 bits of data and then descrambles the remaining 64 bits of received data. The 2-bit sync headers are decoded
to extract information such as EOEMB synchronization information, and CRC or FEC bits. Note that FEC is not supported in the deframers and
these bits, if sent, are ignored. Figure 59 provides a high-level overview of the link layer in a framer.

analog.com

SYNCOUT~

!

Transport ‘ - Link ‘ s

Layer Layer
Octets spread Encoded data spread
across L lanes across L lanes

8B/10B or 64B/66B decoding

Figure 59. High-Level Overview of the Link Layer in a Deframer

Rev. B | 64 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

SYNCOUT~ Signal

In JESD204B mode, the SYNCOUT~ signal is controlled by the transmitter and used to indicate to the receiver, the state of link synchroniza-
tion. The SYNCOUT~ signal is not used in JESD204C mode. The ADRV903x has two SYNCOUT~ output pins and each deframer has its own
SYNCOUT~ output signal. These signals can be combined and mapped to either of the SYNCOUT~ pins through muxes and AND gates. This
is illustrated in Figure 60.

Deframer 0| | Deframer 1

DEFRAMERO_SYNCOUT~ DEFRAMER1_SYNCOUT~

DEFRO_SYNCOUT~0_EN

je¢— 1

MUX]

A

SYNCOUT~0 AND)
Ad— 1
MUX|
(1«
* <

DEFR1_SYNCOUT~0_EN
¢ — 1

MUX]

A

WV

DEFRO_SYNCOUT~1_EN

A

SYNCOUT~1 AND|

e

<

A
=3

DEFR1_SYNCOUT~1_EN

Figure 60. Deframer to SYNCOUT~ Output Options

Transport Layer

The transport layer of a deframer is responsible for de-skewing the lanes, unpacking the octets that are spread across L lanes and combining
them into M converter data samples, consisting each of N’ bits. The mapping changes depending on the number of lanes (L), the number of
converters (M), the samples bit width (N'), and the number of samples per converter (S). The transport layer also handles the SYSREF signal
that is used to achieve deterministic latency. Figure 61 shows the transport layer in a deframer.

SYSREF

l

Buffer Transport ' S Link
Controller 4—— Layer Layer
M converter data samples, Octets spread across L

N’ bits per sample lanes

Lane Deskew
Lanes to Samples

Figure 61. High-Level Overview of the Transport Layer in a Deframer

SYSREF Signal

The SYSREF signal is an externally applied global timing signal used to synchronize the part. The SYSREF signal is used initially for the
multi-chip synchronization during chip initialization. The MCS during initialization ensures that all clock domains come into a deterministic phase
with respect to the SYSREF signal. Subsequently, the SYSREF signal is used to reset the JESD core counters which then aligns the octet
counters in all devices in the system. This is required to achieve deterministic latency as part of the subclass 1 specification. SYSREF is not
needed if deterministic latency is not required.

analog.com Rev. B | 65 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Elastic FIFO, Phase Adjustment and Deterministic Latency

An elastic FIFO is used to achieve deterministic latency for subclass 1 operation. The link layer in the deframer detects the LMFC/LEMC timing
embedded in the incoming data and starts writing to the elastic FIFO at the start of an LMFC/LEMC period. The global LMFC/LEMC timing
signal inside the ADRV903x, which has been synchronized by the SYSREF signal, triggers the reading of data from the elastic FIFO. The depth
of the FIFO therefore represents the delta between the embedded LMFC/LEMC timing in the incoming data and the system wide LMFC/LEMC
timing as set by SYSREF. A phase adjustment control allows adjustment of the LMFC/LEMC timing inside the ADRV903x versus the externally
applied SYSREF signal, allowing tuning of the FIFO depth and overall link latency. It is essential that the FIFO depth is tuned to a suitable level
as part of platform characterization, otherwise deterministic latency is not guaranteed. Details on obtaining a suitable FIFO depth are discussed
in a separate section. Figure 62 shows the elastic buffer overview.

Elastic
Buffer

In subclass 1 mode, read In subclass 1
based on global mode, write
LMFC/LEMC set from based on LMFC/
SYSREF and the LMFC/ LEMC decoded
LEMC offset phase from incoming
adjustment control data
Sample Buffer Transport
Crossbar M converter data samples, Controller M converter data samples, Layer
N’ bits per sample with N’ bits per sample
deterministic latency in from desk 1 lanes
subclass 1 mode

Figure 62. Elastic Buffer Overview

Sample Crossbars

A sample crossbar after the output of each deframer allows the mapping of the deframers’ outputs to the transmitter DACs. Each sample
crosshar contains sixteen 1:16 muxes and are used to map the deframer outputs to the desired Tx DAC. Each of the 16 muxes can select from
any of the logical outputs of the deframer. Figure 63 illustrates the sample crossbar architecture for deframer 0. An identical crossbar is used for
deframer 1.

,,,,,,,,,,,,,,,,,

|
Deframer 0 TxO | Converter | Deframer 0

|

| Sample x-b

| Data Sample Select |>ample x-bar
|

|

|
Deframer 0 Tx0 | Converter Data Sample <
|

A

>
16 samples

1:16 max

mux

|

|

|

|

| Deframer 0 Tx0 Q Converter
| Data Sample Select
|

|

|

P Deframer 0 Tx0 Q Converter Data Sample y
<

>
16 samples

1:16 max

mux

from
Deframer 0

Deframer 0 Tx7 | Converter
Data Sample Select

.
.
.
.
.
.
.
.
. |
. |
Deframer 0 Tx7 | Converter Datal Sample
| 16 samples

1:16 max

mux

Data Sample Select

|

- Deframer 0 Tx7 Q Converter Daté Sample i

< >
! 16 samples
! 116

| - max

|
|
|
} Deframer 0 Tx7 Q Converter
|
|

Figure 63. Deframer 0 Sample Crossbar

analog.com Rev. B | 66 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

OR Gates

The 32 outputs from the two sample crossbars get OR’ed together using sixteen OR gates before being provided to the sixteen transmit DACs.
For example, the sample 0 output of the deframer 0 sample crossbar and the sample 0 output of the deframer 1 sample crossbar go to the
same OR gate. The output of that OR gate goes to the Tx0_| datapath. Similarly, the sample 1 output of the deframer 0 sample crossbar and
the sample 1 output of the deframer 1 sample crossbar go to the same OR gate. The output of that OR gate goes to the Tx0_Q datapath. The
same principle applies to all the other sample crossbar outputs. Therefore, the crossbars should be configured so that only one of the crossbars
provides an active input to an OR gate. Figure 64 illustrates this for sample 0 and Figure 65 illustrates the full solution showing both sample
crossbars.

ole Deframer 0 Logical
.

Converter Data Sample 0

Deframer 0
Sample
Crossbar

.
. .
13 Mo-1 | Deframer 0 Logical

Converter Data Sample M;-1

Deframer 0 Tx0 |
Converter Data Sample

TXO | DATA PATH

Deframer 1Tx0 |

— Converter Data Sample
Tx0 DAC Digital 0
1 Data ! ¢ Deframer 1 Logical
Path § 0 . Converter Data Sample 0
4
5
: Deframer 1
g Sample
Crossbar
9
10
Only Tx0 | converter sample output from sample 1
cossbars illustrated here. The same applies to all i; - . Deframer 1 Logical
the other converter sample outputs 12 1 [« Converter Data Sample M,-1
15

Figure 64. OR Gate Example for Sample 0

analog.com Rev. B | 67 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

TX0 1 DATA PATH
Tx0 DAC
I < <
Digital
Data
Tx0 DAC Path _TX0 Q DATA PATH
a [+ <+
.
* -
- -
- -
* -
* L]
* L]
TX7 1 DATA PATH
T DAC | o P
I "
Digital
Data
< Tx7 DAC Path | TX7 QDATA PATH
Q ¢ -

OR
GATES

.

Deframer 0

Sample x-bar

|

| Deframer 0 Tx0 | Converter
| Data Sample Select

|

Deframer 0 Tx0 | Converter Data Sample

I 16 samples
1:16 .

mux

Data Sample Select

| |
| |
| |
| Deframer 0 Tx0 @ Converter |
| |
| |
| |
Deframer 0 Tu0 Q Converter Data Sample

16 samples
max

1:16
mux

from
Deframer 0
—

Deframer 0 Tx7 | Converter

|
|
|
|
|
|
|
| Data Sample Select
|

Deframer 0 Tx7 | Converter Dut,u|55mp|!
I

7 3

cal

>
16 samples

| .

| 1l max
| mux

| Deframer 0 Tx7 Q Converter
| Data Sample Select
|

|
Deframer 0 Tx7 Q Converter Datd Sample i

>
16 samples
max

|
|
|
|
|
|
|
|
|
|
|
wd L
|
|
|
|
|
|
|
|
T
|
|

Deframer 1 Tx0 | Converter
Data Sample Select

l Deframer 1

|
| Sample x-bar
|
|
|

Deframer 1 Tx0 | Converter Data Sample -

’ 3

|

|

|

Il

>

16 samples |
11 max |
|

|

|

|

|

el

mux

Deframer 1 Tx0 Q Converter
Data Sample Select

' 3

16 samples
max

1:16
mux

from
Deframer 1

Deframer 1 Tx7 | Converter

T

|

|

|

|

|

|

|
Deframer 1 Tu0 Q Converter Datd Sample

I

|

|

|

|

|

|

|

| Data Sample Select

|

Deframer 1 Tx7 | Converter Datal Sample

ya

[y

o~

>
16 samples
| 11 —
| mux

: Deframer 1 Tx7 @ Converter
| Data Sample Select

|

|

v

Deframer 1 Tx7 Q Converter Data Sample

I

s

>
16 samples
| 1:16 max

| mux

Figure 65. Sample Crosshars and OR Gates Allow Routing of Any Deframer Output to Any Tx DAC

analog.com

Rev. B | 68 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

PRBS Receiver

A PRBS receiver is available in the deframer block to check PRBS data on each SERDES input lane, or on the Tx0_| DAC output. When
checking the PRBS on the SERDES input lanes, the raw SERDES data is checked. Therefore, the generator sending the data should apply
the PRBS sequence directly to its SERDES output lanes. When checking the PRBS on the Tx0_I DAC output, the decoded and unpacked
sample data is checked. Therefore, the generator sending the data should apply the PRBS sequence as data samples to the transport layer of
its framer where they're packed and encoded before being sent across the SERDES link.

The PRBS receiver can be set in the following modes:

» Disabled: PRBS receiver is not used

» PRBS7 mode: PRBS receiver checks for PRBS7 pattern

» PRBS9 mode: PRBS receiver checks for PRBS9 pattern

» PRBS15 mode: PRBS receiver checks for PRBS15 pattern
» PRBS31 mode: PRBS receiver checks for PRBS31 pattern

Figure 66 shows the location of the PRBS Receiver in the deframer block. The PRBS receiver is circled in blue.

PRBS \

RECEIVER
ELASTIC
BUFFER

a

DEFRAMER 0

\ A

TXO | DATA PATH

BUFFER > TRANSPORT ' é LINK

o | sampie | .,
CONTROLLER LAYER os| LAYER

0 XBAR

TX0 Q DATA PATH =i

S

LANE
XBAR

16 samples
TX1 | DATA PATH 4———]
TX1 Q DATA PATH ¢———

=115 15[

TX2 | DATA PATH 4——]
TX2 Q DATA PATH ¢———

TX3 | DATA PATH 4———

[4— SERDINO

TX3 Q DATA PATH ¢——— l4— SERDIN1

OR ELASTIC DESERIALIZER f@— SERDIN2

TX4 | DATA PATH€———{ GATES BUFFER PHYSICAL [4— SERDIN3

TX4 Q DATA PATH 44— (PHY) l4— SERDING

a LAYER [#— SERDINS

TXS | DATA PATH €———] [4— SERDING

TX5 Q DATA PATH € DEFRAMER 1 [€¢— SERDIN7
TX6 | DATA PATH v

TX6 Q DATA PATH] 0 0

' N

TX7 | DATA PATH

4 TRANSPORT LINK
TX7 Q DATA PATH €—— 16 samples BUFFER | g =

CONTROLLER| %~ LAYER LAYER
16 samples
ax

m; max

o | SAMPLE |
. XBAR

3 LANE
XBAR

15 15|

DATA FLOW DIRECTION

A

Figure 66. PRBS Receiver Location Circled in Blue

Clock Distribution

The SERDES PLL provides the clock that is used to derive the clocks that are provided to the Deframers Link Layers and to the input of
the Deframer Transport Layers. Programming of the SERDES PLL and associated clock dividers is handled automatically by the embedded
firmware, based on the profile information passed to the ADRV903x during initialization.

JESD PHY LAYER

The ADRV903x has eight serializer and deserializer lanes that can receive and transmit data. All these lanes use a single reference
(SYSREFP/N) and device clock (DEVCLKP/N). The maximum lane rate that is supported on ADRV903x is 32,440.32 Mbps.

The JESD physical layer establishes a reliable channel between the transmitter (Tx) and the receiver (Rx). A high-level view of a typical JESD
serial link is shown in Figure 67.

analog.com Rev. B | 69 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Channel
S Ir i
—> O l—
—3 m > ™XFIR EQ m
—3 T LUT)>_>
upto 32 Gb/s
TX Clock ‘ \ RX Clock
Generation F Recovery

Figure 67. Overview of a Typical High-Speed Serial Link

The serializer above does a N:1 multiplexer on the transmitter. On its input there is a 40-bit or 66-bit parallel word, which is turned into a
non-return-to-zero (or NRZ) waveform with lane rates up to 32,440.32 Mbps. This data is then driven by a JESD TX driver onto a terminated
lane to the receiver. On the receiver side, a deserializer implements a 1-to-N demultiplexing of the data down to the original lower rate which
is then sent to subsequent digital blocks to be decoded. There are no clocks transmitted on the serial link so a clock data recovery block

is needed on the receiver side to find the optimum sampling phase of the clock. In Figure 67 note the frequency response of the channel.

At higher data rates, Figure 67, large losses are seen across the channel causing the received signal to be attenuated resulting in large
inter-symbol interference (ISI).

ISIis when the effects of a lossy transmission line cause a data symbol to be spread in time, into the symbol time slot of an adjacent symbol.

Figure 68 shows an impulse response (data=..010000..) at the end of a lossy transmission line. Each color represents a different bit period. Al
the energy should be in the green section, which is referred to as the cursor. Energy in the blue, yellow and orange sections are caused by ISI.
The time slot just prior to the impulse (in dotted red) is referred to as the pre-cursor, whereas the time slots after the impulse are referred to as

first, second, and so on post cursors.
s
Ideal Impulse
1st Post Cursor

2 Post Cursor

Time

'

Pre-Cursor

/I apnydwy

Figure 68. Inter-Symbol Interference of an Impulse Response

In order to overcome insertion loss caused by ISI, a pre-emphasis and de-emphasis (or equalization) circuits are used. An equalizer on the
receiver side helps with de-emphasis, which will subtract the energy in the pre and post-cursors, so that only the energy at the cursor remains
after the signal travels through the channel.

For both equalization and pre-emphasis, the idea is to apply the inverse of the channel transfer function to the signal being sent on the channel.
This can be done at the input to the channel (pre-emphasis) or at the output of the channel (equalization), shown in Figure 69. The top diagram
shows an impulse as it goes into the channel which acts as a low pass filter. The resulting waveform out of the channel shows the IS| effect of
the impulse energy being spread into adjacent bit intervals. In the bottom diagram, the same impulse passes through a high-pass filter before
being sent into the low-pass channel. The theoretical result is an impulse coming out of the channel.

analog.com Rev. B | 70 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

With no emphasis
or equalization

—€) H(w) — [s

Input TxLine Output With emphasis
or equalization

f
/
{

/H(w) o

Input Output
Tx Line P

Figure 69. Theoretical Diagram of the Operation of Pre-emphasis and De-emphasis

The serializer implements a 3-tap FIR filter, whereas the deserializer implements CTLE (continuous time linear equalization), PGA (Programma-
ble Gain Amplifier) and DFE (Decision Feedback Equalizer) to help compensate for the channel losses.

Serializer Physical (PHY) Layer

The amplitude of the serializer is represented by a 3-bit number that is not linearly weighted. The JESD204B/C transmitter mask requires a
differential amplitude greater than 360 mV and less than 1V. The default amplitude is 0 (maximum amplitude setting).

Table 24. Serializer Amplitude Settings

Serializer Amplitude(decimal) Average Differential Amplitude (V;r=1V)
0 1xVr

1 0.85 x V7

2 0.75 x V7

3 0.5 x Vp

It is recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance differences. If possible,
the eye should be verified using an internal eye monitor after the equalizer circuit of the receiver as this shows the actual eye that the receiver
circuit will receive.

Pre-Cursor Cursor

Yk

Post-Cursor

Ayt Ay Ay1

CLK

> V=D 181 Hbga b8y 4

Figure 70. Serializer Emphasis Implementation

analog.com Rev. B | 71 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

A three tap FIR equalizer is implemented in the serializer as shown in Figure 70. Here, the cursor, or largest tap weight multiplying ay is in the
center. There is a pre-cursor tap b_4 multiplying ay + 4 and a post cursor tap by multiplying a - 4 to realize the following difference equation for
Y. Transmit pre-emphasis is used as it's easier to realize bit delays with flip flops than trying to implement analog delays at the receiver.

The serializer pre-emphasis circuit allows boosting of the amplitude anytime the serial bit changes state. If no bit transition occurs, the
amplitude is left unchanged. Pre-emphasis helps open the eye for longer PCB traces or when the parasitic loading of connectors has a
noticeable effect. In most cases, to find the best setting, a simulation or measurement of the eye diagram with a high-speed scope at

the receiver is recommended, or as mentioned above an internal eye monitor after the equalizer is the optimum solution. The serializer
pre-emphasis is controlled by setting a pre-cursor and a post-cursor setting which are listed in Table 25 and Table 26. Use the API function
adi_ADRV903x_SerLaneCfgSet() to set these parameters.

Table 25. Pre-Cursor Amplitude Settings

Emphasis (decimal) Emphasis (dB)
0 0

1 3

2 6

Table 26. Post-Cursor Amplitude Settings

Emphasis (decimal) Emphasis (dB)
0 0

1 3

2 6

3 9

4 12

Deserializer Physical (PHY) Layer

The deserializer connects the baseband IC to the Tx output via the JESD PHY. The ADRV903x has eight deserializer lanes that can be used to
connect to the BBIC serializer for transmitting the baseband data. ADRV903x supports lane rates up to 32,440.32 Mbps. The deserializer PHY
can either use the SERDES PLL or the CLK PLL to provide the reference clocks necessary to set up the JESD link. The reason to have two
separate PLLs for clocking the JESD PHY is to support use cases where lane rates are not integer multiple of the sample rates and to support
high data rates. Note that CLK PLL can only be used for lane rates up to 14.75 Gbps, above which only the SERDES PLL can be used.

To achieve high rates while having the VCO running between 8-16 GHz, the phase of the reference clock into PHY is divided to in-phase and
quadrature phase. A high-level block diagram of the ADRV903x JESD deserializer PHY is in Figure 71.

analog.com Rev. B | 72 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

4-8GHz 1,Q ——>| Sine-Shaping
v
Phase Interpolator &——— PHSEL[6:0]

Control VCKO 1

D. From Digital | DFE CK2PHO S S

" "| Even ["bckopo] | % i
——

CTLE h\ Digital

DFE |__CK2PH90)E .

"] Odd [peksops:o) L © -
D/A 7 T

: CK90

Phase Interpolator [€— PHSEL[6:0]+SPO[2:0]

T
Q.- —>{ Sine-Shaping

Slice[6:0]

Figure 71. Block Diagram of ADRV903x Deserializer PHY

In the above block diagram, Dy, is the data received from the BBIC over the terminated lossy channel. An offset correcting DAC adds to the
input data and goes into the CTLE. The CTLE block provides an inverse transfer function of the channel so that the total composite response of
the channel (at CTLE output) is flat. The CTLE attenuates the low frequency content of the incoming signal to flatten the net response cleaning
up the signal and resulting in a good eye at the output of the CTLE. The amplitude of the received data is low, due to attenuation over the
channel and a boost is applied via CTLE. The amplitude is boosted by a PGA block (Programmable Gain Amplifier) to rail the incoming data to
Vier(1) or =Vi£(0). The output of the PGA has strong 1's or 0’s, which is then sampled by clocks to decode as a 1 or a 0. Note that the PGA
only rails the input data in full rate and half rate modes. It linearly amplifies the incoming data for quarter rate mode (explained in subsequent
sections).

A DFE samples the data using the original reference clock signal and another signal with a 90 degree phase shift relative to reference clock
signal. A DFE is used to accommodate faster data rates and support higher insertion losses on ADRV903x. This eases the dependency on
the CTLE block which attenuates the incoming signal and trades amplitude for a good eye causing noise/crosstalk issues. The DFE blocks
look at the impulse response instead of responding to the amplitude response of the incoming signal. The DFE block subtracts the energy in
the post-cursors so that zero ISl is seen for next sampling instants. This helps in achieving higher signal fidelity for lanes with relatively high
insertion loss at higher data rates. The sampled data bits from the DFE block are deserialized down to a local digital block which runs a phase
detection scheme to obtain a 7-bit phase code. This code is used to determine the phase selected by the phase interpolator block and adjusts
the phase of CK0 and CK90 clock signals needed for sampling the incoming data.

The phase interpolator block at the top receives the incoming reference clock (as | and Q (square waves)) through a sine-shaping block. The
sine-shaping block provides the sine and cosine signals which can be phase interpolated using the 7-bit phase code obtained from the digital to
provide the CKO signal. Another phase interpolator block at the bottom receives the incoming reference clock (as -I and Q (square waves)) and
are passed through the same sine-shaping and phase interpolator block to obtain the CK90 (90 degrees out of phase) signal. It uses the same
7-hit phase code obtained from digital to adjust its phase. It is important to note that CK90 lags 90 degree in phase as compared to CK0. Both
these signals are derived from the incoming reference clock and not the data. These 0 and 90 degree offset sampling clocks helps to get the
data and edge sampling instances of the incoming data to run CDR.

With this setup, the digital can track the best sampling phase that can be used to sample the incoming data as part of clock data recovery
circuit. The digital also sends the decoded data further down to the deserializer block (input into the deframer).

It is important to note that it is expected that the PLL and high-speed distribution clocks are settled before enabling the deserializer. This is done
by the firmware during boot up.

analog.com Rev. B | 73 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

The deserializer PHY can be set up in three distinct modes based on the lane rate being used, the three modes are:
1. Full Rate Mode:

In this mode, ADR903x has lane rates within the range of 4-8 Gbps. In this mode, only the sampling clock CKO is used, and its frequency is
matched in full to the data rate. In Figure 72 the serial input data goes through the CTLE to clean up the signal before sampling. The CTLE
is also configured to provide its maximum gain to attempt to rail the signal before sampling. The timing diagram shows that samples are
taken on both the rising and falling edges of CK0, and in fact CK90 is not used in this mode. The phase detector aligns the falling edge of
CKO to the transitions in the data and is a bang-bang phase detector.

Dy, + X + X lCKO
CKo _/_\—/_\
Data
Sampler
DCKO[3:0]
——>
Dy, CTLE
6.25 Gbls

Figure 72. Simplified Block Diagram of DES in Full Rate Mode with Timing Diagram

Note that SERDES calibrations are not needed for this mode.
2. Half Rate Mode:

In this mode, ADR903x has lane rates within the range of 8-16 Gbps. The sampling clock is now half as fast as the data rate. From the
timing diagram in Figure 73 the samples on the rising and falling edges of CKO are all data samples, and neither takes samples on the data
transitions. As these edge samples are needed, a second set of circuitry takes samples in the same fashion as before but now is driven by
CK90. Each set of circuitry is referred to as a slice, thus in Full rate mode we only use slice 0, but in half rate mode we need slice 1 as well.
In the same way as in Full rate mode, the phase detector does a bang-bang phase detector to align the rising and falling edges of CK90

to the transitions in the input data. The CTLE is configured in a similar fashion, to clean up the signal and max out the gain to drive the
samplers. SERDES calibrations are not needed for this mode.

o, —+ X+ X lCKO
DCKO[2k+1] DCKO[2K]
CKO
DCK90[2k+1] DCK90[2k] Data
ckeo /S N | sampler
DCKO[3:0]
—>
D CTLE !
12,5 Gbls DCK90[3:0]
———
[) Edge
Sampler
TCKSO

Figure 73. Simplified Block Diagram of DES in Half Rate Mode with Timing Diagram
3. Quarter Rate Mode:

In this mode, ADR903x has lane rates within the range of 16-32 Gbps. If we look closely at the Figure 74 below, we will see that the timing
diagram is almost the same as half rate mode, except that the bit-period (therefore, data rate) has been doubled. Now all rising and falling
edges of both CK0 and CK90 are taking data samples, and there is nothing directly sampling the data transitions.

analog.com Rev. B | 74 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

D, X+ X + X+ X+X | cko
DCKO[2k+1] DCKO[2K]
cko T~ ECKO[3:0]
DCK90[2k+1] DCK90[2K] Sampler >
CKeO /T N #13
DCKO[3:0]
—
Din CTLE | [ore

25Ghls DCKS0[3:0]
—

Sampler
#24 | ECK90[3:0]
7

TCKSO

Figure 74. Simplified Block Diagram of DES in Quarter Rate Mode with Timing Diagram

In quarter rate mode the CTLE alone cannot provide enough equalization. The DFE is needed in addition to the CTLE.

For DFE to work properly, the system needs to be linearly amplified by the PGA up until the sampling point. The DFE looks at the impulse
response and subtracts the energy in the post-cursors so that zero ISl is seen for next sampling instants. This helps in achieving higher
signal fidelity for high lane rates (>16 Gbps).

Figure 75 shows a high-level overview of a single tap canonical DFE. The received signal RX is written as a linear sum of the desired cursor
value plus a sum of pre- and post-cursors (in the example below, only a single post-cursor exists). This description of RX is a representation
of the impulse response from the transmitter, through the channel, through the CTLE, up to the sampling instant.

Add

Compare
RX:ak+b1.ak_1 + —|_ Comp_”:—i>_/

YA 0
Select +b _L1
1

Figure 75. High Level Block Diagram of a Single Tap DFE

When a sample of the comparator’s input comp_in is taken a comparison is made, to generate the output sample. Referring to the ‘next
sample, the sample we just took is ay_¢. We feed this previous sample back, weight it by the value of the first post-cursor, and subtract it out
(or add it negatively). Based on the comparators result, we would either select +b or —b,. This would subtract the energy in the post-cursor
and reduce ISI. Note that the PGA is set up such that incoming signal is linear to accommodate this analog subtraction via DFE.

In quarter rate mode, the complete process of the DFE — Compare -> Select -> Add, is fast enough so that it is completed within a single UL.
ADRV903x DFE uses three post-cursors (b4, by and bs) to get the best equalized performance for data rates up to 32.44 Gbps

ADRV903x can run on-chip init and tracking calibrations to maintain signal integrity over the entire operating temperature. This helps to avoid
JESD link dropouts during operation which cause glitches at the TX output. The ARM and API automatically enable these cals depending on
the lane rates being used. Note that currently SERDES calibrations are only needed for Quarter rate mode (where lane rate >16 Gbps). The

ARM will optimize the CTLE and DFE parameters in quarter rate mode to maintain signal integrity over the entire operating temperature. The
calibration routines will set all the offset correction bits and DFE tap weights when operating in quarter rate mode.

Table 27 summarizes the design targets for the amount of insertion loss that ADRV903x can support for different lane rates.

analog.com Rev. B | 75 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Table 27. Insertion Loss Support (over operating temperature) vs. Serdes Lane Rates

SERDES Lane Rate (Gh/s) versus Design Targets for Insertion Loss (over operating temperature) Support on ADRV903x

Data Rate (Gb/s) Min Insertion Loss (dB) Worst Case Max Insertion Loss (dB)
8 3 15
12 4 17
14 4.5 17
16 4 25
25 45 23
32 4 10

The ADRV903x Serdes block integrates two different methods to verify link integrity:

1. The user can test the signal integrity of each of the lanes using an in-built horizontal and vertical eye monitor. This helps the user to debug
link bring up issues and check if the signal integrity holds well over the entire operating temperature.

a. The Horizontal eye monitor can be run using the RunEyeSweep_v2() API
b. The Horizontal + Vertical eye monitor can be run using the RunVerticalEyeSweep_v2() AP

2. Aninternal PRBS checker can be used to verify the link integrity over temperature and ensure you are meeting your Bit Error Target for long
duration tests.

Deserializer Lane Configuration

The deserializer includes an adaptive CTLE and DFE equalizer per lane. This helps in compensating for signal integrity distortions for each
channel due to PCB trace length and impedance.

The deser_lane_cfg structure in the json file contains the information required to properly configure the Serdes calibration defaults. This
structure is repeated 8 times for each lane.

"deser lane cfg":
{

"desInvertLanePolarity": 0,
"highBoost": 0,
"configOptionl":
"configOption2":
"configOption3":
"configOptiond":
"configOption5":
"configOption6":
"configOption7":
"configOption8":
"configOption9":
"configOptionlO":
}

~ ~ =

~ ~ =

O OO OO OO oo
~

O~

I

The latest configOptions recommendations are typically made available in the profiles that come with the software and would differ depending
on the Serdes lane rate. For later software (greater than or equal to SW2.9), the configOptions are generally kept by default at 0 and the only
parameter that is needed to tune is the Insertion Loss per lane. You can select this in the GUI by selecting the Enhanced Tuning Mode (ETM)
checkbox in the Deframer section. Please contact ADI for a more detailed application note on using the ETM feature. If using older software
pre-SW2.9, then please contact ADI to confirm the configOptions settings are appropriate for your channel IL and Serdes lane rate.

LINK INITIALIZATION AND DEBUGGING

Link initialization occurs during the post MCS phase of device initialization. The link bringup procedure in general follows the following steps:

analog.com Rev. B | 76 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

JESD204B
For the deframer side, follow these steps:

Initialize and bring up the baseband processor framer side.

Deframer is held in reset state until INIT command, then deframer issues a synchronization request by asserting the SYNC signal.
Framer starts sending K28.5 characters, then deframer is brought out of reset.

Deframer identifies four consecutive K28.5 characters then deasserts SYNC and goes into ILAS phase.

If SYNC stays asserted, this indicates it is stuck in CGS phase. Check that the link parameters match. If they do, check the signal integrity
(refer to the Sample Iron Python Code for PRBS Testing section).

6. After the deframer link is up, the user needs to enable the serdes tracking cal. Please note that SERDES tracking calibration needs
randomized scrambled data to be sent on the deserializer lanes to be able to maintain link integrity.

R =

For the framer side, link establishment follows the same flow. First the framer is enabled and the baseband processor deframer synchronizes to
the signal.

JESD204C
For the deframer side, follow these steps:

1. Initialize and bring up the baseband processor framer side.
2. Send the JESD204C initialization calibration command. This brings the link up since it is now protocol based.

3. After the deframer link is up, the user needs to enable the serdes tracking cal. Please note that SERDES tracking calibration needs
randomized scrambled data to be sent on the deserializer lanes to be able to maintain link integrity.

For the framer side, link establishment follows the same flow. First the framer is enabled and then the baseband processor deframer
synchronizes to the signal.

An example API function jesdBringup can be referred to configure and establish the datalinks.
FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY

1. For ease of debug during bring up, it is recommended to start with single lane on both sides and with minimum possible link speed.

2. Check that the parameters are configured the same at both ends transceiver and FPGA. The adi_ ADRV903x_DeframerCfg_t data structure
contains the information required to properly configure each deframer.

3. There is a PRBS checker available that can be used to check signal integrity related issues. Initialize the transceiver as outlined in the link
establishment section. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.

4. Confirm that the lanes baseband processor is transmitting PRBS on are the actually configured in the transceiver. Start with the PRBS
errors. Ensure baseband processor and the transceiver are both using the same PRBS signal and the transceiver expects the same PRBS
7 from baseband processor.

5. Call the APl adi_ADRV903x_DfrmPrbsCheckerStateSet() passing the actual device being evaluated, the PRBS sequence to check, and the
location at which to check the PRBS sequence.

6. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function adi_
ADRV903x_DfrmPrbsErrCountGet() passing the actual device being evaluated, the counter selection lane to be read and the error count is
returned in the third parameter passed.

7. The user can use adi ADRV903x_DeframerSysrefCtriSet() API so that the external SYSREF signal at the pin can be gated off internally so
the deframer does not see a potential invalid SYSREF pulse before it is configured correctly.

8. After bringing up of JESD204B link or for debugging the deframer, the baseband processor can check the status of the deframer using
adi_ADRV903x_DeframerStatusGet().

SAMPLE IRON PYTHON CODE FOR PRBS TESTING

The following Iron Python script can be loaded into the Iron Python tab in the GUI to run the PRBS test.
def generatePrbsInFpga():

print "generatePrbsInFpga() is running"
prbsmode = adi fpgagent PrbsTestModes e.ADI FPGAGEN6 PRBS 31

analog.com Rev. B | 77 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

fpgaDevice 0.prbs.PrbsSerializerEnable (0xff,prbsmode)

def OnBoardPRBSChecker () :

tion)

NEDATA

print "OnBoardPRBSChecker() is running"

#DfrmPrbsCheckerStateGet

DfrmPrbsCfg t = adi_adrvgen6 DfrmPrbsCfg t()

adrvgen6Device 0.datalnterface.DfrmPrbsCheckerStateGet (DfrmPrbsCfg t)

print

print "DfrmPrbsCheckerState DfrmPrbsCfg t.polyOrder: %s" % str(DfrmPrbsCfg t.polyOrder)

print "DfrmPrbsCheckerState DfrmPrbsCfg t.checkerLocation: %s" % str(DfrmPrbsCfg t.checkerLocak

print

#DfrmPrbsCheckerStateSet

DfrmPrbsCfg t = adi_adrvgen6 DfrmPrbsCfg t()

DfrmPrbsCfg t.polyOrder = adi adrvgen6t DeframerPrbsOrder e.ADI ADRVGEN6 PRBS31

DfrmPrbsCfg t.checkerLocation = adi adrvgent DeframerPrbsCheckLoc e.ADI ADRVGEN6 PRBSCHECK LAM

#OR
#DfrmPrbsCfg t.checkerLocation = adi adrvgen6 DeframerPrbsCheckLoc e.ADI ADRV»

GEN6_PRBSCHECK SAMPLEDATA

tion)

adrvgen6Dev10e 0.dataInterface.DfrmPrbsCheckerStateSet (DfrmPrbsCfg t)

#DfrmPrbsCheckerStateGet

DfrmPrbsCfg t = adi_adrvgen6 DfrmPrbsCfg t()

adrvgen6Device 0.datalnterface.DfrmPrbsCheckerStateGet (DfrmPrbsCfg t)

print

print "DfrmPrbsCheckerState DfrmPrbsCfg t.polyOrder: %s" % str(DfrmPrbsCfg t.polyOrder)

print "DfrmPrbsCheckerState DfrmPrbsCfg t.checkerLocation: %s" % str(DfrmPrbsCfg t.checkerLocak

print
#adrvgen6Device (.dataInterface.DfrmErrCounterReset (adi adrvgent DeframerSel e.ADI ADRVGEN6 DEM

FRAMER 0,0, 7)

#adrvgen6Device 0.dataInterface.DfrmErrCounterReset (adi adrvgent DeframerSel e.ADI ADRVGENG6 DEM

FRAMER 0,1,7)

#adrvgen6Device_O.dataInterface.DfrmErrCounterReset(adi_adrvgen6_Deframer5el_e.ADI_ADRVGEN6_DE>

FRAMER 0,2,7)

#adrvgen6Device 0.dataInterface.DfrmErrCounterReset(adi adrvgen6 DeframerSel e.ADI ADRVGEN6 DEM

FRAMER 0,3, 7)

#adrvgen6Device 0.dataInterface.DfrmErrCounterReset (adi adrvgent DeframerSel e.ADI ADRVGEN6 DEM

FRAMER 0,4, 7)

#adrvgen6Device 0.dataInterface.DfrmErrCounterReset (adi adrvgent DeframerSel e.ADI ADRVGEN6 DEM

FRAMER 0,5, 7)

#adrvgen6Device O.dataInterface.DfrmErrCounterReset (adi adrvgent DeframerSel e.ADI ADRVGEN6 DEM

FRAMER 0, 6, 7)

#adrvgen6Device 0.dataInterface.DfrmErrCounterReset (adi adrvgent DeframerSel e.ADI ADRVGEN6 DEM

FRAMER 0,7,7)

time.sleep(0.5)
#DfrmPrbsErrCountGet
DfrmPrbsErrCounters t = adi adrvgen6 DfrmPrbsErrCounters t()
adrvgen6Device 0.dataInterface.DfrmPrbsErrCountGet (DfrmPrbsErrCounters t)
print
for i in range(0,8):
print "PRBS error of lane %d" %i
print "DfrmPrbsErrCounters t.errorStatus",DfrmPrbsErrCounters t.errorStatus([i]
print "DfrmPrbsErrCounters _t.laneErrors",DfrmPrbsErrCounters t.laneErrors[i]
print

When this script is run, it transmits PRBS pattern and then checks the PRBS errors received per lane.

analog.com Rev. B | 78 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

PRBS ERRORS

When the baseband processor is transmitting PRBS, confirm that the active lanes are also configured properly in the transceiver. Start with the
PRBS errors. Ensure the baseband processor and the transceiver are both using the same PRBS signal and the transceiver expects the same
PRBS 7 from baseband processor. The following are some scenarios that might occur and how to resolve issues.

If stuck in CGS mode, or if SYNC stays at logic low level or pulses high for less than four multiframes, take the following steps:

1. Check the board, unpowered for the following:
» SYSREF and SYNC signaling is dc-coupled.
» Check that the pull-down or pull-up resistors are not dominating the signaling, for example if values are too small or shorted and
therefore cannot be driven correctly.
» Verify that the differential-pairs traces are length matched.
» Verify differential impedance of the traces is 100 Q.
2. Check the board, powered:
» If there is a buffer/translator in the SYNC path, make sure it is functioning properly.
» Check that SYNC source is properly configured to produce compliant logic levels.
3. Check SYNC signaling:

» If SYNC is static and logic low, the link is not progressing beyond the CGS phase. There is either an issue with the data being sent or the
JESD204 receiver is not decoding the samples properly. Verify /K/ characters are being sent, verify receive configuration settings, verify
SYNC source. Consider overdriving SYNC signal and attempt to force link into ILAS mode to isolate link Rx vs. Tx issues.

» If SYNC is static and logic high, verify the SYNC logic level is configured correctly in the source device. Check pull-up and pull-down
resistors.

» If SYNC pulses high and returns to logic-low state for less than six multiframe periods, the JESD204 Link is progressing beyond the CGS
phase but not beyond ILAS phase. This suggests the /K/ characters are okay and the basic function of the CDR are working. Proceed to
ILAS troubleshooting.

» If SYNC pulses high for a duration of more than six multiframe periods, the Link is progressing beyond the ILAS phase and is
malfunctioning in the data phase; see the data phase section for troubleshooting tips.

4. Checking Serial Data
» Verify the transmitter data rate and the receiver expected rate are the same.

» Measure lanes with high-impedance probe (differential probe, if possible); if characters appear incorrect, make sure lane differential
traces are matched, the return path on the PCB is not interrupted, and devices are properly soldered on the PCB. CGS characters are
easily recognizable on a high speed scope.

» Verify /K/ characters with high impedance probe. (If /K/ characters are correct, the Tx side of the link is working properly. If /K/ characters
are not correct, the Tx device or the board lanes signal have an issue.

» Verify the transmitter CML differential voltage on the data lanes.
» Verify the receiver CML differential voltage on the data lanes.

» Verify that the configuration parameters M and L values match between the baseband processor and the transceiver, otherwise the data
rates may not match. For example, M =2 and L = 2 expect %2 the data rate over the serial interface as comparedtothe M=2and L =1
case.

» Ensure the device clock is phase locked and at the correct frequency.
If the user is stuck in ILAS mode, or if SYNC pulses high for approximately four multiframes, take the following steps:

1. Link parameter conflicts

» Verify ILAS multiframes are transmitting properly, verify link parameters on the Tx device, the Rx device and those transmitted in ILAS
second multiframe.

» Calculate expected ILAS length (tframe, tmultiframe, 4xtmultiframe), verify ILAS is attempted for approximately four multiframes.
2. Verify all lanes are functioning properly. Ensure there are no Multilane/Multilink conflicts.

If the interface enters data phase but occasionally link resets (returns to CGS and ILAS before returning to data phase), take the following
steps:

1. Invalid setup and hold time of periodic or gapped periodic SYSREF or SYNC signal.

analog.com Rev. B | 79 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Link parameter conflicts

Character replacement conflicts

Scrambling problem, if enabled

Lane data corruption, noisy or jitter can force the eye diagram to close
Spurious clocking or excessive jitter on device clock

SELECTING THE OPTIMAL LMFC/LEMC OFFSET FOR A DEFRAMER

This section describes how to set the LMFC/LEMC offset for a deframer, how to read back the corresponding elastic buffer depth, and how to
select the optimal LMFC/LEMC offset value for a given system.

ook wbd

Deterministic Latency in JESD 204B Mode

In JESD204B mode, the transceiver digital data interface follows the JESD204B Subclass 1 standard, which has provisions to ensure
repeatable latencies across the link from power-up to power-up or over link re-establishment by using the SYSREF signal.

To achieve this deterministic latency, the transceiver deframers include elastic buffers for each of their lanes. The elastic buffers are also used
to de-skew each lane before aligning them with the LMFC signal. The depth of the elastic buffers can therefore be different for each lane of a
given deframer.

A deframer starts outputting data out of its elastic buffers on the next LMFC (that is, multiframe) boundary following the reception of the first
characters in the ILA sequence by all the active lanes. It is therefore possible to adjust when the data is output from the elastic buffers,

and therefore how much data is stored in those buffers (called buffer depth), by adjusting the phase relationship between the external
SYSREF signal and the internally generated LMFC signal. This phase relationship is adjustable by using the LMFC offset parameter, which is
programmable for each of the deframers. This is illustrated on Figure 76 and Figure 77.

LANES MAY NOT BE ALL LANES ARE ALIGNED

ALIGNED WITH WITH EACH OTHER AND
EACH OTHER HERE WITH LMFC/LEMC HERE.
l DESKEWED AND
DEFRAMER ELASTIC LMFC/LEMC

LANE INPUT 0 ™ BUFFER — ™ ALIGNED DEFRAMER
LANE 0

DESKEWED AND
DEFRAMER ELASTIC LMFC/LEMC

LANE INPUT 1 > BUFFER — ™ ALIGNED DEFRAMER

LANE 1

DESKEWED AND

DEFRAMER > ELASTIC LMFC/LEMC
LANE INPUT L-1 BUFFER [~ ALIGNED DEFRAMER
LANE L-1

22770-025

Figure 76. Elastic Buffers in the Deframers

analog.com Rev. B | 80 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

SYSREF ﬂ

SYNC~ I\Tx ILA begins on first LMFC zero-crossing after SYNC~ is deasserted
Tx Deterministic

K . delay from SYSREF
Device - = sampled highto 4
LMFC : ? LI T

t t t

MFC zero-crossing

{¢— multiframe —

t
s ENEERARRRRRRRE G- - G 7

SYNC~irising edge when LMFC Offset =N

: SYNC~§H5ing edge when LMFC Offset = N+1
SYSREF ﬂ / :
SYNC~ :
LMEFC _.(.‘_Delermlnlstlc delgy from SYSREF sampled high to LMFC zer(}crf)sswrvg for LMFC Offset=N
[LMFC Offset = N) : f i T T T | T T T
1 . Deterministic delay from SYSREF sampled high to LMFC zero-crossing for LMFC Offset = N+1
LMFC — — : H
[LMFC Offset = N+1) | ? i T T i ‘g‘ T T T
Earliest
Lane
Arrival ; :
AR i R - R
. Lane i senerhedeny EE "’" E
Device Arrival : : H i
4. i | Data stored in Elastic Buffer for
: H : Earliest Lane when LMFC Offset =N
_. : ! Data stored in Elastic Buffer for
! i+ Earliest Lane when LMFC Offset = N+1
_‘ i 1 Data stored in Elastic Buffer for
H ¢ 1 Latest Lane when LMFC Offset =N
4‘ i Data stored in Elastic Buffer for Latest
| : + Lane when LMFC Offset = N+1
Elastic Buffer ' :
Output on all Lanes [KIKIRIIRIRIKIIRIRIR I RIRIR IR IR IR R KRNI RIRIRRIRIRIRIEI R (D[D - - -------- D | D iR [Q)C} - --{€|D|- {D| DR [D|D} - - - - - - --{D DY} - - - <o
(LMFC Offset = N) : H o
: ‘_ Deterministic delay from Tx ILA output ;3
l puff i H to Rx ILA output when LMFC Offset =N I
astic er : 2
-
it onl JQRcy o:CE:INGD IJaNEEG NEE
Lanes : : Deterministic delay from Tx ILA output to : 8
(LMFC Offset =N+1) : Rx ILA output when LMFC Offset = N+1 g
S

Figure 77. Impact of LMFC Offset on Elastic Buffer Depth in JESD204B Mode

Deterministic Latency in JESD204C Mode

In JESD204C mode, deterministic latency can also be achieved thanks to the elastic buffers in the deframers. The elastic buffers are still used
to de-skew each lane before aligning them with the LEMC signal. The depth of the elastic buffers can, therefore, be different for each lane of a
given deframer.

A deframer starts outputting data from its elastic buffers on the next LEMC (extended multiblock) boundary following the reception of the

first multiblock in an extended multiblock by all the active lanes. As a result, it is possible to adjust when the data is output from the elastic
buffers and, therefore, how much data is stored in those buffers (the buffer depth) by adjusting the phase relationship between the external
SYSREF signal and the internally generated LEMC signal. This phase relationship is adjustable by using the LEMC offset parameter, which is
programmable for each of the deframers. This is illustrated on Figure 76 and Figure 78.

It is important to note that the size of each elastic buffer is 512 octets. When the JESD204C E parameter (number of multiblocks in an extended
multiblock) is bigger than 2, the elastic buffer is not able to store enough data for some LEMC offset values.

analog.com Rev. B | 81 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

1 Extended Multiblock (EMB)
= E x 1 Multiblock (MB)
= E x 256 octets

SYSREF .

|
I
|
LEMC : + T
(LEMC Offset = N)

—
=K x F octets |
T

—_ 4— Deterministic delay from SYSREF sampled high to LEMC zero-crossing for LMFC Offset = N
T 1]
- ! ‘ Deterministic delay from SYSREF sampled hlgh to LEMC zero-crossing for LMFC Offset = N+1
LEMC ! | + 4
EMC Offset = N+1) — —
[|| [1
- 1 Il
Ear:es_t Lrne s P IPEN RN %Y } { 0 | [- | 31 | 0 | U IR Y } -----------------------
rriva MBO | MB E-1 MBO |
| Ll 1
Latest Lane
ceenemenneaihons [I - J I R LLCTTITToe
Pt : n|1|_§‘ |u} -|o|1| |51|a|1l |31}
Lo M‘ n‘ MB E-1 MB 01
|| Data stored in Elastic Buffer for
| | Il Earliest Lane when LMFC Offset =N
Il (N Data stored in Elastic Buffer for
| | Earliest Lane when LMFC Offset = N+1
[|

Data stored in Elastic Buffer for
Latest Lane when LMFC Offset =N

!
I

e

Lane when LMFC Offset = N+1

I

I

|

stic Buffer Output |
on all Lanes ameeee {

|
|
|
|
|
|
|
|
Data stored in Elastic Buffer for Latest |
|
|

|
I
o1]| |s1| -------- -I o1 | .. 31
EMC Offset = N) ‘ B0 MB E-1 B0
I
stic Buffer Output ‘
) S S N 3 e Y
EMC Offset = N) MBO MBE-1 MBO g

Figure 78. Impact of LEMC Offset on Elastic Buffer Depth in JESD204C Mode

Programming the LMFC Offset for a Deframer
There are three ways to program the LFMC offset for a given deframer.

1. By modifying the profile file being used
2. By using the adi_ADRV903x_DeframerCfg data structure
3. By using the DfrmLmfcOffsetSet() API method

Each method is addressed in the following sections.

Setting the LMFC/LEMC Offset in the Profile File

There is a deframer_Imfc_offset field for each of the two deframers in the profile file. This field corresponds to the LMFC offset in JESD

204B mode, and to the LEMC offset in JESD 204C mode. It can be set to a decimal value between 0 and (K x S) - 1 (where K is the

number of frames per multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). For example, for the
ADRV903X_UC48 204C_8T8R20R_NLS.json file, the “deframer_Imfc_offset " field is located around Line 669 for Deframer 0 and around Line
721 for Deframer 1 (see Figure 79).

analog.com Rev. B | 82 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

255,

255,

255,

255,

255
1,
"deframer_K": 0o,
"deframer_E": O,
"deframer_S": o,
"deframer_subclass": 1,
"deframer_bankId": o,
"deframer_deviceId": o,
"deframer_lane@Id": 0,
"deframer_syncbOutSelect”: 3,
"deframer_syncbOutLvdsMode": 1,
"deframer_syncbOutLvdsPnInvert”: o
"deframer_syncbOutCmosSlewRate"™: @
"deframer_syncbOutCmosDrivelLevel":
"deframer_newSysrefOnRelink": o,
"deframer_sysrefForStartup”: o,
"deframer_sysrefNShotEnable": @,
"deframer_sysrefNShotCount™”: 0,
"deframer_sysrefIgnoreWhenLinked":
"deframer_lmfc_offset": o,
"deframer_scramble": true

"deframer_M": 9,
"deframer_sample xbar": [
128,

Figure 79. Deframer 0 deframer_Imfc_offset Field for the ADRV903X_UC48_204C_8T8R20R_NLS.json File

Note that the device must be reprogrammed after changing an LMFC/LEMC offset in the profile file and loading it into Arm memory for
the change to take effect. Also note that if the goal is to sweep the LMFC/LEMC offset values for test purposes without any need for

RF performance (for example, to determine the optimal LMFC/LEMC value), it is not necessary to run the init cals when programming the
transceiver. Not running the init cals make the programming process quicker. For this case, it is quicker to just use the API method.

Setting the LMFC/LEMC Offset in the Adi_ADRV903x_DeframerCfg_t Data Structure

An alternative way of programming the LMFC/LEMC offset consists in using the ImfcOffset field of the adi_ADRV903x_DeframerCfg data
structure for the relevant deframer (see Figure 80). Note that the device must be reprogrammed after changing the LMFC/LEMC offset for

a given deframer in the adi_ADRV903x_DeframerCfg data structure for the change to take effect. Also note that if the goal is to sweep the
LMFC/LEMC offset values for test purposes without any need for RF performance (for example, to determine the optimal LMFC/LEMC value), it
is not necessary to run the init cals when programming the transceiver. Not running the init cals make the programming process quicker.

analog.com

Rev. B | 83 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

typedef struct adi_adrv903x DeframerCfg
{

uint8_t enableJesd204C; /*1< 1= Enable JESD204C framer, 0O = use JESD204B framer */
uint8_t bankId; /*!< Extension to Device ID. Range is 0..15 , bankId is not s
uint8 t deviceld; /*!< Link identification number. Range is 0..255 */

uint87t laneId[ADI_ADRVGEN6 MAX DESERIALIZER LANES];

uint8 t jesd204M; /*1< Number of DACs (0, 2, or 4) - 2 DACs per transmit chain
uintl6é t jesd204K; /*1< Number of frames in a multiframe. Default = 32, F*K = mc
uint8 t jesd204F; /*1< Number of bytes(octets) per frame . */

uint8_t jesd204Np; /*1< converter sample resolution (12, 1l6) */

uint8_t jesd204E; /*1< JESD204C E parameter. This is E -1 value. */

uint8_t decrambling; /*!< decrambling off if decramble = 0, if decramble > 0 decra
uint8 t deserializerLanesEnabled; /*!< Deserializer lane select bit field. Where, [0] = LaneO e
uintlé t lmfcoffsetb /*1< LMFC offset value to adjust deterministic latency. */
uint8 t syncbOutSelect; /*1< Selects deframer SYNCBOUT pin (0 = SYNCBOUTO, 1 = SYNCBC
uint8 t syncbOutLvdsMode; /*1< Ignored if syncbOutSelect = 3. Otherwise 1 - enable LVDS
uint8_ t syncbOutLvdsPnInvert ; /*1< Ignored if syncbOutSelect = 3. Otherwise 0 - syncb LVDS

uint8 t syncbOutOCmosDriveStrength; /*!< CMOS output drive strength. Max = 15 */
uint8_t syncbOutlCmosDriveStrength; /*!< CMOS output drive strength. Max = 15 */
adi_adrvgen6 DeserLaneXbar t deserializerLaneCrossbar; /*!< Lane crossbar to map physical lanes

adi_adrvgen6é DacSampleXbarCfg t dacCrossbar; /*!< Deframer output to DAC mapping */
uint8 t newSysrefOnRelink; /*!< Flag for determining if SYSREF on relink should be set. Wh
uint8 t sysrefForStartup; /*!< Suggested to enable for deframer so deframer will not asse
uint8 t sysrefNShotEnable; /*1< 1 = Enable SYSREF NShot (ability to ignore first rising ed
uint8_ t sysrefNShotCount; /*1< Count value of which SYSREF edge to use to reset LMFC phas
uint8_t sysrefIgnoreWhenLinked; /*!< When JESD204 link is up and valid, 1= ignore any sysref pu
uint32_t igRate_ kHz; /*1< Framer I/Q rate */

uint32_t laneRate kHz; /*!< Framer Lane rate */

} adiiadrv9O3X7Deframercfgit;
Figure 80. LMFC Offset Field in adi_ADRV903x_DeframerCfg Data Structure

Note that a SYSREF pulse must be applied and then the link between the JESD framer and JESD deframer of the transceiver must be
reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the change to take effect.

Setting the LMFC/LEMC Offset Through API

Itis possible to set the LMFC/LEMC offset value by using the API method or function, DfrmLmfcOffsetSet(). You just need to select either
Deframer0 or Deframer1 and pass an ImfcOffset parameter.

The valid range of ImfcOffset adjustment values is 0 to (K x S) = 1 (where K is the number of frames per multiframe/extended multiblock, and S
is the number of samples per converter per frame cycle).

Note you should restablish the link between the JESD framer and the transceiver JESD deframer after changing the LMFC/LEMC offset. To do
this, you should toggle the DeframerLinkStateSet() and also toggle the DeframerSysrefCtriSet(). A new Sysref is not required.

Reading Back the Buffer Depths for Each Deframer
The AP function adi_ADRV903x_CoreBufDepthGet can be used to readback the deframer FIFO depth for each of the deframers.

In JESD204B mode, the unit of the values read back in those registers is 4 octets. In other words, an increment of the buffer depth value read
back by 1 unit corresponds to an actual increment by 4 octets. The values read back range from 0 to (K x F)/4 (where K is the number of
frames per multiframe, and F is the number of octets per lane in a frame cycle).

In JESD204C mode, the unit of the values read back in those registers is 8 octets. In other words, an increment of the buffer depth value read
back by 1 unit corresponds to an actual increment by 8 octets. The values read back range from 0 to E x 32 (where E is the number multiblocks
in an extended multiblock). Note that the size of the elastic buffer is 512 octets. When E > 2, the maximum buffer depth values read back are
therefore limited to 64, which corresponds to 512 octets.

Note that the values reported in each of those registers correspond to a value based on the positions of the elastic buffer read and write
pointers. The value has a fixed offset and does not represent the exact number of octets in the elastic buffer.

Selecting the Optimal LMFC/LEMC Offset for a System

The buffer depths are expected to slightly change from power up to power up or from one JESD link establishment to another due to the
variance in, for example, synchronization delays and physical lane skews. They are also expected to slightly change from system to system due
to process, voltage and temperature (PVT) variations.

analog.com Rev. B | 84 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

It is therefore recommended to select an LMFC/LEMC offset value resulting in optimal buffer depths to account for those variations and
maintain deterministic latency on all boards for a given system.

JESD API FUNCTIONS
Table 28. List of JESD Related API Functions

API Method Name

Comments

adi_ADRV903x_AdcSampleXbarSet()
adi_ADRV903x_AdcSampleXbarGet()

adi_ADRV903x_DacSampleXbarSet()
adi_ADRV903x_DacSampleXbarGet()
adi_ADRV903x_FramerCfgGet()
adi_ADRV903x_DeframerCfgGet()
adi_ADRV903x_FramerLinkStateGet()
adi_ADRV903x_FramerLinkStateSet()
adi_ADRV903x_DfrmPrbsCountReset()
adi_ADRV903x_DeframerLinkStateGet()
adi_ADRV903x_DeframerLinkStateSet()
adi_ADRV903x_DfrmPrbsCheckerStateSet()
adi_ADRV903x_DfrmPrbsCheckerStateGet()
adi_ADRV903x_FramerSysrefCtriSet()
adi_ADRV903x_FramerSysrefCtriGet()
adi_ADRV903x_DeframerSysrefCtriSet()
adi_ADRV903x_DeframerSysrefCtrGet()
adi_ADRV903x_FramerTestDataSet()
adi_ADRV903x_FramerTestDataGet()
adi_ADRV903x_DfrmPrbsErrCountGet()
adi_ADRV903x_SerializerReset()
adi_ADRV903x_FramerLmfcOffsetSet()
adi_ADRV903x_FramerLmfcOffsetGet()
adi_ADRV903x_DfrmLmfcOffsetSet()
adi_ADRV903x_DfrmLmfcOffsetGet()
adi_ADRV903x_DfrmPhaseDiffGet()
adi_ADRV903x_FramerStatusGet()
adi_ADRV903x_DeframerStatusGet()
adi_ADRV903x_DeframerStatusGet_v2()
adi_ADRV903x_DfrmErrCounterStatusGet()
adi_ADRV903x_DfrmErrCounterReset()
adi_ADRV903x_Dfrm204cErrCounterStatusGet()
adi_ADRV903x_Dfrm204cErrCounterReset()
adi_ADRV903x_DfrmLinkConditionGet()
adi_ADRV903x_DfrmFifoDepthGet()
adi_ADRV903x_DfrmCoreBufDepthGet()
adi_ADRV903x_DfrmllasMismatchGet()
adi_ADRV903x_DfrmllasMismatchGet_v2()
adi_ADRV903x_FramerSyncbModeSet()
adi_ADRV903x_FramerSyncbModeGet()
adi_ADRV903x_FramerSyncbStatusSet()
adi_ADRV903x_FramerSyncbStatusGet()
adi_ADRV903x_FramerSyncbErrCntGet()
adi_ADRV903x_FramerSyncbErrCntReset()

Sets the ADC sample crossbar for the specified ADRV9I03x framer.

Gets the ADC sample crossbar converter configuration map for the chosen JESD204B/C framer

converter.

Sets the DAC sample crossbar for the specified ADRV9I03x deframer.
Gets the DAC sample crossbar for the specified ADRV903x deframer.
Gets the ADRV903x Framer's configuration.

Gets the ADRV903x Deframer's configuration.

Gets the link states for all the framers.

Sets the link states for all the framers.

Reset Deframer PRBS Count error.

Gets the link states for all the deframers.

Sets the link states for all the deframers.

Sets the lane/sample PRBS checker configuration.

Gets the lane/sample PRBS checker configuration.

Enables or disables the external SYSREF signal to the framers.
Get the status of the external SYSREF signal to the framers.
Enables or disables the external SYSREF signal to the deframers.
Get the status of the external SYSREF signal to the deframers.
Sets the PRBS type and enables/disables framer PRBS generation.
Gets the PRBS framer test mode and inject points.

Gets the deframer sample PRBS error counts.

Resets the serializer.

Sets LMFC offset for selected framer.

Gets LMFC offset for selected framer.

Sets LMFC offset for selected deframer.

Gets LMFC offset for selected deframer.

Gets phase diff value for selected deframer.

Get framer status for the selected framer.

Get deframer status for the selected framer.

Get deframer status for the selected framer.

Get deframer status for the selected deframer. JESD204B only.
Clear the error counters selected deframer. JESD204B only.

Get deframer status for the selected deframer. JESD204C only.

Clear the error counters selected deframer. Support for only JESD204C.

Get deframer link condition.

Get the deframer FIFO depth.

Get the deframer core buffer depth.

Compares received ILAS to programmed ILAS. JESD204B only.
Compares received ILAS to programmed ILAS. JESD204B only.
Set the framer JESD204B syncb signal mode to SPI or PIN mode.
Get the framer JESD204B syncb signal mode to SPI or PIN mode.
Get the framer JESD204B syncb signal status.

Set the framer JESD204B syncb signal status.

Get the framer JESD204B syncb signal error counter.

Reset the framer JESD204B syncb signal error counter.

analog.com

Rev. B | 85 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

Table 28. List of JESD Related API Functions (Continued)

API Method Name

Comments

adi_ADRV903x_DeframerSyncbErrCntGet()
adi_ADRV903x_DeframerSyncbErrCntReset()
adi_ADRV903x_DfrmlrgMaskGet()
adi_ADRV903x_DfrmlIrgMaskSet()
adi_ADRV903x_DfrmirgSourceReset()
adi_ADRV903x_DfrmlrgSourceGet()
adi_ADRV903x_DfrmErrCntrCntriSet()
adi_ADRV903x_DfrmErrCntrCntriGet()
adi_ADRV903x_RunEyeSweep()
adi_ADRV903x_RunEyeSweep_v2()
adi_ADRV903x_RunVerticalEyeSweep()
adi_ADRV903x_RunVerticalEyeSweep_v2()
adi_ADRV903x_FramerTestDatalnjectError()
adi_ADRV903x_SerLaneCfgSet()
adi_ADRV903x_SerLaneCfgGet()
adi_ADRV903x_RxTestDataSet()
adi_ADRV903x_RxTestDataGet()

Get the deframer JESD204B syncb signal error counter.
Reset the deframer JESD204B syncb signal error counter.

Gets the JESD204B IRQ clear register. There is one register for all deframers
Sets the JESD204B IRQ clear register. There is one register for all deframers.
Reset the JESD204B IRQ clear register. There is one register for all deframers.

Get the JESD204B IRQ source registers for the specified deframer.
Configure or reset the JESD204B deframer error counters.

Get the configuration for the JESD204B deframer error counters.
Run horizontal eye sweep.

Run horizontal eye sweep.

Run vertical eye sweep.

Run vertical eye sweep.

Injects an error into the framer test data by inverting the data

Set the serializer lane configuration parameters for the chosen lane.
Get the serializer lane configuration parameters for the chosen lane.

Set up a test signal to be sent out the framer instead of the ADC output.

Get the test signal being sent out the framer instead of the ADC output.

analog.com

Rev. B | 86 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

The stream processor is a processor within the ADRV903x which performs a series of configuration tasks based on an event. When requested
the stream processor performs a series of pre-defined actions which are loaded into the stream processor during initialization. This processor
takes advantage of the internal register bus speed for efficient execution of commands. The stream processor accesses and modifies registers
independently, avoiding the need for ARM interaction.

The stream processor executes streams or series of tasks for:

» Tx datapath Enable/Disable
» Rx datapath Enable/Disable
» ORXx datapath Enable/Disable

The stream processor image changes with different configurations. For example, the stream that enables the receivers are different depending
on the JESD configuration. It is therefore necessary to save a stream image for each configuration. When the user saves the configuration files
(.bin) using the configurator, a stream binary image is generated automatically (a separate .bin file). This stream image file should then be used
when initializing the device with the configuration in question. It is also necessary to save a stream image file every time the firmware version is
updated as stream image files can be specific to versions of ARM and API.

Stream files could differ for several reasons, some examples are:

» The framer choices for ORx and Rx
» Link sharing profiles use different stream files to non-linksharing profiles
» If floating point formatting is being used on Rx and ORx paths

Nineteen separate stream processors exist in the device, each of which is responsible for the execution of some dedicated functionality within
the device. These can be divided into two broad categories: slice stream processors and the core stream processor.

SLICE AND CORE STREAM PROCESSORS

There are eighteen slice stream processors, one each for the eight Tx, Rx datapaths, and two for the ORx datapaths. These ORx datapaths
are not shared with the internal Tx channel loopback paths that facilitate data collection during the various Tx calibrations however for external
LOL calibrations the ORx path is used. The existence of individual slice stream processors for each datapath enables true real-time parallel
operation of all individual Tx, Rx and ORXx datapaths.

Each slice stream processor may only access the digital register sub maps corresponding to its specific functionality. For example, the Tx slice
stream processors can only access the Tx digital sub maps.

The core stream processor has access to the entire device. The core stream processor services GPIO pin-based streams and any custom
streams that are cross domain.

STREAM PROCESSOR API FUNCTIONS

Table 29. Stream Processor API Functions

API Method Name Comments
adi_ADRV903x_StreamVersionGet() Reads back the version of the Stream binary loaded.
adi_ADRV903x_StreamProcErrorGet() Sweeps through all 19 stream processors and checks for failures and errors.

SYSTEM CONTROL

The signal paths within the device can be controlled by either the API or through pin control mode. API control relies on the SPI bus and its
inherent unpredictable timing with respect to register access. For critical time alignment, pin control is recommended. APl mode is the default
on power up.

Pin Control

The individual channels can also be controlled using a series of enable pins. In pin control mode, the Rx and Tx signal chains are

controlled using eight TRX[A-H]_CTRL pins. Any one of the TRX[A-H]_CTRL pins can control any of the eight Rx and/or eight Tx paths. A
TRXJA-H]_CTRL pin can even control multiple paths at the same time. Using the configurator, the user will define what TRX[A-H]_CTRL pins
control what Tx and Rx channels. When these TRx pins are toggled high, the pre-determined signal chain(s) are enabled. When these pins are
toggled low, the pre-determined signal chain(s) are disabled.

analog.com Rev. B | 87 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

The ORXx paths are controlled by dedicated pins, ORXA_CTRL and ORXB_ CTRL. When these pins are toggled high, the relevant signal chain
is enabled. When these pins are toggled low, the relevant signal chain is disabled.

Please see for recommendations on what to do with unused TRX_CTRL pins.

TRXA_CTRL

TRXB_CTRL

iaTxo_chL_SEL[z;o]

TRXC_CTRL

deT><17c:rR|_7SEL[2:o]

TRXD_CTRL

B‘F Tx Enable API/SPI p .
Tx2_CTRL_SEL[2:0] 1

TRXE_CTRL

Tx EnablePin |
P

ﬁdeiCI'RLj EL[2:0]
N RADIO_CONTROL_

TRXF_CTRL

SPI_MODE

wTXILCI'RLiS EL[2:0]

TRXG_CTRL

kaxSfCI’RLﬁS EL[2:0]

TRXH_CTRL

BijTxﬁJ’.‘I’RLﬁS EL[2:0]

CORE

BfT><7_ch|._ssL[z:o]

Figure 81. TRXn_CTRL Pins for Tx Slice

3 Tx Enable ARM

RADIO_CONTROL |
ARM_MODE |

Tx Slice
Stream
Processor

TX SLICE

Figure 81 shows that each TRX[A-H]_CTRL pin can be wired to control any Tx datapath or multiple Tx datapaths at the same time. The value
of Tx#_CTRL_SEL[2:0] in Table 30 dictates what TRX[A-H]_CTRL pin a given Tx slice is pointing to. The mux RADIO_CONTROL_SPI_MODE
will choose whether the TRX[A-H]_CTRL pins or the API (via the SPI) controls the enable/disable of the Tx datapaths. Further on in the mux
chain the RADIO_CONTROL_ARM_MODE chooses whether the ARM or the API/ TRX[A-H]_CTRL pins are able to control the Tx datapaths.
This is because the ARM needs to have priority over when it can control the Tx datapaths for calibrations etc. and thus when the ARM takes

control of the signal paths it cannot be stopped.
Table 30. Tx#_CTRL_SEL[2:0]

TRXPIN Tx#_CTRL_SEL[2:0]
TRXA_CTRL 000
TRXB_CTRL 001
TRXC_CTRL 010
TRXD_CTRL 011
TRXE_CTRL 100
TRXF_CTRL 101
TRXG_CTRL 110

analog.com

Rev. B | 88 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

Table 30. Tx#_CTRL_SEL[2:0] (Continued)

TRXPIN

Tx#_CTRL_SEL[2:0]

TRXH_CTRL

M

TRXA_CTRL

TRXB_CTRL

f’RxO_CFRLVSEL[Z:O]

TRXC_CTRL

S?Rxl,chL,s EL[2:0]

TRXD_CTRL

}] Rx Enable ARM,

Rx Enable API/SPI
Rx2_CTRL_SEL[2:0]

TRXE_CTRL

TRXF_CTRL

SPI_MODE

l Rx3_CTRL_SEL[2:0]

¥Rx4_CFRL_5EL[2:O]

TRXG_CTRL

f Rx5_CTRL_SEL[2:0]

TRXH_CTRL

¢ Rx6_CTRL_SEL[2:0]

CORE

= = =5 =B =B =5 = =

f Rx7_CTRL_SEL[2:0]

Figure 82. TRXn_CTRL Pins for Rx Slice

RADIO_CONTROL |
RADIO_CONTROL_ ARM_MODE |

RxSlice
Stream
Processor

RX SLICE

Figure 82 shows each TRX[A-H]_CTRL pin can be wired to control any Rx datapath or multiple Rx datapaths at the same time. The value of
Rx#_CTRL_SEL[2:0] as stated in Table 31 will dictate what TRX_EN pin a given Rx slice is pointing to. The mux Rx#_CTRL_SEL[2:0] is set
to point at a given TRX[A-H]_CTRL. The mux RADIO_CONTROL_SPI_MODE will choose whether the TRX_EN pins or the API (via the SP!)
controls the enable/disable of the Rx datapaths. Note however that further on in the mux chain the RADIO_CONTROL_ARM_MODE chooses
whether the ARM or the API/ TRX[A-H]_CTRL pins are able to control the Rx datapaths. This is because the ARM needs to have priority over
when it can control the Rx datapaths for calibrations etc. and thus when the ARM takes control of the signal paths it cannot be stopped.

Table 31. Rx#_CTRL_SEL[2:0]

TRXPIN Rx#_CTRL_SEL[2:0]
TRXA_CTRL 000
TRXB_CTRL 001
TRXC_CTRL 010
TRXD_CTRL 011
TRXE_CTRL 100
TRXF_CTRL 101
TRXG_CTRL 110
TRXH_CTRL M

analog.com

Rev. B | 89 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

Configuring the TRX[A-H]_CTRL Pins for Tx and Rx Pin Control

Although this can be configured in the configurator here is an example of how to manually edit the profile JSON file for pin control. On line
1767 in the profile JSON file there is an array called txEnMapping and the next eight lines are its elements. Element 0 corresponds to the

pin TRXA_CTRL and this continues to element 7 which corresponds to the pin TRXH_CTRL. The decimal value placed in this element is

the Tx channel or Tx channels that will be enabled in Tx pin control mode. Since there are up to 8 Tx channels that can be assigned to a
TRX[A-H]_CTRL pin there is a bit wise mapping where bit[0] corresponds to Tx0 and bit[7] corresponds to Tx7. An example is shown below to
control Tx0-Tx3 when TRXA_CTRL is triggered and Tx4-Tx7 when TRXB_CTRL is triggered. Tx0-Tx3 is bit[0:3] so in binary we get 00001111b
and in decimal that is 15 and Tx4-Tx7 is bit[4:7] so in binary we get 11110000b and in decimal that is 240. Therefore, a decimal value of 15 is
placed in element 0 and a decimal value of 240 is placed in element 1.

"txEnMapping": [
15,
120,
0,

I

~

I

0
0
0,
0
0
1

On line 1787 in the profile JSON file there is an array called rxEnMapping and the next eight lines are its elements. The same concept as above
applies. An example is shown below to control Rx0-Rx2 when TRXE_CTRL is triggered and Rx3-Rx7 when TRXG_CTRL is triggered. Rx0-Rx2
is bit[0:2] so in binary we get 00000111b and in decimal that is 7 and Rx3-Rx7 is bit[3:7] so in binary we get 11111000b and in decimal that is
248. Therefore, a decimal value of 7 is placed in element 4 and a decimal value of 248 is placed in element 6.

"rxEnMapping": [

SYSTEM CONTROL API FUNCTIONS
Table 32. List of System Control Related API Functions

API Method Name Comments

adi_ADRV903x_RadioCtrICfgSet() Sets the enable/disable of SPI or PIN mode for radio control. The device defaults to SPI mode on
power up so this APl will need to be called to enable pin mode if necessary.

adi_ADRV903x_RadioCtriCfgGet() Gets the radio control mode. SPI or PIN.

adi_ADRV903x_RadioCtrITxRXEnCfgSet() Sets the Tx/Rx channels to be turned on and off by the TRX[A-H]_CTRL pins. Will also need to be
considered for antenna cal.

adi_ADRV903x_RadioCtrITXRXEnCfgGet() Gets the Tx/Rx channels that are controlled by the TRX[A-H]_CTRL pins.

analog.com Rev. B | 90 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

Table 32. List of System Control Related API Functions (Continued)
API Method Name Comments

adi_ADRV903x_RxTxEnableSet() Enables or disables all Rx, ORx and Tx channels that are in SPI control mode (see
adi_ADRV903x_RadioCtrICfgSet). Has no effect on channels that are not set to SPI control mode.
Furthermore, channels that are not initialized will not be enabled.

For use cases where pin mode is not required, this function can be used to enable/disable the
Rx/ORx/Tx signal paths. This function should be called after initialization and loading the stream

processor.
adi_ADRV903x_RxTxEnableGet() Get SPI mode enable/disable status of Rx/Tx/ORXx.
adi_ADRV903x_ChannelEnableGet() Get the enable/disable status of each channel. Works in Pin and SPI control.

TX TO ORX MAPPING

The Tx to ORx mapping concept is vital to obtain the best performance from any calibration that uses an external loopback path for data
acquisition. For calibrations that utilize an external loopback path, such as Tx LOL tracking, the ARM must be informed which Tx channel it is
currently observing at each ORx channel in order to apply corrections to the appropriate channel. The means to provide this information to the
ARM is called Tx to ORx mapping.

There are two interfaces that can be used to indicate the Tx to ORx mapping condition.

1. APl Command Interface: Uses an APl command adi ADRV903x_TxToOrxMappingSe(...) to indicate which Tx channel is currently input to
either ORx channels.

a. Advantage: No GPIO pins are required.

b. Disadvantage: To synchronize that the external path connection matches the Tx to ORx mapping state indicated to the ARM is more
challenging than the pin control method. This leads to a possible scenario that the external path connection is in one state while the Tx
to ORx mapping state internal to the transceiver is in a different state. This could lead to issues with algorithm performance. May not be
suitable for TDD applications due to higher overhead to indicate Tx to ORx mapping to ARM.

2. Pin Control Interface: Uses from 2 to 8 GPIO pins to indicate the Tx to ORx mapping state.

a. Advantage: Much easier to achieve synchronization between the external path connection and Tx to ORx mapping state as the
signaling lines that control an external switch can be used to also indicate the Tx to ORx mapping state provided that logic levels for the
transceiver input pins are met.

b. Disadvantage: GPIO pins are required. Some modes do not have a way to indicate that there is no Tx channel observable at the ORx
input.
The following section goes into detail regarding the pin interface for Tx to ORx mapping.
TX TO ORX MAPPING: PIN INTERFACE

There are three aspects to stream processor configuration that needs to be input to generate the proper stream binary for a desired Tx to ORx
mapping. In these modes, the GPIO input pins send a signal to the stream processor which indicates the mapping to the ARM processor so it
may properly run the calibrations. These are:

1. Tx Observability: The user must configure a Tx Observability attribute for each Tx channel. This defines which ORx channel a specific Tx
channel can be observed by. A single Tx channel can only be observable to one ORx channel. It is invalid for any Tx to be observed at both
ORx0 and ORx1.

2. GPIO Mapping Mode: The available modes are listed below. For modes featuring fewer pins, there are additional constraints upon the user
in terms of configuration of the feedback path.

» 2-pin Mode
» 3-pin Mode
» 4-pin Mode
» 6-pin Mode
» 8-pin Mode

3. GPIOs for Tx to ORx Mapping: The user must define which GPIO pins will be used to indicate the Tx to ORx mapping. Any of the 24 digital
GPIO pins can be used to indicate the mapping.

analog.com Rev. B | 91 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

The following section provides specific details for the GPIO mapping modes available to describe what each pin does in the application. For all
the tables in the following section, the term TxToORxMap[dx:d0] is the control word for the Tx to ORx mapping state — these can be assigned to
any GPIO pin. Changing any of the GPIOs in the TxToOrxMap word will latch the specified Tx to ORx mapping.

Pin Interface: 2-Pin Mode

The 2-pin mode represents the minimum GPIO requirement for Tx to ORx mapping. A constraint is that one mapping must always be active at
any time. TxN in the table below can be any Tx with the constraint that no Tx is mapped to ORx0 and ORx1 at the same time. The user can
define which Tx is mapped in the ACE GUI, the profile JSON file or via an API.

Table 33. Tx to ORx Mapping 2-Pin Mode Bit Description

TxToOrxMap[d1:d0] Description

0 TxN — ORX0 and TxN — ORX1
1 TxN — ORX0 and TxN — ORX1
2 TxN — ORX0 and TxN — ORX1
3 TxN — ORX0 and TxN — ORX1

Pin Interface: 3-Pin Mode

The 3-pin mode extends the 2-pin mode by adding a third GPIO pin to indicate that there is no observable Tx channel at both ORXx ports.
Table 34. Tx to ORx Mapping 3-Pin Mode Bit Description

TxToOrxMap([d2:d0] Description

0 TxN — ORX0 and TxN — ORX1

1 TxN — ORX0 and TxN — ORX1

2 TxN — ORX0 and TxN — ORX1

3 TxN — ORX0 and TxN — ORX1

>=4 No observable Tx channel at either ORx channel

Pin Interface: 4-Pin Mode

The 4-pin mode is unique in the sense that the real time status of the pins do not indicate the full mapping for both ORx0 and ORx1. The
advantage of this mode is that every Tx can be routed into a single ORx - provided the Tx observability allows it. The disadvantages are that
ORx0 and ORx1 mappings cannot be changed simultaneously and the user cannot specify that no Tx is connected to an ORXx.

At any given time, the pins indicate the status of one ORx depending on the MSB of the TxToORxMap word. In this mode, the MSB of the
TxToOrxMap selects which ORx is to receive the Tx mapping indicated by the 3 LSBs. The following tables describe the bit mapping in this
mode.

Table 35. Tx to ORx Mapping 4-Pin Mode TxToOrxMap[d3] Bit Description

TxToOrxMap[d3] Description

0 ORXx0 Tx Mapping Select

1 ORx1 Tx Mapping Select

Table 36. Tx to ORx Mapping 4-Pin Mode TxToOrxMap[d2:d0] Bit Description

TxToOrxMap([d2:d0] Description

0 TxN Observable at ORx indicated by TxToORxMap[d3]
1 TxN Observable at ORx indicated by TxToORxMap[d3]
2 TxN Observable at ORx indicated by TxToORxMap[d3]
3 TxN Observable at ORx indicated by TxToORxMap[d3]
4 TxN Observable at ORx indicated by TxToORxMap[d3]
5 TxN Observable at ORx indicated by TxToORxMap[d3]
6 TxN Observable at ORx indicated by TxToORxMap[d3]
7 TxN Observable at ORx indicated by TxToORxMap[d3]

analog.com Rev. B | 92 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

Pin Interface: 6-Pin Mode

The 6-pin mode is like the 3-pin mode except the interface is extended such that independent control of Tx to ORx mapping on either side of
the chip is enabled. The bit mapping is described below.

Table 37. Tx to ORx Mapping 6-Pin Mode TxToOrxMap[d2:d0] Bit Description

TxToOrxMap[d2:d0] Description

0 TxN — ORX0

1 TxN — ORX0

2 TxN — ORX0

3 TxN — ORX0

>=4 No observable Tx channel at ORx0
Table 38. Tx to ORx Mapping 6-Pin Mode TxToOrxMap[d5:d3] Bit Description

TxToOrxMap[d5:d3] Description

0 TxN — ORX1

1 TxN — ORX1

2 TxN — ORX1

3 TxN — ORX1

>=4 No observable Tx channel at ORx1

Pin Interface: 8-Pin Mode

The 8-pin mode provides an extension of the 4-bit mode which allows simultaneous control of the mapping to ORx0 and ORXx1 in contrast to the
4-pin mode which only allows individual control of the mapping to ORx0 and ORx1. The bit mapping is described below:

Table 39. Tx to ORx Mapping 8-Pin Mode TxToOrxMap[d3] Bit Description

TxToOrxMap[d3] Description

0 ORXx0 observes some Tx indicated by TxToOrxMap[d2:d0]
1 ORXx0 does not observe a Tx channel

Table 40. Tx to ORx Mapping 8-Pin Mode TxToOrxMap[d6:d4], TxToOrxMap[d2:d0] Bit Description

TxToOrxMap[d6:d4] OR TxToOrxMap[d2:d0] Description

0 TxN Select

1 TxN Select

2 TxN Select

3 TxN Select

4 TxN Select

5 TxN Select

6 TxN Select

7 TxN Select

Table 41. Tx to ORx Mapping 8-Pin Mode TxToOrxMap[d7] Bit Description

TxToOrxMap[d7] Description

0 ORx1 observes some Tx indicated by TxToOrxMap[d2:d0]
1 ORXx1 does not observe a Tx channel

TX TO ORX MAPPING API FUNCTIONS
Table 42. Tx to ORx Mapping API Functions

API Method Name Comments

adi_ADRV903x_TxToOrxMappingConfigGet() Gets the Tx to ORx Mapping Configuration setup.

adi_ADRV903x_TxToOrxMappingSet() Sets the Tx to ORx external signal routing for Tx calibrations that use the ORx for observation.

adi_ADRV903x_TxToOrxMappingGet() Gets the Tx to ORXx external signal routing for Tx calibrations that use the ORX for
observation.

analog.com Rev. B | 93 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

STREAM PROCESSOR AND SYSTEM CONTROL

Table 42. Tx to ORx Mapping API Functions (Continued)

API Method Name Comments

adi_ADRV903x_TxToOrxMappingPresetAttenSet() Sets ORXx preset Atten value for selected Tx Channel(s) to be used when mapped to an ORx
Channel.

adi_ADRV903x_TxToOrxMappingPresetAttenGet() Retrieves ORXx preset Atten value for selected Tx Channel to be used when mapped to an
ORx Channel.

adi_ADRV903x_TxToOrxMappingPresetAttenGet_v2() Retrieves ORXx preset Atten value for selected Tx Channel to be used when mapped to an
ORx Channel.

adi_ADRV903x_TxToOrxMappingPresetNcoSet() Sets ORx preset NCO values for selected Tx Channel(s) to be used when mapped to an ORx
Channel.

adi_ADRV903x_TxToOrxMappingPresetNcoGet() Gets ORx preset NCO values for selected Tx Channel to be used when mapped to an ORx
Channel.

adi_ADRV903x_TxToOrxMappingPresetNcoGet_v2() Retrieves ORXx preset NCO values for selected Tx Channel to be used when mapped to an
ORx Channel.

analog.com Rev. B | 94 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

FRONT END ANALOG SIGNAL PATH

TRANSMIT PATH

Figure 86 below illustrates the transmit analog front end used in the ADRV903x family of devices. It is duplicated eight times for each
transmitter. Each transmitter consists of a tuning baseband low pass filter, up-convert quadrature mixers and a RF variable gain amplifier. The
baseband filter has a tunable bandwidth of 300MHz to 840MHz. The bandwidth is tuned at initialization via the loopback path and implemented
in the ARM firmware. The up converter has fixed gain which reduces quadrature errors that would be associated with attenuation changes in
the mixer stages. A unique architecture of up converters was chosen to reduce 3 and 5™ harmonics. By lowering these harmonics reduces the
linearity requirements of the RF VGA as well as reducing the risk of aliasing these harmonics in the TX loopback path.

T

) P

X

Figure 83. Transmit Analog Front End Block Diagram

The RF VGA has 32dB of attenuation range and higher gain resolution is achieved by use of digital gain adjustments. Transmit power control is
implemented to minimize the interaction with the baseband processor.

TX ATTENUATION CONTROL

The ADRV903x uses an accurate and efficient method of transmit power control (Tx attenuation control) that involves a minimum of interaction
with the baseband processor. The power control in the transmit chain is implemented with two variable attenuations, one in the digital domain
and one in the analog domain. Furthermore, the maximum output level of the transmitter can be adjusted between two levels, allowing a
tradeoff between linearity and LOL performance. There are two different modes available to control the attenuation setting of the transmitter.
The attenuation can be set immediately via the AP, incremented or decremented using GPIO pins to trigger the increment or decrement. See
the Digital GPIO Input Modes section for more details on GPIO attenuation controls.

The attenuation is controlled via a lookup table, which is programmed into the product during initialization. The lookup table maps a desired
value in dB to the appropriate analog and digital attenuation settings to be applied in the data path. The default table provides a range of 0 dB
to 41.95 dB of attenuation, with a step size of 0.05 dB, resulting in 840 available attenuation settings. The step size resolution of 0.05 dB cannot
be modified.

The Tx datapath can be configured to automatically ramp the attenuation to the maximum level under certain conditions, such as the JESD link
dropping or the Tx PLL unlocking, to prevent spurious transmission in the event of these types of system errors. See the PA Protection section
for more details.

TX ATTENUATION API FUNCTIONS

The following commands can be used after device initialization to re-configure and control the Tx attenuators settings. A short description of
each APl and any usage limitations are listed in Table 43. Details of the parameters, members, enums, etc. for each command are presented
in the doxygen help files included with each software build. Please refer to those files when developing your software code. The structures and
enumerators for these API functions are detailed in the doxygen documentation.

Table 43. List of Tx Attenuation Related API Functions

API Method Name Comments

adi_ADRV903x_TxAttenTableRead|() Get Tx RF output attenuation table data.

adi_ADRV903x_TxAttenSet() Set the desired attenuation in units of mdB.

adi_ADRV903x_TxAttenGet() Get the desired attenuation in units of mdB.

adi_ADRV903x_TxAttenCfgSet() Sets the configuration of the attenuation mechanism for one or more channel.

analog.com Rev. B | 95 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

FRONT END ANALOG SIGNAL PATH

Table 43. List of Tx Attenuation Related API Functions (Continued)

API Method Name Comments

adi_ADRV903x_TxAttenCfgGet() Gets the configuration of the attenuation mechanism for one or more channel.
adi_ADRV903x_TxAttenPhaseSet() Sets the Tx Attenuation phase. A bug in this API requires that you invert the sign in front of the phase.
adi_ADRV903x_TxAttenPhaseGet() Gets the Tx Attenuation phase.

adi_ADRV903x_TxAttenS0S1Set() A second mode of Tx attenuation control is the S0/S1 attenuation feature. In this mode, the Tx attenuation is

set as either SO (State 0) or S1 (State 1) and the level of a GPIO pin determines whether the Tx channel is
set into either SO or S1. Multiple Tx channels can use the same pin for S0/S1 state control.
adi_ADRV903x_TxAttenS0S1Get() A second mode of Tx attenuation control is the S0/S1 attenuation feature. In this mode, the Tx attenuation is
set as either SO (State 0) or S1 (State 1) and the level of a GPIO pin determines whether the Tx channel is
set into either SO or S1. Multiple Tx channels can use the same pin for S0/S1 state control.

adi_ADRV903x_TxAttenUpdateCfgSet() Sets the Tx attenuation update configuration for several channels: attenuation level source (S0, S1), update
trigger (GPIO, SPI, None).

adi_ADRV903x_TxAttenUpdateCfgGet() Gets the Tx attenuation update configuration for several channels: attenuation level source (S0, S1), update
trigger (GPIO, SPI, None).

adi_ADRV903x_TxAttenUpdate() Simultaneously update the Tx attenuation level for several channels. This function only has an effect for

channels that have already had their attenuation update trigger set to SPI using TxAttenUpdateCfgSet().

RECEIVER PATH

The ADRV903x RX path is instantiated eight times and shown in Figure 87. It consists of an RF attenuator followed by a current mode passive
mixer. The output current of the mixer is passed through a transimpedance amplifier (TIA) filter then digitized with continuous time pipeline
ADC. The digital baseband provides most of the filtering and decimation required. Analog power detectors are not in the signal chain but are

built into the ADC of each RX channel.

X

Figure 84. Receive Analog Front End Block Diagram

RF input is 100 ohms differential. Single ended 50-ohm sources would drive into a 1:2 balun. The RF attenuator is pi resistive network with 256
gain settings but only 0-32dB range is used. The RX AGC indexes the digital gain look up table to control the attenuation of the Rx front-end.
The methods of gain control is explained in the Gain Control Modes section.

RX MANUAL GAIN API FUNCTIONS
Table 44. Rx Manual Gain API Functions

API Method Name Comments

adi_ADRV903x_RxGainSet() Sets the Rx Channel Manual Gain Index. If the value passed in the gainindex parameter is within
range of the gain table minimum and maximum indices, the Rx channel gain index will be written to
the transceiver

adi_ADRV903x_RxGainGet() Reads the Rx AGC Gain Index for the requested Rx channel.

adi_ADRV903x_RxMgcGainGet() Reads the Rx MGC Gain Index for the requested Rx channel.

adi_ADRV903x_RxTempGainCompSet() Sets the temperature gain compensation parameter for Rx channel only.

adi_ADRV903x_RxTempGainCompGet() Gets the temperature gain compensation parameter for Rx channel only. Only one channel can be
retrieved per call.

adi_ADRV903x_RxGainTableLoad() Loads the Rx Gain Table csv file.

analog.com Rev. B | 96 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

FRONT END ANALOG SIGNAL PATH

Table 44. Rx Manual Gain API Functions (Continued)

API Method Name Comments
adi_ADRV903x_RxGainTableChecksumRead() Reads Rx Gain Table file checksum value.
adi_ADRV903x_RxGainTableChecksumCalculate() Calculates Rx Gain Table file checksum value.

OBSERVATION PATH

The ADRV903x Observation RX path is shown in Figure 85 and is instantiated two times for ORx1 and ORx2 paths. As shown the observation
path implements direct RF sampling. An RF ADC eliminates the need for a LO which will eliminate spurious often seen with LO coupling. The
attenuator is a resistor ladder to provide 16 dB attenuation in analog domain with roughly 1 dB step size. The attenuation is for differential
signals, but also works for common mode signals at least starting from 400MHz.The attenuator also provides 50 ohms on-chip RF matching for
ORXx input. The attenuator is designed to provide 0dB, 1dB, 6dB, and 12dB steps. The user must check the maximum operation input voltage
level to the attenuator. The API functions to adjust the attenuation of the ORXx are listed below.

ADC

Figure 85. Observation Receive Analog Front End and ADC Block Diagram

ORX ATTENUATION API FUNCTIONS
Table 45. ORx Attenuation API Functions

API Method Name Comments
adi_ADRV903x_OrxAttenSet() Set the desired attenuation in units of dB.
adi_ADRV903x_OrxAttenGet() Get the attenuation in units of dB.

analog.com Rev. B | 97 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

OVERVIEW

The ADRV903x has four phase locked loop (PLL) synthesizers: Clock, RF (x2), and SERDES. Each PLL is based on a fractional-N architecture
and consists of a reference clock divider, phase frequency detector, charge pump, loop filter, feedback divider and high-performance
voltage-controlled oscillator cores (VCO). The SERDES PLL VCO'’s tuning range is 8.125 GHz to 16.25 GHz. The CLK PLL, RF PLLO and RF
PLL1 VCOs have a tuning range of 7.1 GHz to 14.2 GHz. Each RF PLL drives its own local oscillator (LO) generator block. The output of the
LOGEN block is a divided version of the VCO frequency. The LO divide range goes in binary steps from 2 to 512. No external components

are required to cover the entire frequency range. The reference frequency for the PLL is a scaled version of the input device clock (DEVCLK).
Figure 86 below illustrates the PLL & associated distribution blocks used in the ADRV903x family of devices.

MCU, ADCs,
DACs, etc...
Clock Clock Rate Digital Clock
Synthesizer Generator Distribution T™X0/1/2/3
RF LOO
Generator TX4/5/6/7
RF RF LO1
Synthesizer 1 Generator RX0/1/2/3

Sysref

Receiver &
SYSREFP/N ———pp coolVer %

MCS State
Machine

RF
Synthesizer 0

REF CLK
Distribution

DEVCLKP/N »

v VvV VvV vV

SERDES
PLL REF

Serdes CLK /56 %
RX4/5/6/7
Generator { >

Serdes PHY \é

Figure 86. Synthesizer Interconnection and Clock/LO Distribution Block Diagram

Serdes
Synthesizer

DEVCLK

The external DEVCLK is used as a reference clock for the four synthesizers on chip and for optimum performance it needs to be a low noise,
high quality clock source. Connect the external clock source to the DEVCLKP (E11) and DEVCLKN (E12) pins via AC coupling capacitors and
terminate with 100 Q close to the device as shown in Figure 87. The device clock receiver is a noise sensitive differential RF receiver. The
frequency range and amplitude specs are in the data sheet. The equivalent AC Circuit is given in Figure 88.

100nF

E11 DEVCLKP

>

100Q
g ADRV903x

100nF

_| I E12 DEVCLKN

Figure 87. Device Clock Input Connections

analog.com Rev. B | 98 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

Without on Chip Term

Enabled
| | 580fF 210fF
: Laminate : T B
| I
| | I 100
~{ — ; A
| I
[I
| I
| I
| |
*{ | . (VAN
: : 100
| | . 1
[I - _
- 580fF 210fF
Balls Silicon
boundary = =

Figure 88. Equivalent AC Circuit

External Reference Clock (DEVCLK) Requirements

Each RF synthesizer takes the DEVCLK reference and multiplies it up to the required LO frequency. The phase noise performance at the final
frequency has a dependency on the phase noise of the input reference clock (DEVCLK).

The LO frequency is related to the reference clock by the following equation:
Fio = N X DEVCLK (8)

DEVCLK Noise Gain = 20 X LOG1o(N)x H(s) 9)

Where N is the multiplier applied to the device clock frequency to generate the desired LO frequency and H(s) is the PLL loop transfer
function. Inside the loop bandwidth, the noise power from the reference sees a multiplication factor equal to the 20logN term. Outside the loop
bandwidth, the multiplied reference noise is attenuated by the loop filter. This means the reference phase noise is typically only a contributor
for close-in offsets less than the loop bandwidth. The loop bandwidth and phase margin used for a given phase noise measurement in the
datasheet are typically provided in the caption of the figures.

Figure 89 illustrates three DEVCLK noise gain responses with different loop bandwidths and phase margins. Each response is normalized to
0 dB by subtracting out the 20logN term. For example, for a F,, of 2600 MHz and a F¢; of 245.76 MHz the gain would be 20.5dB. With the
reference clock noise, the RF LO phase noise as specified in the data sheet, and this transfer function, the total noise can be calculated.

analog.com Rev. B | 99 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

Closed Loop Frequency Response

0 ——— fr’ﬁ. %
S AN
A0t AN \
N\,
\
20 \:
30 AN , i
\
40 ¢ 50K,85deg | \
100K, 60deg
50 500K, 60deg
60 ; \
-70 i L
102 108 104 108 108 107

Frequency in Hz

Figure 89. Normalized Devclk Noise Gain/PLL Closed Loop Response

The plots provided in the ADRV903x data sheet are generated with a high-quality, low noise reference clock. To meet the datasheet specs

for integrated phase noise it is recommended to use a clock source with a phase noise at 1 kHz offset as per Table 46 below. This scales

6 dB per doubling of DEVCLK frequency. A clock source with a higher phase noise results is some degradation to close in phase noise and
integrated phase noise. The table is only a guideline, system engineers should evaluate the performance of the PLL with the clock source for
their system. The HMC7044 Clock Generation IC meets the requirements in the first column, while the AD9528 meets the requirements in the
second column.

Table 46. DEVCLK Phase Noise Recommendations

CLK Phase Noise at 1 kHz offset to meet data sheet CLK Phase Noise at 1 kHz offset to keep integrated phase
DEVCLK Frequency integrated phase noise specifications noise specifications within ~10%
122.88 MHz <-133 dBc/Hz <-125 dBc/Hz
245,76 MHz <-127 dBc/Hz <-119 dBc/Hz
491.52 MHz <-121dBc/Hz < -113 dBc/Hz

Figure 90 shows a simulated phase noise result showing the impact of reference clock phase noise on the RFLO phase noise at 3.6 GHz.
Since the reference noise is only impacting the phase noise up to ~20 kHz, the integrated phase noise only changes from 0.16 deg to 0.17 deg
when the DEVCLK source is changed from the HMC7044 to the AD9528.

analog.com Rev. B | 100 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html
https://www.analog.com/hmc7044
https://www.analog.com/ad9528

ADRV903x

SYNTHESIZER CONFIGURATION

Simulated RFLO phase noise @ 3.6GHz LO

1000 10000 100000 1000000

\.\ HMC7044
0 . N
-105 S AD9528 Buffer Mode
——AD9528

-110 e

15 e

Figure 90. Simulated RFLO Phase Noise at LO = 3.6 GHz Comparing Impact of Different DEVCLK Noise Performance

SYSREF

The SYSREF receiver is a differential receiver and is compatible with LVDS/LVPECL logic levels. The recommendation is to DC-couple this
signal with a 100 Q differential termination resistor placed on the PCB, near pins G11 and G12 as shown in Figure 91 below. The SYSREF

traces should be impedance controlled for 50 Q. DC-coupling is important when using the single-shot SYSREF mode, otherwise the single

pulse is distorted as it passes through the capacitor.

G11 SYSREFP
DC couple
from SYSREF 100Q ADRV903x
Source
G12 SYSREFN

Figure 91. SYSREF Input Connections

SYSREF Setup and Hold Time Requirements

The ADRV903x SYSREF setup and hold time requirements with respect to DEVCLK are in the datasheet. To achieve maximum margin on
setup/hold time, it is recommended to align SYSREF with the falling edge of DEVCLK. This would give ~1 ns setup/hold time for the case of a
491.52 MHz DEVCLK.

If the SYSREF and device clock arrive at the same time, i.e. not meeting the setup/hold time requirements, metastability could occur in the
system synchronization. In this case you cannot guarantee on which edge of DEVCLK a given ADRV903x will clock in the SYSREF signal,
resulting in synchronization variation or latency differences between devices or from power-up to power-up. This is shown in Figure 92. Meeting
the setup/hold times ensures SYSREF has no transitions within the keep out window.

analog.com Rev. B | 101 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

Ideally setup/hold times should be confirmed by oscilloscope measurements for each SYSREF/DEVCLK signal pair, as close as possible to the
destination pins as possible, e.g. at the termination resistor.

tSETUP tHOLD

Figure 92. Sysref Timing Keep out Window

CLOCK SYNTHESIZER

The clock synthesizer is used to generate all the clocking signals necessary to run the device and therefore is the first PLL to be brought

up during initialization. Although the clock PLL is a fractional-N architecture, the signal sampling relationships to the DEVCLK rates typically
require that the synthesizer operates in integer mode. Profiles that are included in the ADRV903x ACE software configure the clock synthesizer
appropriately based on the desired IQ and Converter clock rates. Reconfiguration of the clock synthesizer is not necessary after initialization.
The clock generation block of the clock synthesizer provides clock signals for the high-speed digital clock, Rx ADC sample and interface clocks,
ORXx and loopback ADC sample and interface clocks, and Tx DAC sample and interface clocks.

The Rx ADC and Tx DAC operate at the same rate and can be configured to run at different rates, for example, 2949.12 MHz, 3686.4 MHz
or 3932.16 MHz. The ORx ADC will either run at the same rate or twice this. To provide the converter clock rates listed, the CLK PLL would
operate at either 7372.8 MHz, 7864.2 MHz, or 11796.48 MHz.

For GSM applications we recommend changing the CLKPLL filter Loop bandwidth from its default value to a narrow-band 60 kHz value. This
will optimize the phase noise contribution of the CLKPLL at 800 kHz offsets at the expense of slightly higher integrated phase noise. To do this
set the clkpll_loop_filter_bw_hz in the profile JSON file = 60000 and clkpll_loop_filter_pm_deg = 60. For non-GSM applications you should use
the default setting = 0. This will set the LBW to ~ 500 kHz and phase margin = 60 deg.

RF SYNTHESIZER

The device contains two RF PLLs. Each RF PLL uses the PLL block common to all synthesizers in the device and employs a high performance
VCO for best phase noise performance. The reference for RF PLL 0 and 1 are sourced from the reference generation block of the device. The
RF PLLs are fractional-N architectures. A default modulus value is programmed automatically by firmware to provide an exact frequency on

at least a 1 kHz raster using reference clocks that are integer multiples of 122.88 MHz. More details of the divider options and actual raster
achieved are in Table 47. The ORx NCO will also operate on an exact 1 kHz raster providing 0 Hz error between the Tx LO and the ORx NCO.

The RF LO frequency is derived by dividing down the VCO output in the LOGEN block. The tunable range of the RF LO is 450-7100 MHz. The
LO divider boundaries are given in Table 47. It is recommended to re-run the init cals when crossing a divide-by-2 boundary or when changing
the LO Freq by +100 MHz or more from the frequency at which the init cals were performed.

Table 47. RF Synthesizer Divider Ranges

LO Frequency Limits (MHz)
Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit
RFPLLO/M 221.875 443.75 443.75 887.75 887.5 ‘ 1775 1775 3550 3550 ‘ 7100
Div by 32 16 8 4 2

analog.com Rev. B | 102 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION
LO

Configurable LO Options

A highly configurable LO generation network is implemented in the device to provide flexibility in LO assignment for the two RF LO sources.
The LOGEN network is shown in Figure 93 and consists of a root divider located close to the RFVCO and separate leaf dividers located at
each Rx and Tx slice. The root divider ratio is from 1/2/4... 64 in binary steps. The leaf divider range is 2/4/8. This setup allows the generation
of power of two LO’s in each Tx and Rx path and also non-power of two LOs in either 4T4R section. For example, in a multi-band setup,
where you want to generate a 3.5 GHz LO for a 4T4R section, 1.8 GHz for 2T2R and 900 MHz for the remaining 2T2R, the RF LOs could be
configured as follows:

1. To generate the 3.5 GHz for Tx/Rx 0-3, RFLO1 VCO is programmed to 14GHz followed by divide-by-4, where root divider = 2 and leaf
divider = 2.

2. To generate the 1.8 GHz for Tx/Rx 4-6, RFLO2 VCO is programmed to 7.2 GHz followed by divide-by-4, where root divider = 2 and leaf
divider = 2.

3. To generate the 900 MHz for Tx/Rx 6-7, RFLO2 VCO is programmed to 7.2 GHz followed by divide-by-8, where root divider = 2 and leaf
divider = 4.

In many cases, given the wide bandwidth of the ADRV903x, a single RFLO in combination with the on-chip NCOs can be sufficient to support
several multi-band configurations. In this case the unused RFLO can be powered down to save power.

Note that it is not recommended to set RFLO1 = RFLOZ; this could cause unwanted coupling between the two PLLs. If a common RFLO is
desired, then either of RFPLL1 or RFPLL2 should be set to the desired frequency and muxed to both TxLO and RxLO. That is, the configuration
should be set to either TXLO = RXLO = RFLO1 or TXLO = RXLO = RFLO2 with the unused RFLO powered down.

analog.com Rev. B | 103 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

EXT_LO1P/N EXT_LOO P/N

VTUNE

LO ROOT DIVIDER

LO1

I
I
I
I
I
|
Lo2 | 2/4/8
I
I
l

veo /1/2/.64
TOPLLFB <« |
DIVIDER
RFLO1
Figure 93. LO Switching Network
External LO

1
1
1
1
1
: 2/4/8
1
1
1
[
I
:
1
1
: 2/4/8
1
1
1

[
1 1
1 1
1 I
| — |
LO LEAF DIVIDER |
1 2/4/8 —» 1
[1 1
1 1
1 1
I

Rx0/1/2/310

LO LEAF DIVIDER

Tx0/1/2/3 L0

LO LEAF DIVIDER
—»

Rx4/5/6/7 LO

LO LEAF DIVIDER

Tx4/5/6/7 LO

Two external LO ports provide the option to drive the LO with an external LO source to improve the phase noise performance relative to the
internal PLL. Refer to Figure 93 for illustration of the external LO connection in reference to the RF LO sources.

The external LO can receive a signal between 3.55 GHz and 12 GHz through a matched differential impedance of 100Q. The inputs are
internally ac-coupled. The external LO frequency should be at least 2x, 4x, or 8x the desired internal LO, depending on the required LO
frequency. As an example, Table 48 shows different combinations for selecting the external LO frequency based on the desired internal LO

Output.

Table 48.

Desired LO Output Frequency (MHz) Divider Required External LO Input Frequency (MHz)
450 8 3600

887.5 8 7100

887.5 4 3550

3000 4 12000

3000 2 6000

6000 2 12000

The on-chip LO dividers provide a programmable LO signal between 450 MHz and 6 GHz for the transmitters and receivers. Refer to the data
sheet for the input amplitude requirements on the external LO pin and for the minimum LO divide ratio versus LO frequency.

analog.com

Rev. B | 104 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

External LO Setup
The external LO is configured in the ADRV903x JSON file.

To enable external LO 0 set line 227 to be true.

"use extLO0": true,

To set the frequency, the external LO pin will be accepting modify line 228. This will automatically set the internal dividers.
“extLO0 frequency in kHz”: 0,

The same applies to external LO1, except it is lines 229 and 230.
Another two variables have to be set;

» rx_lo_frequency_in_kHz See lines 108, 119, 130, 141.
» tx_lo_frequency_in_kHz See lines 157, 171, 185, 199.

The following mathematical relationship must also be maintained:

rx_lo_frequency_in_kHz/tx_lo_frequency in_kHz multiplied by 2*N must equal extLO0_frequency in_kHz and extLO1_frequency in_kHz,
where N is from 1 to 7.

LO CONFIGURATION USING API FUNCTIONS

The basic LO configuration, i.e. whether you are using the internal or external LO, using a single LO or dual LO and the required Rx and Tx
LO frequencies are specified in the profile binary, as described in the Software Architecture section, which is then used to configure the device
during device initialization.

The following commands can be used after device initialization to re-configure and control the internal and external LO settings. A short
description of each APl and any usage limitations are listed in Table 49. Details of the parameters, members, enums, etc. for each command
are presented in the doxygen help files included with each software build. Please refer to those files when developing your software code.

You can set the desired LO Frequency using the adi ADRV903x_LoFrequencySet() command as listed in the table. Note, the PLL unlock bits
in the GP Interrupt Mask are masked off temporarily when setting a new LO Frequency, so this should avoid the GP Interrupt unnecessarily
triggering while the PLL is temporarily unlocked as you change frequency. The PLL Loop Bandwidth and Phase Margin are automatically set
by the firmware and should normally be left at their defaults. You can also manually Set and Get these values. If you do need to update

the PLL loop bandwidth, you will need to first call the LoopFilterSet() command followed by an LoFrequencySet() command. The PLL loop
bandwidth will be updated on the call to LoFrequencySet. The structures and enumerators for these API functions are detailed in the doxygen
documentation. You can check the lock status of the various on-chip PLLs via the API also.

Table 49. List of LO Configuration Related API Functions
API Method Name Comments

adi_ADRV903x_LoFrequencySet() You need to pass the loName of the PLL you want to program, along with the LO frequency in Hz and a
configuration option to select the NCO to auto update or not with the LO frequency change. Note, you should not
change the frequency for either the CLKPLL or SerdesPLL from their configured defaults.

adi_ADRV903x_LoFrequencyGet() You need to pass the loName of one of the four PLLs you want to readback the LO frequency in Hz from.
Note, if you are using different TXLO/RXLO leaf divider values across the slices, then this method will just
return the highest frequency. E.g. if LO0 = RxLO is set to 1.8GHz for Rx0/1/2/3 and a further divide-by-2 or
0.9GHz for Rx4/5/6/7, then this method will return a frequency of 1.8GHz. In this case you should use the
adi_ADRV903x_RxTxLOFreqGet{...) method listed below.

adi_ADRV903x_RxTxLOFreqGet() Similar to LOFrequencyGet, but this method allows you to readback the LO frequency individually for each Rx or
Tx slice.

adi_ADRV903x_RxLoSourceGet() Gets the LO source for the selected Rx Channel.

adi_ADRV903x_TxLoSourceGet() Gets the LO source for the selected Tx Channel.

adi_ADRV903x_LoopFilterSet() This function allows the user to set the PLL loop filter bandwidth & phase margin.

adi_ADRV903x_LoopFilterGet() This function allows the user to get the PLL loop filter bandwidth & phase margin.

analog.com Rev. B | 105 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

Table 49. List of LO Configuration Related API Functions (Continued)
API Method Name Comments
adi_ADRV903x_PlIStatusGet() ‘ This function allows the user to get the PLL lock status for each of the four on-chip PLLs.

MULTICHIP SYNCHRONIZATION (MCS)

Multi-chip synchronization (MCS) is a mechanism on-chip to allow deterministic timing to be established and thus enable data alignment down
to the sample level across multiple serial lane links. MCS will therefore align multiple ADRV903x in the system.

As shown in Figure 94, the multi-chip synchronization (MCS) state machine takes in both SYSREF and DEVCLK as its inputs. As part of device
initialization, the multi-chip synchronization (MCS) state machine re-synchronizes the system reference signal (SYSREF) to the local device
clock (DEVCLK) domain and uses this SYSREF to reset critical timing blocks in the device in a deterministic fashion.

The MCS sequence is performed in four stages as shown in Figure 94, each one initiated with a SYSREF rising edge.

DEVCLK IN
DEVCLK PLL Input CLK
B Divider Dividers CLCPEL DIVIDERS HEDSS

MCS State

= Machine
SYSREFIN

Figure 94. MCS State Machine

RF PLL PHASE SYNCHRONIZATION

The RFPLL Phase Synchronization description is included at this time for prototyping and evaluation purposes only. Consult ADI for function
availability.

This function has been added to allow the internally generated LO to be phase synchronized and aligned across multiple devices. This function
allows all devices to align the RFPLL to the same phase, and therefore the phase between each device is aligned at startup so that the phase
between devices is repeatable and fixed. As part of device initialization, the multi-chip synchronization (MCS) state machine re-synchronizes
the system reference signal (SYSREF) to the device clock (DEVCLK) domain and uses this SYSREF to reset the data converter clocks

and all other clocks at the baseband rate. These same signals are also used to initialize an on-chip counter which is later used during PLL
programming to synchronize the LO phase. No additional signals are required to take advantage of the LO phase synchronization mechanism.
From the on-chip counter and the PLL fractional word programming, a digital representation of the desired LO phase can be computed at each
PLL reference clock edge and is remembered in the digital phase accumulator (DPA).

The LO phase sync hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal (DEVCLK).
Averaging is required to increase the accuracy of the LO phase measurement, so at every sample, the observed LO phase is de-rotated by the
digitally desired phase. This is done by performing a vector multiplication of the complex conjugate of the digital phase. The result is a vector
representing the phase difference between the LO and the digitally desired phase, and these vectors can be averaged over many DEVCLK
cycles to obtain an accurate measurement of the phase adjustment required.

After the phase difference has been measured, the adjustment can be applied into the PLL's first stage sigma delta modulator (SDM) by adding
it to the first stage modulator input. The total adjustment amount is added over many reference clock cycles in order to stay within the PLL loop
bandwidth and not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase tracking mode can be
activated. Figure 95 is a block diagram of the phase synchronization system.

analog.com Rev. B | 106 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

SYNTHESIZER CONFIGURATION

REF_GLK_IN

PFD \ Loop LO GEN

i Filter =2k ;
d Yole] _— 1
A +N S P capture Pcapture

©

\ fu
{ % (LO * NCO + L0y * NCOg)
SDM «— NCO APD
T = ”' £(LO * NCOg-L0g * NCO
Phase .Frequency
Synchronizer
¥ < Tuning Word
Multi Chip Sync

Contral

Figure 95. LO Phase Sync Functional Diagram

System Level Considerations

Atpepparn Atpy Atge
A _AL A
Ate l o
e N Y.
VSO =
PLL Y
_ v,
4 N Y.
L —— R
= PLL
_ Y,
~ N
O, i
PLL
& J

[)
Figure 96. High Level Contributions to System Phase Per Antenna

Overall phase synchronization is determined by a number of factors, including the board level clock routing (tc k), the on-chip reference path
routing (trerpath), the PLL and LO divider path (tp(), and the RF & antenna paths (trg). In @ beamforming/MIMO system a system level
antenna calibration is performed to equalize the sum of these paths between all channels. The goals of this are:

» Reduce the complexity of the antenna calibration by initializing to a more consistent startup condition with deterministic PLL phase and LO
divider state,

» Reduce the temperature dependence of the system phase synchronization to allow the antenna calibration to run less frequently during
operation,

» Allow transceivers to be stopped and started in an operational system and “hot synchronize” with the other transceiver elements.

The LO phase synchronization method addresses the initial PLL phase and LO divider state and reduces their temperature dependence to a
negligible amount compared to other sources of phase drift in the system.

analog.com Rev. B | 107 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

ARM PROCESSOR

The transceiver is equipped with two Arm M4 processors, CPUQ and CPU1. The firmware for these Arm processors is loaded during the
initialization process. CPUO is loaded first, followed by CPU1 then CPUQ is started which will then start CPU1. The firmware memory size is
641 kB. The Arms are tasked with configuring the transceiver for the selected use case, performing initial calibrations of the signal paths and
maintaining device performance over time through tracking calibrations.

Arm State Machine Overview

STATE 0:
POWER UP/RESET

|
BOOT SEQUENCE
SYSTEM INITIALIZATION

STATE 1:
READY/IDLE

ALL COMMANDS ACCEPTED IN THIS STATE.
INITIAL CALIBRATRIONS CAN BE RUN.
TRACKING CALIBRATIONS CAN BE RUN.

22770-044

Figure 97. Arm State Machine

State 0: When the Arm core is powered up, the Arm moves into its power-up/reset state. The Arm firmware image is loaded at this point. Once
the Arm image has been loaded, the Arm is enabled and begins its boot sequence.

State 1: After the Arm has been booted, it enters its ready/idle state. In this state, it can receive configuration settings or commands
(instructions), such as performing the initial calibrations or enabling tracking calibrations.

System Initialization
This section provides a detailed description of the initialization procedure. There are three main sections to the initialization procedure.

1. Pre-MCS Init
2. MCS
3. Post-MCS Init

Pre-MCS Init initializes the device up to the multi-chip synchronization (MCS) procedure. The pre-MCS init sequence is split into two
commands that the application layer function calls. These are adi ADRV903x_PreMcsinit() and adi_ ADRV903x_PreMcsInit_NonBroadcast().
adi_ADRV903x_PreMcslnit() is a broadcastable command that can simultaneously issue commands to multiple transceivers to save time
during system initialization for systems with multiple transceivers. Arm and stream binaries are downloaded to the chip during this step. The
broadcast functionality is realized by issuing SPI write commands only. The adi ADRV903x_PreMcsInit_NonBroadcast() verifies that the Arm is
programmed properly by verifying the Arm checksum and that the Arm is in the Ready/ldle state.

The multichip sync (MCS) step uses SYSREF pulses to synchronize internal clocks within the transceiver. Required for deterministic latency of
JESD links so is needed even if only one ADRV903x in the system. The function adi_ADRV903x_MultichipSyncSet() sets up the transceiver to
listen for incoming SYSREF pulses and initiate the MCS procedure.

Post-MCS Init continues initialization following MCS. The application layer command that performs the post-MCS initialization is
adi_ADRV903x_PostMcslnit(). This command programs the PLLs, configures the radio control initialization structure and instructs the Arms to
perform initialization calibrations.

Pre-MCS Initialization

The adi_ ADRV903x_PreMcsinit() function is in the adi_ADRV903x_utilities.c file. It performs a sizeable part of the full chip initialization. The
first step is to load the Arm image using adi_ADRV903x_CpulmageLoad(). The Arm image, ADRV903x_FW.bin, is provided in the firmware’
folder of the GUI installation folder. Following the Arm firmware image being loaded, the next step is to load the device configuration into

analog.com Rev. B | 108 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

data memory using adi_ADRV903x_CpuProfileWrite(). The Arm is then started and begins its boot sequence. This process is initiated by
adi_ADRV903x_CpuStart().

As part of the boot sequence, the Arm configures the device for the required profile (TX/Rx/ORXx path configuration as determined by the

use case), configures and enables the clock PLL and configures the JESD framers and deframers. The Arm also computes a checksum

for the Arm firmware image loaded, for each of the streams loaded and the profiles loaded (determining if they are valid profiles).
adi_ADRV903x_CpusStartStatusCheck() is called after the arm boots and compares the computed checksums during boot to the precomputed
checksums. If a checksum is found not to be valid, this function returns an error.

MCS

The MCS procedure resets critical timing blocks and each one is initiated with a sysref rising edge. The sysref signal needs to be source
synchronous with the ADRV903x device clock. The function adi_ADRV903x_MultichipSyncSet() sets up the transceiver to listen for incoming
SYSREF pulses and initiate the MCS procedure.

Post-MCS Initialization

After the MCS sequence has been completed, the Arm is ready to configure the radio, perform its initialization calibrations and bring up the
JESD link. This is achieved using the adi_ADRV903x_PostMcsInit() function. Once complete, the tracking calibrations can be enabled. The RF
data paths can then be enabled using either SPI or pin modes.

Note that there is no absolute requirement to follow this sequence. The initialization calibrations and tracking calibrations do not need to be run
in order for the paths to be enabled in the device. Itis ultimately up to the user to ensure that the paths have been correctly configured prior to
operation.

ARM Memory Dump

A useful debug tool is the ability to see what is in the Arm’s memory when an issue occurs. This can be achieved by using the
adi_ADRV903x_CpuMemDump() function. This function dumps the ADRV903x Arm program and data memory. The binary file that is
generated needs to be sent to Analog Devices for analysis.

ARM API FUNCTIONS
Table 50. List of ARM API Functions

API Method Name Comments

adi_ADRV903x_CpulmageLoad() Loads the ADRV903x CPU Binary Image.
adi_ADRV903x_StreamImageLoad() Loads the ADRV903x Stream Binary Image.
adi_ADRV903x_DevicelnfoExtract() Extract the Init info from the ADRV903x CPU Profile Binary Image.
adi_ADRV903x_CpuProfilelmageLoad() Loads ADRV903x CPU Profile Binary Image.
adi_ADRV903x_PreMcslnit() Executes ADRV903x Pre-MCS Initialization Sequence
adi_ADRV903x_PreMcsInit_NonBroadcast() Executes the non-broadcastable part of Pre-MCS Initialization Sequence.
adi_ADRV903x_MultichipSyncSet() Prepare for incoming SYSREF pulses to synchronize the internal clock tree.
adi_ADRV903x_MultichipSyncStatusGet() Read the multi-chip sync status.

adi_ADRV903x_PostMcslnit() Executes ADRV903x Post-MCS Initialization Sequence.
adi_ADRV903x_CpuMemDump() Captures the ADRV903x CPU program and data memory.

DEVICE CALIBRATIONS

The Arm is tasked with performing calibrations for the transceiver to achieve its performance specifications. These are split into two categories:
initial calibrations which are run either before the transceiver is operational or after LO frequency change; and tracking calibrations which are
used to maintain performance during runtime.

INITIAL CALIBRATIONS

The Arm processor in the transceiver is tasked with scheduling/performing initial calibrations to optimize the performance of the signal paths
prior to device operation. These calibrations are run as part of the utility API function adi_ADRV903x_PostMcslnit().

analog.com Rev. B | 109 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

In some cases, it is required to run an initial calibration outside of adi_ADRV903x_PostMcsInit(). This adi_ ADRV903x_InitCalsRun() command
instructs the Arm to perform the requested calibrations.

Table 51 shows the bit assignments of the calibration mask. Note that Table 51 provides a full list of initialization calibrations for the device.
Some initial calibrations are not available for certain transceivers and applications.

The Arm sequences the initial calibrations as required, not necessarily in the bit order presented below. It is mandatory that the user wait for
calibrations to complete before continuing with the initialization of the device.

Table 51. adi_ADRV903x_InitCalibrations Bit Assignments

Bit Enum Calibration Description

DO (Reserved)

D1 ADI_ADRV903X_IC_RX_DC_OFFSET Rx DC Offset Corrects for DC Offset within the receiver chain.

D2 ADI_ADRV903X_IC_ADC_RX ADC Rx Calibrates the receiver ADC

D3 ADI_ADRV903X_IC_ADC_ORX ADC ORx Calibrates the observation receiver ADC

D4 ADI_ADRV903X_IC_ADC_TXLB ADC Tx Loopback Calibrates the Tx loopback receiver ADC

D5 ADI_ADRV903X_IC_TXDAC TxDAC Calibrates the transmitter DAC

D6 ADI_ADRV903X_IC_TXBBF Tx BB filter Tunes the corner frequency of the transmitter filter.

D7 ADI_ADRV903X_IC_TXLB_PATH_DLY Tx LB path delay Computes the transmitter to internal loopback path delay, which is required for the
TxQEC initial calibration and tracking.

D8 (Reserved)

D9 ADI_ADRV903X_IC_HRM HRM Performs HRM (harmonic reject mixer) harmonics rejection corrections.

D10 | ADI_ADRV903X_IC_TXQEC TxQEC Performs an initial QEC calibration for the transmitter path. It utilizes the transmitter path
and an internal loopback path

D11 ADI_ADRV903X_IC_TXLOL TxLOL Performs an initial LO leakage calibration for the transmitter path. Utilizes the transmitter
path and the internal loopback path

D12 ADI_ADRV903X_IC_SERDES SerDes Performs an initialization calibration for the JESD 204C data interface.

D13 (Reserved)

D14 (Reserved)

D15 (Reserved)

D16 (Reserved)

D17 | ADI_ADRV903X_IC_TXRX_PHASE Ext_LO phase Calibrates Ext_LO phase for phase consistency across channels

Initialization Calibrations Durations

To achieve best performance, the transceiver features autonomous internal calibrations that are performed during device initialization. The
calibrations are run in the Post-MCS section of device initialization. The majority of the calibrations are run with a single API call once the
calibration structure is set. These are the internal calibrations that utilize internal loopback paths.

Al of the calibrations are overseen and scheduled by the Arm processor so the user does not need to be concerned about what order the
calibrations are run. The sequence is defined such that those calibrations that depend on others are scheduled appropriately. The amount of
time it takes for the calibrations to complete are related to the internal high speed clock and the resulting IQ rates of the Rx, Tx and ORx paths.
The Arm clock is derived from the clock PLL.

In the following diagram the slices show the relative timing of each common initialization calibration relative to the total time. Some of the
calibrations are very short and mostly involve for example loading coefficients and initializing for operation or measuring the delay of the
calibration path. Some others require observation of either internally generated calibration tones or pseudo-random noise to calculate the
required coefficients that are used to define the characteristics of the channel. Still others for example the Tx QEC calibration use an algorithm
to determine the correction factors which can be influenced by the actual load conditions the transmitter is connected to. For these reasons,
the amount of time each of the calibrations needs to complete may vary slightly. The calibration times will vary with UseCase and can also vary
with the software version, for example where improvements were made to reduce Serdes Initcal times in later software. The InitCal times are
measured and stored by the internal ARM processer and can be queried using the InitCalsWait_v2() or InitCalsDetailedStatusGet_v2() APIs.

analog.com Rev. B | 110 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

‘ ADI_ADRV903X_IC_TXLB_FILTER

0%

‘ ADI_ADRV903X_IC_RC_TUNER ’7

Time Distribution of Initial Calibrations

\/

ADI_ADRV903X_IC_SERDES
31%

ADI_ADRV903X_IC_TXLO
1%

ADI_ADRV903X_IC_TXQEG
7%
ADI_ADRV903X_IC_HRI
4%

ADI_ADRV903X_IC_TXLB_PATH_DLY
0%

‘ ADI_ADRV903X_IC_TXBBF

Table 52. Inital Calibration Timings

ADI_ADRV903X_IC_TXDAC

ADI_ADRV903X_IC_RX_DC_OFFSET

2%

e

ADI_ADRV903X_IC_ADC_RX

3%

Figure 98. Initial Calibration Timings

ADI_ADRV903X_IC_ADC_TXL|
15%

ADI_ADRV903X_IC_ADC_OR

37%

Cal Time (s)
ADI_ADRV903X_IC_RC_TUNER 0.01
ADI_ADRV903X_IC_RX_DC_OFFSET 0.26
ADI_ADRV903X_IC_ADC RX 0.49
ADI_ADRV903X_IC_ADC_ORX 6.45
ADI_ADRV903X_IC_ADC_TXLB 2.55
ADI_ADRV903X_IC_TXDAC 0.01
ADI_ADRV903X_IC_TXBBF 0.03
ADI_ADRV903X_IC_TXLB_PATH_DLY 0.07
ADI_ADRV903X_IC_HRM 0.64
ADI_ADRV903X_IC_TXQEC 1.15
ADI_ADRV903X_IC_TXLOL 0.17
ADI_ADRV903X_IC_SERDES 5.46
ADI_ADRV903X_IC_TXLB_FILTER 0.06
Total 17.34

analog.com

Rev. B | 111 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

TRACKING CALIBRATIONS

The Arm processor is tasked with ensuring that QEC and LOL corrections are optimal throughout device operation over time, attenuation

and temperature. It achieves this by performing calibrations at regular intervals. These calibrations are termed tracking calibrations and utilize
normal traffic data to update the path correction coefficients. The adi_ ADRV903x_TrackingCalsEnableSet() API function enables the tracking
calibrations in the Arm. Table 53 shows the bit assignments of the enable mask.

Table 53. adi_ADRV903x_TrackingCalibrationMask Bit Assignments

Bit Enum

DO ADI_ADRV903X_TC_RX_QEC

D1 ADI_ADRV903X_TC_TX LOL

D2 ADI_ADRV903X TC TX QEC

D3 ADI_ADRV903X_TC_TX_SERDES
D4 ADI_ADRV903X_TC_RX_ADC

D5 ADI_ADRV903X TC TX LB ADC
D6 ADI_ADRV903X_TC_ORX_ADC

SYSTEM CONSIDERATIONS FOR CALIBRATIONS

The following diagrams are used to show how the transceiver is configured for notable calibrations with external system requirements, such as
the QEC and LOL calibrations. In all diagrams, gray lines and blocks are not active in the calibration. Lines showing the path of the LOs are
shown in color to distinguish them from the signal paths. A brief explanation of the calibration is provided. Note that as the Arm performs each
of the initial calibrations, it is tasked with configuring the device as per Figure 100, with respect to enabling/disabling paths, for example. No
user input is required in this regard.

TX LO LEAKAGE CALIBRATION

The ADRV903x uses a zero-IF architecture which has energy transmitted at the Local Oscillator (LO) frequency. To reduce this undesired
emission, the transceiver has a Tx LO Leakage (LOL) correction algorithm. For optimal performance, the Tx LOL calibration requires an initial
calibration followed by a tracking calibration used during runtime operation. The Tx LOL algorithm applies complex valued correction to both |
and Q data paths at the Tx QEC block in order to reduce the Tx LOL level observed at the output of the transmitter.

TX LOL INITIAL CALIBRATION

The Tx LOL initial calibration is used to make an initial correction to the LO Leakage level. The initial calibration uses the internal loopback path
only, so it is not necessary to provide an external loopback connection. The signal path used during the initial calibration is in the figure below
where unused components are greyed out.

analog.com Rev. B | 112 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

Frequency Down
; Loopback L
Selective ¢ sample P l— ?OP
Correlator and LPE ADC Filter
(FSC)
Deserializer, Digital l Tx L5 Digital L3 Tx DA>—-> Tx BBF —_—

Deframer Atten QEC Filters

On Chip Off Chip

Figure 99. Tx LO Leakage Initial Calibration Correction Loop

Each Tx channel has a corresponding internal loopback channel that is used for calibration purposes. The loopback channel has a correlator
block (FSC) which allows for correlation of the transmitted signal to the internally observed loopback signal. The correlation generates LO
leakage correction coefficients. Because the Tx LOL initial calibration uses the internal loopback path, the Tx to ORx mapping state (i.e. which
Tx channel is connected to a specific ORx channel) does not matter for the operation of this calibration.

During the Tx LOL initial calibration, the user does not need to be transmitting traffic data. Instead, the device will generate perturbations to
estimate the initial correction for the channel. Additionally, the Tx VGA will be powered down during this calibration to prevent large level signals
entering the power amplifier stage. Note, it is also ok to send data or an idle pattern over JESD when the TxLOL InitCal is run, as the firmware
will temporarily disconnect the input data during the cal.

TX LOL TRACKING CALIBRATION

The Tx LOL initial calibration is a prerequisite before enabling the Tx LOL tracking calibration. The Tx LOL tracking calibration uses an external
loopback loop to be able to track and correct changes over time. The external loop is shown in orange in the next figure.

analog.com Rev. B | 113 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

Tx VGA

Deserializer, Digital Tx Digital

Deframer Atten [QEC g Filters_> Tx DAC: Tx BBF .“ *I}

Figure 100. Tx LO External Tracking Calibration Loop (Orange Loop). This shows a sample configuration that uses a 4:1 mapping of Tx0/1/2/3 into ORx0 channel
and currently Tx0 is available for external path observation.

The necessity of the tracking calibration is a result of the variable levels of LOL emissions over time and operating conditions (temperature and
voltage) of the device. At this time, it is recommended that users that require data sheet performance levels for Tx LOL include support for
Tx-ORx mapping in their software to enable the utilize Tx LOL tracking loop. When Tx LOL tracking calibration is running, the user can transmit
regular traffic data and the algorithm will be able to discern the emitted LOL level and apply improvements in the correction, if possible.

The tracking calibration is responsible for building up a correction table of LOL corrections versus Tx attenuation.

Tx LOL Tracking Calibration

The Tx LOL tracking loop allows the observation of contributors to LO leakage at the output of the PA. This allows for observation of LO
Leakage contributors external to the device and generates corrections accordingly at the Tx QEC block.

The Tx LOL tracking loop requires knowledge of the Tx-ORx mapping state in order to determine which Tx is currently connected to an ORx
and can apply the correction to the correct transmitter channel. If a Tx channel is never mapped to an ORx channel, the Tx LOL tracking
calibration will not run for that Tx channel.

Note that the Tx LOL tracking calibration can operate while the ORx channel is enabled and sending data to the BBP.

External Path System Requirements for LOL Tracking

» Each Tx must be observable at the ORx at least 100ms every 6 seconds.
» Tx observation duration must be at least 1 symbol (17us). A 1-symbol every 1-ms configuration is supported.

» The gain from Tx input to ORx output must be at least -10 dB. That is the digital input level to the Tx DAC to the digital output level from the
ORx ADC. For example, if you are transmitting a signal with average power of -13dbFS at the TXDAC output, the ORx signal at the ORX
ADC output should be > -23dbFS.

» A Tx channel must only be observed on the same ORx channel. For example, this means that Tx0 should not be looped into ORx0 and
ORXx1 at different times. This affects the ability of the calibration to estimate characteristics of the Tx0 to ORx0 or Tx0 to ORx1 external
loopback path which can lead to issues. An acceptable loopback scenario in this example is that Tx0 would only be observed at the ORx0
port.

» If the gain of the path between Tx output and ORx input changes suddenly the user must issue a reset channel command using the
TxLolReset() API. You can use the SOFT_RESET to reset the learned external channel while keeping the LOL corrections words relatively
constant. You can use the HARD_RESET to reset both the channel and the stored correction from the TXLOL InitCal. Because the LOL
corrections words are reset in this case, the LO leakage could temporarily degrade to uncorrected levels, but the convergence time should
be quicker in this case as the calibration will make more aggressive updates. You do not need to use the TxLolReset for gradual gain

analog.com Rev. B | 114 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

changes due to temperature dependent gain variation but specifically to larger step gain changes due to, for example, an external gain
change through a Digitally Stepped Attenuator (DSA). Sudden gain or phase variation on the external path may cause instability algorithm
performance.

TX QEC CALIBRATION

The ADRV903x uses a zero-IF Tx architecture. Quadrature errors within the transmit path shows up as unwanted energy on image frequency.
To reduce this undesired emission, the transceiver has a Tx Quadrature Error Correction (QEC) algorithm. For optimal performance, the Tx
QEC calibration requires an initial calibration followed by a tracking calibration used during runtime operation. The Tx QEC algorithm applies
complex valued correction to | and Q data paths at the Tx QEC block in order to reduce the unwanted emissions at the image frequency
observed at the output of the transmitter.

TX QEC INITIAL CALIBRATION

The Tx QEC initial calibration is used to make an initial correction to the quadrature error. The initial calibration uses the internal loopback
path that samples the Tx signal before Tx VGA. The signal path used during the initial calibration is shown in the figure below where unused
components are greyed out.

Down
QEC Estimation Loopback Loop
and Adaptation Sample ADC Filter
and LPF

A

On Chip Off Chip

[
) Output i)
utpu Matching

- I Network . _|
Coupler

Deserializer, .| Digital Tx Digital

Deframer "| Atten QEC Filters > Tx DA>—> Tx BBF

v

Figure 101. Tx QEC Initial Calibration Loop

Each Tx channel has a corresponding internal loopback channel that is used for calibration purposes. The loopback channel has a QEC
Estimation and Adaptation engine which allows for correlation of the transmitted signal to the internally observed loopback signal and generates
QEC coefficients. Because the Tx QEC initial calibration uses the internal loopback path, the Tx to ORx mapping state (i.e. which Tx channel is
connected to a specific ORx channel) does not matter for the operation of this calibration.

During the Tx QEC initial calibration, the user will not be transmitting traffic data. Instead, the device will transmit tones at various offsets from
LO in order to estimate the initial correction for the channel. Additionally, the Tx VGA will be powered down during this calibration to prevent
large level signals entering the power amplifier stage. Powering down the Tx VGA offers additional isolation for conditions where turning power
amplifier off might cause an impedance mismatch.

TX QEC TRACKING CALIBRATION

The Tx QEC initial calibration is required before enabling the Tx QEC tracking calibration. There are two observation tap-off points in the Tx
path, one before the VGA and one after, as shown in figure below. Both tap-off points are connected to internal loopback path. This allows
the tracking calibration to observe and track impairments that couple to the Tx output, including but not limited to the Tx VGA. The QEC
Estimation and Adaptation engine is still responsible for evaluating cross-correlation between the transmitted signal and the observed signal
and generating updated coefficients. Tx QEC tracking calibration does not require an external loopback path which utilizes ORx path.

analog.com Rev. B | 115 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

On Chip : Off Chip

|
|

QEC Estimation Down Loopback Loop |

and Adaptation €| sample ADC Nl Filter !

and LPF |
|
|
I AV
|
: Tx
Deserializer, Digital Tx Digital Output Matching
Deframer Atten QEC > Filters > Tx DAC: TxBBF I Network »

: Cou;'
|
|
|
|

Figure 102. Tx QEC Tracking Calibration Loop with Two Tap-Off Points

As the device operating conditions change, the updates to the QEC is achieved through tracking calibration. Tx QEC tracking calibration makes
use of actual transmit data and determines optimal coefficients. The tracking calibration is responsible for building up a correction table of QEC
versus Tx attenuation.

Tx QEC Tracking Calibration Frequency Planning

For Tx QEC Tracking Calibration to operate as intended, the user has to consider the frequency planning below.

Let fg be the Tx DAC sampling rate. The Tx LO frequency f o must satisfy

|fL0 — 22| > 1 MHz (10)

for all integers i and form = 2, 4, 6, 8, 10, 12. The table gives a calculated example for LO = 2.6GHz.
Table 54. Tx QEC Tracking Calibrations Frequency Planning

, —_ . fs |
Value of i that — i
alue ot t that Mminimizes |f Lo ~'mm Nearest “blackout” frequency (in Distance from desired f, o to nearest “blackout”

m i= round(ZmC{‘—f) MHz) izf_;z frequency (in MHz). | fro — izf—s[
2 2949.12 349.12

4 2580.48 19.52

6 11 2703.36 103.36

8 14 2580.48 19.52

10 18 2654.208 54.208

12 21 2580.48 19.52

For this example, because i is always at least 1 MHz away from the “blackout” frequencies, the Tx LO can be placed at exactly 2.6 GHz. If
fLo is within 1MHz of the blackout frequencies, then the LO must be moved by at most +/- 1 MHz to avoid the nearest “blackout” frequency. The
Palau configurator has this LO frequency checking built in and will output an error if the LO frequency does not meet the requirements.

RX QEC CALIBRATION

The ADRV903x uses a zero-IF architecture and quadrature errors in the received path show up as unwanted energy in the received spectrum.
In order to prevent this unwanted energy appearing as an image in the received spectrum the ADRV903x implements a Quadrature Error
Correction (QEC) algorithm in FW which is designed to perform blind, digital-only, frequency-dependent, and independent QEC.

The location of Rx QEC in the Rx path is shown in Figure 103. The goal of the algorithm is to estimate and track the quadrature error and apply
QEC using a filter. The algorithm is designed to keep tracking the Rx input dynamics in both the frequency and time domain in the bandwidth of
interest. The tracking is accomplished by continuously monitoring the input spectrum in search of adverse blockers and desired signals.

analog.com Rev. B | 116 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

ARM

- f— -
Framer Rx DDC DC Filter

Serializer, RxQEC

ADC RxTIA
1&Q 1&Q

Figure 103. Rx QEC in Rx Path

QEC AND LOL CALIBRATION API FUNCTIONS

Table 55. List of QEC and LOL Calibration API Functions

APl Method Name

Comments

adi_ADRV903x_InitCalsRun()
adi_ADRV903x_InitCalsDetailedStatusGet()
adi_ADRV903x_InitCalsDetailedStatusGet_v2()
adi_ADRV903x_|nitCalsWait()
adi_ADRV903x_InitCalsWait_v2()
adi_ADRV903x_InitCalsCheckCompleteGet()

adi_ADRV903x_InitCalsCheckCompleteGet_v2()

adi_ADRV903x_InitCalsAbort()

adi_ADRV903x_InitCalStatusGet()

adi_ADRV903x_TrackingCalsEnableSet()
adi_ADRV903x_TrackingCalsEnableSet_v2()
adi_ADRV903x_TrackingCalsEnableGet()
adi_ADRV903x_TrackingCalAllStateGet()
adi_ADRV903x_TrackingCalStatusGet()
adi_ADRV903x_TxLolReset()
adi_ADRV903x_CalPvtStatusGet()

adi_ADRV903x_CalSpecificStatusGet()

Runs the QEC and LOL init cals amongst others init cals.

Provides updates to represent the status of the QEC and LOL init cals amongst other init cals.
Provides updates to represent the status of the QEC and LOL init cals amongst other init cals.
Called after adi_ADRV903x_InitCalsRun to wait for init cals to finish.

Called after adi_ADRV903x_InitCalsRun to wait for init cals to finish.

Similar to adi_ADRV903x_InitCalsWait except it does not block the thread waiting for the enabled
init cals to complete. This function returns the init cal status immediately allowing the application
layer to do other work while the cals are running

Similar to adi_ADRV903x_InitCalsWait except it does not block the thread waiting for the enabled
init cals to complete. This function returns the init cal status immediately allowing the application
layer to do other work while the cals are running

The init cals can take several seconds. This function is called when the BBIC needs to intercede
and stop the current init cal sequence.

Read back the status of the cal including metrics like error codes, percentage of data collected for
current cal, the performance of the cal and the number of times the cal has run and updated the
hardware.

Enables or disables QEC or LOL tracking cals amongst other tracking cals.
Enables or disables QEC or LOL tracking cals amongst other tracking cals.
Gets the set of tracking cals that are enabled.

Gets the current state of all tracking cals

Returns the status of the tracking cal.

Resets the Tx channel LOL tracking cal.

Returns detailed status information specific to the private cal.

Returns status specific information calibration.

TX ANALOG LPF CALIBRATION

The baseband low pass filter is designed as a second order Butterworth filter between DAC’s output and the input of mixer of | and Q path
of TX channels as shown in Figure 104 below. Its bandwidth (3dB corner) is adjustable for different user cases. And the initial calibration is

implemented to,

1. Set the 3dB corner of this filter precisely at the band edge associated with the user case.
2. Achieve the frequency response as a Butterworth filter with best in-band flatness.

analog.com

Rev. B | 117 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

[l

JESD

or—,

HRM MIXER

1-

1
5| Dig [N \

buc > ATT : » QEC FIR
1
1
i .
1
Test 1
NCO !
1
1
1
1
1
1
Test I
Nco :
1
1
1
i 1
DUC »| Dig :

ATT

QEC

» FIR

RF VGA

[——>a

;

Z To PA

B

FSC

»| Cap

HRM MIXER

Fr
Selective
Correlator

Tuner

A

FIR

LB Filter »

yjed yoeqdoo jeusaju|

>

ez

LB
ADC

Figure 104. Tx Analog LPF Initial Calibration Loop (Red)

To calibrate the bandwidth of LPF, the calibration tones are generated separately and sequentially from the Test NCO that feeds into the TX
signal path through DUC block, and looped back internally at the output of the Mixer to the loopback path. The power at each tone is measured
by the frequency selective correctors (FSC). And the capacitors at the analog LPF are tuned simultaneously based on the ratio of the power
measurements done by FSC to achieve the accurate 3dB corner frequency and in-band flatness.

LOOPBACK PATH DELAY INITIAL CALIBRATION

The loopback path delay calibration is used to measure the delay between the TX QEC actuator and the loopback RX input to the frequency
selective correlator (FSC). And the result is used to configure the FSC correlator for accurate estimation of TX QEC and TX LOL corrections.
So this calibration needs to run before TX QEC initial calibration and TX LOL initial calibration. Note if multiple calibrations are enabled in the
CalMask, the ARM Firmware will correctly sequence the cals to make sure the Tx loopback cal is run before TxLOL Init or TXQEC Init.

JESD

a—={ owe |—|

Dig
ATT

HRM MIXER

Test
Nco
Test
NCO

S g

Dig l

RF VGA

: To PA

]
!

ATT |

analog.com

FsSC
Frequency

[car |

HRM MIXER

Selective
Correlator

"|_Tuner

LB Filter

AT

s R

yjed yoeqdoo- jeusaju)

Figure 105. Loopback Path Delay Initial Calibration Loop (Red)

Rev. B | 118 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

As shown in the block diagram in Figure 105, the calibration tones are generated by the Tx Test NCO, and feed through the whole TX channel
and looped back internally at the output of TX mixer to the loopback path. The FSC hardware measures the cross-correlation between the TX
data and the Loopback RX ADC data to estimate the path delay.

Requirement:

» Loopback path delay initial calibration must run with all tracking calibration disabled.
» Loopback path delay initial calibration must run before TX QEC, TX LOL initial calibrations.
» Loopback path delay initial calibration must run after TX DAC, TX LPF, loopback filter and ADC initial calibrations.

RX DC OFFSET CALIBRATION

Overview

The Rx DC calibration comprises of two different corrections, the Rx RFDC calibration which attempts to correct the DC offset introduced by the
analog front end and a Rx BBDC correction which attempts to null any remaining DC power by using a narrowband filter to heavily reject DC in
the digital datapath. All Rx DC Offset calibrations are hardware based and have very little interaction with the embedded ARM processors.

The sense point for the Rx RFDC calibration is after the PFIR. The RFDC calibration attempts to correct all DC introduced by the analog front
end by converting the offset observed just after the PFIR using a DAC and applying the inverse to the input of the TIA filter. The Rx BBDC offset
block is directly after the sense point for the Rx RFDC (after the PFIR) and this will attempt to remove any remaining DC offset using a notch
filter. It is recommended that both the RFDC and BBDC components of the calibration are enabled during operation for maximum performance.

DEC3
Band O
| Path DC DDC [|
IADC FIR2 FIR1 HB2 QEC PFIR Offset
Band1 | |
DDC
DEC3 Framer
Band O
Q Path DC DDC | |
QADC FIR2 FIR1 HB2 QEC PFIR Offset
Band1 | |
DDC
To RAM

Figure 106. Rx Channel Datapath

Rx RFDC Offset Initialization Calibration

The Rx DC initialization calibration must be run for both the RFDC calibration and the BBDC calibration to be enabled. During the RFDC
initialization calibration, the device sweeps the front-end gain from maximum to minimum and for each I/Q path, accumulators calculate and
store the Rx DC correction in a table for each value of front-end gain. This initial calibration is the first step towards correcting the DC offset
and gives the device a good starting point for applying subsequent corrections during the tracking calibration. The initialization calibration is not
aimed at meeting data sheet performance however, both tracking calibrations must be enabled to guarantee maximum DC offset correction.

Maximum Time for Initial Calibration using an |Q rate of 245.76 MHz is approximately 1.5 milliseconds per channel.

Maximum Time for Initial Calibration using an 1Q rate of 307.2 MHz is approximately 1.2 milliseconds per channel.

analog.com Rev. B | 119 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

Rx RFDC Offset Tracking Calibration

The Rx RFDC offset tracking calibration is responsible for updating the RFDC correction while in normal user data. The RFDC tracking
algorithm uses normal Rx data to determine the DC offset during runtime and update the RFDC table with the latest correction for the current
front-end gain which means that the DC offset correction will maintain performance across temperature and aging of the device among other
factors. The correction required is applied to the input of the Rx TIA using a DAC to remove the DC offset calculated. This calibration can be
enabled or disabled during runtime, but it must be enabled to obtain maximum DC rejection.

Rx BBDC Tracking Calibration

The Rx BBDC tracking calibration uses normal Rx data to collect information regarding the Rx DC offset and apply a correction. The Rx

BBDC uses an accumulator in the baseband path to determine the amount of DC offset remaining following the correction made by the RFDC
algorithm. Whatever DC value accumulates in this block will be subtracted out and will reduce the DC offset even further to meet the datasheet
spec. This implementation results in a very steep notch filter around DC which removes heavily any DC but does not reject/rejects very little
data not on DC. This calibration can be enabled or disabled during runtime, but it must be enabled to obtain maximum DC rejection.

As well as disabling the calibration, the user can modify the M-Shift value using the APl in order to change the notch filer BW. Below is a table
which shows the filter BW and convergence time in number of samples and for a sample rate of 307.2 MHz:

Table 56. M-Shift Configuration vs BW for 307.2 MHz IQ Rate

Convergence Time for Rx 1Q Rate of

M-Shift 3 dB Filter BW (Hz) Number of Samples for Convergence 307.2 MHz (ms)
9 1220 1625 0.01
10 610 3250 0.01
1 340 6500 0.02
12 160 13000 0.04
13 110 25000 0.08
14 40 50000 0.17
15 20 100000 0.33
16 10 200000 0.65
17 5 400000 1.3
18 3 600000 1.96
19 3 800000 2.61
20 2 1000000 3.26

The DC Offset Initialization/Tracking Calibrations are responsible for keeping the DC offset in the Rx data path in line with datasheet
specifications. Initialization calibrations can be run during initialization of the device and can also be run during runtime. This also applies to
tracking calibrations such as the Rx DC Tracking Calibration. During runtime, you may need to adjust the Rx BBDC Tracking Calibrations and
the function calls associated with these are described in Table 57.

RX DC OFFSET CONFIGURATION API FUNCTIONS
Table 57. List of Rx DC Offset Configuration Related API Functions

API Method Name Comments
adi_ADRV903x_DigDcOffsetEnableSet() Sets the enable/disable of the BBDC Offset tracking calibration.
adi_ADRV903x_DigDcOffsetEnableGet() Returns the enable/disable status of the Rx BBDC Offset mask representing the enable/disable

status of each Rx BBDC Offset channel where a 0 is disabled and a 1 is enabled using the
adi_ADRV903x_RxChannels_e mapping.

adi_ADRV903x_DigDcOffsetCfgSet() Sets the digital DC offset configuration for the selected channel/s. The user can select the 1dB corner
for the DC offset filter through adi_adrv903x_dcOffsetCfg_t structure. FW calculates the required
mshift and multiplier values based on this comer frequency and configures the transceiver device.

adi_ADRV903x_DigDcOffsetCfgGet() This function reads back the BBDC Offset configuration for the selected channel.
ANTENNA CALIBRATION

The ADRV903x supports a Tx Antenna Calibration Mode and a Rx Antenna Calibration Mode. An antenna calibration (AC) mode allows
channels to be activated with special programming calibrations disabled. ACs can be triggered by pin control by using the TRX[A-H]_CTRL pins

analog.com Rev. B | 120 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

or user selected GPIO pins. The pin mode to use is selected before runtime in the streamSettings structure of the profile JSON file. Setting
EnableAntCal to true will enable the TRX[A-H]_CTRL pins to control the antenna cal. Setting EnableGpioAntCal to true will enable the GPIO
pins to control the antenna cal. EnableAntCal and EnableGpioAntCal cannot both be set to true.

Configuring the TRX[A-H]_CTRL Pins for Tx and Rx Antenna Calibration
First, setup the AC to use TRX[A-H]_CTRL pins. In lines 88-89 of the profile JSON file set:
"EnableGpioAntCal"; false,

"EnableAntCal": true,

Second, assign the TRX[A-H]_CTRL pins to the ACs. This can be done using the API function adi_ ADRV903x_RadioCtrITxRxEnCfgSet() or it
can be set up in the profile JSON file which is described below.

This is how to assign the Rx channel or channels for Tx AC in the profile JSON file. On line 1797 in the profile JSON file there is an array called
rxAltMapping and the next eight lines are its elements. Element 0 corresponds to the pin TRXA_CTRL and this continues to element 7 which
corresponds to the pin TRXH_CTRL. The decimal value placed in this element is the Rx channel or Rx channels that will be enabled in Tx AC.
Since there are up to 8 Rx channels that can be assigned to a TRX[A-H]_CTRL pin there is a bit wise mapping where bit[0] corresponds to Rx0
and bit[7] corresponds to Rx7. An example is shown below to setup Rx4 for Tx AC when TRXD_CTRL is triggered. Rx4 is bit[4] so in binary we
get 00010000b and in decimal that is 16. Therefore, a value of 16 is placed in element 3.

"txEnMapping": [

15,

120,

0,
0,
0,
0,
0,
0

1

This is how to assign the Tx channel or channels for Rx AC On line 1777 in the profile JSON file there is an array called txAltMapping and the

next eight lines are its elements. Element 0 corresponds to the pin TRXA_CTRL and this continues to element 7 which corresponds to the pin

TRXH_CTRL. The decimal value placed in this element is the Tx channel or Tx channels that will be enabled in Rx AC. Since there are up to 8
Tx channels that can be assigned to a TRX[A-H]_CTRL pin there is a bit wise mapping where bit[0] corresponds to Tx0 and bit[7] corresponds
to Tx7. An example is shown below to setup Tx3 for Rx AC when TRXB_CTRL is triggered. Tx3 is bit[3] so in binary we get 00001000b and in

decimal that is 8. Therefore, a value of 8 is placed in element 1.

"rxEnMapping": |

Configuring the GPIO Pins for Tx and Rx Antenna Calibration
First setup the AC to use GPIO pins. In lines 88-89 of the profile JSON file set:

analog.com Rev. B | 121 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

"EnableGpioAntCal"; true,
"EnableAntCal"; false,

Second, assign the GPIO pins to the ACs using the profile JSON file. Lines 29-52 of the profile JSON file allow the definition of GPIO_0 to
GPIO_23. A decimal 8 sets the GPIO to Rx AC and a decimal 9 sets the GPIO to Tx AC. An example where GPIO_0 and GPIO_1 are used for
the Rx and Tx ACs respectively is shown below.

"Gpio00Selection": 8,
"Gpio01Selection™ 9,

Finally, determine which Tx/s turn on during Rx AC or which Rx/s turn on during Tx AC use the API function adi_ADRV903x_RadioCtrlAntCalG-
pioChannelSet().

Tx Antenna Calibration Mode

In the simplest terms it works by taking a Rx channel or Rx channels, applying a fixed front end RF gain, disabling the Rx AGC, disabling
internal calibrations and if required adjusting the Rx NCO. Once the Tx AC is complete then all the changed Rx settings are returned to their
values before the calibration started.

The Tx AC can be setup to operate in two different ways.

» Single Pin Control. A single pin will both modify and enable/disable the Rx channel/s that is monitoring the Txs.

» Dual Pin Control. One pin, the pin assigned for the AC, will modify the Rx channel/s that is monitoring the Txs. Another pin will
enable/disable the Rx channel that is monitoring the Txs. This pin is assigned in the same way pins are assigned Rx enable/disable for TDD
pin control. See System Control section for further details.

Before enabling a Tx AC there are predefined parameters that need to be setup:

» The pin control type. For single pin control set Disable TxRx to false in the streamSettings structure of the profile JSON file. For dual pin
control set DisableTxRx to true.

» The Rx NCO enable which is determined by EnableNco parameter in the streamSettings structure of the profile JSON file.
» The frequency the Rx NCO must change to, determined by the adi_ADRV903x_RadioCtrlAntCalConfigSet or the adi_ADRV903x_Radio-
CtrlAntCalConfigSet_v2 API function.

» The Rx gain which is determined by the adi_ADRV903x_RadioCtrlAntCalConfigSet or the adi_ADRV903x_RadioCtrlAntCalConfigSet_v2 API
function.

An example of single pin and dual pin control Tx AC are given below

1. Single Pin Control. The pin assigned to the Tx AC goes high and this starts streams that make the required changes. Streams apply the
fixed gain to the Rx, disable the AGC and cals, adjust the Rx NCO (if EnableNCO is set to True) and enable the Rx channel. Once the BBIC
has completed the Tx AC, the same pin goes low to disable the Rx and restore all the Rx parameters back to their previous state.

2. Dual Pin Control. The pin assigned to the Tx AC goes high and this starts streams that make the required changes. Streams apply the fixed
gain to the Rx, disable the AGC and cals, adjust the Rx NCO (if EnableNCO is set to True). A second pin is responsible for enabling the Rx
channel. Once the BBIC has completed the Tx AC the second pin will trigger low to disable the Rx and the first pin will also trigger low and
restore all the Rx parameters back to their previous state.

All gain/NCO settings restored at the falling edge of RX_ANT_CAL, see Figure 107 for more details. If AGC was enabled prior to AC mode
entry, it is disabled on the rising edge of AC mode and re-enabled upon exit.
Rx Antenna Calibration Mode

In the simplest terms it works by taking a single Tx channel or Tx channels, applying a fixed Tx attenuation, disabling internal calibrations and
if required adjusting the Tx NCO. There is also an option to change the Rx gain control from AGC to MGC. Once the Rx AC is complete the all
the changed settings are returned to their values before the calibration started.

The Rx AC can be setup to operate in two different ways.

» Single Pin Control. A single pin will both modify and enable/disable the Tx channel that is monitoring the Rxs.

analog.com Rev. B | 122 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

» Dual Pin Control. One pin, the pin assigned for the AC, will modify the Tx channel that is monitoring the Rxs. Another pin will enable/disable
the Tx channel that is monitoring the Rxs. This pin is assigned in the same way pins are assigned Tx enable/disable for TDD pin control. See
System Control section for further details.

Before enabling a Rx AC there are predefined parameters that need to be setup:

» The pin control type. For single pin control set DisableTxRx to false in the streamSettings structure of the profile JSON file. For dual pin
control set DisableTxRx to true.

» The Tx NCO enable which is determined by EnableNco parameter in the streamSettings structure of the profile JSON file.

» The frequency the Tx NCO must change to, determined by the adi_ADRV903x_RadioCtrlAntCalConfigSet or the adi_ADRV903x_Radio-
CtrlAntCalConfigSet_v2 API function.

» The Tx attenuation which is determined by the adi_ADRV903x_RadioCtrlAntCalConfigSet or the adi_ADRV903x_RadioCtrlAntCalConfig-
Set_v2 API function.

» The gain (rxGain) to set the Rx MGC to if the AGC freeze option is used (enableFreeze = 1). These are set in the adi ADRV903x_Radio-
CtrlAntCalConfigSet_v2 API function. Note, enableFreeze only has an impact if the AGC is used. If using MGC mode then enableFreeze
should be set to 0 to avoid any confusion.

An example of single pin and dual pin control Tx AC are given below

» Single Pin Control. The pin assigned to the Rx AC goes high and this starts streams that make the required changes. Streams apply the
fixed Tx attenuation, disable the cals, adjust the Tx NCO (if EnableNCO is set to True) and cause the Tx channel to enable. The Rx gain
control, if enableFreeze = 1, changes from AGC to MGC using the value of rxGain. Once the BBIC has completed the Rx AC, the same pin
will trigger low to disable the Tx and restore all the Tx parameters back to their previous state and if enableFreeze = 1 when the Rx AC ran,
the AGC is restored on the Rxs.

» Dual Pin Control The pin assigned to the Rx AC goes high and this starts streams that make the required changes. Streams apply the fixed
Tx attenuation, disable the cals, adjust the Tx NCO (if EnableNCO is set to True). The Rx gain control, if enableFreeze = 1, changes from
AGC to MGC using the value of rxGain. A second pin is responsible for enabling the Tx channel. Once the BBIC has completed the Rx AC
the second pin will trigger low to disable the Tx and the first pin will also trigger low and restore all the Tx parameters back to their previous
state and restore the Rx back to AGC if it was selected before the Rx AC ran.

Antenna Calibration Example
Consider a TRX[A-H]_CTRL pin example where:

» TRXA_CTRL enables all TX channels

» TRXB_CTRL enables TX3 for AC

» TRXC_CTRL enables all RX channels

» TRXD_CTRL enables RX4 for AC

» Single pin mode is used so DisableTxRx is set to false
» Rx MGC is not enabled in Rx AC so enableFreeze = 0

This figure below shows example timing of TRX[A-D]_CTRL pins for TDD radio control and AC modes.

» The term “Tx3_ANT_CAL” means Tx3 enabled for the purposes of Rx AC.
» The term “Rx4_ANT_CAL” means Rx4 enabled for the purposes of Tx AC.

analog.com Rev. B | 123 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

TRXA_CTRL \ — — —
(8 TX_EN)
| | - —
TRXB CTRL I—[I'. I'
(Tx3_ANT CAL) 4—! |

RX Antenna Cal — Tx3 Configured
per AC Stream

TRXC_CTRL — — —
(8 RX_EN) |
TRXD_CTRL | i
(Rx4_ANT CAL) H"_ |7 ’71
TX Antenna Cal — Rx4 Configured

per AC Stream

Figure 107. TDD Radio Control and Antenna Calibration

ANTENNA CALIBRATION API FUNCTIONS
Table 58. List of Antenna Calibration Related API Functions

API Method Name

adi_ADRV903x_RadioCtrITXxRxEnCfgSet()

adi_ADRV903x_RadioCtrITXRXEnCfgGet()
adi_ADRV903x_RadioCtrlAntCalGpioChannelSet()

Comments

Selects the Tx/Rx channels to be turned on during TRX[A-H]_CTRL antenna cal.
Reads Tx/Rx channel selection for TRX[A-H]_CTRL antenna cal.

Selects the Tx/Rx channels to be turned on during GPIO antenna cal. GPIO pin can be selected
via ‘GpioXXSelection’ fields in streamSettings structure in the profile JSON file as explained in
the Configuring the GPIO Pins for Tx and Rx Antenna Calibration section.

Reads Tx/Rx channel selection for GPIO antenna cal.

Sets the gain and NCO for the Tx/Rx channels in antenna cal.
Reads the gain and NCO for the Tx/Rx channels in antenna cal.
Sets the gain, NCO and AGC for the Tx/Rx channels in antenna cal.
Clear error bits for selected channels.

Reads back the AC error status.

CALIBRATION GUIDELINES AFTER RF LO FREQUENCY CHANGES
The RF LO frequency changes are one of the two types:

adi_ADRV903x_RadioCtrlAntCalGpioChannelGet()
adi_ADRV903x_RadioCtrlAntCalConfigSet()
adi_ADRV903x_RadioCtrlAntCalConfigGet()
adi_ADRV903x_RadioCtrlAntCalConfigSet_v2()
adi_ADRV903x_RadioCtrlAntCalErrorClear ()
adi_ADRV903x_RadioCtrlAntCalErrorGet()

Type 1: LO frequency change this is described by all three of the following criteria:

» The LO frequency change is less than 100 MHz.
» The LO frequency change does NOT step over the LO divider boundary or VCO transition boundary that is shown in the table below.
» The LO frequency change does NOT step over the TX upconverter bias settings switching boundary (at 1600 MHz and 3600 MHz).

Type 2: LO frequency change that is described by either of the following criteria:

» The LO frequency change is greater than 100 MHz.
» The LO frequency change does step over the LO divider boundary or VCO transition boundary.
» The LO frequency change does step over the TX upconverter bias settings switching boundary (at 1200 MHz, 1600 MHz, and 3600 MHz).

Table 59. VCO Transition Boundary and LO Divider Boundary

Frequency MHz VCO Boundary MHz Leaf DIV Root DIV
650 887.5 10400 14200 4 4
887.5 1256.25 7100 10049 4 2
1256.25 1775 10050 14200 4 2
1775 25125 7100 10049 4 1

analog.com

Rev. B | 124 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

ARM PROCESSOR AND DEVICE CALIBRATIONS

Table 59. VCO Transition Boundary and LO Divider Boundary (Continued)

Frequency MHz VCO Boundary MHz Leaf DIV Root DIV
2512.5 2800 10050 11200 4 1
2800 3550 11200 14200 2 2
3550 5025 7100 10049 2 1
5025 7100 10050 14200 2 1

The LO frequency change procedure for Type 1:

1. Disable all tracking calibrations

2. Disable all RF channels. If TRX_CTRL/ORX_CTRL pins cannot stop toggling, put the device into APl command control mode via
adi_ADRV903x_RadioCtriCfgSet(), then call adi ADRV903x_RxTxEnableSet() to disable all channels.

3. Call adi_ADRV903x_LoFrequencySet() to set the LO frequency.

4. Call adi_ ADRV903x_TxLolReset with resetType set as ADI_ADRV903X_TX_LOL_SOFT_RESET to reset the channel estimation for Tx
LOL calibration.

5. Call adi_ADRV903x_TxQecReset with resetType set as ADI_ADRV903X_TX_QEC_TRACKING_CHANNEL_RESET to reset the channel
estimation for Tx QEC calibration

6. Enable relevant tracking calibrations.
7. Transition back to pin control mode, if necessary.

The LO frequency change procedure for Type 2:

1. Disable all tracking calibrations

2. Disable all RF channels. If TRX_CTRL/ORX_CTRL pins cannot stop toggling, put the device into APl command control mode via
adi_ADRV903x_RadioCtriCfgSet(), then call adi_ADRV903x_RxTxEnableSet() to disable all channels.

3. Call adi_ADRV903x_LoFrequencySet() to set the LO frequency
4. Rerun the following initial calibrations with the order shown below separately or with the calMask set as 0x40E80.

HRM Init Cal (ADI_ADRV903X_IC_HRM)

. Loopback filter Calibration (ADI_ADRV903X_IC_TXLB FILTER)
Loopback path delay Cal (ADI_ADRV903X_IC_TXLB_PATH_DLY)
. Tx QEC Init Cal (ADI_ADRV903X_IC_TXQEC)

. TxLOL Init Cal (ADI_ADRV903X_IC_TXLOL)

5. Enable relevant tracking calibrations.

6. Transition back to pin control mode, if necessary.

o0 oo

(1]

analog.com Rev. B | 125 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PA PROTECTION

The ADRV903x has two Power Amplifier (PA) protection blocks, a peak power block and an average power block. They can be used
individually or in parallel. These blocks can monitor the signal at the output of the QEC correction block or at the input to the digital attenuation
block. The alarms raised by these blocks can be made sticky, requiring user intervention to clear them once they trigger.

PA PROTECTION - PEAK POWER

The PA protection peak power block looks at individual | and Q samples, squares them and adds them together (12 + Q2) before comparing
them to a programmable threshold. If the (I2 + Q?) result is greater than the threshold, a peak is detected and the peak counter incremented.
If enough peaks are found within a programmable, non-overlapping window of time, the peak power alarm is raised. The peak counter is reset
at the end of each measurement period. If the peak power alarm has been set to be sticky, the user must take action to reset the alarm. If

the alarm is non-sticky it will automatically be cleared at the end of the subsequent measurement period if that measurement period does not
contain enough peaks to also trigger it.

Note that if the signal received by the ADRV903x is interpolated prior to the PA protection monitoring circuits, a single peak in the original signal
may become multiple peaks in the interpolated signal. This is illustrated in the figures below.

Figure 108 shows the digital samples of a 50 MHz CW sampled at 491.52 Msps. The red line shows an arbitrary threshold set such that only
one sample per positive cycle of the CW will exceed it.

30000

20000 °

10000

-10000

-20000

-30000

®491.52 MHz SR

Figure 108. 50 MHz CW Sampled at 491.52 Msps

Figure 109 shows the same 50 MHz CW interpolated by 2, thus resampled at 983.04 Msps. Two samples per positive cycle of the CW now
exceed the threshold.

analog.com Rev. B | 126 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PA PROTECTION

30000

® ° ® LIPS
-]
° []
° []
20000 i °
.]
L
L]
[]
[]
.]
10000 °
[]
°
]
.
[]
[]
0e
0 10 pi] 30 40 50 60 70 e 80 90 100
[]
(]
-10000 .
[]
[)
L]
® []
-20000 b
[]
° b ¢
LIPS L 4

-30000

©983.04 MHz SR

Figure 109. 50 MHz CW Sampled at 983.04 Msps

Figure 110 shows a further interpolation by two so the 50 MHz CW is now resampled to 1966.08 Msps. Four samples per positive cycle of the
CW now exceed the threshold

30000

20000

10000

-10000

-20000

-30000

1966.08 MHz SR

Figure 110. 50 MHz CW Sampled at 1966.08 Msps

To prevent a single sample in the original waveform from triggering the peak counter two or four times (depending on the interpolation factor)
the PA peak detection circuit can be configured to only consider a peak ‘detected if it sees multiple samples exceeding the threshold in close
proximity. Figure 111 describes the configuration options, and descriptions of each parameter are provided after the figure.

analog.com Rev. B | 127 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PA PROTECTION

power

-

peakDetectOverloadWindowSize must see peakDetectOverloadCount ol ding the

I I | | I | | | | | I | — threshold within a single window to increment the counter
3. » F 1] &

peakmreshoTJ ¢ v ¢ ° . ¢ * o ¢ o o, ., o .

peakDuration peakDuration

Peak counter is reset here Peak counter is reset here

Figure 111. PA Peak Power Configuration Options

measDuration sets the width of the non-overlapping window which triggers the reset of the peak counter. Values range from 0 to 15. The value
is translated into an 1Q sample count using the formula 2*(measDuration+ 7). If this parameter is set to three the peak counter will be reset
every 1024 1Q samples. If interpolation has been enabled prior to the monitoring circuit, this number must be divided by the interpolation factor
to refer to the number of IQ samples sent across the JESD interface.

peakDetectOverloadWindowSize sets the width of the non-overlapping window which looks for multiple samples exceeding the threshold to
trigger the peak counter. Values correspond directly to the number of IQ samples observed at the 1Q rate of the protection circuit. Note, this
value is automatically set to total Input Interpolation Rate * 2 to account for the interpolation effect (the user does not have to program this in the
API).

peakDetectOverloadCount sets the number of samples that must exceed the threshold within a widow of peakDetectOverloadWindowSize
before the peak counter is incremented. Values correspond directly to the number of peaks which must be found. This value is automatically set
equal to total Input Interpolation Rate to account for the interpolation effect described above (the user does not have to program this in the API).

peakThreshold sets the threshold which must be exceeded for a peak to be found. Values range from 0 to 65535. When setting this threshold,
the | and Q samples are considered to have a max value of 1.0. It is assumed that each (1,Q) sample should be within the unit circle, so an
example of a max sample would be 1,0. Taking a signal with peaks at -3 dBFS, a peak (1,Q) amplitude value example would be (~0.707,0) and
the power (12 + Q2) of this sample would be ~0.5. Therefore, the corresponding threshold setting for this -3 dBFS peak sample would be ~0.5 *
2M6 = 32,846.

PA PROTECTION — AVERAGE POWER

The PA protection average power block looks at the average power of a programmable number of (12 + Q?) results, where | and Q are samples,
and compares it to a programmable threshold. If the average (12 + Q2) result is greater than the threshold, the average power alarm is raised.
The parameters used to configure the average power measurement are detailed below. If the average power alarm has been set to be sticky,
the user must take action to reset the alarm after it is raised. If the alarm is non-sticky it will automatically be cleared at the end of the
subsequent measurement period if that measurement period does not contain sufficient average power to also trigger it.

analog.com Rev. B | 128 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PA PROTECTION

measDuration sets the width of the non-overlapping window during which the average power is calculated. Values range from 0 to 15. The
value is translated into an IQ sample count using the formula 2*(measDuration + 7). If this parameter is set to three the power will be averaged
over 1024 1Q samples. If interpolation has been enabled prior to the monitoring circuit, this number must be divided by the interpolation factor to
refer to the number of IQ samples sent across the JESD interface.

avgThreshold sets the threshold which the average power result must exceed to set the alarm. Values range from 0 to 65535. When setting this
threshold, the | and Q samples are considered to have a max value of 1.0. It is assumed that the (I,Q) sample pairs should be within the unit
circle, so a max sample pair would be 1,0. Taking a signal with an average power of -3 dBFS, an average (I,Q) amplitude value example would
be (~0.707,0) and the power (12 + Q*2) of this sample would be ~0.5. Therefore, the corresponding threshold setting for this -3 dBFS average
power would be ~0.5 * 2M6 = 32,846.

SLEW RATE DETECTION AND LIMITING

The slew rate detection block can monitor the signal at the output of the QEC correction block, or at the input to the digital attenuation block.
16

The slew between two adjacent samples is calculated as ZZZ—NP((In —1I,_ 1)2 +(Q,—Q,— 1)2) , where Np is the converter resolution

sent over the JESD. If the result of this calculation is above a programmable threshold, called srdOffset, a slew rate violation is detected. The
srdOffset threshold can be converted to dbFS by applying 10 - log;(srdOffset/65535). The alarm raised by the slew rate detection
block can be made sticky, thus requiring user intervention to clear it once it triggers, or it can be set to auto-clear after a programmable length of
time during which no further slew violations are detected.

Upon a slew violation event, the last good digital sample at the output of the PFIR filter may be latched and held, thus blocking the offending
samples from propagating through the datapath. This is enabled using the API function adi_ ADRV903x_TxProtectionRampSampleHoldEnable-
Set(). This will result in a DC level persisting in the datapath. Therefore, the slew alarm would usually be used to also trigger a ramp of the
analog attenuator at the Tx output to ramp the output to max attenuation.

In automatic recovery mode a programmable timer is started when a slew event has been detected. Every time a new slew event is detected
this timer is reset. If the timer expires, meaning that no new slew events have occurred for the preset time, the circuit automatically releases the
latch at the output of the PFIR and triggers a ramp up of the Tx attenuator back to the level it was set to prior to the original slew event.

Slew statistics can be recorded. Either the maximum slew delta, or the number of slew events may be recorded. Both statistics may not be
recorded simultaneously.

The value srdOffset sets the threshold for slew detection. The range of values which can be programmed is from 0 to 65535 and directly
16
corresponds to the result of the ZZZ—NP((In —1,_ 1)2 +(Q,—Q,- 1)2) calculation. When comparing the value with the input signal for

debug or to estimate the srdOffset value, the enabled interpolation blocks in the chain have to be taken into account as they will reduce the
slew rate of the original signal as can be seen in Figure 112.

analog.com Rev. B | 129 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PA PROTECTION

40000

30000 . * * .

20000 .] [] [

10000

-10000

-20000 . . .

-30000 L ®

-40000

Figure 112. Slew Rate Comparison Between a Signal (Orange) and the Same Signal Interpolated by 2 (Blue)

The value autoRecoveryWaitTime sets the counter time for auto recovery mode. Values range from 0 to 15. The value is translated into an IQ
sample count using the formula 2(@utoRecoveryWaitTime +6) |f this parameter is set to four the counter will be reset every 1024 IQ samples (at the
IQ rate as seen by the SRD block).

It is possible to enable the Slew Rate Limiter interrupt so that it can be read from the main GP_INT Status Register. This can then be unmasked
at the GPINT hardware pin to trigger a hardware interrupt as described in the General Purpose Interrupt section. If the analog rampdown has
been enabled on occurrence of a slew rate detection, the GPINT pin will assert from Low to High and the rampdown will start typically within
100ns. When the slew rate detector is cleared, the GPINT pin will de-assert from High to Low and the Tx analog front-end will ramp back up to
its previous value. If the user wants the Tx front-end to fully ramp up before the GPINT pin de-asserts it is possible to enable this by additionally
unmasking the ARMO Force GP Interrupt bit, or D9 in the GP Interrupt Word and ARM1 Force GP Interrupt bit, or D4 in the GP Interrupt Word.
Note if you are splitting the Interrupt sources separately to GPINTO and GPINT1, you should make sure you map ARMO Force GP Interrupt to
GPINTO and ARM1 Force GP Interrupt to GPINTA.

PA PROTECTION API FUNCTIONS
Table 60. List of PA Protection API Functions

API Method Name Comments
adi_ADRV903x_TxProtectionErrorGet() Reads the status of events causing Tx power ramp down.
adi_ADRV903x_TxProtectionErrorClear() Clears the error flags causing Tx power ramp down.
adi_ADRV903x_TxProtectionRampSampleHoldEnableSet() Enables/disables the sample hold for Tx PA Protection ramp.
adi_ADRV903x_TxProtectionRampSampleHoldEnableGet() Reads back sample hold ramp down configuration for selected Tx channel.
adi_ADRV903x_TxProtectionRampCfgSet() Set the Tx Protection Ramp configuration. This function configures Tx ramp-down in
case of Average Power Error/Peak Power Error/SRD Error/Pll Unlock/Dfrm Irg.
adi_ADRV903x_TxProtectionRampCfgGet() Read the Tx Protection Ramp configuration.

analog.com Rev. B | 130 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PA PROTECTION

Table 60. List of PA Protection API Functions (Continued)

API Method Name

Comments

adi_ADRV903x_TxPowerMonitorCfgSet()
adi_ADRV903x_TxPowerMonitorCfgGet()
adi_ADRV903x_TxPowerMonitorStatusGet()

adi_ADRV903x_TxSlewRateDetectorCfgSet()
adi_ADRV903x_TxSlewRateDetectorCfgGet()
adi_ADRV903x_TxSlewRateStatisticsRead|)

Set the Tx power monitor configuration.
Get the Tx power monitor configuration.

Reads average and peak power, average to peak ratio (if enabled), average power at
the time when last average power error occurred, peak power at the time when last
peak power error occurred

Set the Tx Slew Rate Detector configuration.
Get the Tx Slew Rate Detector configuration.
Read the Slew Rate Detector statistics.

analog.com

Rev. B | 131 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

The ADRV903x main receivers (Rx0-Rx7) have a front end with a variable gain setting. Each receiver has an independent gain setting that is
controlled externally in Manual Gain Control (MGC) or by an internal state machine that makes gain change decisions based on input signal
levels in Automatic Gain Control (AGC). AGC enables the fastest reduction of gain in response to the sudden onset of a strong interferer that
may overload the receiver datapath. The AGC state machine controls the gain of the device based on inputs from a number of signal peak

and power detectors and responds by stepping through gain indices from the programmed gain table. The resolution of gain changes possible
depends on the gain table used. In MGC mode changes in gain are initiated by the Baseband Processor (BBIC) typically over the SP! interface.
The gain control blocks are configured by the API data structures and several API functions allow for user interaction with the gain control
mechanisms.

The AGC is highly flexible and has two configurations. During 3G/4G/5G operation Peak Detect Mode operation should be sufficient since the
received signal is typically a multi-carrier signal. In this case a gain change should be performed only under large over range or under range
conditions. If a blocker does appear, a ‘fast attack’ mode exists that should be able to reduce the gain at a fast rate.

To manage GSM blockers and radar pulses that have fast rise and fall times, a ‘fast attack, fast recovery, peak detect only’ mode is provided.
This mode can recover receiver gain quickly in addition to the fast attack capability mentioned earlier.

This section contains the following functional descriptions:

» Receiver Datapath: Outlines the gain control and signal observation elements of the receiver chain. It also describes the concept of the
receiver gain table.

» ORx Gain Control: Outlines the differences between Rx and ORx Gain Control.

» Gain Control Modes: Explains how to select between the gain control modes.

» Manual Gain Control (MGC): Describes how to operate the device in manual gain control mode.

» Automatic Gain Control (AGC): Describes the two principal modes of AGC operation, peak detect mode and peak/power detect mode.
» AGC Clock and Gain Block Timing: Describes the speed of the AGC clock and the various gain event and delay timers.

» Peak and Power Detectors: Outlines the operation and configuration of the gain control detectors in the device.

» AP Programming; List out the API functions used for AGC and MGC.

» AGC Sample Script: Example python code.

» Gain Compensation, Floating Point Formatter, and Slicer; In AGC modes, it is recommended to implement gain compensation. Gain
Compensation allows changes in Rx analog gain to appear transparent to the baseband processor by applying a compensating digital gain.

GLOSSARY OF IMPORTANT TERMS

Automatic Gain Control (AGC): The gain control mode where each receiver’s internal AGC state machine controls the receiver gain settings.
Manual Gain Control (MGC): The gain control mode where the receiver gain is controlled by the BBIC.

Gain Attack: A reduction in receiver gain index due to an over range condition.

Gain Recovery: An increase in receiver gain index due to an under range condition.

Gain Compensation: The process of compensating for the analog attenuation in the device (prior to the ADC) with a corresponding amount of
digital gain before the digital signal is sent to the user.

High Threshold: Each peak detector has multiple threshold levels. The highest level is referred to as the high threshold. High thresholds set an
upper bound to the signal input level above which the gain can be decreased.

Low Threshold: A level in a peak detector which is lower than the high threshold. Some detectors have multiple low thresholds. Low thresholds
set a lower bound to the signal input level below which the gain can be increased.

Threshold Overload: When a threshold is exceeded in a peak detector, this is referred to as an overload. An overload can occur for both high
and low threshold.

Over range Condition: An over range condition exists when the AGC is required to reduce the gain. This can either be a peak condition, where
a programmable number of individual overloads of a high threshold have occurred within a defined period of time, or a power condition, where
the measured power exceeds a high-power threshold.

analog.com Rev. B | 132 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Under range Condition: An under range condition exists when the AGC is required to increase the gain. This can either be a peak condition,
where a lower threshold is not exceeded a programmable number of times within a defined period, or a power condition, where the measured
power does not exceed a low power threshold.

RECEIVER DATAPATH

Figure 113 is a block diagram of the Rx datapath, highlighting the variable gain elements and the signal detection blocks. The amount of gain
provided by the variable gain elements is determined by the gain index. The gain index is a row within a table called the gain table where each
row within the table defines settings for all variable gain element blocks. If desired, the user can modify the gain table to suit their application.
Manual control over each individual gain block is not supported.

The user can manually set the gain index (MGC) or allow control of the gain index to be handled by the receiver based on inputs from the signal
detection blocks (AGC).

. e ower [geas -
ADC OVLD DETE || Detector

Detector

i
Re- || memaa
DATA
COMPENSAT
sampler H-{ _-'SL.c:nAH'“""‘““ }‘

Digitzl GFIC

r I
' I
! [
| !
| Re- DIGMAL GAR|]
| sampler |> LM ENSATON FQE&I:WE_ I
I |
' I

|

I |
I 4 I
I I
I I
I I
I |
I I
i |
I |
r I

Digital GRIC

Figure 113. Rx Datapath and Gain Control Blocks

Variable Gain Elements

The “FE Atten” block is the front-end attenuator stage, a variable gain analog input stage that is used to attenuate the input signal in the
presence of a strong interferer that may overload the ADC. The front-end attenuator uses an 8-bit control word. The amount of attenuation
applied depends on the value set in the front-end attenuator column of the selected gain table index. The following equation provides an
approximate relationship between the internal attenuator and the front-end attenuation value programmed in the gain table by the 8-bit value N:

FE Atten Attenuation (dB) = 20log;o(£5z2) (1)

This formula implies that as the value of N increases so does the front-end attenuation step size. Changing N from 1 to 2 results in an
attenuation step size of approximately 0.03 dBs but changing N from 254 to 255 results in an attenuation step size of approximately 6.02
dB which is orders of magnitude larger. Essentially at large values of N the front-end attenuation steps have poor resolution. Given that the
front-end attenuation is coarse at times it needs to work with a digital attenuation to give consistent attenuation resolution or steps across all
attenuation levels.

In the digital datapath, there is a “Digital Gain Compensation/Slicer” block. This block can be used to 1) Provide small amounts of gain

or attenuation to ensure the most consistent gain differences between different gain indices in the gain table, 2) To provide digital gain
compensation which compensates for a change in the FE Atten gain with an approximately equal and opposite digital gain or attenuation. The
second use is highly recommended in AGC scenarios because an amplitude transient would be observed in the desired baseband signal if a
strong interferer required a decrease in receiver gain. In the gain table, the digital control word is an 11-bit value where the MSB determines the
sign and the remaining 10-bits indicate the magnitude of gain or attenuation. The bit mapping is shown in Table 61.

analog.com Rev. B | 133 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Table 61. Signed Digital Gain/Attenuation Word Definition

Bit Position Interpretation
D10 1 = Attenuation
0=Gain
DI:DO Magnitude of gain/attenuation word.

The range of the digital gain is 0 to 50 dB. The range of the digital attenuation is 0 to 18 dB. The resolution of the steps is 0.05 dB. As an
example, a value of 14 would result in 0.7 dB gain, and a value of =14 would result in 0.7 dB of attenuation.

The “Ext Atten” block is an optional feature that uses the GPIO_ANA pins to control an external gain element. For single band receiver modes,
up to two GPIO_ANA pins can be used per Rx to control an external element. Examples of the external element include LNA disable pins or
input pins to a Digital Step Attenuator (DSA) block. The GPIO_ANA pins available for this feature are documented in the General Purpose
Input/Output Configuration section. For a given gain index, if a bit is set in the Ext Atten field, the corresponding GPIQ is asserted.

Gain Table Format

The gain table is user programmable, however, ADI provides two standard gain tables as a starting point in the SW deliverable package.

The gain table named RxGainTable.csv is the default table for all LowBand and MidBand configurations where LO < 4.5 GHz. For HighBand
applications with LO > 4.5 GHz, you should use the RxGainTable_HB.csv. Each row of the table provides a combination of front-end attenuator,
external gain element (if used) and digital gain settings. Based on which row of this table selected, either by the user in MGC mode, or
automatically by the device in AGC mode, the gain control block updates the variable gain elements depicted by the green arrows in Figure
113.

Table 62 shows a few entries sample gain table. This happens to also be an example of a gain compensated table where the front-end
attenuator applies attenuation and the signed digital gain/attenuation column applies a complementary amount of gain. Please refer to the
documentation earlier in this section to translate values in the table to gain values.

Table 62. Sample Rows from the Default Rx Gain Table

Gain Table Index Front-End Attenuator[7:0] External Gain Control[1:0] Signed Digital Gain/Attenuation[10:0] Phase Offset[15:0]
255 0 0 0 0
254 14 0 9 0
253 28 0 18 0
252 4 0 27 0
251 53 0 35 0
250 64 0 44 0

The gain table index is the reference for each combination of gain settings in the programmable gain table. It is possible to have different gain
tables for each receiver, though typically the same one is used. The possible range of the gain table is 255 to 0, however typically only a subset
of this range is used. The gain table must be assigned in order of decreasing gain, starting with the highest gain in the maximum gain index,
such as 255, and the lowest gain in the minimum gain index.

Note that the phase offset has a bug where you need to sign flip to get the value you want.

The gain index is programmed during initialization in the command adi_ ADRV903x_RxGainTableLoad(). This command is called during the
adi_ADRV903x_PreMcslnit() command after the ARM profile binary has been loaded.

Peak Detectors and Power Measurement Detectors

The receiver datapath has multiple observation elements that can monitor the incoming signal level. These can be used in either MGC or AGC
modes. Firstly, an ADC Overload Detector exists within ADC. This peak detector has the widest bandwidth of detection and can be used for
monitoring out of band blockers. The detection bandwidth is the ADC sample rate divided by two. Note that this detector is located after the TIA
filter so any attenuation in the TIA affects the observed signal.

The second peak detector is called the HB2 Overload Detector, so called because it monitors the data at the HB2 filter in the receiver chain.
The detection bandwidth at the HB2 overload detector is always narrower than the ADC Overload Detector. The detection bandwidth depends
on whether the input or output of the HB2 filter is used as the input to the AGC. The detection bandwidth is the sample rate at the detection
point multiplied by the normalized bandwidth of the filter preceding the detection point.

analog.com Rev. B | 134 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

A power measurement detection block is also provided in the receiver chain, which takes the RMS power of the received signal over a
configurable period. The power measurement location in the datapath is user configurable.

ORX GAIN CONTROL

The ORx0 and ORx1 channels are distinct from the Rx channels in the ADRV903x. The architecture of the ORx is based on an RF ADC design
as opposed to the Zero-IF architecture used in the main receivers.

The attenuation control on the ORx channels are also distinct from that of the Rx. The ORx may only be controlled via MGC. The ORXx signal
level is generally well known and, therefore, an AGC control is not implemented for the ORXx.

The attenuation range on the ORx channels are 16 dB in 1 dB steps. There is no gain table available for the ORx signal paths. Gain
adjustments are made in the analog stage of the ORx.

Table 63. List of Rx Gain API Functions

API Method Name Comments

adi_ADRV903x_RxGainTableWrite() Programs the gain table settings for Rx channels.

adi_ADRV903x_RxGainTableRead() Reads the gain table entries for Rx channels requested.

adi_ADRV903x_RxMinMaxGainIndexSet() Updates the minimum and maximum gain indices for a requested Rx Channel

adi_ADRV903x_RxGainTableExtCtrlPinsSet() Enable or disable the routing of the external control word from an Rx channel's gain table to its
external analog GPIO pins.

adi_ADRV903x_OrxAttenGet() Get the attenuation of an ORx channel.

adi_ADRV903x_RxGainCtriModeSet() Set the Rx gain control mode to MGC or AGC.

adi_ADRV903x_RxGainCtriModeGet() Get the Rx gain control mode with Rx channel index

adi_ADRV903x_RxTempGainCompSet() This function sets the temperature gain compensation parameter for Rx channel only.

adi_ADRV903x_RxTempGainCompGet() This function gets the temperature gain compensation parameter for Rx channel only. Only one
channel can be retrieved per call.

GAIN CONTROL MODES

There are two gain control modes for main receivers. These are designated MGC and AGC. The user can select the mode that best suits
their application. If MGC is selected, the gain index control is handled primarily over SPI command and there is some latency incurred due to
this control scheme. If AGC is selected, the user must ensure that the AGC data structure is configured appropriately to avoid gain oscillation
scenarios that could occur if high thresholds are not separated enough from low thresholds.

MANUAL GAIN CONTROL (MGC)

The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the BBIC is in control of the selecting
the gain index. There are two options: 1) API functions; and 2) pin control. By default, if MGC is chosen the part is configured for API functions.

Table 64. List of MGC API Functions

API Method Name Comments

adi_ADRV903x_RxGainSet() Sets the Rx Channel Manual Gain Index. If the value passed in the gainindex parameter is within range of the gain
table minimum and maximum indices, the Rx channel gain index will be written to the transceiver

adi_ADRV903x_RxMgcGainGet() Reads the Rx MGC Gain Index for the requested Rx channel.

AUTOMATIC GAIN CONTROL (AGC)

In AGC mode, a built-in state machine automatically controls the gain based on a user defined configuration. The AGC can be configured in
one of two modes:

» Peak Detect mode, where only the peak detectors are used to make gain changes.
» Peak/Power Detect mode, where information from the peak detectors and power detector is used to make gain changes.

The agcPeakThreshGainControlMode parameter of the AGC configuration structure adi ADRV903x_AgcCfg_t is used to select the AGC mode
of operation as shown in Table 65.

analog.com Rev. B | 135 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Table 65. agcPeakThreshGainControlMode Settings
Bit Position Interpretation

agcPeakThreshGainControlMode[d0] 1= AGC in peak detect mode. Power Based AGC changes cannot occur in this mode.
0= AGC in peak/power mode

Peak Detect Mode

In this mode, the peak detectors alone are used to inform the AGC to make gain changes. The ADC peak detector and HB2 detector both
have a high threshold and a low threshold. The ADC peak detector’s high threshold is fixed by hardware and is not user programmable. The
other thresholds are user programmable and can be configured with API parameters adcOvidLowThresh, hb2HighTresh and hb2UnderRange-
HighThresh. The limit for the number of times a threshold needs to be crossed for an over range or under range condition to be flagged is also
user programmable.

The high thresholds are used as limits on the incoming signal level and are typically set based on the maximum input of the ADC. When an
over range condition occurs, the AGC reduces the gain (gain attack). The low thresholds are used as lower limits on signal level. When the
signal peaks are not exceeding the lower threshold, then this is indicative of a low power signal, and the AGC increases gain (gain recovery).
This signal condition is termed an under range. The AGC stable state (where it does not adjust gain) occurs when neither an under range nor
an over range condition is occurring (the signal peaks are less than or equal to the high thresholds and greater than the lower threshold levels).

Each over range/under range condition has its own attack and recovery gain step as shown in Table 66.
Table 66. Peak Detector Gain Steps

Overload/Under Range Condition Gain Step

adcOvldHighThresh over range Reduce gain by adcOvldGainStepAttack
adcOvldLowThresh under range Increase gain by adcOvidGainStepRecovery
hb2HighThresh over range Reduce gain by hb2GainStepAttack
hb2UnderRangeHighThresh under range Increase gain by hb2GainStepHighRecovery

An over range condition occurs when a high threshold has been exceeded a configurable number of times within a configurable period. An
under range condition occurs when a low threshold has not been exceeded a configurable number of times within the same configurable
period. These counts make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak exceeding a threshold
does not necessarily cause the AGC to react, allowing the user to trade off bit-error rate with signal to noise ratio. Table 67 outlines these
configurable counts for each threshold’s over range/under range conditions.

Table 67. Peak Detector Threshold Exceeded Counts

Overload/Under Range Condition Threshold Exceeded Count
adcOvldHighTresh over range adcOvidUpperThreshPeakExceededCnt
adcOvldLowThresh under range adcOvldLowerThreshPeakExceededCnt
hb2HighThresh over range hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh under range hb2UnderRangeHighThreshExceededCnt

As an example of how the threshold exceeded counts work, consider the two thresholds associated with the HB2 detector in default operation.
If hb2UpperThreshPeakExceededCnt was set to 1, then hb2HighThresh must be crossed one or more times within the configurable period

for the signal to be considered over ranging the hb2HighThresh. Similarly, if hb2UnderRangeHighThreshExceededCnt was set to 1, then not
crossing the hb2UnderRangeHighThresh even once during the configurable period would indicate an under ranging condition. However, if
hb2UnderRangeHighThresh was crossed one or more times, then the signal will be not be under ranging (no gain recovery will be required in
this case).

The configurable period for determining under and over range conditions can be set through the AGC’s Gain Update Counter (GUC). This
counter serves as a timing reference for making gain changes. The GUC and all AGC state machine logic, excluding the current gain index,
are reset when the Rx is powered on. The GUC value, and therefore the time spacing between possible gain changes, is user programmable
through the agcGainUpdateCounter parameter. The GUC value thus sets a periodic interval, in AGC clock cycles, with which gain changes can
be made. Typically, this might be set to frame or sub-frame boundary periods. The agcSlowLoopSettlingDelay (configured in AGC clock cycles)
contributes to this periodic interval in addition to the agcGainUpdateCounter, as shown in Figure 121.

analog.com Rev. B | 136 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Once the GUC expires, all the peak threshold counters are reset through the agcSlowLoopSettlingDelay. The GUC is therefore a decision
period, and peak detection is suspended during agcSlowLoopSettlingDelay. The overload thresholds and counters are set based on the number
of overloads considered acceptable for the application within the duration of the GUC.

Figure 114 shows an example of the AGC response to a signal versus the ADC overload threshold levels. For ease of explanation, the ADC
overload peak detector is considered in isolation. The green line is representative of the peaks of the signal. Key events in this example are
numbered in the figure and described below:

1. During the first GUC period shown, the peaks of the signal are within the adcOvidHighThresh and adcOvldLowThresh, hence no gain
changes are made at the first GUC boundary.

2. Aninterferer suddenly appears whose peaks now exceed adcOvidHighThresh.

3. Assuming a sufficient number of peaks have been detected to exceed the adcOvidUpperThreshPeakExceededCnt, the AGC decrements
the gain index (reduces the gain) by adcOvldGainStepAttack.

Since one gain attack isn't sufficient to get the signal peaks below adcOvidHighThresh, the gain is decremented again.

With the peaks now between the two thresholds, the gain is stable and no gain changes are made at this GUC boundary.

The interferer is removed, and the peaks drop below the adcOvidLowThresh, resulting in an under range condition.

Although the signal is under-ranging, no gain changes are made at this GUC boundary assuming that enough peaks were detected to
exceed the adcOvldLowerThreshPeakExceededCnt while the interferer was present earlier in the same period.

8. As the signal continues to under range, no peaks are detected above adcOvidLowThresh. Thus the number of peaks detected does not
cross adcOvldLowerThreshPeakExceededCnt and the AGC steps by adcOvldGainStepRecovery.

9. The AGC recovers gain once more to bring the signal peaks back within adcOvldLowThresh and adcOvldHighThresh.

@ | | | Gain Update |
Period

Interferer | @ : H

|

No o~

Present ‘ Gain Decrement |
| (adcOvldGainStepAttack) @
L Gain Decrement adcOvldHighThresh

(ADC overrange)

(adcovl dGainStepAttack)I
f

|
|
|
T € :
|
|

Interferer
Removed

Gain Increment
(adcOvldGainStepRecovery)

|

|

|

|

|

|

|

|

|

|

|

I

| @

I I Gain Increment |
| (adcOvldGainStepRecovery)
|

|

|

1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
\
\
\
1
|
|
|
|

4

Figure 114. ADC Overload Thresholds and Gain Changes Associated with Underrange and Over range Conditions

Figure 115 shows the same scenario but from the viewpoint of the HB2 detector considered in isolation.

analog.com Rev. B | 137 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Gain Update |
Period |

Q@ |

Interferer | @ |

Present J/ Gain Decrement I
| (hb2GainStepAttack) | @
‘ I Gain Decrement

| (hb2GainStepAttack) hb2HighThresh
1

|
|
|
|
|
|
' ¢
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Interferer
Removed

o

Gain Increment
(hb2GainStepHighRecovery)

|
@
Gain Increment
(hb2GainStepH ighRecove[y]

e il E TPy PP

I

¢

Figure 115. HB2 Thresholds and Gain Changes Associated with Under Range and Over Range Conditions

In both these cases the AGC increases or decreases gain at the expiry of the GUC period (also referred to as the GUC boundary). Alternatively,
it is possible to enable a fast attack option whereby the AGC reduces gain immediately when an over range condition occurs, instead of waiting
until the next expiry of the GUC. This fast attack mode can be configured independently for the ADC and HB2 overload detectors using the AP

parameter agcGainChangelfThreshHigh. Values from 0-3 are valid as shown in Table 68.

Table 68. agcGainChangelfThreshHigh Settings

Gain Change following ADC Overload Over

agcChangeGainlfThreshHigh[1:0] range Gain Change following HB2 Over range
00 After expiry of agcGainUpdateCounter After expiry of agcGainUpdateCounter

01 Immediately After expiry of agcGainUpdateCounter

10 Atter expiry of agcGainUpdateCounter Immediately

11 Immediately Immediately

Figure 116 shows how the AGC reacts when the agcChangeGainlfThreshHigh[1] is set to 1 to enable fast attack for the ADC overload detector.
In this case, once the interferer appears, the gain is updated immediately after the number of detected peaks above adcOvldHighThresh
exceeds the adcOvidUpperThreshPeakExceededCnt. The AGC does not wait for the next expiry of the GUC to perform the gain attack. In this
way, a number of gain changes can be made in quick succession, providing a much faster attack than the default operation where gain changes
are made with the GUC'’s rhythm. Fast attack mode could be used in applications where it may be best to decrease gain immediately if the ADC
is overloaded rather than wait for a suitable moment in the received signal’s frame or sub-frame boundaries to change the gain.

Note that gain attack and recovery steps can be taken until the AGC reaches the minimum or maximum gain index programmed during the
AGC’s configuration. If a gain step has the potential of setting a gain index outside of the configured range, then the gain step is limited to keep
the gain within this configured gain index range.

analog.com Rev. B | 138 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

|] Gain Update |
| ! Period |
GaingDecrement
(achvIdFainStepAttack)
| adcOvldHighThresh
ain Decrement
(adcOvldGainStepAttack) Interferer
Removed

Gain Increment
cOvIdGainStepRe covery)

|

Interferer
Present

[

[

[

i

Gain Increment |
(achvldGainStepRecovfry)

%

Figure 116. ADC Overload Gain Changes with Fast Attack Enabled
Figure 117 shows the same scenario but from the viewpoint of agcChangeGainlfThreshHigh being set for HB2.

Gain Update |

| Period |
GainIDecrement
(h bZGiinStepAttack)
| .
| | hb2HighThresh
ain Decrement
(hb2GainStepAttack) Interferer
Removed

Gain Increment
(h ?ZGainSte pHighRecovery)

Interferer
Present

|
Gain Increment |
(h bZGainStepHighRecoi/ery)
|
|

Figure 117. HB2 Gain Changes with Fast Attack Enabled

Itis also possible to enable a fast recovery mode for the HB2 detector whereby gain recovery may occur with the expiry of multiple (shorter)
gain update intervals. Fast recovery is enabled by setting agcEnableFastRecoverylLoop to 1, and this mode enables additional thresholds and
corresponding gain update intervals for the HB2 detector. The peak exceeded counts and gain steps for each HB2 detector threshold are
described later in the Half Band 2 Peak Detector section. Gain update intervals for the under range thresholds are tabulated below.

analog.com Rev. B | 139 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Table 69. HB2 Peak Detector Recovery Steps and Intervals in Fast Recovery

Under Ranging Threshold Gain Step Gain Recovery following HB2 Under Range
hb2UnderRangeLowThresh hb2GainStepLowRecovery After expiry of hb2UnderRangeLowlnterval (replaces GUC)
hb2UnderRangeMidThresh hb2GainStepMidRecovery After expiry of hb2UnderRangeMidInterval
hb2UnderRangeHighThresh hb2GainStepHighRecovery After expiry of hb2UnderRangeHighinterval

The multiple threshold and interval parameters allow for gain recovery such that as the input signal approaches the desired level, the size
of the gain steps is reduced and the time interval between gain changes is increased. It should be noted that the time intervals associated
with the three under range thresholds run in parallel, such that hb2UnderRangeMidinterval is a multiple of hb2UnderRangeLowlnterval, and
hb2UnderRangeHighinterval is a multiple of hb2UnderRangeMidinterval.

In fast recovery, the hb2UnderRangeLowlInterval is used instead of agcGainUpdateCounter to set the gain update period. This interval also
serves as the GUC for gain changes triggered by the ADC peak detector in default operation (excluding fast attack) when fast recovery is
enabled for the HB2 detector. The recovery interval boundary chosen by the AGC to make its corresponding recovery gain step is prioritized
between the thresholds as explained in the next section. Figure 118 illustrates fast recovery with an example scenario described below:

1. Once the signal level falls below hb2UnderRangeLowThresh, gain is incremented by hb2GainStepLowRecovery following the expiry of the
gain update period hb2UnderRangeLowInterval.

2. Atter sufficient gain increases are implemented to bring the signal level above hb2UnderRangeLowThresh, the gain is incremented by
hb2GainStepMidRecovery with the expiry of gain update periods now set by hb2GainStepMidRecovery. This applies while hb2UnderRan-
geMidThresh continues to under range.

3. Finally, when the signal level increases above hb2UnderRangeMidThresh, gain is incremented by hb2GainStepHighRecovery following
the expiry of gain update periods as set by hb2UnderRangeHighinterval. This continues until the signal finally stabilizes in between
hb2HighThresh and hb2UnderRangeHighThresh.

Gain Update
Period

I

thUﬁderRangl'eLowmtéjval
T T T

hb2u IvderRangngd\nt&rval
1 |

| [
F T

=K
AR A

I
i | |

hb2Hi

| |
T T
|
|
|
|
: hThresh

_—— e e

|
hb2i ainStepI—iighRec
I

very

| |
T T
| |
1 |
| |
| |
I I
| |
| |
| |
| |
I |

©

T

SR R iy S

|
T
|
|
|
|
I
|
|
|
|
|
|

|
T T
| |
| |
| |
| |
I [
| |
| |
| |
| |
| |
| |
| |
| |

_—— e = N

|
!
|
|
|
|
|
|
|
|
| hb2UnperRangeMidThresh
|

|

| | ‘ thGizinSteplviidRecov+ry
| | |
hb2Gp inStepl\fidRecovFry

|
S — I
hb2U rderRang%Mid\nteI‘val

thGz{inStepLoleecovery | |

|
I
|
|
|
|
|
|
|
|
|
|
|
[
|

|@i :

| hb2unl
|
| I
thqunStequwRecove]ry |
|
|
|
1

erRangeLowThresh

| |
1 hb2UnderRanggLowInteyval

| |
| |
| |
| |
I I
| |
| |
| |
I £
| |
T thFainStep}lighRec({very :
} [l | : :
| |
{ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 1

G A K N 5 RN N S S

e —————

Figure 118. AGC Operation with HB2 Detector in Fast Recovery Mode

analog.com Rev. B | 140 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Priorities and Overall Operation

The hb2HighThresh is typically set at approximately -3 dBFS to provide some overhead to change the gain before an interferer causes
saturation of the ADC. It is highly recommended that the adcOvidLowThresh and the hb2UnderRangeHighThresh are set to equivalent values.
Typical values are approximately -6 to -8 dBFS. This equivalence will be approximate, as these thresholds have unique threshold settings
and will not be exactly equal. This section discusses the relevant priorities between the detectors and how the AGC will react when multiple
threshold detectors have been exceeded. Table 70 shows the priorities between the detectors in default (slow attack) mode, when multiple
over-ranges occur during the same GUC period.

Table 70. Priorities of Attack Gain Steps

adcOvldHighThresh Over Range hb2HighThresh Over Range Gain Change

No No No Gain Change

No Yes Gain Change by hb2GainStepAttack

Yes No Gain Change by adcOvldGainStepAttack
Yes Yes Gain Change by adcOvldGainStepAttack

If fast attack is enabled for either the ADC or the HB2 detectors or both, the peak exceeded counts corresponding to the high thresholds for
both detectors (adcOvldUpperThreshPeakExceededCnt and hb2UpperThreshPeakExceededCnt) are reset when a fast attack is triggered by
either detector, preventing any extraneous gain reduction from having both detectors triggering gain attacks in rapid succession. The peak
exceeded counts corresponding to the low thresholds, however, are unaffected by the gain attacks.

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario, the
priority of the thresholds is:

1. hb2UnderRangeLowThresh Under Range Condition
2. hb2UnderRangeMidThresh Under Range Condition

3. hb2UnderRangeHighThresh Under Range Condition
4. adcOvldLowThresh Under Range Condition

Upon one under range condition, the AGC will change the gain by the corresponding gain step size of this condition. However, if multiple
conditions occur simultaneously, then the AGC will prioritize based on the priorities indicated; that is, if hb2UnderRangeLowThresh is reporting
an under range condition then the AGC will adjust the gain by hb2GainStepLowRecovery with two exceptions.

The adcOvldLowThresh has priority in terms of preventing recovery. If adcOvidLowThresh reports an over range condition (at least
adcOvldLowerThreshPeakExceededCnt number of signal peaks have exceeded adcOvidLowThresh within a GUC period), then no further
recovery is allowed. adcOvidLowThresh and hb2UnderRangeHighThresh should be configured to be as close to the same value of dBFS,

but assuming some smalll difference between the thresholds, then as soon as adcOvldLowThresh is exceeded recovery will no longer occur.
The reverse is not true, hb2UnderRangeHighThresh will not prevent the gain recovery towards the adcOvidLowThresh. Given the strong
recommendation that adcOvidLowThresh and hb2UnderRangeHighThresh being set equally, then a condition whereby adcOvidLowThresh was
at a lower dBFS level to hb2UnderRangeLowThresh or hb2UnderRangeMidThresh should not occur.

Another exception is if the recovery step size for a detector is set to zero. If so, the AGC makes the gain change of the highest priority detector
with a non-zero recovery step. Figure 119 provides a flow diagram of the decisions of the AGC when recovering the gain in peak detect mode.

Power Detect Mode

In this mode, the power detector measurement is also used to control the gain of the Rx chain. It is possible to combine the peak detectors and
power measurement detectors to create scenarios where peak detectors (and/or power measurement detectors) can inform gain reductions

in over range scenarios and power measurement blocks inform gain increases in under range scenarios. Power measurement detectors by
themselves cannot allow for “fast attack” style operation. The power detector will change gain solely at the expiry of the gain update counter
whereas the peak detectors can be configured to make a gain change immediately when an over range is detected.

The power measurement block measures the RMS power of the receiver data at the measurement location. It can be configured to monitor the
signal in locations shown in Figure 113. In power detect mode, the AGC compares the measured signal level to programmable thresholds which
provide a second-order control loop, whereby gain can be changed by larger amounts when the signal level is further from the target level, and
make smaller gain changes when the signal is closer to the target level.

analog.com Rev. B | 141 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Figure 120 shows the operation of the AGC when using the power measurement detector. Considering the power measurement detector
in isolation from the peak detectors, the AGC will not modify the gain when the signal level is between overRangeLowPowerThresh and
underRangeHighPowerThresh. This range is the target range for the power measurement.

Gain Recovery

adcovkdlowThresh
under-range

IF
hb2UnderRange
LowThresh
under-range &
hb2Gain5teplow
Recovery = 0

IF
hb2UnderRange
MidThresh
under-range &
hb2GainStepMid
Recovery = 0

Y
Recover Gain by
hb2GainSteplowRecovery

IF
hb2UnderRange
HighThresh
under-range &
hb2GainStepHigh
Recovery = 0

Y

Recover Gain by
hb2Gain5StepMidRecovery

IF
adcOvid
LowThresh
under-range &
adcOvidGain
StepRecovery

Y
Recower Gain by
hb2GainStepHighRecovery

Y

Recowver Gainby
2d cOvidGain Ste pRECOVEry

END

Figure 119. Flow Diagram for AGC Recovery in Peak Detect AGC Mode

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiry and then increments
the gain by underRangeLowPowerGainStepRecovery. When the signal level is greater than underRangeLowPowerThresh but below underRan-
geHighPowerThresh, the AGC will increment the gain by underRangeHighPowerGainStepRecovery. Likewise, when the signal level goes
above overRangeHighPowerThresh, the AGC decreases the gain by overRangeHighPowerGainStepAttack, and when the signal level is be-
tween overRangeHighPowerThresh and overRangeLowPowerThresh, the AGC will decrease the gain by overRangeLowPowerGainStepAttack.

It is possible for the AGC to get conflicting requests from the power and peak detectors. An example would be an overloading out of band
blocker visible to the ADC overload detector but significantly attenuated at the power measurement block. In this case the ADC overload
detector requests a gain decrement, while the power measurement block requests a gain increment. The AGC has the following priority scheme
in power detect mode:

analog.com Rev. B | 142 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

ADC Overload Detector High Threshold Over range
HB2 High Threshold Over range

ADC Overload Detector Low Threshold Over range
HB2 Low Threshold Over range

Power Measurement

Rl i

Gain Update

Period
-~ »

| Decrement Gain by
overRangeHighPowerGainStepAttack

| Gain Decrement

overRange}-‘IighPowerTh resh
I

l

| Decrement Gain by
overRaneLchowerGamSlepAttack
|Gain Decrement

) |

overRangeLrowPowerThresh

I

I

|

!

I

|

T [

| |
| | |
I | |

| Received signal ,

|

|

I

|

|

|

|

I

Signal Level | Level Change

|
I
I
|
I
I
f
I |
I |
| | No Gain Change
I |
[|

Received signal
Level Change

underRangéHighPowerThresh
I

underRangelowPowerThresh

IGBII’\ Increment | Increment Gain by

underRangeHighPowerGainStepRecovery

I

| Increment Gain by
underRangelowPowerGainStepRecovery

|
Gain Increment |
I
I

|
[
|
erl
[
|
1

Figure 120. PMD Thresholds and Gain Changes for Under-range and Over-range Conditions

In this example, the gain would be decremented because the ADC overload high threshold over-range has a higher priority than the power
measurement. Of note are the ADC overload and HB2 lower level overloads. In peak detect mode, the lower level thresholds for these
detectors were used to indicate an under-range condition which caused the AGC to increase the gain. In power detect mode, these detectors
are not used for gain recovery, but can be used to control gain recovery by setting the API parameter, agcLowThreshPreventGain. If this
parameter is set, and if the signal level is exceeding a lower level threshold, the AGC is prevented from increasing the gain regardless of the
power measurement.

This prevents an oscillation condition that could otherwise occur to a blocker visible to a peak detector but filtered before the power
measurement block. In such a case, the peak detector could cause the AGC to decrease gain. It would do this until the blocker is no longer
exceeding the defined threshold. At this point, the power measurement block could request an increase in gain and would do so until the
detector’s peak threshold was exceeded. This would decrease gain and so on. By using these lower level thresholds, the AGC is prevented
from increasing gain as the signal level approaches an overload condition, providing a stable gain level for the Rx chain under such a condition.

AGC CLOCK AND GAIN BLOCK TIMING

The AGC clock is the clock which drives the AGC state machine. A number of the programmable counters used by the AGC are clocked at this
rate. Its maximum frequency is 500 MHz. The clock is the greatest 2N multiple of the 1Q rate less than 500 MHz. For example, for an Rx profile
with an |Q output rate of 245.76 MSPS, the AGC clock will be 491.52 MHz.

The AGC state machine’s gain update period contains three factors: Gain Update Counter, followed by the Slow Loop Settling (SLS) delay,
and a constant 5 AGC clock cycles delay. The total time between gain updates (gain update period) is thus a combination of the GUC
(agcGainUpdateCounter or hb2UnderRangeLowlnterval), the agcSlowLoopSettlingDelay, and an additional 5 AGC clock cycles. Note that the
agcSlowLoopSettlingDelay set by the user through the APl is doubled by hardware.

The following is an example of how to configure the agcGainUpdateCounter parameter. Consider a 100 ps gain update period and a 491.52
MHz AGC clock, a total of 49,152 AGC clocks cycles are required in the gain update period:

Gain Update Period (AGC Clocks) = 491.52 MHz*100us = 49,152 (12)

As noted, the full gain update period is the sum of the agcGainUpdateCounter, twice the agcSlowLoopSettlingDelay, and 5 additional AGC
clock cycles. If the agcSlowLoopSettlingDelay is set to 4, the gain update counter must be set to 49,139.

Gain Update Period (AGC Clocks) = agcGainUpdateCounter + 2(agcSlowLoopSettingDelay)

+5)

analog.com Rev. B | 143 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Gain Update Period (AGC Clocks) = 49,139 + 2(4) + 5 = 49,152

Figure 121 outlines the operation of the AGC state machine. The diagram outlines possible gain change scenarios rather than a practical
example of AGC operation. The possible gain change scenarios are described below:

1. Signal under ranging / over ranging within GUC duration, before the SLS delay begins - Because slow loop settling (SLS) is typically
several orders of magnitude smaller than gain update counter, this is the most common gain decrement scenario. The AGC state machine
will proceed with any gain changes as deemed necessary at the GUC boundary (excluding fast attack and fast recovery modes).

2. Signal under ranging / over ranging detected during the SLS delay - This is a special case, but will rarely occur in applications per the
reasoning in 1). As AGC’s peak counters are reset during the SLS delay, any under ranging or over ranging will not be flagged over the SLS
duration. The AGC is essentially blind to input signal conditions during the SLS delay. However, any signal under ranging or over ranging
that persists onto the next GUC period will be addressed as in 1).

Gain Update Period Gain Update Period
k
|
oo |
e
i :| m
: t -
' L 4 Time
Peak Detectors Counters Peak Detectors Counters
Engaged Reset Engaged Reset

@ @ @ ®

Figure 121. Gain Update Period

It should be noted that a gain attack may occur within the gain update counter period when fast attack is enabled. However, a gain recovery
event may only occur at the expiry of the gain update counter. After a gain attack, the SLS delay is started, and no further gain attacks are
possible while this counter is running. The SLS sets the minimum time between gain changes in fast attack mode.

When Rx is enabled, the AGC can be kept inactive for a programmable number of AGC clock cycles set by agcRxAttackDelay. This means the
user can specify one delay for AGC reaction when entering Rx mode, and another for after a gain change occurs (agcSlowLoopSettlingDelay).
Additionally, the API parameter agcResetOnRxon can be set to 1 to make the GUC restart whenever the Rx is re-enabled. Note that when
agcResetOnRxon is 0 (default), the GUC pauses when the Rx is disabled, and resumes from its last value when Rx is re-enabled, effectively
giving a time shift in the GUC’s rhythm.

PEAK AND POWER DETECTORS

ADC Overload Detector

ADC overload detection is performed by an analog peak detector located at the ADC input after the TIA. This peak detector compares the
incoming signal’s peak level to the high threshold adcOvidHighThresh (fixed in hardware at -0.5 dBFS), and a programmable low threshold
adcOvldLowThresh. In case of the high threshold, an over ranging (threshold exceeded) condition is flagged if the input signal exceeds
adcOvldHighThresh at least a programmable number of adcOvidUpperThreshPeakExceededCnt times within the gain update counter (GUC)
period. The GUC period is set through the agcGainUpdateCounter in AGC clock cycles. For the low threshold, under ranging is flagged if the
input signal does not cross adcOvldLowThresh at least a programmable number of adcOvidLowerThreshPeakExceededCnt times within the
GUC period. The two thresholds are visualized below:

analog.com Rev. B | 144 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

adcOvldHighThresh

time

Figure 122. Analog Overload Detector Thresholds

The low threshold adcOvldLowThresh can be set to any value in the range of 0 to 8, where 8 represents the ADC'’s fullscale. The API value can
be scaled in terms of the ADC fullscale (ADC dBFs) by using the following equation:

ADC Overload Low Threshold (in dBFS) = 20 log(2d<2vidbowThresh) (14)

Since the analog peak detector is located after the TIA, the TIA can also attenuate the signal to a small degree, typically having a low
attenuation over the passband and a steeper roll-off past the 3dB TIA corner frequency. This effectively determines the peak detector’s
operational bandwidth. The analog peak detector can also detect out-of-band (OOB) blockers although the blocker’s level at the Rx input will
get attenuated by the TIA before its level at the ADC input is compared against adcOvidHighThresh and adcOvldHighThresh.

The gain steps and peak threshold counts corresponding to each threshold were tabulated in Table 66 and Table 67.
Table 71. AgcPeak struct parameters for the Analog Peak Detector

AgcPeak Parameter Description

adcOvldHighThresh Fixed by hardware (-0.5 dBFS).

adcOvldUpperThreshPeakExceededCnt Number of peak events needed where input signal exceeds adcOvldHighThresh to trigger an over ranging
condition. Valid range is 2 to 255.

adcOvldLowThresh Analog peak detector’s programmable low threshold. Valid range is 0 to 8, where 8 means full scale of ADC.

adcOvldLowerThreshPeakExceededCnt Number of peak events needed where input signal exceeds adcOvidLowThresh in order to prevent an under
ranging condition. Valid range is 2 to 255.

Half-Band 2 Peak Detector

The HB2 peak detector samples data at the input or output (hb20verloadSignalSelection) of Half-Band filter 2. The detector compares the
signal level to programmable thresholds. It monitors the signal level by observing individual 2 + Q2 samples (or peak | and peak Q if
hb20verloadPowerMode = 0) over a period and compares these samples to the thresholds. If enough samples exceed a threshold in the
period, then the threshold is noted as exceeded by the detector.

The HB2 detector does not operate on individual samples but on a programmable batch size of samples. The hb20verloadDurationCnt defines
the size of the small batch of samples to analyze. The hb20verloadThreshCnt sets the necessary number of samples exceeding an HB2
threshold level within the batch to increment the peak count. This means that every peak that exceeds the threshold does not necessarily
increment the peak detection count — this decreases sensitivity to a single errant peak which could be caused by the statistics of the signal
itself. hb20verloadThreshCnt and hb20verloadDurationCnt apply for all HB2 thresholds enabled for the selected recovery mode (default mode
and fast recovery). If a hb20verloadDurationCnt is interrupted by the expiry of the GUC, the incomplete hb2OverloadDurationCnt batch does
not factor into the gain change decision - it is effectively truncated from the decision criteria.

In the case of the HB2 high threshold hb2HighThresh, once enough batches containing a sufficient count (hb2UpperThreshPeakExceededCnt)
of overloading samples are detected an over range condition is observed. For the HB2 low thresholds (hb2UnderRangeHighThresh in

default mode and additionally hb2UnderRangeMidThresh and hb2UnderRangeLowThresh in fast recovery), if there are not a greater

number of batches containing a sufficient count (hb2UnderRangeHighThreshExceededCnt, hb2UnderRangeHighThreshExceededCnt, and
hb2UnderRangeHighThreshExceededCnt respectively) of overloading samples, then an under range condition is observed.

analog.com Rev. B | 145 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Figure 123 shows the two-level approach. It shows the gain update counter period, with the time being broken into subsets of time based on the
setting of hb20verloadDurationCnt. Each of these periods of time is considered separately, and hb20verladThreshCnt individual samples must
exceed the threshold within hb20verloadDurationCnt for an overload to be declared. These individual samples greater than the threshold are
shown in red, while those less than the threshold are shown in green. Two examples are shown, one where the number of samples exceeding
the threshold was sufficient for the HB2 peak detector to declare an overload (this time period is shown as red in the gain update counter
timeline), and a second example where the number of samples exceeding the threshold was not sufficient to declare an overload (this time
period is shown as green in the gain update counter timeline).

hb20verloadDurationCnt hb20verloadDurationCnt

hb20verloadThreshCnt
Exceeded

hb20OverloadThreshCnt
Not Exceeded

agcGainUpdateCounter

Figure 123. HB2 Detector Two-Level Approach for an Overload Condition

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the peak
detect AGC configuration, as summarized in Table 72.

Table 72. HB2 Overload Thresholds

HB2 Threshold Usage

hb2HighThresh Used for gain attack in both peak and power detect AGC modes.

hb2UnderRangeHighThresh Used for gain recovery in peak detect AGC mode. In power detect AGC mode it is used to prevent overloads during
gain recovery.

hb2UnderRangeMidThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized.

hb2UnderRangeLowThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized.

For more details of how these thresholds are used by the AGC, refer to the relevant sections of the AGC overview in this document (specifically
Figure 115, Figure 117 and Figure 118).

The thresholds are related to an ADC dBFS value using the following equations:

(thHigh dBFS)
hb2HighThresh = 16384 x 10 20

(thUnderRangeHigh dBFS)
hb2UnderRangeHighThresh = 16384 X 10 20

(thUnderRangeMid dBFS)
hb2UnderRangeMidThresh = 16384 X 10 20

(thUnderRangeLow dBFS)
hb2UnderRangeLowThresh = 16384 x 10 20

Please note that these equations only apply if the hb2OverloadPowerMode = 0. If this parameter is set to 1, then the denominator in the
exponent changes from 20 to 10.

Each threshold has an associated counter such that an over-range condition is not flagged until the threshold has been exceeded this amount
of times in a gain update period.

Table 73. HB2 Overload Thresholds and Counters

HB2 Threshold Counter

hb2HighThresh hb2UpperThreshPeakExceededCnt

analog.com Rev. B | 146 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Table 73. HB2 Overload Thresholds and Counters (Continued)

HB2 Threshold Counter

hb2UnderRangeHighThresh hb2UnderRangeHighThreshExceededCnt
hb2UnderRangeMidThresh hb2UnderRangeMidThreshExceededCnt

hb2UnderRangeLowThresh hb2UnderRangeLowThreshExceededCnt

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes.
Table 74. HB2 Attack and Recovery Step Sizes

Gain Change Step Size

Gain Aftack hb2GainStepAttack

Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery

Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery

Power Detector

The power measurement block measures the RMS power of the incoming signal. It can monitor the signal level at different locations, namely
the HB2 output, the RFIR output and the output of the DC correction block. To choose a location, the powerlnputSelect API parameter is utilized
as described in Table 75.

Table 75. Location of the Decimated Power Measurement

powerlnputSelect Value
DC Offset Output 0
RFIR Output 1
QFIR Output (QEC Filter) 2
HB2 Qutput 3

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration API
parameter:

Power Meas Duration (Rx Sample Clocks) = 8*2PowerMeasurementDuration (19)

where Rx Sample Clocks is the number of clocks at the power measurement location. It is important that this duration not exceed the gain
update counter. The gain update counter resets the power measurement block and therefore a valid power measurement must be available
before this event. In the case of multiple power measurements occurring in a gain update period, the AGC will use the last fully completed
power measurement, any partial measurements being discarded.

The power measurement block has a dynamic range of 60 dB by default.

AGC API FUNCTIONS
Table 76. List of AGC Configuration APl Functions

API Method Name Comments

adi_ADRV903x_AgcCfgSet() Configures all the AGC settings as described above.

adi_ADRV903x_AgcCfgGet() Readback the AGC settings.

adi_ADRV903x_AgcGainindexRangeSet() Configure min/max gain indices allowed for AGC operation.
adi_ADRV903x_AgcGainindexRangeGet() Function to read AGC Gain range for selected channel.

adi_ADRV903x_AgcReset() Function to reset all AGC state machines and peak detector counters for selected channels.
adi_ADRV903x_RxGainGet() Reads the Rx AGC Gain Index for the requested Rx channel.
adi_ADRV903x_RxTempGainCompSet() Sets the Rx gain compensation.

adi_ADRV903x_RxTempGainCompGet() Gets the Rx gain compensation.

analog.com Rev. B | 147 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

RX AND ORX POWER MEASUREMENT API FUNCTIONS

Table 77. List of Rx and ORx Power Measurement API Functions

API Method Name

Comments

adi_ADRV903x_RxDecimatedPowerCfgSet()
adi_ADRV903x_RxDecimatedPowerCfgGet()
adi_ADRV903x_ORxDecimatedPowerCfgSet()
adi_ADRV903x_ORxDecimatedPowerCfgGet()
adi_ADRV903x_RxDecimatedPowerGet()

Set the Rx decimated power measurement block configuration.

Get the Rx decimated power measurement block configuration.

Set the ORx decimated power measurement block configuration.

Get the ORx decimated power measurement block configuration.

Get the decimated power measurement for selected Rx/ORx channel.

AGC SAMPLE SCRIPT

The sample python script below is a function definition for settings the AGC values. They values below are ADI recommended values.

def setAGC (RxMask) :

analog.com

AgcCfgl = adi adrvgent AgcCfg t()
AgcCfgl.rxChannelMask = RxMask
AgcCfgl.agcAdcResetGainStep = 5
AgcCfgl.agcChangeGainIfThreshHigh = 2
AgcCfgl.agcEnableFastRecoveryLoop = 1
AgcCfgl.agcLowThreshPreventGainInc = 1
AgcCfgl.agcPeakThreshGainControlMode =
AgcCfgl.agcPeakWaitTime = 2
AgcCfgl.agcResetOnRxon = 1
AgcCfgl.agcRxAttackDelay =
AgcCfgl.agcRxMaxGainIndex = 255

AgcCfgl.agcRxMinGainIndex = 185

AgcCfgl.agcSlowLoopSettlingDelay = 32

GUC = int(Update Ts*getAgcClk MHz (RxChannel) - 2*AgcCfgl.agcSlowLoopSettlingDelay -5)
#Calculates Gain Update Counter based of desired Update Period (Update Ts)
AgcCfgl.agcGainUpdateCounter = GUC

AgcCfg = adi_adrvgen6 AgcPeak t()

#Intervals

AgcCfg.hb2UnderRangeLowInterval = 12288

AgcCfg.hb2UnderRangeMidInterval = 1

AgcCfg.hb2UnderRangeHighInterval = 3

#Thresholds AND Steps

AgcCfg.adcOvldGainStepAttack = 5

AgcCfg.adcOvldLowThresh = 4

AgcCfg.adcOvldGainStepRecovery= 0

AgcCfg.hb2HighThresh = int(l6384*(10**(HB2_HT/20.0)))

AgcCfg.hb2GainStepAttack = 4

AgcCfg.hb2UnderRangeHighThresh = int(16384*float(10**(HB2_LT1/20.0)))
AgcCfg.hb2GainStepHighRecovery = 2

AgcCfg.hb2UnderRangeMidThresh = int(16384*float (10** (HB2 LT2/20.0)))
AgcCfg.hb2GainStepMidRecovery = 4

AgcCfg.hb2UnderRangeLowThresh = int(l6384*float(10**(HB2_LT3/20.0)))
AgcCfg.hb2GainStepLowRecovery = 8
#Thresh Counts
AgcCfg.adcOvldUpperThreshPeakExceededCnt
AgcCfg.adcOvldLowerThreshPeakExceededCnt = 2
AgcCfg.hb20verloadThreshCnt = 6
AgcCfg.hb2UpperThreshPeakExceededCnt = 3
AgcCfg.hb2UnderRangeHighThreshExceededCnt = 4
AgcCfg.hb2UnderRangeMidThreshExceededCnt = 4
AgcCfg.hb2UnderRangeLowThreshExceededCnt = 4

1

15

Il
[N

Rev. B | 148 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

#Misc

AgcCfg.hb20verloadDurationCnt = 32
AgcCfg.hb20verloadPowerMode = 0
AgcCfg.hb20verloadSignalSelection = 0
AgcCfg.enableHb20verload = 1
AgcCfgl.agcPeak = AgcCfg
AgcCfgl.agcPower.powerEnableMeasurement = 0

GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER

The user has the option of enabling gain compensation in the device. In gain compensation mode, the digital gain block is utilized to
compensate for the analog front-end attenuation. The cumulative gain across the device will be 0 dB; for example, if 5 dB analog attenuation

is applied at the front end of the device then 5 dB of digital gain will be applied. This ensures that the digital data is representative of the

RMS power of the signal at the Rx input port; any internal front-end attenuation changes in device in order to prevent ADC overloading are
transparent to the baseband processor. In this way with gain compensation, the BBIC does not need to precisely track the current gain index to
recover the received signal because the compensation is performed on the transceiver.

The digital gain block is controlled by the gain table, and a compensated gain table is required to operate in this mode. Such a gain table
defines in each row a front-end attenuator setting with a corresponding amount of digital gain programmed at each index of the table. The user
may create custom compensated gain tables as needed.

Gain compensation can be used in either AGC or MGC modes although has most utility in AGC mode. The maximum amount of gain
compensation is 50 dB and the minimum is =18 dB. This allows for compensation of both the internal analog attenuator and an external gain
component (such as a DSA or LNA).

Large amounts of digital gain will increase the bit-width of the datapath. There are several ways in which this expanded bit-width data can
be sent to the BBIC, which are detailed below. Figure 124 is a block diagram of the gain compensation portion of the Rx chain, showing the
locations of the various blocks.

Slicer Outputs

to BBP

A A A
—d DIGITAL GAIN/ SLICER FLOATING POINT ﬁ
COMPENSATION FORMATTER w]

Figure 124. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath

Please note that in addition to the standard gain compensation as defined in the gain table, there is also a digital temperature gain
compensation feature in the datapath. This uses a SPI command to add or subtract digital gain. The purpose is to compensate for changes
in external gain over temperature shifts. The user may have a temperature look up table defined within their system with different digital
temperature gain compensation settings that are enabled when entering certain zones of operating temperature. The digital temperature gain
compensation is exclusively managed by the user and is not intrinsically controlled.

Mode 1: No Digital Gain Compensation (Default)

This is the mode that the chip is configured to by default. In this mode the digital gain block is not used for gain compensation. Instead the
digital gain block may be utilized to apply small amounts of digital gain/attenuation to provide consistent gain steps in a gain table. The premise

analog.com Rev. B | 149 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

is that because the analog attenuator does not have consistent stops in dB across its range then the digital gain block can be utilized to even
out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps).

Neither the slicer nor floating-point formatter block is utilized. As no gain compensation is applied, there is no bit-width expansion of the digital
signal. The signal is provided to the JESD port which sends it to the BBIC in either 12-bit, 16-bit, or 24-bit format depending on the use case.

Mode 2: Digital Gain Compensation With Slicer GPIO Outputs

In this mode gain compensation is used. The device should be loaded with a gain table that compensates for the analog front-end attenuation
applied. Thus, as the analog front-end attenuation is increased, and equal amount of digital gain is applied. Considering 16-bit data at the input
to the digital compensation block, then as more digital gain is applied the bit-width of the signal is increased. With every 6 dB of gain, the
bit-width increases by 1. Figure 125 outlines this effect, with yellow boxes indicating the valid (used) bits in each case.

0dB Gain [D22]p21]p20]D19]D18]D17[D16]D15 [D14 D13 [D12 [D11[D10[D9 [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |
Compensation

0dB<Gain Ipr>[p21[D20]D19]D18[D17 [D16[D15][D14[D13[D12 [D11[D10] D9 [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |
Compensation < 6dB

6dB<Gain [p37]p21]D20[D19]D18[D17][D16][D15[D14[D13[D12]D11[D10] DY [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |
Compensation < 12dB

Figure 125. Bit Width of Received Signal for Increasing Gain Compensation

The slicer is used to attenuate the data after the digital gain block such that it can fit into the resolution of the JESD datapath. It then advises
the user how much attenuation is being applied in real time, so that the user can compensate on the BBIC side. In this mode, the current slicer
setting (amount of attenuation) is provided real time over GPIO pins.

Note that this slicer setting information is not necessarily time aligned to the data at the BBIC side. As soon as the slicer value changes, this
information is provided on the GPIO pins. However, there will be some latency between this and when the corresponding data arrives across
the JESD link. It is up to the user to determine an appropriate way of accounting for this latency.

This slicer can be configured for a number of attenuation resolutions, namely 1 dB, 2 dB, 3 dB, 4 dB, 6 dB, or 8 dB steps. Higher resolution
(smaller steps) allows the user to follow the actual signal amplitude with finer resolution, while lower resolution (larger steps) allows for more
compensation range.

The slicer can use up to three GPIOs per receiver. These require these pins to be enabled as outputs and configured for slicer output mode,
see the General Purpose Input/Output Configuration section.

The following example explains the operation of the slicer in detail. In this use case, the JESD is configured for 16-bit data resolution. The slicer
is configured to 6 dB resolution. Note that 6 dB is the most common setting as the baseband processor can easily approximate adding in the
gain by a simple bit shift.

Figure 126 explains the operation. Initially the analog attenuator is applying no attenuation (0 dB) and hence there is 0 dB digital gain applied to
the signal. The slicer is in its default (0000) position. As the attenuation increases (0 to 6 dB), a corresponding amount of digital gain is applied
to the signal. With any digital gain applied to the signal, the bit-width of the signal has increased (the ADC can output 16-bits, further gain will
allow a maximum input to go beyond 16-bits). In this case the signal has now a bit-width of 17. The slicer therefore applies 6 dB of attenuation,
and the slicer position information across the GPIOs is updated to advise the user of this change (in this case 0001). This 6 dB attenuation
ensures that the bit-width of the signal is 16 once more; that is, the 16 MSBs have been selected (sliced) with the LSB dropped. When the
compensation increases beyond 6 dB, it is now possible that the signal resolution in the digital path can be 18-bit. The slicer then attenuates by
12 dB (or slices the 16 MSBs dropping the 2 LSBs).

analog.com Rev. B | 150 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Slicer Outputs
to BBP

. ; 00 00
0dB Gain [D22]p21]D20]D19]D18 D17]D16 D15 [D14]D13]D12[D11 [D10] D9 D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [Do | f f f f
Compensation ¥ 1

— —

00 0
. [| L
0dB < Gain [D22]p21]D20]D19]D18[D17ID16[D15[D14]D13[D12]D11 [D10] D9 [D8 [D7 [D6 [D5 [Da [D3 [D2 [D1 { DO | ff 1
Compensation < 6dB T T

00 10
.] []
6dB < Gain [p22]p21]p20]D19]D18[D17]D16[D15[D14]D13[D12 D11 [D10] D9 [D8 [D7 [D6 [D5 [p4 [D3 [D2 D1 [DO | ff 1 1‘
Compensation < 12dB T T

Figure 126. Slicer Bit Selection with Digital Gain

The BBIC receives these 16-bits and uses the slicer output to scale the power of the received signal to determine the power at the input to the
device (or at the input to an external gain element if considered part of the digital gain compensation).

The slicer position versus digital gain for this 6 dB example is described in Table 78. Equivalent tables can be inferred for the other attenuation
options.

Table 78. Slicer GPIO Output versus Digital Gain Compensation

Digital Gain Compensation (dB) Slicer Position (Value output on GPIOs)

0

0<Dig_Gain<6

6 <Dig_Gain <12
12 < Dig_Gain < 18
18 < Dig_Gain < 24
24 < Dig_Gain < 30
30 < Dig_Gain < 36
36 < Dig_Gain < 42
42 < Dig_Gain < 48
48 < Dig_Gain £ 50

O 0O N O O & W N -~ O

Mode 3: Digital Gain Compensation With Embedded Slicer Position

This mode is like mode 2 but notably eliminates the GPIO pin requirement by replacing sample data bits with slicer information bits. The slicer
is used to select the 16 MSBs based on the amount of digital gain used by the currently selected gain index in the gain table. However, in this
mode the GPIO slicer outputs are not used. Instead the slicer position (or attenuation applied) is embedded into the data.

There are several permissible ways in which this can be configured which are shown in the figures in this section. The options are to place
the slicer setting as 1 bit on both | and Q, or 2 bits on both | and Q. These can be placed at the MSBs or LSBs. For the case where 2 bits
are embedded onto both | and Q data, there are further options of using three slicer bits or four. If three are used, there is a further option of
inserting a zero to fill the fourth bit, or to insert a parity bit.

Sign Slicer
Bit Value
IDATA | s |st1|[p13|p12|{D11|D10|{ D9 [D8 | D7 [D6 | D5 [D4 | D3 [D2 | D1 | DO |
Sign Slicer
Bit Value

QDATA | s |sto|D13[p12[D11[D10[D9 [D8 [D7 [D6 | D5 | D4 | D3 [D2 | D1 | DO |

Figure 127. Encoding of Slicer Information as Control Bits (adi_ADRV903x_RxSlicerEmbeddedBits = ADI_ADRV903X_EMBED_1_SLICERBIT_AT_MSB)

analog.com Rev. B | 151 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Sign Slicer
Bit Value
IDATA | s |p13[D12|p11|D10| D9 [D8 [D7 [D6 [D5 | D4 [D3 | D2 [D1 | DO [SL1]|
Sign Slicer
Bit Value

QDATA | s [p13]|p12|p11{D10{D9 | D8 | D7 [D6 [D5 [D4 | D3 [D2 [D1 | DO | SLo]

Figure 128. Encoding of Slicer Information as Control Bits (adi_ADRV903x_RxSlicerEmbeddedBits = ADI_ ADRV903X_EMBED_1_SLICERBIT_AT_LSB)

Sign
Bit Slicer Value

IDATA | s |st3|sL2|p12|{p11|p10|{ D9 (D8 | D7 [D6 | D5 [D4 | D3 [D2 | D1 | DO |

Sign
Bit Slicer Value

QDATA | s |st1]sto[pi2[p11[p1o[D9 [D8 [D7 [D6 [D5 | D4 | D3 [D2 | D1 | DO |

Figure 129. Encoding of Slicer Information as Control Bits (adi_ADRV903x_RxSlicerEmbeddedBits = ADI_ ADRV903X_EMBED_2_SLICERBITS_AT_MSB _3 BIT_
SLICER)

Sign
Bit Slicer Value

IDATA | s |p12[p11|p10|{ D9 | D8 [D7 [D6 | D5 [D4 | D3 [D2 | D1 [DO | SL3 | sL2|

Sign
Bit Slicer Value

QDATA | s [p12]p11|p10o|{D9 [D8 | D7 [D6 [D5 [D4 [D3 | D2 [D1 [DO | SL1] sLo]

Figure 130. Encoding of Slicer Information as Control Bits (adi_ADRV903x_RxSlicerEmbeddedBits = ADI_ ADRV903X_EMBED_2_SLICERBITS_AT_LSB _3 BIT_
SLICER)

Sign
Bit Slicer Value

IDATA | s |st3|sL2|p12|{p11|p10|{ D9 (D8 | D7 [D6 | D5 [D4 | D3 [D2 | D1 | DO |

Sign
Bit Slicer Value

QDATA | s |st1]sto[pi2[p11[p1o[D9 [D8 [D7 [D6 [D5 | D4 | D3 [D2 | D1 | DO |

Figure 131. Encoding of Slicer Information as Control Bits (adi_ADRV903x_RxSlicerEmbeddedBits = ADI_ ADRV903X_EMBED_2_SLICERBITS_AT_MSB _4 BIT_

SLICER)
Sign
Bit Slicer Value
IDATA | s |p12[p11|p10|{ D9 | D8 [D7 [D6 | D5 [D4 | D3 [D2 | D1 [DO | SL3 | sL2|
SIiB?tn Slicer Value

QDATA | s [p12]p11|p10o|{D9 [D8 | D7 [D6 [D5 [D4 [D3 | D2 [D1 [DO | SL1] sLo]

Figure 132. Encoding of Slicer Information as Control Bits (adi_ADRV903x_RxSlicerEmbeddedBits = ADI_ ADRV903X_EMBED_2_SLICERBITS_AT_LSB _4 BIT_
SLICER)

Mode 4: Digital Gain Compensation and Floating-Point Formatting

The floating-point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode, the
data is converted to IEEE754 half precision floating point format (binary 16). There is a slight loss in resolution when using the floating-point
formatter, though resolution is distributed such that smaller numbers have higher resolution.

analog.com Rev. B | 152 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

In binary 16 floating point format the number is composed on a sign-bit (S), an exponent (E) and a significand (T). There are a number of
options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in higher range, and thus can
allow for more digital compensation to the represented, whereas more bits in the significand provides higher resolution. The available options
for device’s floating-point formatter are:

1. 5-bit exponent, 10-bit significand
2. 4-bit exponent, 11-bit significand
3. 3-bit exponent, 12-bit significand
4. 2-bit exponent, 13-bit significand

Itis also possible to pack the data in different formats (as shown in Figure 133):

1. Sign, Exponent, Significand
2. Sign, Significand, Exponent

Sign Exponent Significand
Bit MSB LSB MSB LSB
| s | E T

w t
Sign Significand Exponent
Bit MSB LSB MSB LSB
| s | T E

t w

Figure 133. Floating Point Number Representation

In Figure 133, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is the bit
width of the significand.

Upon receipt of an encoded floating-point formatter, the user breaks up the binary 16 number into its constituent parts. For the purposes of
this explanation, let's consider a 3-bit exponent. In IEEE754, the maximum exponent (0’0111 in this case) is reserved for NaN. The minimum
exponent (0°'b000) is used for a signed zero (E=0, T=0) and subnormal numbers (E=0, T#0). To decode a received floating-point sample, the
following equations are used:

If E=0 and T=0:

Value =0 (20)
If E=0 and T#0:

Value = (-1)S x 2 E-biast! x (0 + 21-Px T) (21)
If E£0:

Value = (-1)S x 2E-bias x (1 + 21-P x T) (22)

where bias is used to convert the positive binary values to exponents which allow for values both less than and greater than the full-scale of the
ADC and p is the precision of the mode (p=t+1, because you have t significand bits coupled with a sign bit). Table 79 provides the values to use
in these equations for the various [EEE754 supported modes.

Table 79. Floating Point Formatter - Supported IEEE 754 Modes

Exponent Bit Width (w) Significand Bit Width (t) Precision (p) Bias
5 10 1 15

4 11 12 7

3 12 13 3

2 13 14 1

analog.com Rev. B | 153 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Figure 134 provides a visual representation of how the values of a waveform would be encoded in floating point format. In this case the
maximum exponent (E-bias) is +3, meaning that data up to +24 dBFS of the ADC can be represented. As the signal reduces, the exponent
required to represent each value differs. This is a different concept to the slicer that instead bit-shifted the data solely based on the applied
digital attenuation and had a constant value for a constant digital gain. Instead the floating-point formatter interprets each data value after the
digital gain compensation separately. Given the fixed precision of the significand and the sign bit, it can also be interpreted from this plot that
there is higher resolution at lower signal levels then there is at higher signal levels, preserving SNR when the received signal strength is low.

Exp:-2
(Subnormal)

Exp:-2

Exp:-1

Figure 134. Visualization of the Floating-Point Formatter Values

The floating-point formatter also supports non-IEEE754 modes, referred to as Analog Devices modes, where the largest exponent is not used
to express NaN in accordance with IEEE754. It is unnecessary for the device to encode NaN as none of the data values can be NaN, and
therefore using this extra exponent value increases the largest value representable for a given exponent bit-width.

Table 80. Exponent Bit Widths of IEEE-754 and ADI Modes

Exponent Bit Width (w) IEEE-754 Mode Exponent Range (after un-biasing) ADI Mode Exponent Range (after un-biasing)
5 +15t0 -14 +16 to -14

4 +7t0-6 +810 -6

3 +3t0-2 +4 10 -2

2 +1t0 -1 +21t0 -1

In the default floating point format, the leading one is inferred and not encoded (for normal numbers). It is possible to enable a mode where the
leading one is encoded and stored in the MSB of the significand. This would reduce the precision of the values however.

If the user knows that the range of attenuation required for the worst case blocker (and therefore the digital gain required to compensate for it)
will exceed the correction range allowed by the exponent width chosen, then it is also possible to enable a fixed digital attenuation (from 6 to 42
dB) prior to the floating point formatter to ensure that the signal never exceeds the maximum range encodable over the JESD link.

analog.com Rev. B | 154 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RX GAIN CONTROL AND GAIN COMPENSATION

Rx Data Format Data Structure

The Rx Data Formatter is not runtime configurable and therefore cannot be setup or modified by the API. In order to setup the Rx Data
Formatter the Configurator must be used or by manually changing the JSON file.

RX DATA FORMATTER API FUNCTIONS
Table 81. List of Rx Formatter APl Functions

API Method Name Comments
adi_ADRV903x_RxDataFormatGet() Get the Rx data path format configuration.
adi_ADRV903x_RxSlicerPositionGet() Get the Rx gain slicer position.

analog.com Rev. B | 155 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

OVERVIEW

This section describes the digital filters within the ADRV903x. It provides a description of each of the filters in terms of their filter coefficients and
position within the signal chain.

RECEIVER SIGNAL PATH

Each receiver input has an independent signal path including separate I/Q mixers. The signals are converted by the pipeline ADCs and filtered
in half band decimation stages and the programmable finite impulse response filter (PFIR). The fixed coefficient halfband filters (FIR1, FIR2,
HB2, DEC3) and the PFIR are designed to prevent data wrapping and over-range conditions.

Each receiver ADC is a high efficiency and wide bandwidth two-stage continuous time pipelined ADC, it successively converts the analog
input into digital data, and processing the data in a pipelined manner. It operates at clock frequency of 2.9 GHz ~ 3.9 GHz with low OSR
(oversampling rate) to realize the maximum signal bandwidth. The power consumption scales with the clock rates. The open-loop architecture
makes it stable and the inherent low pass filter feature relaxes costly analog anti-alias filter requirements.

Each receiver channel can convert signals down to zero-IF real data using the standard I/Q configuration or a low-IF complex data
configuration. The digital filtering stage allows the configuration flexibility and decimation options to operate in either mode.

If the carrier center frequency is same as LO frequency, you get the signal at DC and that will be Zero-IF. If the Carrier frequency configured is
different then you will receive the signal as low IF, offset from DC.

The GUl allows configuration of a different LO frequency and carrier center frequency. Configuring LO frequency and Center frequency to be
the same results in Zero-IF and keeping Tx/Rx center frequency different results in low IF.

The band NCO is used to shift the carriers in case of Low IF configuration as shown in band DUC block diagram in Figure 136. API for
configuring the NCOs are available in Table 82.

Figure 135 shows the signal path for the Rx0, Rx1, Rx2, Rx3, Rx4, Rx5, Rx6, and Rx7 signal chain. Greyed out blocks are not described in this
section but in their relevant sections of the user guide.

DEC3
Band 0
| Path DC DDC
IADC FIR2 FIR1 HB2 QEC PFIR Offset
Band 1| |
DDC
DEC3 Framer
Band 0
Q Path DC DDC
QADC| FIR2 FIR1 HB2 QEC PFIR
Offset,
Band 1| |
DDC

To RAM

Figure 135. Rx Signal Path

Decimation Stages

The signal path can be configured so that either the decimate-by-3 filter (DEC3) or the combination of FIR2 and FIR1 along with HB2 is used in
the Rx digital path. The DEC3 decimates by a factor of three while the other filter combination can be configured to decimate by factors of 2, 4,
or 8. Each decimation stage can be bypassed as required.

DEC3

The DEC3 filter is a fixed coefficient decimating filter used when sample rate reduction by a factor of three is necessary. The filter coefficients
are designed to account for proper passband shaping in this sampling scenario. The DEC3 filter coefficients are: [0.001220852, 0.001098767,

analog.com Rev. B | 156 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

-0.001953363, -0.012208522, -0.017336101, -0.006104261, 0.03418386, 0.065926016, 0.046026126, -0.063484312, -0.18117446,
-0.177023562, 0.089244293, 0.560493224, 1.038701013, 1.230741057, 1.038701013, 0.560493224, 0.089244293, -0.177023562,
-0.18117446, -0.063484312, 0.046026126, 0.065926016, 0.03418386, -0.006104261, -0.017336101, -0.012208522, -0.001953363,
0.001098767, 0.001220852]

Finite Impulse Response 2 (FIR2)
The FIR2 filter is a fixed coefficient decimating filter. The FIR2 decimates by a factor of two or it may be bypassed.
FIR2 filter coefficients: [0.01369863, 0, -0.1037182, 0, 0.59295499, 1.005870841, 0.59295499, 0, -0.1037182, 0, 0.01369863]

Finite Impulse Response 1 (FIR1)
The FIR1 filter is a fixed coefficient decimating filter. The FIR1 decimates by a factor of two or it may be bypassed.

FIR1 filter coefficients are: [-0.00097704, 0, 0.007327797, 0, -0.033707865, 0, 0.111382511, 0, -0.31704934, 0, 1.231069858, 1.996091842,
1.231069858, 0, -0.31704934, 0, 0.111382511, 0, -0.033707865, 0, 0.007327797, 0, -0.00097704,]

Receive Half Band 2 (HB2)
The HB2 filter is a fixed coefficient decimating filter. The HB2 decimates by a factor of two.

HB2 filter coefficients are: [0.000244156, 0, -0.00054935, 0, 0.000976622, 0, -0.001709089, 0, 0.002807789, 0, -0.004272722, 0, 0.006348044,
0,-0.009155832, 0, 0.012757126, 0, -0.01745712, 0, 0.023438931, 0, -0.031068791, 0, 0.040712934, 0, -0.052981749, 0, 0.068851859,
0,-0.089971312, 0, 0.119514131, 0, -0.164072514, 0, 0.241225661, 0, -0.415308552, 0, 1.266190563, 1.992980529, 1.266190563, 0,
-0.415308552, 0, 0.241225661, 0, -0.164072514, 0, 0.119514131, 0, -0.089971312, 0, 0.068851859, 0, -0.052981749, 0, 0.040712934, 0,
-0.031068791, 0, 0.023438931, 0, -0.01745712, 0, 0.012757126, 0, -0.009155832, 0, 0.006348044, 0, -0.004272722, 0, 0.002807789, 0,
-0.001709089, 0, 0.000976622, 0, -0.00054935, 0, 0.000244156]

Rx Programmable Finite Impulse Response (PFIR)

The Rx PFIR is used to compensate for the roll-off of the analog TIA LPF. The PFIR has 24 filter taps. The PFIR also has programmable gain
settings of +6 dB, 0 dB or -6 dB. The Rx PFIR filter has no decimating ability. You can bypass the Rx PFIR completely by setting the pfir_mode
=1 in the profile JSON file. Note in this case the Rx analog response will not be compensated for digitally in Palau, so channel equalisation will
need to be done externally. Alternatively if you set pfir_ mode = 2, this will add 0.5 dB additional attenuation into the PFIR without changing the
flatness response. For all other applications you should keep pfir_mode = 0, which is the default setting.

analog.com Rev. B | 157 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

DDCBand 0

pbe
HB2

bbC
HB3

x2/3
orx3/4
FIR

DbC
HB2

DDC
HB1

T{]Taafﬂh
Yy

From Rx bobe l‘D_L
HB3
| Path l i

x2/3
or x3/4
FIR

DDCBand 1

DDC
HB3

DDC
HB2

[nin]e3
HB1

x2/3
or x3/4
FIR

HB3

_[DT
s

pbDC
HB2

DDC NCO

_’_DT
YTy

x2/3

or x3/4
IR

F

o
Gain ﬁ} | Path
Comp/ r
Slicer

m Framer
o ‘LD a | QPath
Comp/
Shicer tt

@

r

To —
RAM _

F

(0]
Gain Q Path
Compl r
Slicer

m Framer
Gain a| |Path
Comp!
Slcer t‘t

e

r

Figure 136. DDC Stage Band 0/Band 1

The DDC NCO blocks have a frequency tuning word (FTW) with 48-bit resolution and are programmable over SP!I via the API. This NCO is
used to place bands at the appropriate frequency using a complex multiplier. The maximum operating frequency of this NCO is 1 GHz. The
NCO frequency range is also limited by the use case, In Figure 137 the JESD rate is 122.88 MSPS and we have decimation of 2x, 2x, 1x. So
the rate at which NCO can operate is +/- 245.76 MSPS. If HB1 interpolation is also 2x, then the NCO can operate with the max range of +/-

491.52 MSPS.

NCO

ooc I x2/3
HB1] or x3/4

FIR
|

Gain] | Path
Comp/
Slicer

+/- 245.76
MSPS

I
ooc | x2/3
HB1 or x3/4
] FIR

Gain LU Q Path
Comp/
Slicer

122.88 MHz.

sampling rate

Framer

Figure 137. NCO Frequency Range and decimation in DDC

Digital Down-Conversion Half Band 3 (DDC HB3)
The DDC HB3 filter is a fixed coefficient decimating filter. The DDC HB3 decimates by a factor of two or it can be bypassed.
DDC HB3 filter coefficients: [0.01369863, 0, -0.1037182, 0, 0.59295499, 1.005870841, 0.59295499, 0, -0.1037182, 0, 0.01369863]

analog.com

Rev. B | 158 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

Digital Down-Conversion Half Band 2 (DDC HB2)
The DDC HB2 filter is a fixed coefficient decimating filter. The DDC HB2 decimates by a factor of two or it can be bypassed.

DDC HB2 filter coefficients: [0.000854597, 0, -0.005982176, 0, 0.023928702, 0, -0.075204493, 0, 0.304968868, 0.497130997, 0.304968868, 0,
-0.075204493, 0, 0.023928702, 0, -0.005982176, 0, 0.000854597]

Digital Down-Conversion Half Band 1 (DDC HB1)
The DDC HB1 filter is a fixed coefficient decimating filter. The DDC HB1 decimates by a factor of two or it can be bypassed.

DDC HB1 filter coefficients: [-0.000244148, 0, 0.000640889, 0, -0.001464888, 0, 0.002899258, 0, -0.005249184, 0, 0.008850368, 0,
-0.014160588, 0, 0.021759697, 0, -0.032654805, 0, 0.048402356, 0, -0.072389904, 0, 0.113284707, 0, -0.203192236, 0, 0.632251961,
0.997650075, 0.632251961, 0, -0.203192236, 0, 0.113284707, 0, -0.072389904, 0, 0.048402356, 0, -0.032654805, 0, 0.021759697, 0,
-0.014160588, 0, 0.008850368, 0, -0.005249184, 0, 0.002899258, 0, -0.001464888, 0, 0.000640889, 0, -0.000244148]

Resampling Finite Impulse Response (Resamp FIR)

The Resampling FIR filter can be set to 2/3 or 3/4 to get 2/3 or 3/4 of the current input rate at the output. This is especially useful to allow Tx
rates such as 737.28 MHz to be combined with Rx rates of 491.52 MHz / 245.76 MHz for more flexibility when designing profiles.

2/3 Resampling FIR filter coefficients are: [0.000396741, 0.000793481, 0.000488296, -0.001312296, -0.003997925, -0.005218665,
-0.002563555, 0.00347911, 0.008117924, 0.005645924, -0.004364147, -0.013946959, -0.012176885, 0.00369274, 0.021668142,
0.022644734, -0.000885037, -0.032166509, -0.039551988, -0.005981628, 0.04709006, 0.068605609, 0.021485031, -0.07269509,
-0.131199072, -0.064821314, 0.146855068, 0.420911283, 0.613238929, 0.613238929, 0.420911283, 0.146855068, -0.064821314,
-0.131199072, -0.07269509, 0.021485031, 0.068605609, 0.04709006, -0.005981628, -0.039551988, -0.032166509, -0.000885037,
0.022644734, 0.021668142, 0.00369274, -0.012176885, -0.013946959, -0.004364147, 0.005645924, 0.008117924, 0.00347911,
-0.002563555, -0.005218665, -0.003997925, -0.001312296, 0.000488296, 0.000793481, 0.000396741]

3/4 Resampling FIR filter coefficients: [-6.1037E-05, 0.000244148, 0.000915555, 0.001922666, 0.002899258, 0.003173925, 0.002075259,
-0.000396741, -0.003418073, -0.005432295, -0.004821924, -0.000976592, 0.004791406, 0.009491256, 0.00982696, 0.004150517,
-0.005767998, -0.015045625, -0.017639698, -0.01004059, 0.005829035, 0.022339549, 0.029389325, 0.020142216, -0.003967406,
-0.031800287, -0.047120579, -0.037171545, -0.001464888, 0.044801172, 0.075899533, 0.068147832, 0.014587848, -0.066286203,
-0.133732109, -0.140140996, -0.053224281, 0.125614185, 0.355967895, 0.570360424, 0.699392682, 0.699392682, 0.570360424,
0.355967895, 0.125614185, -0.053224281, -0.140140996, -0.133732109, -0.066286203, 0.014587848, 0.068147832, 0.075899533,
0.044801172, -0.001464888, -0.037171545, -0.047120579, -0.031800287, -0.003967406, 0.020142216, 0.029389325, 0.022339549,
0.005829035, -0.01004059, -0.017639698, -0.015045625, -0.005767998, 0.004150517, 0.00982696, 0.009491256, 0.004791406,
-0.000976592, -0.004821924, -0.005432295, -0.003418073, -0.000396741, 0.002075259, 0.003173925, 0.002899258, 0.001922666,
0.000915555, 0.000244148, -6.1037E-05]

RX DATAPATH API FUNCTIONS
Table 82. List of Rx Datapath API Functions

API Method Name Comments

adi_ADRV903x_RxOrxDataCaptureStart() Capture the Rx data in an internal RAM. Use if JESD link is not brought up.
adi_ADRV903x_RxNcoShifterSet() Set Rx NCO.

adi_ADRV903x_RxNcoShifterGet() Get Rx NCO settings.

adi_ADRV903x_RxTestDataSet() Set up a test signal to be sent out the framer instead of the ADC output.
adi_ADRV903x_RxTestDataGet() Get the test signal being sent out the framer instead of the ADC output.

TRANSMITTER SIGNAL PATH

Each transmitter has an independent signal path including separate digital filters, DACs, analog low-pass filters, and I/Q mixers that drive the
signal outputs. Data is input to the Tx signal path via the JESD high-speed serial data interface at the transmitter profile’s IQ data rate. The
serial data is converted to parallel format through the JESD deframer into | and Q components. The data is processed through digital filtering
and signal correction stages and input to I/Q DACs.

Each transmitter DAC is based on a current segmentation architecture providing a differential complementary current output. It uses the
quad-switch structure and requires each pair of switches to be clocked on alternative clock edges to eliminates the code dependent glitches.

analog.com Rev. B | 159 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION
It also allows the two interleaved input data streams to be updated on both rising and falling edges of the clock to effectively double the DAC
sample rate without doubling the clock frequency.

Figure 138 shows the signal path for the Tx0, Tx1, Tx2, Tx3, Tx4, Tx5, Tx6, and Tx7 signal chain. Greyed-out blocks are not described in this
section but in their relevant sections of the user guide.

To Loop Back Path

| To Capture RAM
INT3

Low
BW
| | BandO | | Complex | || L | Path
buc Multipler Atten QEC ¢ PFIR ihi FIR1 ih—* FIR2 Elj—t FIR3 SDM IDAC

INT3
High
BW

Deframer

INT3
Low
BW

Band 0 Complex Q Path
DUC Multipler, Atten —¢{ QEC —¢ PFIR FIR1 » FIR2 Elj_t FIR3 SDM QDAC

INT3
High
BW

Figure 138. Tx Signal Path Diagram

Interpolation By 3 High Bandwidth Filter (INT3 High BW)

Either the INT3 High BW, INT3 Low BW or any combination of FIR2 and FIR3 are used in the Tx digital path. The INT3 High BW interpolates by
a factor of 3.

INT3 High BW filter coefficients: [0.000976801, 0.001953602, 0.001953602, -0.0004884, -0.004151404, -0.005616606, -0.001221001,
0.007326007, 0.011721612, 0.004884005, -0.011233211, -0.021489621, -0.011965812, 0.015873016, 0.036141636, 0.024420024,
-0.020512821, -0.058363858, -0.045909646, 0.024908425, 0.094261294, 0.085958486, -0.028327228, -0.165079365, -0.180952381,
0.030769231, 0.422222222, 0.808791209, 0.968009768, 0.808791209, 0.422222222, 0.030769231, -0.180952381, -0.165079365,
-0.028327228, 0.085958486, 0.094261294, 0.024908425, -0.045909646, -0.058363858, -0.020512821, 0.024420024, 0.036141636,
0.015873016, -0.011965812, -0.021489621, -0.011233211, 0.004884005, 0.011721612, 0.007326007, -0.001221001, -0.005616606,
-0.004151404, -0.0004884, 0.001953602, 0.001953602, 0.000976801]

Interpolation By 3 Low Bandwidth Filter (INT3 Low BW)

Either the INT3 Low BW, INT3 High BW or any combination of FIR2 and FIR3 are used in the Tx digital path. The INT3 Low BW interpolates by
a factor of 3.

INT3 Low BW filter coefficients are: [0.019607843, 0.011764706, 0, -0.101960784, -0.098039216, 0, 0.407843137, 0.756862745, 0.996078431,
0.756862745, 0.407843137, 0, -0.098039216, -0.101960784, 0, 0.011764706, 0.019607843]

Finite Input Response 3 (FIR3)
The FIR3 is a fixed coefficient half-band interpolating filter. FIR3 can interpolate by a factor of two or it can be bypassed.
FIR3 filter coefficients are: [0.142857143, 0.571428571, 0.857142857, 0.571428571, 0.142857143]

Finite Input Response 2 (FIR2)

The FIR2 is a fixed coefficient half-band interpolating filter. FIR2 can interpolate by a factor of two or it can be bypassed.

analog.com Rev. B | 160 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

FIR2 filter coefficients are: [-0.006349206, 0, 0.038095238, 0, -0.140659341, 0, 0.607570208, 0.997557998, 0.607570208, 0, -0.140659341, 0,
0.038095238, 0, -0.006349206]

Finite Input Response 1 (FIR1)
The FIR1 is a fixed coefficient half-band interpolating filter. FIR1 can interpolate by a factor of two or it can be bypassed.

FIR1 filter coefficients are: [0.000610426, 0.001465023, 0.000122085, -0.001831278, -0.000122085, 0.00280796, 0.000122085, -0.003906727,
0, 0.005371749, -0.000122085, -0.007203028, 0.000122085, 0.009278476, -0.000122085, -0.011842266, 0.000122085, 0.015138567, 0,
-0.019045294, 0, 0.023928702, 0, -0.030032963, 0, 0.037846417, 0, -0.048101575, 0, 0.062385545, 0, -0.084116713, 0, 0.12196313,
0,-0.208033207, 0, 0.631424734, 0.993285313, 0.631424734, 0, -0.208033207, 0, 0.12196313, 0, -0.084116713, 0, 0.062385545,
0,-0.048101575, 0, 0.037846417, 0, -0.030032963, 0, 0.023928702, 0, -0.019045294, 0, 0.015138567, 0.000122085, -0.011842266,
-0.000122085, 0.009278476, 0.000122085, -0.007203028, -0.000122085, 0.005371749, 0, -0.003906727, 0.000122085, 0.00280796,
-0.000122085, -0.001831278, 0.000122085, 0.001465023, 0.000610426]

Tx Programmable Finite Impulse Response (PFIR)

The PFIR is used to compensate for roll off caused by the post-DAC analog low pass filter and the DAC sinc response. The PFIR has 24 filter
taps. The PFIR also has programmable gain settings of +6 dB, 0 dB or -6 dB. The Tx PFIR filter has no interpolating ability, and it can be
bypassed if desired.

Sigma Delta Modulator (SDM)

The TX DAC SDM is used to modulate the LSB's of the transmit data words going to the DAC which would normally be truncated. For normal
traffic signals, truncation is sufficient. When broadcasting DC (i.e. unchanging) signals, the truncation of the LSB's leads to systematic biases
and resulting TXLOL above specification.

The TX DAC SDM operates in four modes:

» Off: Clocks are disabled and the input to the SDM is muxed directly to the output with no modification.

» Bypass: Clocks are enabled, but the SDM accumulators are held in reset. The input is pipelined to the output without modification but
matching the pipeline depth when the SDM is enabled.

» Enabled: Clocks are enabled and the SDM is running. The input is pipelined to match the SDM stages (2 pipes), truncated, and added to the
SDM output. A 1/2 LSB round bit is subtracted at the same point to compensate for the 1/2 LSB round found before the DAC truncation.

» Automatic: Depending on the output of the TX DC Detection block, the SDM will operate in different modes. If the DC is below a threshold,
the SDM is in bypass. If the DC is above the threshold, the SDM is in enabled mode.

analog.com Rev. B | 161 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

PN GEN

NCO1
test

NCO2
test

N

\\,/ L_ L_ NCO1
i ipmERE
Q Path L Bl]

DUCBand 0

JESD

R
N
—

,_
+_
| —

L HB3 — ——

HB2

Figure 139. DUC Band 0

PN Generator (PN GEN)

The pseudo-random sequence generator can be muxed into the input of the Band0 DUC as shown in Figure 139. This PN sequence generator
can run up to 1 GHz.

Test NCO (NCO1 Test and NCO2 Test)

The two test NCO's in the digital up convertor stage are identical and have a frequency tuning word with 20-bit resolution. Both of these NCO
can run up to 1 GHz (£500 MHz).

Digital Up-Conversion Half Band 1 (DUC HB1)
The DUC HB1 filter is a fixed coefficient interpolating filter. The DUC HB1 interpolates by a factor of two or it can be bypassed.

DUC HB1 filter coefficients are: [0.000366256, 0, -0.000854597, 0, 0.002075449, 0, -0.004150897, 0, 0.007325113, 0, -0.012330607,

0, 0.019777805, 0, -0.030521304, 0, 0.046270297, 0, -0.070321084, 0, 0.111341717, 0, -0.201196435, 0, 0.628494689, 0.992308631,
0.628494689, 0, -0.201196435, 0, 0.111341717, 0, -0.070321084, 0, 0.046270297, 0, -0.030521304, 0, 0.019777805, 0, -0.012330607, 0,
0.007325113, 0, -0.004150897, 0, 0.002075449, 0, -0.000854597, 0, 0.000366256]

Digital Up-Conversion Half Band 2 (DUC HB2)
The DUC HB2 filter is a fixed coefficient interpolating filter. The DUC HB2 interpolates by a factor of two or it can be bypassed.

DUC HB2 filter coefficients are: [-0.005005494, 0, 0.034061775, 0, -0.134782078, 0, 0.601635942, 0.991820291, 0.601635942, 0,
-0.134782078, 0, 0.034061775, 0, -0.005005494]

Digital Up-Conversion Half Band 3 (DUC HB3)
The DUC HB3 filter is a fixed coefficient interpolating filter. The DUC HB3 interpolates by a factor of two or it can be bypassed.

analog.com Rev. B | 162 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

DUC HB3 filter coefficients are: [0.013190034, 0, -0.101612115, 0, 0.586223742, 0.995603322, 0.586223742, 0, -0.101612115, 0,
0.013190034]

DUC NCO1

The DUC NCO has a frequency tuning word (FTW) with 48-bit resolution and is programmable over SPI via the API. This NCO is used to place
bands at the appropriate frequency using a complex multiplier. The maximum operating frequency of this NCO is 1 GHz.

Capture RAM

(32 kB) From Tx Datapath
EXT Tx FIFO
LOL
[
[N FSC Block
FromRx g Ovld To Jesd
Detect Framers
| LPBK | Path
| HB1
Coarse LPBK >
NCO :@?—_ﬂ:’— ADC

LPBK
HB1 QPath 0

Figure 140. Tx Internal Loopback Path

Loopback Half-Band 1 Filter (LPBK HB1)
This filter is a decimating half-band filter with a stopband rejection of 80dBc. It can be bypassed if required.
The LPBK HB1 filter runs at the ADC clock rate divided by 2.

LPBK HB1 filter coefficients are: [-0.002685547, 0, 0.017578125, 0, -0.068359375, 0, 0.302734375, 0.498596191, 0.302734375, 0,
-0.068359375, 0, 0.017578125, 0, -0.002685547]

Coarse NCO

The Coarse NCO in the loopback path has a frequency tuning word (FTW) with 3-bit resolution. This is used to shift the input data in frequency
steps of ADC_Fs/8. The coarse NCO runs at the loopback path ADC rate.

TX DATAPATH API FUNCTIONS
Table 83. Tx Datapath API Functions

API Method Name Comments

adi_ADRV903x_TxTestToneSet() Set the specified Tx Test NCO to the given frequency, phase, attenuation, and enable state.
adi_ADRV903x_TxTestToneGet() Get the specified Tx Test NCO's frequency, phase, attenuation, and enable state.
adi_ADRV903x_TxNcoShifterSet() Set Tx NCO.

adi_ADRV903x_TxNcoShifterGet() Get Tx NCO settings.

OBSERVATION RECEIVERS SIGNAL PATH

The device has two observation receivers (ORx0 and ORx1) that can be used to capture data for digital pre-distortion (DPD) algorithms and
other measurements/calibration that require monitoring the transmitter outputs. The observation receiver can serve as an external loopback
path to loop back the output of a PA, provided input level to the ORXx is below the full-scale level of the ADC.

analog.com Rev. B | 163 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

The observation receiver path is implemented as direct RF conversion as opposed to the main receive path which is implemented as a

zero-IF architecture. It eliminates the need for analog down conversion and supports large Nyquist zones suited for advanced multi-bands DPD
applications. The ADC include a wide band S/H (sample and hold) buffer amplifier which runs at full sample rates and is based on an interleave
architecture consisting of parallel pipelines ADCs with their sampling instances offset from each other to maintain uniform sampling of the input
signal. The scalable and reconfigurable architecture balances high performance and low power consumption. The ORx ADC is implemented as
four slices, each slice can run up to 2 GHz. This gives an effective sample rate of up to 8 GHz for the ORx signal path.

When the ORx is running at 8 GHz, the first Nyquist zone is from 0 GHz to 4 GHz and the second Nyquist zone is from 4 GHz to 8 GHz. The
Nyquist zones scale with ADC rate, that is, if the ADC runs at 6 GHz the first Nyquist zone is from 0 GHz to 3 GHz and the second Nyquist
zone is from 3 GHz to 6 GHz and then the third Nyquist zone would span from 6 GHz to 9 GHz. For ORx sampling there cannot be a bandwidth
of interest spanning a Nyquist zone crossover point. The minimum distance a bandwidth of interest must start or end from a Nyquist zone
crossover point is 100 MHz.

The assumption is that the user only supplies energy in the Nyquist zone through effective filtering as the device does not filter out other
Nyquist zones. Hence if unwanted energy exists in those Nyquist zones it may fold down and corrupt the bandwidth of interest.

The diagram in Figure 141 shows the signal path for an ORx0 and ORx1 signal chain. Blocks that are not discussed in this section are greyed
out.

Peak Det
& power
meas

F
D
o
r e
%
HB2 HB1 X) H 1 H
I m n Framer
ORx
Al
l [|t
HB2 HB1 :‘ e M (-
r
r
| Al
TxLOL
_.:. I
A ORXx Observation
Capture RAM
To capture TxLOL

RAM

Figure 141. ORx Signal Path

As with standard discrete time theory the digital data is represented as the wanted signal and images of the wanted signal and can be seen

in (a) of Figure 142. The goal is to shift the wanted signal down around DC to send only the necessary data of the ORx band to the SERDES
interface. In an ideal configuration the wanted signal would be shifted down around DC and the image filtered out. However, the filters are

not ideal, (b) in Figure 142, and hence we first shift the boundary of the wanted signal to the corner frequency of the filter path for maximum
rejection of the image, (c) in Figure 142. Once the filtering is complete, (d) in Figure 142, the datapath uses the NCO at the end of the datapath
to shift the wanted signal so that it is back centered around DC.

analog.com Rev. B | 164 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

(@) Wanted
Image :
Signal
[" -3800 MHz -3000 MHz I 3000 MHz 3800 M
Fg2=-3932 GHz 0Hz F92=3932 GHz

"\

(b) Wanted
- Image
Signal
-400 MH6| 400 MHz 1464 MHz
Fg2=-3932 GHz Hz 664 MHz F92=3932 GHz
(©) Wanted
) Image
Signal
[810 MHz 1074 MHz 1874 MHz
Fg2=-3932 GHz OH F92=3932 GHz
10 MHz
(d) Wanted
Signal
400MHz | 400 MHz

F92=-3932 GHz 0Hz F92=3932 GHz

Figure 142. ORx Datapath NCO & Filtering Methodology

Decimation Stages

The signal path can be configured so that either the decimate-by-3 filter (DEC3) or FIR filter can be used in combinations with the FIR1,
HB2 and HB1 filters in the ORXx digital path. The DEC3 decimates by a factor of three while the other filter combination can be configured to
decimate by factors of 2, 4, or 8. Each decimation stage can be bypassed as required.

Fine NCO

The observation path fine NCO has an FTW with 48-bit resolution. This NCO is used to place bands at the appropriate frequency using a
complex multiplier. The maximum operating frequency of this NCO is 1 GHz.

DEC3

DECS3 filter coefficients are: [0.000976563, 0.000976563, -0.001953125, -0.012207031, -0.017578125, -0.006347656, 0.034179688,
0.065917969, 0.045898438, -0.063476563, -0.181152344, -0.176757813, 0.088867188, 0.55859375, 1.03515625, 1.2265625, 1.03515625,
0.55859375, 0.088867188, -0.176757813, -0.181152344, -0.063476563, 0.045898438, 0.065917969, 0.034179688, -0.006347656,
-0.017578125, -0.012207031, -0.001953125, 0.000976563, 0.000976563]

Finite Impulse Response 2 (FIR2)

The FIR2 filter is a fixed coefficient decimating filter. The FIR2 decimates by a factor of two or it may be bypassed.

analog.com Rev. B | 165 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION
FIR2 filter coefficients are: [0.013671875, 0, -0.103515625, 0, 0.58984375, 1, 0.58984375, 0, -0.103515625, 0, 0.013671875]

Finite Impulse Response 1 (FIR1)
The FIR1 filter is a fixed coefficient decimating filter. The FIR1 decimates by a factor of two or it may be bypassed.

FIR1 filter coefficients are: [-0.000976563, 0, 0.005859375, 0, -0.021484375, 0, 0.0625, 0, -0.165039063, 0, 0.619140625, 1, 0.619140625, 0,
-0.165039063, 0, 0.0625, 0, -0.021484375, 0, 0.005859375, 0, -0.000976563]

Observation Receive Half Band 2 (HB2)
The HB2 filter is a fixed coefficient decimating filter. The HB2 decimates by a factor of two or it may be bypassed.

HB2 filter coefficients are: [0.000610352, 0, -0.00100708, 0, 0.00177002, 0, -0.00289917, 0, 0.004455566, 0, -0.006561279, 0, 0.009368896, 0,
-0.013061523, 0, 0.017791748, 0, -0.023956299, 0, 0.031982422, 0, -0.042755127, 0, 0.057769775, 0, -0.080413818, 0, 0.119384766,
0,-0.20690918, 0, 0.632843018, 0.996490479, 0.632843018, 0, -0.20690918, 0, 0.119384766, 0, -0.080413818, 0, 0.057769775, 0,
-0.042755127, 0, 0.031982422, 0, -0.023956299, 0, 0.017791748, 0, -0.013061523, 0, 0.009368896, 0, -0.006561279, 0, 0.004455566,
0,-0.00289917, 0, 0.00177002, 0, -0.00100708, 0, 0.000610352]

Observation Receive Half Band 1 (HB1)

The HB1 filter is a fixed coefficient decimating filter. The HB2 decimates by a factor of two or it may be bypassed.

HB2 filter coefficients are: [0.000610352, 0, -0.00100708, 0, 0.00177002, 0, -0.00289917, 0, 0.004455566, 0, -0.006561279, 0, 0.009368896, 0,
-0.013061523, 0, 0.017791748, 0, -0.023956299, 0, 0.031982422, 0, -0.042755127, 0, 0.057769775, 0, -0.080413818, 0, 0.119384766,
0,-0.20690918, 0, 0.632843018, 0.996490479, 0.632843018, 0, -0.20690918, 0, 0.119384766, 0, -0.080413818, 0, 0.057769775, 0,
-0.042755127, 0, 0.031982422, 0, -0.023956299, 0, 0.017791748, 0, -0.013061523, 0, 0.009368896, 0, -0.006561279, 0, 0.004455566,
0,-0.00289917, 0, 0.00177002, 0, -0.00100708, 0, 0.000610352]

TxLOL NCO

The TXxLOL NCO has an FTW with 48-bit resolution. This NCO is used to place bands at the appropriate frequency for the Tx LOL calibration
using a complex multiplier. The maximum operating frequency of this NCO is 1 GHz.

NCO

The observation path NCO has an FTW with 48-bit resolution. This NCO is used to place bands at the appropriate frequency using a complex
multiplier at the end of the observation signal path. The maximum operating frequency of this NCO is 1 GHz.

ORX DATAPATH API FUNCTIONS
Table 84. List of ORx Datapath API Functions

API Method Name Comments

adi_ADRV903x_RxOrxDataCaptureStart() Capture the ORx data in an internal RAM. Use if JESD link is not brought up.
adi_ADRV903x_OrxNcoSet() Set ORx NCO.

adi_ADRV903x_OrxNcoGet() Get ORx NCO settings.

NCO FREQUENCY CHANGE PROCEDURE

On Tx/Rx/ORx data path there are separate NCOs that can be used to place the desired bands at the appropriate frequency using a complex
multiplier. ADRV903x supports changing these NCOs frequencies during runtime and it needs to follow an appropriate procedure as described
below.

Tx DUC NCO

As shown in Figure 139, NCO1 is the Tx DUC NCO that can be used to convert the desired bands at the appropriate frequency, the user can
call adi_ADRV903x_TxNcoShifterSet() to change Tx NCO frequency at any time.

analog.com Rev. B | 166 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

DIGITAL FILTER CONFIGURATION

RX DDC NCO

As shown in Figure 136, Rx DDC NCO can be used to convert the desired bands at the appropriate frequency, the user can take the procedure
below to change its frequency,

1. Disable Rx QEC tracking if it is running.
2. Call adi_ADRV903x_RxNcoShifterSet() to change Rx DDC NCO frequency.
3. Enable Rx QEC tracking.

ORx NCO

On ORXx channel as shown in Figure 141 there are two NCOs, one (ORx ADC NCO) is between ORx ADC and digital decimation filters that is
used to convert the desired RF bands to the baseband that falls into digital filter bandwidth, the other (ORx datapath NCO) is just prior to ORx
data formatter. As described in the Observation Receivers Signal Path section the datapath NCO is used to shift the wanted signal or band so
that it is back centered around DC. Therefore, it is recommended for the users to utilize the datapath NCO to place the desired bands at any
wanted frequency if the RF bands don't need to change. If the applications need to change the RF bands along with RF LO frequency change,
it is recommended to take the same procedure that is described in this section above by adding ORx NCO frequency change on step 3 by
calling APl adi_ADRV903x_OrxNcoSet().

analog.com Rev. B | 167 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

GENERAL PURPOSE INPUT/OUTPUT CONFIGURATION

The device features 24 digital GPIO pins and 16 analog GPIO pins. These pins can be configured to provide more direct real time control and
feedback from the ADRV903x than what is possible over the SPI interface. The distinction of analog GPIO does not imply analog behavior of
the pin.

DIGITAL GPIO OPERATION

The device has 24 digital GPIO pins. These pins can be used in a variety of functions both for input and output modes. The digital GPIO pins
use the VIF power supply as a reference for its logic high level.

Digital GPIO Input Modes
The digital GPIO input modes include the stream processor trigger and Tx attenuation control pins.

The stream processor executes streams based on triggers from various events. For example, the rising edge of a TRXn_CTRL pin and the
ARM may directly invoke the execution of a stream, refer to the Stream Processor and System Control section. A stream is a programmed
sequence of events executed within the chip to serve a distinct purpose. In the case of the GPIO based streams each GPIO can execute a
unique stream based on a rising edge trigger and another unique stream for a falling edge trigger of the same GPIO. The primary use of the
GPIO stream processor input is to facilitate Tx-to-ORx mapping which uses some number of GPIO pins in order to inform the ARM which Tx
channel is currently looped back to the ORx. This is necessary to ensure proper operation of the External LO Leakage tracking calibration loop.
Other stream capabilities will be defined over time. If there are specific requests for stream functionality based on GPIO trigger events, please
request the functionality to an ADI Applications Engineer.

Tx attenuation control may use GPIO based latching schemes if desired. This refers to the case where the user does not want the Tx
attenuation to update immediately after the SPI command to set the Tx attenuation is completed and instead wants the Tx attenuation to update
immediately after a GPIO rising edge is observed on a programmed pin. Multiple Tx channels can use the same pin for attenuation update.

A second mode of Tx attenuation control is the S0/S1 attenuation feature. In this mode, the Tx attenuation is set as either SO (State 0) or S1
(State 1) and the level of a GPIO pin determines whether the Tx channel is set into either SO or S1. Multiple Tx channels can use the same pin
for SO/S1 state control.

Table 85 summarizes the input digital GPIO features.
Table 85. Summary of Digital GPIO Input Features

Feature Description GPIO Pins Available for Feature
Stream GPIO Trigger Executes a stream based on rising edge or falling edge pulses ona GPIO | GPIO pins [0:23]
pin
Tx Attenuation Latch Delays update of Tx attenuation until a GPIO pulse is detected on an GPIO pins [0:23]
assigned GPIO pin.
Tx Attenuation S0/S1 Selects Tx attenuation state between SO0 state and S1 state based on the GPIO pins [0:23]
Control level of a GPIO pin

Digital GPIO Output Modes

The digital GPIO output modes include access to the control out mux. The control out mux is an extremely flexible hardware logic that allows
signals internal to the Tx, Rx, ORx, and other portions of the chip to be sent to the GPIO pins. An example of some signals that can be sent
along GPIO pins include overload detector status from the Rx datapath, Rx slicer information, or status information from the PLLs. The flexibility
of the control out mux allows any internal signal to be routed to any GPIO pin which affords a high level of flexibility in application debug. Please
work with ADI Applications Engineering if specific signals are required for observation in an application.

DIGITAL GPIO API FUNCTIONS
Table 86. Digital GPIO API Functions

API Method Name Comments

adi_ADRV903x_GpioStatusRead() Returns the full status of all digital and analog GPIOs.
adi_ADRV903x_GpioConfigAllGet() Returns the currently routed signal and channel Mask for all 24 digital GPIO pins
adi_ADRV903x_GpioConfigGet() Returns the currently routed signal and channel Mask for a selected digital GPIO pin
adi_ADRV903x_GpioManuallnputDirSet() Allocates and configures selected digital GPIO pins for Manual Input Mode
adi_ADRV903x_GpioManuallnputPinLevelGet() Returns input read levels for all digital GPIO pins configured as Manual Inputs

analog.com Rev. B | 168 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

GENERAL PURPOSE INPUT/OUTPUT CONFIGURATION

Table 86. Digital GPIO API Functions (Continued)

API Method Name Comments

adi_ADRV903x_GpioManualOutputDirSet() Allocates and configures selected digital GPIO pins for Manual Output Mode
adi_ADRV903x_GpioManualOutputPinLevelGet() Returns output drive levels for all digital GPIO pins configured as Manual Outputs
adi_ADRV903x_GpioManualOutputPinLevelSet() Sets output drive levels for all digital GPIO pins configured as Manual Outputs
adi_ADRV903x_GpioMonitorOutRelease() This API function releases a GPIO if it is currently routing a monitor output function
adi_ADRV903x_GpioMonitorOutSet() This API function configures a monitor output function for a GPIO
adi_ADRV903x_StreamGpioConfigSet() Sets the GPIO pin assignments that trigger streams.
adi_ADRV903x_StreamGpioConfigGet() Gets the GPIO pin assignments that trigger streams.

ANALOG GPIO OPERATION

The device has 16 analog GPIO pins. The voltage reference level of the analog GPIOs is 1.8 V. The reference supplies for these pins are
VANAQ_1P8 for GPIO_ANA 0 through GPIO_ANA 7 and VANA1_1P8 for GPIO_ANA 8 through GPIO_ANA 15. The main purpose of the
GPIO_ANA pins is to serve as control pins for an external control element, such as a Digital Step Attenuator (DSA) or Low Noise Amplifier
(LNA). A high-level overview of the GPIO_ANA features are provided below.

Table 87. Summary of GPIO_ANA Features
Feature Description GPIO Pins Available for Feature

Rx Gain Table External | The Rx gain table includes a column for 2-bit control of an external gain GPIO_ANA [1:0]: Rx0 External Control Word
Control Word Output element. Each Rx channel has two fixed GPIO_ANA pins associated with it. | GPIO_ANA [3:2]: Rx1 External Control Word
The 2-bit value expressed on the pins depends on the gain index and gain | GPIO_ANA [5:4]: Rx2 External Control Word
table column GPIO_ANA [7:6]: Rx3 External Control Word
GPIO_ANA [9:8]: Rx4 External Control Word
GPIO_ANA_[11:10]: Rx5 External Control Word
GPIO_ANA [13:12): Rx6 External Control Word
GPIO_ANA [15:14]: Rx7 External Control Word

Gain Table External Control Word

For proper use of this feature, a custom gain table must be created that uses the external control column. When a gain index with a non-zero
value in the external control column of the gain table is selected, the value of the external control column will be output on a pair of GPIO_ANA
pins. The configuration of the GPIO pins for gain table external control word is performed with the API.

ANALOG GPIO API FUNCTIONS
Table 88. List of Analog GPIO API Functions

API Method Name Comments

adi_ADRV903x_GpioStatusRead|() Returns the full status of all digital and analog GPIOs.
adi_ADRV903x_GpioAnalogConfigAllGet() Returns the currently routed signal and channel Mask for all 16 Analog GPIO pins
adi_ADRV903x_GpioAnalogConfigGet() Returns the currently routed signal and channel Mask for a selected Analog GPIO pin
adi_ADRV903x_GpioAnalogManuallnputDirSet() Allocates and configures selected analog GPIO pins for Manual Input Mode
adi_ADRV903x_GpioAnalogManualinputPinLevelGet() Returns input read levels for all analog GPIO pins configured as Manual Inputs
adi_ADRV903x_GpioAnalogManualOutputDirSet() Allocates and configures selected analog GPIO pins for Manual Output Mode
adi_ADRV903x_GpioAnalogManualOutputPinLevelGet() Returns output drive levels for all analog GPIO pins configured as Manual Outputs
adi_ADRV903x_GpioAnalogManualOutputPinLevelSet() Sets output drive levels for all analog GPIO pins configured as Manual Outputs

GENERAL PURPOSE INTERRUPT

The device features two General Purpose Interrupt pins, GP_INTO and GP_INT1. The GP_INT pins provide an interface that allows the device
to inform the BBIC of an error in normal operation. Examples of the interrupt sources include PLL unlock events, SERDES link status, a stream
processor error, or ARM exception error. A full list of interrupt sources is provided in Table 89. An example use of the two GP_INT pins is
GP_INT1 pin can act as the high priority interrupt pin for Tx/Rx4-7 and GP_INTO can act as the high priority interrupt pin for Tx/Rx0-3. Al
non-channel specific interrupts could be routed to both pins. The pins can be configured with independent bitmasks that control which signals
can assert GP_INT1 or GP_INT0. GP_INTO0 and GP_INT1 pins represent a bitwise OR of all unmasked GP_INT sources. Set the bit to 0 to
unmask it and set the bit to 1 to mask it.

analog.com Rev. B | 169 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

GENERAL PURPOSE INPUT/OUTPUT CONFIGURATION

A description of the interrupt sources and their bit positions within the 48-bit Lower Word general purpose interrupt mask is provided in Table
89. The description of the 48-bit Upper Word of the general purpose interrupt mask is provided in Table 90.

Table 89. GP_INTERRUPT Bitmask Description Lower Word

Bit Position Brief Description Component
D51 Currently Unused Open

D50 Currently Unused Open

D49 Currently Unused Open

D48 Currently Unused Open

D47 Currently Unused Open

D46 Currently Unused Open

D45 Currently Unused Open

D44 Currently Unused Open

D43 Currently Unused Open

D42 Currently Unused Open

D41 Currently Unused Open

D40 Core Stream Processor Error Stream Proc
D39 ORx1 Stream Processor Error Stream Proc
D38 ORX0 Stream Processor Error Stream Proc
D37 Tx7 Stream Processor Error Stream Proc
D36 Tx6 Stream Processor Error Stream Proc
D35 Txb Stream Processor Error Stream Proc
D34 Tx4 Stream Processor Error Stream Proc
D33 Tx3 Stream Processor Error Stream Proc
D32 Tx2 Stream Processor Error Stream Proc
D31 Tx1 Stream Processor Error Stream Proc
D30 Tx0 Stream Processor Error Stream Proc
D29 Rx7 Stream Processor Error Stream Proc
D28 Rx6 Stream Processor Error Stream Proc
D27 Rx5 Stream Processor Error Stream Proc
D26 Rx4 Stream Processor Error Stream Proc
D25 Rx3 Stream Processor Error Stream Proc
D24 Rx2 Stream Processor Error Stream Proc
D23 Rx1 Stream Processor Error Stream Proc
D22 Rx0 Stream Processor Error Stream Proc
D21 Deframer IRQ [11] - Deframer 1 - Asserted with SYNC meaning the link dropped Deframer
D20 Deframer IRQ [10] - Deframer 1 - Sysref phase error, unexpected Sysref phase received Deframer
D19 Deframer IRQ [9] - Deframer 1 - PCLK is running too fast in relation to the sample/convertor clock Deframer
D18 Deframer IRQ [8] - Deframer 1 - PCLK is running too slow in relation to the sample/convertor clock Deframer
D17 Deframer IRQ [7] - Deframer 1 - 204B link layer error Deframer
D16 Deframer IRQ [6] - Deframer 1 - 204C link layer error. CRC error count has exceeded threshold Deframer
D15 Deframer IRQ [5] - Deframer 0 - Asserted with SYNC meaning the link dropped Deframer
D14 Deframer IRQ [4] - Deframer 0 - Sysref phase error, unexpected Sysref phase received Deframer
D13 Deframer IRQ [3] - Deframer 0 - PCLK is running too fast in relation to the sample/convertor clock Deframer
D12 Deframer IRQ [2] - Deframer 0 - PCLK is running too slow in relation to the sample/convertor clock Deframer
D11 Deframer IRQ [1] - Deframer 0 - 204B link layer error Deframer
D10 Deframer IRQ [0] - Deframer 0 - 204C link layer error. CRC error count has exceeded threshold Deframer
D9 Framer IRQ [9] - Reserved Framer

D8 Framer IRQ [8] - Framer 2 - SYSREF phase error, unexpected Sysref phase received Framer

D7 Framer IRQ [7] - Framer 2 - PCLK is running too fast in relation to the sample/convertor clock Framer

D6 Framer IRQ [6] - Framer 2 - PCLK is running too slow in relation to the sample/convertor clock Framer

analog.com Rev. B | 170 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

GENERAL PURPOSE INPUT/OUTPUT CONFIGURATION

Table 89. GP_INTERRUPT Bitmask Description Lower Word (Continued)

Bit Position Brief Description Component
D5 Framer IRQ [5] - Framer 1 - SYSREF phase error, unexpected Sysref phase received Framer

D4 Framer IRQ [4] - Framer 1 - PCLK is running too fast in relation to the sample/convertor clock Framer

D3 Framer IRQ [3] - Framer 1 - PCLK is running too slow in relation to the sample/convertor clock Framer

D2 Framer IRQ [2] - Framer 0 - SYSREF phase error, unexpected Sysref phase received Framer

D1 Framer IRQ [1] - Framer 0 - PCLK is running too fast in relation to the sample/convertor clock Framer

DO Framer IRQ [0] - Framer 0 - PCLK is running too slow in relation to the sample/convertor clock Framer
Table 90. GP=INTERRUPT Bitmask Description Upper Word

Bit Position Brief Description Component
D47 Currently Unused Open

D46 Currently Unused Open

D45 Currently Unused Open

D44 Currently Unused Open

D43 Currently Unused Open

D42 Currently Unused Open

D41 Currently Unused Open

D40 SPI1 Paging Error SPI

D39 SPI0 Paging Error SPI

D38 SPI1 Core Error SPI

D37 SPI0 Abort SPI

D36 SPI1 Abort SPI

D35 SPI Clock Read abort SPI

D34 Source Reducer Error Indication [0] SPI

D33 Source Reducer Error Indication [0] SPI

D32 RFO PLL Unlock PLL

D31 RF1 PLL Unlock PLL

D30 Clock PLL Unlock PLL

D29 RFO PLL Charge Pump Overrange PLL

D28 RF1 PLL Charge Pump Overrange PLL

D27 Clock PLL Overrange Error PLL

D26 SERDES PLL unlock PLL

D25 Tx7 PA Protection - Slew Rate Limiter Transmitter
D24 Tx7 PA Protection — Average OR Peak Power Transmitter
D23 Tx6 PA Protection — Slew Rate Limiter Transmitter
D22 Tx6 PA Protection — Average OR Peak Power Transmitter
D21 Tx5 PA Protection - Slew Rate Limiter Transmitter
D20 Tx5 PA Protection — Average OR Peak Power Transmitter
D19 Tx4 PA Protection - Slew Rate Limiter Transmitter
D18 Tx4 PA Protection — Average OR Peak Power Transmitter
D17 Tx3 PA Protection — Slew Rate Limiter Transmitter
D16 Tx3 PA Protection — Average OR Peak Power Transmitter
D15 Tx2 PA Protection - Slew Rate Limiter Transmitter
D14 Tx2 PA Protection — Average OR Peak Power Transmitter
D13 Tx1 PA Protection - Slew Rate Limiter Transmitter
D12 Tx1 PA Protection — Average OR Peak Power Transmitter
D11 Tx0 PA Protection — Slew Rate Limiter Transmitter
D10 Tx0 PA Protection — Average OR Peak Power Transmitter
D9 ARMO Force GP Interrupt ARM

D8 ARMO Watchdog Timer Timeout ARM

analog.com Rev. B | 171 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

GENERAL PURPOSE INPUT/OUTPUT CONFIGURATION

Table 90. GP_INTERRUPT Bitmask Description Upper Word (Continued)

Bit Position Brief Description Component
D7 ARMO Calibration Error ARM
D6 ARMO System Error ARM
D5 ARMO Memory ECC Error ARM
D4 ARM1 Force GP Interrupt ARM
D3 ARM1 Watchdog Timer Timeout ARM
D2 ARM1 Calibration Error ARM
D1 ARM1 System Error ARM
DO ARM1 Memory ECC Error ARM

GP INTERRUPT API FUNCTIONS

Table 91. GP Interrupt API

API Method Name

Comments

adi_ADRV903x_GplIntPinMaskCfgGet()

adi_ADRV903x_GplntPinMaskCfgSet()
adi_ADRV903x_GplntStatusClear()
adi_ADRV903x_GplntStatusGet()

adi_ADRV903x_GplntStickyBitMaskGet()

adi_ADRV903x_GplntStickyBitMaskSet()

Retrieves the General Purpose (GP) Interrupt Pin Mask Config for GP Int pins: GP_INTO, GP_INT1, or
both

Sets the General Purpose (GP) Interrupt Pin Mask Config for GP Int pins: GP_INTO, GP_INT1, or both
Clears the General Purpose (GP) Interrupt status bits selected in the gpIntClear word.

Reads the General Purpose (GP) Interrupt status bits and can be used to determine what caused a GP
Interrupt pin to be asserted

Gets the General Purpose (GP) Interrupt Type (pulse/edge (sticky) vs level (non-sticky) triggered) for
all interrupt sources

Sets the General Purpose (GP) Interrupt Type (pulse/edge (sticky) vs level (non-sticky) triggered) for
all interrupt sources

How to Use GP_INT

The setup and usage for the GP_INT command is as follows:

1. Initialize device (can optionally set GP_INTERRUPT masks in .json file)
2. Setup the GP_INTERRUPT masks for GP_INT1 and/or GP_INTO using the API. GP_INT pins should be low, indicating that no interrupt

source has asserted.

3. Decide if you want certain Interrupt sources to be sticky or non-sticky using the GplintStickyBitMaskSet() API. If the bits are made sticky you
will have to manually clear the error after reading the status.

S o~

Perform recovery action.

7. Call GpIntStatusClear() to clear any sticky interrupts.

Operate device. The BBIC should monitor the GP_INT1 and/or GP_INTO for rising edges indicating an interrupt has occurred.
If the GP_INT1 or GP_INTO pins assert, call the GpintStatusGet() API to determine which interrupt has caused the pin to go high.

The BBIC should monitor the status of the GP_INT1/GP_INTO pins after configuring the mask bits. If either pin asserts, this indicates that the
ADRV903x has run into a problem that may require user intervention to resolve. The bits in the status register can be made sticky, and the pin

will just follow the status register.

It is recommended to keep the PCLK Interrupt bits and the Charge Pump OverRange bits masked. Also, if only using a single internal LO, then
keep the unused PLL Unlock bit masked off also to prevent this from asserting the GP_INT pin unessarily.

analog.com

Rev. B | 172 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

JTAG BOUNDARY SCAN

The ADRV903x supports JTAG boundary scan standards IEEE 1149.1.
Boundary scan mode is enabled by pulling the TEST_EN pin (R14) high and setting the GPI0[2:0] pins. See Table 92 below for the available

modes.

Table 92. Boundary Scan Modes

TEST_EN GPIO[2:0] Boundary Scan Mode

0 XXX No Boundary Scan

1 000 Boundary Scan LVDS Mode
1 001 Boundary Scan CMOS Mode

Note that the TEST_EN does not latch the GPIO levels. The boundary scan modes are set by combinational logic, so it doesn’t matter if
TEST_EN goes high first, and then GPIOs toggle, or if GPIOs go first and then TEST_EN goes high.

When the ADRV903x is in JTAG, the following pins are used for JTAG access.
Table 93. JTAG Pin Interface

JTAG Pin ADRV903x Pin Description

TCK GPIO 7 Test Clock.

T™S GPIO_6 Test Mode State. Sampled at the rising edge of TCK to determine the next state.
TDI GPIO 5 Test Data In. Sampled at the rising edge of TCK.

TDO GPIO_4 Test Data Out. Valid on the falling edge of TCK.

TRST GPIO_3 Test Reset. An option pin which can rest the TAP controller’s state machine.

analog.com

Rev. B | 173 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

THERMAL CONSIDERATIONS

In the ADRV903x data sheet the thermal resistance is provided using the table below.

Table 94. Thermal Resistance Values from Datasheet

Package Type 8,4 (*CIW) B,ctop ("CIW) 8,8 (*C/W) Y1 (*CIW) ¥,5 (*C/W)
BP-506-1 | 1.98 1078 12.98 1069 1282

This section describes how each item in Table 94 is defined based on JEDEC specs.

» 0, is the junction to ambient thermal resistance

> Byciop is the junction to case thermal resistance

» Bg is the junction to board thermal resistance

» Y,y is the junction to top thermal characterization number

» W g is the junction to board thermal characterization number

» T,is the maximum junction temperature (°C)

» Tamp is the ambient temperature (°C)

> Thoard IS the board temperature measured on the mid-point of the longest side of the package no more than 1mm from the edge of the
package body (°C)

> Trop i the temperature measured at the top-center of the package (°C)

» Prow is the portion of chip power that flows from junction to case (%)

> Ppiss is the total power dissipation in the chip (W)

8,4 Junction to Ambient Thermal Resistance: The convection thermal resistance is the chip junction-to-ambient air thermal resistance in a 1ft
cube JEDEC environment & PCB. It is the ability of a device to dissipate heat from the surface of the die to the ambient without using external
heat sinks.

Ty = Tamb (23)

9]‘4 = Ppiss

8,ctop Junction to Case Thermal Resistance: The JEDEC conduction thermal resistance from junction-to-case. It is the ability of a device to
dissipate heat from the surface of the die to the top or bottom surface of the package when an external heat sink is attached to the package.

T] - TTOp (24)

9}Ctop - PFlow

8,5 Junction to Board Thermal Resistance: The junction-to-board thermal resistance where Tgo,,q is the temperature measured on or near
component lead (within 1mm of package body). 8,5 is simulated based on JEDEC defined environment and PCB.

T] = TBoard (25)

918 = PFlow

W,r Junction to Top Thermal Characterization Numbers: Simulated in the same environment as 6,,. W7 is a characterization parameter
between junction and package top.

_ Iy~ Trop
l{J] r= Ppiss (26)

Y g Junction to Board Thermal Characterization Number: W jg is simulated in the same environment as 8. W5 is the characterization
parameter between junction and board.

T] = TBoard (27)

lp]B = Ppiss

From the definitions about the thermal resistance, each of them has the specific environment that compliance to JEDEC definition, and for each
case the unique heat dissipation path is presumed.

As stated in JEDEC51-12, W7 and W5 should only be used when no heat sink/heat spreader is present. When a heat sink/heat spreader is
added, estimating/calculating junction temperature can be achieved by using appropriate 6 c1,, and 6.

analog.com Rev. B | 174 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

THERMAL CONSIDERATIONS

DELPHI COMPACT MODEL

Each thermal resistance is defined as one resistance between two nodes and also with unique boundary condition defined in JEDEC. It can
be used for the thermal estimation if the boundary is the same as the definition in the JEDEC. However, the thermal environment on the
board-level or system-level is more complex in general, and the heat fluxes over a wide spectrum of environments, such as PCB, heatsink
or some convection cooling. A DELPHI compact model is created from the detailed model using a step-by-step simulation and statistical
optimization process over a wide spectrum of environments. It has high degree of boundary condition independence (BCI) and is also
computationally efficient which make it the most suitable for board-level or system-level simulation involving a large number of packages in
which accurate temperature and heat flux data is needed.

Top Inner Top Outer

Thermal
Resistors

Junction Leads
(heat source

Bottom Inner Bottom Outer

Figure 143. Network Compact Model

The DELPHI thermal resistance network is comprised of a limited number of nodes connected to each other by thermal resistor links (see
Figure 143). In effect, the complex 3D heat flow within a real package is represented by a series of links.

Network nodes are, by definition, each associated with a single temperature only. The nodes can be either surface or internal. Surface nodes
are associated with a physical region of the package surface defining the area of the node. In such a case, the node temperature represents
the average temperature of the area allocated to the node in the actual package. Also, surface nodes must always have a direct one-to-one
association with the corresponding physical areas on the actual package. Therefore, it is critical that they communicate with the environment in
the same manner as the package.

Internal nodes lie within the package body and may or may not correspond to a physical region within the package. The predicted node
temperature has no physical meaning for those internal nodes that do not correspond to actual regions within a package.

Surface nodes communicate with internal nodes as well as the surrounding environment. Internal nodes do not communicate with the
environment directly, but they may have a heat source associated with them.

DELPHI PDML model is provided by ADI for the ADRV903x that is compatible with Simcenter FloTHERM, but only valid for steady state
thermal simulation. The model includes the actual power dissipation for the die, the user should check with ADI before changing the power
values in the DELPHI model.

MAXIMUM JUNCTION TEMPERATURE

As stated in ADRV903x data sheet the maximum junction temperature for continuous operation is 110°C. All the thermal models provided by
ADI can be used to do a thermal simulation based on the customers’ board level boundary. The thermal resistance obtained from the simulation
can be used for the calculation of the package top temperature with the exactly the same boundary in the simulation. The junction temperature
obtained from the simulation should be compliant to the data sheet spec (110°C for the continuous operation) to ensure the performance and
lifetime specified in the data sheet are guaranteed.

THERMAL API FUNCTIONS

Table 95. List of Thermal API Functions
API Method Name Comments
adi_ADRV903x_TemperatureGet() Get the temperature from up to 12 sensors on die.

analog.com Rev. B | 175 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

THERMAL CONSIDERATIONS

Table 95. List of Thermal API Functions (Continued)

AP Method Name

Comments

adi_ADRV903x_TemperatureEnableGet()
adi_ADRV903x_TemperatureEnableSet()

Get the temperature sensors that are enabled.
Set the temperature sensors that are to be enabled.

analog.com

Rev. B | 176 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

The ADRV903x family of devices requires four different power supply domains.

1.

0.8 V Digital: this supply is connected to the device through the six VDIG_0P8 pins. This is the supply that feeds all digital processing and
clock generation. Care should be taken to properly isolate this supply from all analog signals on the PCB to avoid digital noise coupling

to sensitive signals. This supply input can have a tolerance of 5%, but note that the total tolerance must include the tolerance of the
supply device added to the voltage drop of the PCB. This supply is a high-current input, so it is strongly recommended that all six inputs be
connected to a common power plane to minimize mismatch and | x R drop. Another recommended technique to maintain the correct supply
voltage is to use a power supply with a remote sense connected directly to the ADRV903x supply input pins.

1.0 V Analog: these supplies are collectively referred to as the VANA_1P0 supply. Each input should be treated as a noise-susceptible
input, meaning proper decoupling and isolation techniques should be followed to avoid crosstalk between channels. The tolerance on

these supply inputs is +2.5%. This power domain is further divided into two different sub-domains. The static domain includes the supply
inputs that maintain a steady current supply during all modes of operation. The dynamic domain are described as those supply inputs that
experience current load steps when operating in TDD mode. The individual supply pins and their domain designations are listed in Table 96.
1.8 V Analog: these supplies are collectively referred to as the VANA_1P8 supply. Each input should be treated as a noise-susceptible
input, meaning proper decoupling and isolation techniques should be followed to avoid crosstalk between channels. The tolerance on these
supply inputs is +5%. This power domain is further divided into two different sub-domains. The static domain includes the supply inputs that
maintain a steady current supply during all modes of operation. The dynamic domain are described as those supply inputs that experience
current load steps when operating in TDD mode. The individual supply pins and their domain designations are listed in Table 96.

Interface Supply: The VIF_1P8 supply is a separate power domain shared with the BBIC interface. The nominal input voltage on this supply
is 1.8 V with a tolerance of 5%. This input serves as the voltage reference for the digital interface (SPI), GPIO, and digital control inputs.

POWER SUPPLY DOMAIN CONNECTIONS

Table 96 lists the pin number, the pin name, and a brief description of the block it powers in the ADRV903x. Recommendations reflect
guidelines used in the design of the customer evaluation board decoupling layout. In general, it is recommended that designers determine
current requirements for their desired use case and select PCB routing trace sizes that are appropriate to minimize resistive losses in the PCB

power supply traces.
Table 96. Power Supply Pins and Functions
Pin Name Pins Type Domain Voltage Recommended Routing/Notes Description
VDIG_0P8 K12, L12, Digital N/A 08V Route as a single power plane or sub-plane to Digital core supply

M12, N12, minimize resistance. If using a power supply with

P12, R12 remote sense, connect directly to the ADRV903x

pins.

VCLKSYN_1P0 u16 Analog Static 1.0V Star connect from the 1.0 V static domain. Use Clock synthesizer supply

wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

VCLKGEN_1P0 V16 Analog Static 1.0V Star connect from the 1.0 V static domain. Use Clock generator supply

wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

VRXLOO_1P0 A6 Analog Static 1.0V Star connect from the 1.0 V static domain. Use LO supply

wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

VRXLO1_1P0 A7 Analog Static 1.0V Star connect from the 1.0 V static domain. Use LO supply

wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

VTXLOO0_1P0 A8 Analog Static 1.0V Star connect from the 1.0 V static domain. Use LO supply

wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs

analog.com Rev. B | 177 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

Table 96. Power Supply Pins and Functions (Continued)

Pin Name

Pins

Type

Domain

Voltage

Recommended Routing/Notes

Description

VTXLO1_1P0

VLOO_1PO

VLO1_1P0

VSYNO_1P0

VSYN1_1P0

VSERSYN_1P0

VDEV_1P0

VSER_1P0

VDES_1P0

VCONVO_1P0

VCONV1_1P0

VCONV2_1P0

A15

A10

A13

E8

E15

AAT1

F10

AB11, AC11

AB12, AC12

H7

R7

H16

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Static

Static

Static

Static

Static

Static

Static

Static

Static

Dynamic

Dynamic

Dynamic

1.0V

1.0V

1.0V

1.0V

1.0V

1.0V

1.0V

1.0V

1.0V

—

oV

with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.0 V static domain. Use wide
traces/shapes to minimize trace resistance as much
as possible. Isolate from other 1.0 V inputs with a
ferrite bead if necessary.

Star connect from the 1.0 V static domain. Use wide
traces/shapes to minimize trace resistance as much
as possible. Isolate from other 1.0 V inputs with a
ferrite bead if necessary.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 VV dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as

LO supply

LO supply

LO supply

Synthesizer supply

Synthesizer supply

Synthesizer supply

Device clock supply

JESD serializer supply

JESD deserializer supply

ADC/DAC supply

ADCIDAC supply

ADC/DAC supply

analog.com

Rev. B | 178 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

Table 96. Power Supply Pins and Functions (Continued)

Pin Name

Pins

Type

Domain

Voltage

Recommended Routing/Notes

Description

VCONV3_1P0

VORX0_1P0

VORX1_1P0

VSCLK0_1P0

VSCLK1_1P0

VBBO_1P0

VBB1_1P0

VANAO_1P8

VANA1_1P8

VCLKVCO_1P8

VSYS_1P8

R16

N7

N16

L7, M7

L16, M16

C7

C16

C6

C17

V15

F13

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Static

Static

Static

Static

1.0V

1.0V

1.0V

1.0V

1.0V

1.0V

1.0V

18V

18V

18V

18V

much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 VV dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance
as much as possible. Isolate from other 1.0 V
inputs with a ferrite bead if necessary. Decoupling
capacitors should be connected directly between
L7/M7 and L8/M8.

Star connect from the 1.0 VV dynamic domain. Use
wide traces/shapes to minimize trace resistance
as much as possible. Isolate from other 1.0 V
inputs with a ferrite bead if necessary. Decoupling
capacitors should be connected directly between
L16/M16 and L15/M15.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.0 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.0 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

ADC/DAC supply

ORX0 channel ADC supply

ORX1 channel ADC supply

ORX0 channel ADC sample
clock supply

ORX1 channel ADC sample
clock supply

Baseband supply

Baseband supply

Analog 1.8 V supply

Analog 1.8 V supply

Input supply for clock VCO

LDO

SYSREF clock supply

analog.com

Rev. B | 179 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

Table 96. Power Supply Pins and Functions (Continued)

Pin Name

Pins

Type

Domain

Voltage

Recommended Routing/Notes

Description

VVCO0_1P8

WCO1_1P8

VSERVCO_1P8

VCONVO_1P8

VCONV1_1P8

VCONV2_1P8

VCONV3_1P8

VORX0_1P8

VORX1_1P8

VTX0_1P8

VTX1_1P8

VIF_1P8

VCLKVCO_1P0

VSERVCO_1P0

A3

A20

V9

J7

P7

J16

P16

K7

K16

W3

W20

u12

V14

V8

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Digital

Analog

Analog

Static

Static

Static

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

N/A

N/A

N/A

18V

18V

18V

18V

18V

18V

18V

18V

18V

18V

1.0V

1.0V

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.8 V static domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary. Very sensitive to
aggressors.

Star connect from the 1.8 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 VV dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 VV dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Star connect from the 1.8 V dynamic domain. Use
wide traces/shapes to minimize trace resistance as
much as possible. Isolate from other 1.8 V inputs
with a ferrite bead if necessary.

Connect to the power supply used by the baseband
processor interface circuits to ensure it is common.
This supply input is not susceptible to noise, so
special routing techniques are not required.
Connect a 4.7 yF capacitor between this pin and
VSSA (X7R ceramic is recommended).

Connect a 4.7 uF capacitor between this pin and
VSSA (X7R ceramic is recommended).

Input supply for VCO LDO

Input supply for VCO LDO

Input supply for SERDES VCO
LDO

ADC/DAC 1.8 V supply

ADC/DAC 1.8 V supply

ADC/DAC 1.8 V supply

ADC/DAC 1.8 V supply

ORX ADC 1.8 V supply

ORX ADC 1.8V supply

TX upconverter supply

TX upconverter supply

SPI, GPIO, and control signal

supply

Internal VCO LDO output
capacitor connection pin

Internal VCO LDO output
capacitor connection pin

analog.com

Rev. B | 180 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

Table 96. Power Supply Pins and Functions (Continued)

Pin Name Pins Type Domain Voltage Recommended Routing/Notes Description

VVC00_1P0 Ad Analog N/A 1.0V Connect a 4.7 uF capacitor between this pin and Internal VCO LDO output
VSSA (X7R ceramic is recommended). capacitor connection pin output

VWCO1_1P0 A19 Analog N/A 1.0V Connect a 4.7 uF capacitor between this pin and Internal VCO LDO output
VSSA (X7R ceramic is recommended). capacitor connection pin

IMPORTANT:

During operation, some supply currents can vary significantly, especially during calibration cycles when multiple blocks can be enabled at the
same time. Each supply needs to have adequate capacity to provide the necessary current so that performance criteria over all process and
temperature variations are maintained. Add the margins in Table 97 to measured current values at room temperature using nominal silicon and
nominal voltage to ensure proper operation under all conditions.

Table 97. Power Supply Margins

Supply Margin

0.8V 15 % + 900 mA
1.0V 20%

18V 10 %
POWER SUPPLY SEQUENCE

The device requires a specific power-up sequence to avoid undesirable power-up currents. In the optimal sequence, the VDIG_0P8 supply
should come up first. After the VDIG_0P8 source is enabled, the VANA_1P0 supplies should be enabled next, followed by the VANA_1P8
supplies. Note that the VIF_1P8 supply can be enabled at any time without affecting the other circuits in the device. In addition to this
sequence, it is also recommended to toggle the RESET signal after power has stabilized prior to initializing the device.

The power-down sequence recommendation is similar to power-up. All supplies should be disabled in reverse order (or all together) before
VDIG_0P8 is disabled. If such a sequence is not possible, then all supplies should have their sources disabled simultaneously to ensure no
back feeding to circuits that have been powered down.

POWER SUPPLY ARCHITECTURE

The diagram in Figure 144 outlines the power supply inputs on the ADRV903x. This configuration follows the recommendations outlined in
Table 96 for groupings of static and dynamic supply inputs. This diagram includes the ferrite beads in series with each analog supply to
provide RF isolation from other blocks that could couple through the supply lines. It is recommended that each input be evaluated separately to
determine if a ferrite bead is required or if it can be replaced by a short (PCB trace or a 0 Q resistor).

analog.com Rev. B | 181 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

1.0V Dynamic Supply ADRV303x Power
{Filter } VCONVx_1P0 (4)
+—{Filter } VORXx_1P0 (2) 1.0V]
—{_Filter } VBBx_1P0(2) Dynamic
——{"Filter } VSCLKx_1PO (4)
1.0V Static Supply
{_Filter } VRXLOX_1PO0 (2)
—{_Filter } VTXLOx_1PO (2)
+—{_Filter } VLOX_1PO0 (2)
—{Filter } VSYNx_1PO (2)
+—{Filter } VDEV_1P0 1.0V|
| Filter } VCLKSYN_1PO Static|
+—{_Filter } VCLKGEN_1PO
—{_Filter } VSERSYN_1P0
+—{Filter } VSER_1PO (2)
L—{"Filter } VDES_1P0 (2)
1.8V Dynamic Supply —Fiiter} VCONVx_1P8 (4)
—{Filter } VORXx_1P8 (2) Dynalr.:i\:
—{Filter } VTXx_1P8 (2)
1.8V Static Supply Fiter} VANAX_1P8 (2)
+—{Filter } VVCOx_1P8 (2)
—{Filter } VSYS_1P8 1'8_\/
Static
+—{Filter } VCLKVCO_1P8
L—{Filter } VSERVCO_1P8
[[1]
{ } VVCO0_1P0
{ } VVCO1_1P0 [ow Noise|
{ } VCLKVCO_1P0 LDOs
{ } VSERVCO_1PO
0.8V Supply VDIG_0P8 (6) Digital
1.8V I/F Supply (shared with BBP) VIF_1p8 Blocks

Figure 144. ADRV903x Power Supply Input Distribution

RBIAS SETUP

All internal currents and voltages are based off a controller reference. There are two separate controller references — one for each half of the
device. The controller current value is set by resistors connected to the RBIASO and RBIAS1 pins (U6 and U17). These resistors should be 4.99
kQ with a tolerance of 0.1% to ensure that the correct reference is used for internally generated currents and voltages. Care should also be
taken in the PCB layout to ensure the trace from each resistor to the corresponding RBIAS pin is properly shielded from noise that could couple
into the internal reference generator circuits and degrade performance.

POWER SAVING MODES

There are several power saving modes available on the ADRV903x device which have varying trade-offs of power consumption saved vs. the
recovery time required to bring the radio back into an active mode. These are described below in order of increasing power consumption saved
but with associated longer recovery times.

DTx Mode

Discontinuous transmission (DTX) is a power saving mode which quickly powers down some components of the ADRV903x when there is no
data to transmit.

DTX mode will gate off the digital clocks from TX datapath, ramp down the TX Atten block and pause the TX QEC and TX LOL tracking
calibrations. There are three distinct modes supported by the DTX function, Auto, SPI, or Pin modes. In Auto mode, DTX looks for a

analog.com Rev. B | 182 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

programmable number of consecutive zero samples in the Tx datapath and when detected will deactivate the blocks to save power. In SPI
mode, DTx is triggered by the DtxForceSet() APl and in PIN mode DTx is triggered by a GPIO going high. This is configured using the
DtxCfgSet() API. The number of consecutive zeros to trigger DTx in Auto mode is also configured using this API. Recovery from this mode
takes ~1-1.5 ps.

Table 98. DTx Modes

DTx Mode Enumerator Operation
ADI_ADRV903x_DTXMODE_DISABLE DTX s in Disable Mode
ADI_ADRV903x_DTXMODE_AUTO DTX s in Automatic Mode
ADI_ADRV903x_DTXMODE_SPI DTX s in SPI Control Mode
ADI_ADRV903x_DTXMODE_PIN DTX s in PIN Control Mode

Channel Standby Mode

The user can save power, for example in TDD mode, by using the Radio Control feature to quickly powerdown and up individual or groups

of RF channels. It is possible to put all RF channels in standby by disabling all active channels either using RadioControl PIN Mode or SPI
Mode as described in the System Control section. In this mode, most of the RF and analog blocks are powered down, the converters are put in
standby and the digital clocks are halted. Recovery from this mode takes in the order of ~2 ps.

Chip Standby Mode

Chip Standby Mode is implemented on the ADRV903x device and saves more power than the DTX and channel standby mode but with a
longer recovery back to active mode. In this mode, most of the blocks inside the ADRV903x are powered off, including JESD blocks (framers,
deframers, and Serdes lanes), PLLs for clock and LO, and the ARM is put into a lower power mode and clocked off the DEVCLK directly. The
tradeoff with powering off more blocks is the recovery time with more time needed to turn those blocks back on including re-running calibrations
and also re-running of multi-chip synchronization, which is also lost in standby mode. This mode is designed to fit the scenario where the
network traffic load is extremely low, for example as a night time power saving mode. In this case the radio could be put into chip standby for

a couple of hours and the environment, especially the ambient temperature, may change significantly during the standby time, which requires
some of the calibrations to be re-run on exit of chip standby. The APl commands to put the transceiver into chip standby mode and a procedure
to exit it and recover the performance is given below.

The user calls the adi ADRV903x_StandbyEnter(...) to enter the chip standby mode. The StandbyEnter() API function will put the radio control
mode into SPI mode, and the active channels before entering standby mode are stored in the data structure adi_ADRV903x_StandbyRecov-
er_t, for the recovery afterwards when adi ADRV903x_StandbyExit(...) function is called. In addition the software saves off information on the
active tracking calibrations. It is important to note that the radio control mode won't automatically switch to PIN mode even it was enabled
before entering Chip standby, so the user needs to call the API - adi ADRV903x_RadioCtriCfgSet(...), to change the radio control mode if PIN
mode is needed again.

The basic Software Procedure for entering and exiting Chip Standby mode is:
» Enter Chip Standby Mode

» This stage powers down the specific circuitries inside Palau.
» The user calls adi ADRV903x_StandbyEnter(...) function to enter the chip standby mode.
» Recovery procedure when exiting from chip Standby Mode

» Re-enable the blocks which were disabled by the chip standby by calling adi ADRV903x_StandbyRecover...).

» MCS (Multi-Chip Synchronization) is needed because the clock PLL was powered off and the synchronization was lost in standby mode,
so the user can call app_program_Phase7Mcs (shown in the src/app/example folder of the API package) which is for the bootup as well to
synchronize the clocks.

» RX ADC and ORX ADC Init Cal are required for the performance recovery. However, the user doesn't need to change the data structure
adi_ADRV903x_PostMcsInit_t or calMask. The API call to adi_ADRV903x_PostMcsInit in this procedure will assign the specific calMask
to adi_ADRV903x_InitCalsRun. What the user needs to do is to call app_program_Phase8PostMcsinit.

» Bring up JESD by calling app_program_Phase9DatalnterfaceBringup.

» Call adi_ADRV903x_StandbyExit(...) function which enables the active TX/RX/ORX channels and tracking calibrations which are stored in
the data structure adi ADRV903x_StandbyRecover t. In parallel, the software puts TX LB ADC into fast attack mode.

analog.com Rev. B | 183 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

POWER MANAGEMENT CONSIDERATIONS

» Check the status of the LB ADC fast attack status by calling API adi_ADRV903x_StandbyExitStatusGet{...). Note, you should not send
any data to the transmitter before the fast attack has completed.

» Turn radio control to PIN mode if needed by calling APl adi ADRV903x_RadioCtrICfgSet(...)

» Start the traffic/send UserData. TX QEC and RX QEC require the traffic data to converge to the reasonable performance which may take
1~2 seconds.

Itis possible to reduce the power consumption compared to Active Mode by ~80 to 90% when using Chip Standby mode. Some example
measurements are given below. These are given for guidance only. Please check the power saving numbers when using your specific
UseCase.

Table 99. Example power saving when using Chip Standby Mode

Chip Standby Recovery time
Profile Active Mode Power Chip Standby Mode Power Chip Standby Entry time (note1) (note2)
ucs9 10.7W 1.3W 0.2 sec 9.1 sec
uc7s 121W 16W 0.37 sec 10.9 sec

Note 1: the standby entry time may vary from run to tun because the entering API needs to wait for the tracking calibration to finish the current
iteration.

Note 2: the recovery time doesn't include the QEC convergence time which as mentioned above needs the traffic data to converge and usually
takes about 1 second.

Chip Power Down Using RESETB

You can powerdown all components on the ADRV903x by simply asserting the RESETB pin low. In addition to powering down all analog and
digital blocks and associated calibration information, this will also reset the ARM and associated memory, meaning all programmed firmware is
lost. After de-asserting RESETB, a full chip re-program is required as described in Programming the Device section. This mode will achieve the
highest power saving at the expense of longest recovery time. The exact recovery time depends on the UseCase but typically is > 10s.

POWER SAVING MODES API FUNCTIONS
Table 100. List of Power Saving Modes Related API Functions

API Method Name Comments
adi_ADRV903x_DtxCfgGet() Reads the Discontinuous Transmit (DTX) settings for the requested Tx channel
adi_ADRV903x_DtxCfgSet() Configures the Discontinuons Transmit (DTX) mode. You can configure DTx to be in Automatic mode,

where the DTx will trigger on detection of a programmable number of zeros in the Tx datapath, or a
GPIO triggered mode or SP!I triggered mode.

adi_ADRV903x_DtxForceSet() If you configure DTX to be in SPI mode, you can set or unset DTX using the dtxForce bit for the
requested Tx channel

adi_ADRV903x_DtxGpioCfgSet() If you configure the DTX to be in GPIO mode, you need to configure the GPIO which will trigger DTx
per Tx channel. If the GPIO is already being used by another resource the API will return an error.

adi_ADRV903x_DtxGpioCfgGet() If you configure the DTX to be in GPIO mode, you can readback the GPIO you have configured to
trigger DTx per channel

adi_ADRV903x_DtxStatusGet() Reads the Discontinuous Transmit (DTX) status for the requested Tx channel

adi_ADRV903x_StandbyEnter() Call this API when entering into Chip Standby mode. You need to pass a pointer to the Standby

Recover data structure which will store information on which channels are enabled, what serdes lanes
are used, which cals are enabled etc. so these can be re-applied on exit of Chip Standby.

adi_ADRV903x_StandbyRecover() Call this APl when you want to recover or come out of Chip Standby mode. You need to pass a pointer
to the Standby Recover data structure which was saved off when entering Chip Standby.

adi_ADRV903x_StandbyExit() This API runs the Chip Standby Exit Sequence, which enables the channels and runs the fast attack
cals before clearing the Standby state. It must be called after StandbyRecover and after MCS/JESD
link bring up.

adi_ADRV903x_StandbyExitStatusGet() You can poll the status of the Chip Standby Exit procedure to check when it has completed. Note, you

should not send any data to the transmitter before the StandbyExit has completed.

analog.com Rev. B | 184 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RF PORT IMPEDANCE MATCHING

This section describes the recommended RF transmitter and receiver interfaces to obtain optimal device performance. Some reference is also
provided regarding board layout techniques and balun selection guidelines.

The ADRV903x a highly integrated transceiver with transmit, receive and observation receive signal chains. External impedance matching
networks are required on transmitter and receiver ports to achieve performance levels indicated on the data sheet. Analog Devices Inc.
recommends the utilization of simulation tools in the design and optimization of impedance matching networks. To achieve best correlation from
simulation to PCB, accurate models of the board environment, SMD components (for example, baluns, and filters), and device port impedances
are required.

RF PORT IMPEDANCE DATA
This section provides the port impedance data for all transmitters and receivers in the device. Note the following:

» Z,is defined as 100 Q for Tx/Rx/ORx (Differential).
» The reference plane for this data is the device ball pads.

» Single ended mode port impedance data is not available. However, a rough assessment is possible by taking the differential mode port
impedance data and dividing both the real and imaginary components by 2.
» Contact Analog Devices Applications Engineering for the impedance data in Touchstone format.

ADS SETUP USING DATA ACCESS COMPONENT AND SEDZ FILE

The port impedances are supplied as an *.s1p Series Equivalent Differential Z (impedance) file. This format allows simple interface to ADS by
using the Data Access Component. The Pi network on the single ended side and the double differential Pi configuration on the differential side
allow maximum flexibility in designing matching circuits and is suggested for all design layouts as it can step the impedance up or down as
needed with appropriate component selection.

Operation is as follows:

1. 1. The DAC block reads the rf port *.s1p file. This is the device rf port reflection coefficient.
2. 2. The two equations convert the RF port reflection coefficient to a complex impedance. The end result is the RX_SEDZ variable.
3. 3. The RF port calculated complex impedance (RX_SEDZ) is utilized to define the impedance.

For highest accuracy, use EM modeling results of the PCB artwork and S parameters of the matching components and balun in the simulations.
TRANSMITTER BIAS AND PORT INTERFACE

This section considers the dc biasing of the transmitter (Tx) outputs and how to interface to each Tx port. The transmitters operate over a range
of frequencies. The Tx outputs are dc biased to a 1.8 V supply voltage using either RF chokes (wire-wound inductors) or a transformer center
tap connection.

Careful design of the dc bias network is required to ensure optimal RF performance levels. When designing the dc bias network, select
components with low dc resistance (Rpcg) to minimize the voltage drop across the series parasitic resistance element with either of the
suggested dc bias schemes suggested in Figure 145. The red resistors (R_DCR) indicate the parasitic elements. As the impedance of the
parasitics increase, the voltage drop (AV) across the parasitic element increases, causing the transmitter RF performance (for example, Pg 145
and Pg yax) to degrade. Select the choke inductance (L¢) high enough relative to the load impedance such that it does not degrade the output
power,

The recommended dc bias network is shown in Figure 146. This network has fewer parasitics and fewer total components.

analog.com Rev. B | 185 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RF PORT IMPEDANCE MATCHING

TX2_OUT+

Cs

v

\ TX1_OUTH

Vb

c =18V

L Lc

+

+
Rpcr“AV AV - Rpcr

Tx1 OR Tx2
OUTPUT

T

Igias = ~100mA
Vpgias =1.8V — AV

STAGE Vpias =1.8V — AV

TX2_0OUT-

\

Figure 145. RF DC Bias Configurations Depicting Parasitic Losses Due to Wire Wound Chokes

\ TX1_OUT+/

TX1_OUT-/

TX2_OUT+_ laias = ~100mA - AV +

Veias =1
Tx1 OR Tx2
OUTPUT

STAGE Vgias =1

.8V -AvV

.8V -AV

Rpcr

T Igias = ~100mA CBT Rpcr

TX1_OUT-/

/ TX2_OUT-

Figure 146. RF DC Bias Configurations Depicting Parasitic Losses Due to Center Tapped Transformers

~-¢

- AV +

22770-128

22770-529

Figure 147 to Figure 150 identify four basic differential transmitter output configurations. Impedance matching networks (balun single-ended
port) are most likely required to achieve optimum device performance from the device. Also, the transmitter outputs must be ac-coupled in most

applications due to the dc bias voltage applied to the differential output lines of the transmitter.

The recommended RF transmitter interface featuring a center tapped balun is shown in Figure 147. This configuration offers the lowest
component count of the options presented.

Brief descriptions of the Tx port interface schemes are provided as follows:

» Center tapped transformer passes the bias voltage directly to the transmitter outputs
» RF chokes are used to bias the differential transmitter output lines. Additional coupling capacitors (C¢) are added in the creation of a

transmission line balun

» RF chokes are used to bias the differential transmitter output lines and connect into a transformer

» RF chokes are used to bias the differential output lines that are ac-coupled into the input of a driver amplifier.

v i

analog.com

T~

Tx1_OUTP/
Tx2_OUTP

Tx1 OR Tx2
OUTPUT STAGE

Tx1_OUTN/
Tx2_OUTN

/

v

22770-129

Figure 147. ADRV903x RF Transmitter Interface Configuration A

Rev. B | 186 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RF PORT IMPEDANCE MATCHING

Tx1_OUTP/ cec
Tx2_OUTP 18v] 1

Tx1 OR Tx2

OUTPUT STAGE
Tx1_OUTN/
Tx2_OUTN 1.8V |
1

|
22770-530

Figure 148. ADRV903x RF Transmitter Interface Configuration B

Cb
\ I Lc Lc
Tx1_OUTP/
Tx2_OUTP 1.8V|
Tx1 OR Tx2
OUTPUT STAGE Tx1_OUTN/
Tx2_OUTN 1.8V

22770-531

Figure 149. ADRV903x RF Transmitter Interface Configuration C

1.8V

C_b

- I Lc Lc

Tx1_OUTP/ C_c
Tx2_OUTP 1.8V |
- 1

/

Tx1 OR Tx2
OUTPUT STAGE]

DRIVER
Tx1_OUTN/ AMPLIFIE|
Tx2_OUTN 1.8V

1
22770-532

Figure 150. ADRV903x RF Transmitter Interface Configuration D

If a Tx balun is selected that requires a set of external dc bias chokes, careful planning is required. It is necessary to find the optimum
compromise between the choke physical size, choke dc resistance (Rpcr) and the balun low frequency insertion loss. In commercially available
dc bias chokes, resistance decreases as size increases. However, as choke inductance increases, resistance increases. Therefore, it is
undesirable to use physically small chokes with high inductance as they exhibit the greatest resistance. For example, the voltage drop of a 500
nH, 0603 choke at 100 mA is roughly 50 mV. The maximum current here is below 100 mA.

Table 101. Sample Wire-Wound DC Bias Choke Resistance vs. Size

Inductance (nH) Resistance (Size: 0603) Resistance (Size: 1206)
100 0.10 0.08
200 0.15 0.10
300 0.16 0.12
400 0.28 0.14
500 0.45 0.15
600 0.52 0.20

analog.com Rev. B | 187 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

RF PORT IMPEDANCE MATCHING

GENERAL RECEIVER PATH INTERFACE

The device has two types of receivers. These receivers include eight main receive pathways (Rx0, Rx1, Rx2, Rx3, Rx4, Rx5, Rx6, and Rx7)
and two observation receivers (ORx0, ORx1). The Rx and ORx channels are designed for differential use only.

The receivers support a wide range of operation frequencies. In the case of the Rx and ORx channels, the differential signals interface to an
integrated mixer. The mixer input pins have a dc bias of approximately 0.9 V present on them and may need to be ac-coupled depending on the
common mode voltage level of the external circuit.

Important considerations for the receiver port interface are as follows:

» Device to be interfaced: filter, balun, T/R switch, external LNA, and external PA. Determine if this device represents a short to ground at dc.
» Rxand ORx maximum safe input power is +18 dBm (peak).

» Rx and ORx optimum dc bias voltage is 0.9 V bias to ground.

» Board Design: reference planes, transmission lines, and impedance matching.

Figure 151 shows possible differential receiver port interface circuits. The options in Figure 151 and Figure 152 are valid for all receiver inputs
operating in differential mode, though only the Rx1 signal names are indicated. Impedance matching may be necessary to obtain data sheet

performance levels.
Rx—
RECEIVER
INPUT
STAGE
3 g (MIXER OR LNA)
Rx+

Figure 151. Differential Receiver Input Interface Circuits

Cc Rxe
RECEIVER
INPUT STAGE
(MIXER OR LNA)
C

Figure 152. Differential Receiver Input Interface Circuits

22770-130

22770-631

Given wide RF bandwidth applications, SMD balun devices function well. Decent loss and differential balance are available in a relatively small
(0603, 0805) package.

analog.com Rev. B | 188 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

PCB LAYOUT OVERVIEW

The ADRV903xis a highly integrated RF agile transceiver with significant signal conditioning integrated onto one chip. Due to this high level of
complexity and its high pin count, careful printed circuit board (PCB) layout is important to obtain optimal performance. This section provides
a checklist of issues to look for and general guidelines on how to optimize the PCB to mitigate performance issues. The goal of this document
is to help achieve the best performance from the ADRV903x while reducing board layout effort. This section assumes that the reader is an
experienced analog/RF engineer who understands RF PCB layout as well as RF and high-speed transmission lines.

The ADRV903x evaluation board represents one of the most complex implementations of the device. All RF inputs and outputs, JESD serial
data lanes, and digital control and monitoring signals are implemented in this design. Advanced PCB technology is used to achieve maximum
device performance while seeking to maintain a high level of performance in the face of constraints presented by the routing density. Depending
on the intended application, users may not require all signals to be routed and can, therefore, use alternate PCB layout techniques to reach
their design goals. These include but are not limited to a traditional ball grid array (BGA) fanout, fewer layers, through hole vias only, and lower
grade PCB materials.

This section discusses the following issues and provides guidelines for system designers to get the best performance out of the ADRV903x
device:

» PCB material and stack up selection

» Fanout and trace space layout guidelines

» Component placement and routing priorities

» RF and JESD transmission line layout

» Isolation techniques used on the ADRV903x customer evaluation board
» Power management routing considerations

» Analog signal routing recommendations

» Digital signal routing recommendations

» Unused pin instructions

PCB MATERIAL AND STACK UP SELECTION

The ADRV903x evaluation board utilizes Isola |-Tera® MT-40 dielectric material. This material was selected for its low loss tangent and low
dielectric constant characteristics. It was also highly recommended by our PCB vendor as one of the most reliable materials and easiest to
manufacture. On previous evaluation systems, Analog Devices has chosen a combination of low loss, RF capable dielectric for the outer edge
layers and standard FR4-370 HR dielectric for interior layers. RF signal routing on these boards was confined to the top and bottom layers.
Therefore, the material mix was a good compromise to obtain optimum RF performance and low overall board cost. Given the need to route
RF and high speed, digital data lanes on multiple layers due to the increased number of RF channels and JESD lanes, I-Tera material was
chosen for all layers on this board. There are several other material options on the market from other PCB material vendors that are also

valid options for use with the ADRV903x device. The key comparison metric for these materials is the dielectric constant and the loss tangent.
Designers must also be careful to ensure that the thermal characteristics of the material are adequate to handle high reflow temperatures for
short durations and expected operating temperatures for extended durations.

Figure 153 shows the PCB stack up used for the ADRV903x evaluation board. Layer 1 and Layer 18 are primarily used for RF 10 signal routing,
so the prepreg material was selected to support the required controlled impedance traces. Layer 2 and Layer 17 have uninterrupted ground
copper flood beneath all RF routes on Layer 1 and Layer 18. Layer 2 is also used in combination with Layers 4, 15, and 17 to route high

speed digital JESD lanes. These signal layers use the layers above and below them as reference ground planes. Clean reference planes are
important to maintain signal integrity on sensitive RF and high-speed digital signal paths. Layers 3, 4, and 5 are used for the 1.0 V analog
power domains and Layer 10 is used for the 1.8 V analog power domains. Layers 14 and 15 are reserved for digital 0.8 V power domain routing
to minimize impedance on the supply while keeping it isolated by adjacent ground layers from the analog signals on the PCB. Layers 2, 6, and
9 are solid ground planes designed to help isolate sensitive analog signal and power layers from potentially noisy digital signals routed in the
lower half of the PCB. The remaining layers are used to route all power, digital control, GPIO, and clock distribution circuits.

analog.com Rev. B | 189 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Cu
Thick. Cu Foil Lam. Thick.
Layer (mils) wt(oz) DK (mils) Description
1 1.95 3750z Foil .375 oz
r 3.14 5.10 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
2 120 1oz
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 1 0z / 2 oz VLP2/RTF 18Gx24
3 260 2oz E—
F 3.14 4.50 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
4 120 1oz
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 1 0z / 2 oz VLP2/RTF 18Gx24
5 260 2oz —
[o] 3.14 465 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
6 060 050z ~
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 0.5 oz / 1 oz VLP2 18Gx24
7 120 1oz —
[o] 3.14 480 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
8 120 1oz ~
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 1 oz / 2 oz VLP2/RTF 18Gx24
9 260 2oz —
] 3.14 4.20 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
10 260 2oz
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 1 oz / 2 oz VLP2/RTF 18Gx24
1 1.20 10z e
i 3.14 4.80 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
12 120 1oz
- 3.26 4.00 Core I-Tera MT40 4.00mils 2x1035 0.5 0z / 1 0z VLP2 18Gx24
13 060 050z e
h 3.14 4.65 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
14 260 2oz
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 1 oz / 2 oz VLP2/RTF 18Gx24
15 1.20 10z e
h 3.14 4.50 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
16 260 2oz
- 3.26 4.00 Core |-Tera MT40 4.00mils 2x1035 1 0z / 2 oz VLP2/RTF 18Gx24
17 1.20 10z e
- 3.14 5.10 Prepreg |-Tera MT40 1035(73)/1035(73) 200 18Gx24
18 195 3750z || | Foil .375 oz
4
100.70 Thickness over Laminate
"104.60 Thickness over Copper
"105.60 Thickness over Soldermask

Figure 153. PCB Material Stack Up Diagram

Table 102 describes the drill table for via structures used in the evaluation board to route all signals from the transceiver. Note that the metal
and dielectric thicknesses have been balanced to ensure that the thickness of each half of the PCB is relatively equal to avoid uneven flexing or
deforming under pressure or temperature changes.

Via structures selection is based on signal routing requirements and manufacturing constraints. Ground planes are full copper floods with no
splits except for vias, through-hole components, and isolation structures. Ground and power planes are all routed to the edge of the PCB with a
10 mil pullback from the edge to decrease the risk of layer to layer shorts at the exposed board edge.

Table 102. Drill Table

Start Layer End Layer Drill Type Plate Type ViaFill Drill Depth Do Not Break Layers
1 18 Mechanical PTH Not applicable 100.40

1 8 Mechanical Via Nonconductive via fill 100.40

18 5 CDD Back drill Nonconductive via fill 76.10 4

1 3 CDD Back drill Nonconductive via fill 12.20 4

18 17 Laser Micro Via CuVF_Button pattern 5.55

1 2 Laser Micro Via Nonconductive via fill 5.55

Controlled impedance traces, single ended and differential, are required to obtain best RF performance. Impedances of 50 Q and 100 Q are
required for RF, high speed digital, and clock signals. Table 103 describes details about trace impedance controls used in the ADRV903x
evaluation board and types of line structures used to obtain desired impedance and performance on, and for, given layers and impedances.

Table 103. PCB Trace Impedance Table

Target Impedance TargetLine Edge Coupled Reference Modeled Line Modeled Coplanar
Layer Structure Type Impedance Tolerance Width Pitch Layers Width Impedance Space
1 Edge coupled 100.00 Q +10Q 8.00 mils 14.25 mils 2 8.00 mils 100.64 Q 10.00 mils
differential
1 Single ended 50.00 Q t5Q 10.50 mils 0.00 mils 2 10.50 mils 50.36 Q 10.00 mils
2 Edge coupled 100.00 Q +10Q 4.25 mils 11.00 mils 1and3 4.25 mils 99.89Q 12.00 mils
differential

analog.com

Rev. B | 190 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Table 103. PCB Trace Impedance Table (Continued)

Target Impedance TargetLine Edge Coupled Reference Modeled Line Modeled Coplanar

Layer Structure Type Impedance Tolerance Width Pitch Layers Width Impedance Space

4 Edge coupled 100.00 Q +10Q 4.25 mils 13.00 mils Jand5 4.25 mils 99.89 Q 12.00 mils
differential

6 Edge coupled 100.00 Q +10Q 4.50 mils 12.00 mils 5and7 4,50 mils 99.77 Q 12.00 mils
differential

8 Edge coupled 50.00 Q +10Q 4.25 mils 11.75 mils 7and9 4.25 mils 99.90Q
differential

1 Edge coupled 50.00 Q +10Q 4.25 mils 11.75 mils 10and 12 4.25 mils 99.90Q
differential

12 Single ended 50.00 Q 5Q 4.50 mils 0.00 mils 11and 13 4,50 mils 50.35Q

12 Edge coupled 100.00 Q +10Q 4.50 mils 12.00 mils 11and 13 4.25 mils 100.22 Q
differential

13 Edge coupled 100.00 Q +10Q 4.50 mils 12.00 mils 12 and 14 4.50 mils 99.75Q
differential

13 Single ended 50.00 Q t5Q 4.75 mils 0.00 mils 12 and 14 4,75 mils 49.83Q

15 Edge coupled 100.00 Q +10Q 4.25 mils 13.00 mils 14 and 16 4.25 mils 99.89Q 12.00 mils
differential

17 Edge coupled 100.00 Q +10Q 4.25 mils 11.00 mils 16 and 18 4.25 mils 99.89Q 12.00 mils
differential

18 Edge coupled 100.00 Q +10Q 8.00 mils 14.25 mils 17 8.00 mils 100.64 Q 10.00 mils
differential

18 Single ended 50.00 Q 5Q 10.50 mils 0.00 mils 17 10.50 mils 50.36 Q 10.00 mils

FANOUT AND TRACE SPACING GUIDELINES

The ADRV903x uses a 506-ball BGA, 19 mm x 19 mm package. The pitch between the pins is 0.8 mm. This small pitch makes it impractical to
route all signals on a single layer. RF and high-speed data pins have been placed on the perimeter rows of the BGA to minimize complexity of
routing these critical signals. Via in pad technology is used to route all other signals to inner layers on which they are routed. The recommended
via size includes an 8-mil drill hole with a 12-mil capture pad. A combination of micro vias between layers 1 and 2 and between layers 17 and
18, and through vias are used to connect signals between the different PCB layers.

Figure 154 illustrates the fanout of RF differential channels from the device on the right and left sides of the device footprint. The top layer of
the PCB is used for this fanout. Note that each signal pair is designed with the required characteristic impedance and isolation to minimize
crosstalk between channels. The isolation structures include a series of ground balls around each RF channel and the digital interface section
of the device. Connect these ground balls by traces to form a wall around each section, and then fill the area to make the ground as continuous
as possible underneath the device. Note that the receiver channels are in the eight ground boxes in the interior of the ball grid array. Figure 155
shows a similar fanout on the bottom layer of the PCB for the receiver channels. These channels are routed on the bottom layer to optimize
isolation from each other and from the transmitter and observation receiver channels.

analog.com Rev. B | 191 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Figure 154. ADRV903x Customer Evaluation Board RF Observation Receiver and Transmitter Fanout and Layout

Figure 155. ADRV903x Customer Evaluation Board RF Receiver and Fanout and Layout

analog.com

Rev. B | 192 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

COMPONENT PLACEMENT AND ROUTING GUIDELINES

The ADRV903x transceiver requires few external components to function. Those that are required must be carefully placed and routed to
optimize performance. This section provides a checklist for properly placing and routing some of those critical signals and components.

Signals With Highest Routing Priority

RF inputs and outputs, clocks, and high-speed digital signals are the most critical for optimizing performance and must be routed with the
highest priority. Figure 156 shows the general directions in which each of the signals must be routed to effectively isolate them from aggressor
signals. Red arrows show the recommended fanout for the RF channels, the purple arrows show the recommended direction for the DEVCLK
and SYSREF signals, and the blue arrows show the recommended routing direction for the JESD interface signals. It will be extremely difficult
to keep all RF channels on a single PCB layer due to the channel density of this device. In such cases, it is recommended to route the
observation receiver and transmitter channels on the top PCB layer with adequate channel-to-channel isolation and the receivers on the bottom
layer. Ensure that the trace impedance is properly designed to 100 Q differential including the vias needed to transfer the signals between PCB
layers.

A A

I vasa 1 27 L0 |ENT LD EXT 100 | ET VEE1 1 »
VESA AP VEA . WESA | o ar [SA i ™ 1w V=Aa P V=L AN VESA VESa THAN N £
‘ (GMO A |GPID A | GPID GP0 A (GPWD A|GMO A .
el NAl | NAa@D [NaZ e m.? ey 1SOH 5 [150 NA B | NaE | Nas e ot -
GPID_A|GPIO_A |VETHD_ DEVCLE| DEVELR VETHL_|GPID A|GPID A
VIR | WA QVEA [6 | naa [Waeel YR P no VR B ke (wa 1z |nae | VT oonc| e e AT g B
(GMI0 A |GPIO A |GPID A GP0 A (GPKD A|GMO A
4— VISA | \ESA WVSA | s | maz | waz ||)| A | V== VS5 s |mamn maas| VE VR | S| VR | MR F »
VESA L VEEA VESA VEEA WEEA wEsa N VESA WEIA VEA VESA VEEA VEEY RXSN VESA VEA TSN N G
w AMIN VEEA VEsA WEEA VEEA A WESA R RYSP &&&
i L
VESA VESA VA VEsA WESA VE=A VESA V4 VESA VESA VEsa vEsA B
h vESA VESA VEA vEsA WIEA Wi V=A WEZA V=4 VESA ESA VEA | ORMIPR ¢ I
VESA VEEA VEA vEsA - WEA EL At VE=A 1m0 =l vEEa V=g VESA VESA vEa |oRas L
- [VEC
- ws | fvsa | v [vsa i vsa [F0H] s | vsq | wov fssat ety
VESA RIEN VEA VEsA P L WA e V=A 0 | vEsa V=4 RXGP VESA VEa vESA BT
<_ vssa | wssa flvsa | vssa wEA I VA wesa | vsd | vssa | wsa | vsa | el e .
VESA VESA VEA VESA VEA LAt VA VETA V4 VESA VESA VA TESH Bl &
1 1P
< agn | mew PJuma | wsm | wmsa =P (uk[sP 0| 1 Do | ST vssa | wesa | vsd | won Lassslacms | s | H
VCLEEY
VESA RY3IN VEA |REMASD (VESA WEITE N REIAS] | VsS4 RXTP VESA VEA vESA B 1i
VEERWC VLW VOKGE
VESA VEEA VEA vEsA VEEA T oL VEEA V=g VESA VESA VEa TP Ny
4— 0.1/ 0 1m0 N_1P0 _»
.-m- B e e R e e R —
ERDINL | SERDIRL
S —] T SEADOU [SERDOU [sEAminG|sEADING = .m_‘m..m. "
e TIN TaR TN N P n N
[SERDDU | RO VA WEEA SRDOU (SERDOU| wEEA EZA VIR wEEA WEZA NEZA [SERD NS [SER DN NEZA WA |55 DINQ S ERDIND A vizA |5A
TOP TON TSP TSN N_1FD N P P N
[SERDOU [SERDDU SERDOU [SERDDU m.-l w [SERDING [SERDING| [SERDINZ | SERDIN 3|
VEDA VESA =r TN vEZA WEA P T PT P N n v=A VEsA A N vEsa ELA VEA vesa Al
[SERDDOU | SERDOU SERDOU |SERDOU) VEER 1|VDEs 1 | SERIDNNT [SERDINT| |SER DUNZ [SERDINZ
TP TIN hrid TN FO PO N P P N e
3 [3 & ¥]] (5 S SN B BN C SN . ST S N ¥ =3 =

Voo oo

Figure 156. RF Channel, DEVCLK, SYSREF, and JESD Interface Routing Direction Guidelines

Transmitter, receiver, and observation receiver routing (also referred to as trace routing), physical design (trace width/spacing), matching
network design, and balun placement significantly impact RF transceiver performance. To avoid performance degradation, optimize path
design, component selection, and placement. The RF Routing Guidelines section describes proper matching circuit placement and routing in
greater detail. To achieve desired levels of isolation between RF signal paths, use the considerations and techniques described in the Isolation
Techniques section in designs.

analog.com Rev. B | 193 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Connect external clock inputs to DEVCLK_P and DEVCLK N through 0.1 uF ac coupling capacitors. Place a 100 Q termination across the
input near pin E10 and pin E11, as shown in Figure 157. Shield traces by ground planes above and below with vias staggered along the edges
of the differential pair routing. This shielding is important because it protects the reference clock inputs from spurious signals that can transfer to
different clock domains within the device. The SYSREF differential signal should be routed in the same manner as the DEVCLK signal with the
exception that ac coupling capacitors are not needed for this signal.

DEVCLE Termination

SYSREF Termination (optional)

Figure 157. DEVCLK and SYSREF Termination

Route JESD204B high speed digital interface traces at the beginning of the PCB design process with the same priority as the RF signals. The
JESD204B/JESD204C Routing Recommendations section outlines launch and routing guidelines for these signals. Provide adequate isolation
between interface differential pairs.

Signals With Second Routing Priority

Power supply routing and quality has a direct impact on overall system performance. The Power Management Layout Design section provides
recommendations for how to best route power supplies to minimize loss as well as interference between RF channels. Follow recommendations
provided in the Power Management Layout Design section to optimize RF and isolation performance.

analog.com Rev. B | 194 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Signals With Lowest Routing Priority

Route remaining low frequency digital general-purpose inputs and outputs (GPIOs) and SPI signals. It is important to route all digital signals
bounded between row g and row W and column 7 and column 16 down and away from sensitive analog signals on PCB signal layers (see
Figure 156 for the ball diagram). Route these bounded signals using a solid ground layer that shields other sensitive signals from potentially
noisy digital signals. Analog GPIO signal traces are routed on layers separated from RF 1/O and high speed digital, but still on the analog side
of the PCB. These signals are typically used for static control for external RF components that are referenced to the same 1.8 V power rail as
the ADRV903x.

RF AND JESD TRANSMISSION LINE LAYOUT

RF Routing Guidelines

The ADRV903X evaluation boards use both surface coplanar waveguide and surface edge coupled coplanar waveguide transmission lines
for transmitter, receiver, and observation receiver RF signals. In general, Analog Devices does not recommend using vias to route RF traces
unless a direct route on the same layer as the device is not possible.

» Keep balanced lines as short as possible for differential mode signaling between the device and the RF balun.
» Keep the length of the single-ended transmissions lines for RF signals as short as possible.

» Keeping signal paths as short as possible reduces susceptibility to undesired signal coupling and reduces the effects of parasitic
capacitance, inductance, and loss on the transfer function of the transmission line and impedance matching network system.

The routing of these signal paths is the most critical factor in optimizing performance and, therefore, must be routed prior to any other signals
and maintain the highest priority in the PCB layout process.

All 18 RF ports are impedance matched using pi matching networks, both differential and single ended. In the case of the receivers and
transmitters, two stages of differential pi networks are used to allow us to impedance match for wide bandwidths. This makes our evaluation
over the entire frequency range of the device easier to accomplish. Typical customer applications will not require two pi network stages for the
differential matching network.

Figure 158 shows the routing for the Rx0 receiver on the customer evaluation board. Note that the single-ended portion is kept as short as
possible between the connector and the balun. The differential side is split into two sections: a pin network matching circuit near the balun and
another pin network near the ADRV903x. If the matching circuit is designed for a single channel bandwidth, it may be possible to eliminate one
of the differential pi networks.

If using an ADRV903x variant that includes external local oscillator inputs, these signals should follow the same routing guidelines as the RF
receiver inputs to ensure proper isolation is maintained.

analog.com Rev. B | 195 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

DIFFERENTIAL Pl - -
NETWORK

INGGLE-ENDED PI

RETWORK

oooogooooa.
Jooooodoodog -

Figure 158. Receiver RF Routing and Matching Network

Figure 159 depicts the path from device to external connector that routes Tx1 on the customer evaluation board. Matching components
locations are highlighted to illustrated proper component placement. All the RF signals must have a solid ground reference under each path to
maintain the desired impedance. Ensure that none of the critical traces run over a discontinuity in the ground reference.

analog.com Rev. B | 196 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

DIFFERENTIAL
Pl

iz
. F ==
1.8V FEED
DIFFERENTIAL

Figure 159. Transmitter RF Routing and Matching Network

Transmitter Bias Supply Guidelines

Each transmitter requires approximately 125 mA supplied through an external connection. Bias voltages are supplied at the dc feed of a center
tapped balun in the RF signal path on the ADRV903X customer evaluation board as shown in Figure 160.

DC FEED
DECOUPLING (a

Figure 160. 1.8 V Transmitter Bias Routing at Balun

To reduce switching transients caused by attenuation setting changes, power the balun dc feed directly from the 1.8 V supply plane. Design
the geometry of the plane to isolate each transmitter from the others. It is strongly recommended that each transmitter have a power finger
that connects to the main 1.8 V supply but isolates this supply from the other transmitters. The finger width is designed to minimize impedance
keeping voltage drop due to transmitter current at @ minimum.

analog.com Rev. B | 197 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

The ADRV903x evaluation board couples the 1.8 V supply into each transmitter via a center tapped balun, but the board is also provisioned for
an external choke feed inductor dc supply option. When a balun is selected that does not have a dc feed input, RF choke inductors must be
used to supply current to the transmitters. Chokes are connected from the 1.8 V supply to each transmitter output. Note that in this scenario,
the transmitter balun must be ac-coupled. The RF chokes must also be decoupled by capacitors from the power feed to ground. Place the
ground connections to these capacitors as close as possible to the transmitter output pins. To avoid peaking due to current transients, match
both chokes and their layout carefully. Figure 161 shows an example of this arrangement.

SUPPLY,

1@z

RF CHOKE
INDUCTORS

1.8V
SUPPLY

Figure 161. Transmitter Balun RF Choke DC Supply Connection

JESD204B/JESD204C Routing Recommendations

The ADRV903X uses a JESD204B/JESD204C serializer-deserializer (SERDES) high speed serial interface. Keep the differential traces for the
SERDES lanes very short by placing the device as close as possible to the baseband processor and routing the traces as directly as possible
between the devices. Using a PCB material with a low dielectric constant and loss tangent is also strongly recommended. For a specific
application, loss must be modeled to ensure adequate drive strength is available in both the ADRV903x and the baseband processor.

Route the differential pairs on a single plane if possible using a solid ground plane as a reference on the layers directly above and/or below
the signal layer. Reference planes for the impedance controlled traces must not be segmented or broken along the entire length of a trace. If
routing on a single plane is not possible, try to minimize the number of vias needed and their length to make the connection inductance as low
as possible.

All SERDES lane traces must be impedance controlled, targeting 100 Q differential. Ensure that the pair is loosely coplanar, edge coupled. The
ADRV903x customer evaluation board uses 4-mil wide traces and a separation of approximately 10 mil. This sizing varies depending on the
stack up and selected dielectric material. Minimize the pad area for all the connector and passive components to reduce parasitic capacitance
effects on the transmission lines, which can negatively impact signal integrity. Vias used to route these signals must be minimized as much

as possible. Use blind vias wherever possible to eliminate via stub effects and use micro vias to minimize inductance. If using standard vias,
use maximum length vias to minimize the stub size. For example, on an 8-layer board, use layer 7 for the stripline pair, thus reducing the stub
length of the via to that of the height of a single layer. For each via pair, a pair of ground vias must be placed nearby to minimize the impedance
discontinuity.

For SERDES signal traces, the recommendation is to route them on the top side of the board as a 100 Q differential pair (coplanar edge
coupled waveguide). In the case of the ADRV903x customer evaluation board, the SERDES signals are routed on inner layers 2, 4, 15, and 17.
Capacitors (100 nF) are places in series near the FMC connector away from the chip to provide ac coupling.

analog.com Rev. B | 198 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Figure 162 and Figure 163 show the transition between ball and launch. Surrounding ground references, above and below the signal layer, are
designed to tune the modal impedances ideal for the high speed signaling and according to the JESD204B/JESD204C standards.

Figure 162. SERDES Signal Launch on Layer 2

Figure 163. SERDES Signal Launch on Layer 4

ISOLATION TECHNIQUES

Given the density of sensitive and critical signals, significant isolation challenges are faced when designing a PCB for the ADRV903x device.
Analytically determining aggressor-to-victim isolation in a system is very complex and involves considering vector combinations of aggressor
signals and coupling mechanisms.

Isolation Between RF 1/O Ports
The primary coupling mechanisms between RF I/O paths on the evaluation board are:

analog.com Rev. B | 199 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

» Magnetic field coupling
» Surface propagation
» Cross domain coupling via ground

To reduce the impact of these coupling mechanisms on the ADRV903x customer evaluation board, several strategies were used, including
evenly spaced ground vias, ground cutouts, and specialized routing techniques. A careful designer may notice various bends in the routing
of differential paths. These routes were developed and tuned through iterative electromagnetic simulation to minimize magnetic field coupling
between differential paths.

Additional shielding is provided by using connecting VSSA balls under the device to form a shield around RF I/O ball pairs. This ground
provides a termination for stray electric fields. Ground vias are used along single-ended RF /O traces. Optimal via spacing is 1/10 of a
wavelength for the highest signal frequency, but that spacing can vary somewhat due to practical layout considerations.

300

W avelength (m)= W (28)

These techniques are illustrated in Figure 164.

SPECIAL
DIFFERENTIAL
TRAEES

EVENLY SPACED
GROUND VIAS

Figure 164. RF I/0 Isolation Structures

RF 1/0 baluns are spaced and aligned to reduce magnetic coupling from the structures in the balun package. Care must also be taken to
reduce crosstalk over shared grounds between baluns.

Isolation Between SERDES Lines

The JESD204B/JESD204C interface uses 16 lane pairs that can operate at rates up to 32.44 Gbps. During PCB layout, ensure those lines
are routed following the rules described in the JESD204B/JESD204C Routing Recommendations section. To operate at such high data rates,
additional routing techniques are needed to minimize crosstalk between lanes. S-shaped routing is used on several long differential pair
routes on the ADRV903x evaluation board based on electro-magnetic simulation results that show this to be the best technique for minimizing
crosstalk.

analog.com Rev. B | 200 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

Figure 165 illustrates these isolation techniques. Ground vias are placed between each pair of traces to provide isolation and decrease
crosstalk. Spacing between vias follows the rule provided in the wavelength calculation equation. Ground cutouts are also used to aid in lane
isolation. For most accurate spacing of fencing vias, use electro-magnetic simulation software.

S-SHAPED SIGNAL
PAIRS

. GROUND VIA WALLS .

* GROUND!CUTOUTS -

Figure 165. SERDES Lane Routing and Isolation

POWER MANAGEMENT LAYOUT DESIGN

Due to the complexity and high level of integration in the ADRV903x, power supply routing is critical to achieve optimum RF performance.

The device is designed with 41 separate power supply input pins that are tied to four power supply rails: 1.8 V (analog, 1.0 V (analog), 0.8 V
(digital), and VIF_1P8 (interface supply). The analog supplies are further divided into two supply rails: one that supplies low noise, constant-on
functions such as those related to synthesizer and clock generation functions (called static), and one that supplies other functions that are gated
by the transmitter or receiver enables during TDD operation (called dynamic). As described in the Power Management Considerations section,
the device has four internal regulators that are used to buffer and regulate the supplies for the internal VCOs. All other supply voltages feed
directly into the internal circuits from the PCB. This section describes the techniques used on the ADRV903x customer evaluation board to
provide isolation between power domains and minimize | x R drops when current loading is highest.

Analog Power Ring Approach

The RF section is designed as two hemispheres with four transmitters, four receivers, and an observation receiver on each side. To reduce
coupling between channels and keep each power supply input isolated from the others, a star connection approach is used. This approach
involves connecting each power supply input to a common power supply bus, using an isolated trace designed specifically for the current
requirements of the particular input. The ADRV903x evaluation board uses a power ring approach to provide the power supply bus for the 1.8
V and 1.0 V analog supplies. Figure 166 through Figure 168 illustrate the 1.0 V power supply rail routing. Note that the 1.0 V static and 1.0 V
dynamic supplies are routed on multiple layers. This technique is used to reduce the amount of trace impedance inserted between the supplies
and the loads. It also helps to control the directivity of the current so that it is routed outside the area that is RF signal areas, which also assists
in maintaining supply isolation. Figure 169 illustrates similar supply trace routing for the 1.8 V static and dynamic supplies. Note that the 1.8 V
supply currents are not as large as the 1.0 V currents, so only one layer is used for these supplies.

analog.com Rev. B | 201 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

1.0V STATIC °
o

5'/- -

<

1
1
-
3

¥ 7 B A

3 arsarinn ni

Figure 166. 1.0 V Analog Power Ring Layout Approach - Layer 3

;‘,':1?4 /_/f

i {1 0 ARG B

o

S T N

Figure 167. 1.0 V Analog Power Ring Layout Approach - Layer 4

s 8

r
3
7
L:
=
2

2K

Figure 168. 1.0 V Analog Power Ring Layout Approach - Layer 5

analog.com Rev. B | 202 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

1.8 V DYNAMIC

Figure 169. 1.8 V Analog Power Ring Layout Approach - Layer 10

Analog Power Star Connections

The analog power ring approach provides ample locations for creating the individual star connections. This approach enables the designer to
control the current paths for each supply, as well as design individual traces that better control the effect of voltage drops on other circuits when
large load current changes occur. Each individual power supply input is evaluated for its maximum current consumption value, and the star
connection trace is then designed to minimize the voltage drop for that particular supply input while still providing isolation from the other inputs.
Figure 170 illustrates how these star connections are made to the individual supply balls of the device. This figure shows two of the highest
current-load supply inputs on the 1.0 V static rail. The thickness of the traces are determined based on the current load for each star connection
and the metal thickness of the layer. Note that the traces are routed below the RF connectors to minimize interference with the RF signals.

Figure 170. 1.8 V Supply Routing Using Star Connections

For the sensitive supplies connected to the static supply rails, all these input balls are on the top row of the ball grid. It is recommended that

the supply star connections for these inputs be routed on the same layer as the ADRV903x to avoid the inductance of via connections and to
isolate these noise sensitive supply inputs for other signals. For these supply inputs, the 0.1 uF bypass capacitors can be placed as close to the
ADRV903x as possible.

Digital Power Routing (VDIG_0P8)

The digital 0.8 V supply is the noisiest supply in the system, so it is important to keep this supply shielded from the other supplies. It is also
the highest current supply, so the thickness of the traces needs to be adequate to carry the load current to the device without experiencing
significant voltage drops. There are six digital power input pins to the device to help distribute the current and minimize losses due to the ball

analog.com Rev. B | 203 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

impedance. Figure 171 illustrates the approach used on the customer evaluation board to supply this current. A digital power channel is routed
from the power supply to the device and the entire area is flooded with copper to provide a low resistance supply trace. This channel is shielded
on all sides including several ground layers above and below the flooded area so that it is isolated from other signals.

Figure 171. Digital Supply Routing

Figure 172 shows a zoomed-in view of the connection to the device. Note that all six of the input balls are connected directly to the flooded area
to reduce the trace resistance. A cutout area is included around the device clock input pin vias to provide additional isolation between the digital
supply and the reference clock input. Note that the digital supply is bounded on both sides by rows 8 and 15 of the ball grid array. These are the
analog boundaries that separate the digital block of the device from the RF channels. It is important to maintain these boundaries when routing

signals to avoid coupling digital noise into the radio channels.

analog.com Rev. B | 204 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

e e e 8 e e e e

L T T e e e T Ny
(o) 00 (o) (=) (=) Ot
p p p AL \

o
) &

Figure 172. Digital Supply Connection to SIX VDIG_0P8V Input Pins

Interface Supply Input (VIF_1P8)

The interface supply (VIF_1P8) is a low current input that provides the supply reference for the SPI serial interface. This supply input can be
routed as a signal trace with adequate thickness to minimize voltage drop when the device is active. Route this trace in the digital area (bottom
rows of the device) and keep it isolated from other signals to ensure it is not corrupted by other active digital signals or by the JESD interface
lanes.

Ground Returns

Another critical routing consideration is how to control the mixing of ground currents to avoid noise coupling between different power domains.
One way to keep domains separated is to provide different ground return planes for each supply domain. This approach can complicate a
dense PCB layout like that required for the ADRV903x. Another option is to connect all ground to the same plane system and use cutouts

and channeling like those used in the RF sections to provide better channel to channel isolation. Creating such ground channels can provide
the benefit of steering ground currents in a desired path without the complexity of trying to keep ground planes isolated from each other. The
specifics of such designs are dependent on the PCB layout and the level of isolation desired.

Input Bypass Component Placement

There are subtle component placement techniques for placing power supply bypass components that can have a substantial impact on radio
performance. Follow these guidelines when placing components on power supply inputs:

» Each power supply pin requires, at a minimum, a 0.1 yF bypass capacitor near the pin. For inputs that require a large current step, a 10 uF
capacitor in parallel is recommended. Place the ground side of the bypass capacitor(s) so that ground currents flow away from other power
pins and their bypass capacitors.

» Route power supply input traces to the bypass capacitor and connect the capacitor(s) as close to the supply pin as possible through a via to
the component side of the PCB. It is recommended that the via be located inside the power supply pin pad to minimize trace inductance.

» Some power supplies require a ferrite bead in series with the supply line to prevent RF noise from coupling between different inputs,
whereas others can do without the extra protection. It is recommended that each line be connected with a series component, either a ferrite
bead or a 0 Q place holder. Ensure that the device is sized properly to handle the current load for the particular power supply input of
concern.

analog.com Rev. B | 205 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

» Figure 173 illustrates how the 0.1 UF bypass capacitors should be connected to the device. This image shows each supply pin connected
to the bottom of the PCB using an in-pad via. One of the supplies uses two input pins (in this case, VSCLK0_1P0). For input using two
input pins, it is acceptable to connect them together and to a single bypass capacitor. The capacitors are 0201-size devices that fit directly
between the via to the supply ball and the via to an adjacent ground return ball. It is important to follow this procedure to minimize noise
coupling between supplies, especially for the supplies that are tied to the observation receivers (VORX0_1P0, VORX1_1P0, VSCLKO_1PO0,
and VSCLK1_1P0).

» If larger capacitors are used to provide low frequency decoupling and a larger startup current capability, they can be placed further away
from the input pins without affecting overall performance.

Figure 173. Power Supply Decoupling Capacitor Example

DIGITAL SIGNAL ROUTING CONSIDERATIONS

The digital signal routing (for example, SPI bus, enable controls, and GPIO) is the least sensitive area relative to routing for signal integrity. It is
very important to isolate these signals from analog and power supply signals to avoid digital noise coupling into other circuits. On the evaluation
board, these signals are routed from the bottom of the board up through the area where the SERDES signals are routed on layers 11, layer 12,
and layer 13. Digital I/O signals use VIF_1P8 as their reference supply, so this technique keeps the ground return common with the reference
supply. Most of these signals are static or infrequently change state, so once signals are routed out of the device, they can be fanned out to
other areas of the PCB without concern of interfering with radio functions.

ANALOG GPIO SIGNAL ROUTING CONSIDERATIONS

The analog GPIO signals are available for providing control or monitoring or other analog ICs used in the same design as the ADRV903x.
These signals use the 1.8 V analog supply as their reference, making them better suited for connecting to other devices such as power
amplifiers that require coordinated control. These signals are typically static or infrequently change state, so routing for isolation is not as critical
as for other analog signals. Care should be taken, however, to keep these traces away from digital signal routing to avoid coupling digital noise
into the 1.8 V analog power supply inputs.

RBIAS ROUTING CONSIDERATIONS

There are two RBIAS current setting inputs on this device — one for each hemisphere of the device. Each ball must have a 4.99 kQ, 0.1%
resistor connected between it and ground. It is recommended that these components be placed on the same layer as the ADRV903x device

analog.com Rev. B | 206 of 207

https://www.analog.com/adrv9032r
http://www.analog.com/en/index.html

ADRV903x

PCB LAYOUT CONSIDERATIONS

and the traces be routed as short as possible on either the same PCB layer or a nearby layer with proper shielding around them to avoid any
noise coupling into the bias network.

UNUSED PIN INSTRUCTIONS

In some applications, the user may decide not to use all available inputs or outputs. In these cases, take care to follow the recommendations
listed in Table 104 for unused pins.

Table 104. Recommendations for Unused Pins

Pin No. Type Mnemonic When pins are not used:
B1, C1,B22, C22, F1, G1, F22, G22,P1, | O TXON, TXOP, , TX4P, TX4N, TX1N, TX1P, TX5P, TX5N, Do not connect.
R1, P22, R22, V1, W1, V22, W22 TX2N, TX2P, TX6P, TX6N, TX3N, TX3P, TX7P, TX7N
C4, D4, C19, D19, G4, H4, G19, H19, | RXO0P, RXON, RX4N, RX4P, RX1P, RX1N, RX5N, RX5P, Do not connect.
M4, N4, M19, N19, T4, U4, T19, U19 RX2P, RX2N, RX6N, RX6P, RX3P, RX3N, RX7N, RX7P
K1, L1, K22, L22 | ORXON, ORXO0P, ORX1P, ORX1N Do not connect.
D6, D7, D8, D15, D16, D17, E6, E7, E16, | I/O GPIO_ANA 1, GPIO_ANA 0, GPIO_ANA 2, Connect to VSSA with a 10 kQ resistor or configure as
E17, F6, F7, F8, F15, F16, F17 GPIO_ANA 10, GPIO_ANA 8, GPIO_ANA 9, outputs, drive low, and leave disconnected.
GPIO_ANA 6, GPIO_ANA 4, GPIO_ANA 12,
GPIO_ANA 14, GPIO_ANA 5, GPIO_ANA 3,
GPIO_ANA 7, GPIO_ANA 15, GPIO_ANA 11,
GPIO_ANA 3
HO, H14, J9, J14, L9, L14, M9, M14, K9, || TRXA_CTRL, TRXE_CTRL, TRXB_CTRL, TRXF_CTRL, Connect to VSSA.
K14 TRXC_CTRL, TRXG_CTRL, TRXD_CTRL, TRXH_CTRL,
ORXA_CTRL, ORXB_CTRL
F7,F11,L7, L1 | ORX_CTRL_C, ORX_CTRL_B, ORX_CTRL_D, Connect to VSSA directly or with a 10 kQ pull-down
ORX_CTRL_A resistor.
C9, C10,C13,C14 | EXT_LOON, EXT_LOOP, EXT_LO1N, EXT_LO1P Do not connect.
H10, H11, H12, H13, J10, J11, J12, J13, |10 GPIO_0 to GPIO_23 Connect to VSSA with a 10 kQ resistor or configure as
K10, K13, L10, L13, M10, M13, N9, N10, outputs, drive low, and leave disconnected.
N13, N14, P9, P10, P13, P14, R10, R13
T9,T14 0 GPINTO, GPINT1 Do not connect.
T12 0 SPI_DO Do not connect.
R14 | TEST_EN Connect to VSSA.
U13, U14, U15, T15, V10, V13 | SYNCINON, ,SYNCINOP, SYNCIN1N, ,SYNCIN1P, Connect to VSSA.
SYNCIN2N, ,SYNCIN2P
T8, U8, U9, U10 0 SYNCOUT1P, SYNCOUT1N, SYNCOUTOP, SYNCOUTON | Do not connect.
Y5,Y6, Y9, Y10, AA3, AA4, AA7,AA8, |O SERDOUT1P, SERDOUT1N, SERDOUT4P, SERDOUT4N, | Do not connect.
ABS, AB6, AB9, AB10, AC3, AC4, AC7, SERDOUTOP, SERDOUTON, SERDOUT5P, SERDOUTSN,
AC8 SERDOUT3P, SERDOUT3N, SERDOUT6P, SERDOUTEN,
SERDOUT2P, SERDOUT2N, SERDOUT7P, SERDOUT7N
Y13, Y14, Y17, Y18, AA15, AA16, AA19, | | SERDINSN, SERDIN5SP, SERDIN1P, SERDIN1N, Do not connect.
AA20, AB13, AB14, AB17, AB18, AC15, SERDIN4N, SERDIN4P, SERDINOP, SERDINON,
AC16, AC19, AC20 SERDINGN, SERDIN6P, SERDIN3P, SERDIN3N,
SERDIN7N, SERDIN7P, SERDIN2P, SERDIN2N
‘ ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary

Arad

functionality.

protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of

Legal Terms and Conditions

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are
the property of their respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be disassembled,
decompiled or reverse engineered. All Analog Devices products contained herein are subject to release and availability. Analog Devices’ standard terms and conditions for products purchased from
Analog Devices can be found at: http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html

ANALOG
DEVICES

©2025 Analog Devices, Inc. All rights reserved. Trademarks and

Rev. B | 207 of 207

registered trademarks are the property of their respective owners.

One Analog Way, Wilmington, MA 01887-2356, U.S.A.

https://www.analog.com/adrv9032r
http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html
http://www.analog.com/en/index.html

	Introduction
	System Overview
	Software Integration
	Software Deliverables
	Software Integration Process Overview
	Software Architecture
	ADI Evaluation System Software Architecture

	Resource Files
	Firmware Binaries
	Stream Binary
	Profile Binary
	Transmitter Configuration for Profile Generation
	Receiver Configuration for Profile Generation
	Receiver Gain Table

	API Integration
	API Integration Checklist
	ADRV903x API Folder Structure
	Devices Directory − Adi.ADRV903x.CustomerPkg/public/api/src/c_src/devices
	Common Layer − Adi.ADRV903x.CustomerPkg/api/src/c_src/common
	Common Layer Logging Functions
	Error Handling
	Debug Support
	Error Handbook

	Debugging Commonly Occurring Recovery Actions
	API Recovery Action: ADI_COMMON_ACT_NO_ACTION
	API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE
	Platform Layer − Adi.Adrv903x.CustomerPkg/public/api/src/c_src/platforms

	Platform HAL Interface
	Configuring the Platform HAL
	Implementing the Platform HAL
	Multi-Threading
	Error Handling Memory

	Developing an Application
	Instantiating the Device Data Structure
	Programming the Device
	GP Interrupts Setup

	Compilation
	Makefiles
	Configuring the Makefiles

	Serial Peripheral Interface (SPI)
	SPI Bus Signals
	SPI_EN
	SPI_CLK
	SPI_DIO and SPI_DO

	SPI Data Transfer Protocol
	Phase 1 Instruction Format
	Single-Byte Data Transfer
	Multi-Byte Data Transfer (SPI Streaming)

	SPI API Functions
	Timing Diagram Examples

	Auxiliary SPI Overview
	Auxiliary SPI API Functions

	Serializer/Deserializer (SERDES) Interface
	JESD204 Standard
	Overview of the Differences Between JESD204B and JESD204C
	JESD204B/C Framers
	JESD204B/C Framers Parameters
	Sample Data Sources and Sample Crossbars
	ORx De-Interleaving
	Transport Layer
	SYSREF Signal
	Link Layer
	SYNCIN~ Signal
	Lane Crossbars
	OR Gates
	Test Data Generators
	Clocking
	IQ Sample Rate and Output Lane Data Rate Relationship Between Framers
	Link Sharing

	JESD204B/C Deframers
	JESD204B/C Deframers Parameters
	Lane Crossbars
	Link Layer
	SYNCOUT~ Signal
	Transport Layer
	SYSREF Signal
	Elastic FIFO, Phase Adjustment and Deterministic Latency
	Sample Crossbars
	OR Gates
	PRBS Receiver
	Clock Distribution

	JESD PHY Layer
	Serializer Physical (PHY) Layer
	Deserializer Physical (PHY) Layer
	Deserializer Lane Configuration

	Link Initialization and Debugging
	JESD204B
	JESD204C

	First Time System Bring Up—Checking Link Integrity
	Sample Iron Python Code for PRBS Testing
	PRBS Errors
	Selecting the Optimal LMFC/LEMC Offset for a Deframer
	Deterministic Latency in JESD 204B Mode
	Deterministic Latency in JESD204C Mode
	Programming the LMFC Offset for a Deframer
	Setting the LMFC/LEMC Offset in the Profile File
	Setting the LMFC/LEMC Offset in the Adi_ADRV903x_DeframerCfg_t Data Structure
	Setting the LMFC/LEMC Offset Through API
	Reading Back the Buffer Depths for Each Deframer

	Selecting the Optimal LMFC/LEMC Offset for a System

	JESD API Functions

	Stream Processor and System Control
	Slice and Core Stream Processors
	Stream Processor API Functions
	System Control
	Pin Control
	Configuring the TRX[A-H]_CTRL Pins for Tx and Rx Pin Control

	System Control API Functions
	Tx To ORx Mapping
	Tx to ORx Mapping: Pin Interface
	Pin Interface: 2-Pin Mode
	Pin Interface: 3-Pin Mode
	Pin Interface: 4-Pin Mode
	Pin Interface: 6-Pin Mode
	Pin Interface: 8-Pin Mode

	Tx to ORx Mapping API Functions

	Front End Analog Signal Path
	Transmit Path
	Tx Attenuation Control
	Tx Attenuation API Functions
	Receiver Path
	Rx Manual Gain API Functions
	Observation Path
	ORx Attenuation API Functions

	Synthesizer Configuration
	Overview
	DEVCLK
	External Reference Clock (DEVCLK) Requirements

	SYSREF
	SYSREF Setup and Hold Time Requirements

	Clock Synthesizer
	RF Synthesizer
	LO
	Configurable LO Options
	External LO
	External LO Setup

	LO Configuration Using API Functions
	Multichip Synchronization (MCS)
	RF PLL Phase Synchronization
	System Level Considerations

	ARM Processor and Device Calibrations
	Arm Processor
	Arm State Machine Overview
	System Initialization
	Pre-MCS Initialization
	MCS
	Post-MCS Initialization
	ARM Memory Dump

	ARM API Functions
	Device Calibrations
	Initial Calibrations
	Initialization Calibrations Durations

	Tracking Calibrations
	System Considerations for Calibrations
	Tx LO Leakage Calibration
	Tx LOL Initial Calibration
	Tx LOL Tracking Calibration
	Tx LOL Tracking Calibration
	External Path System Requirements for LOL Tracking

	Tx QEC Calibration
	Tx QEC Initial Calibration
	Tx QEC Tracking Calibration
	Tx QEC Tracking Calibration Frequency Planning

	Rx QEC Calibration
	QEC and LOL Calibration API Functions
	Tx Analog LPF Calibration
	Loopback Path Delay Initial Calibration
	RX DC Offset Calibration
	Overview
	Rx RFDC Offset Initialization Calibration
	Rx RFDC Offset Tracking Calibration
	Rx BBDC Tracking Calibration

	Rx DC Offset Configuration API Functions
	Antenna Calibration
	Configuring the TRX[A-H]_CTRL Pins for Tx and Rx Antenna Calibration
	Configuring the GPIO Pins for Tx and Rx Antenna Calibration
	Tx Antenna Calibration Mode
	Rx Antenna Calibration Mode
	Antenna Calibration Example

	Antenna Calibration API Functions
	Calibration Guidelines After RF LO Frequency Changes

	PA Protection
	PA Protection – Peak Power
	PA Protection – Average Power
	Slew Rate Detection and Limiting
	PA Protection API Functions

	Rx Gain Control and Gain Compensation
	Glossary of Important Terms
	Receiver Datapath
	Variable Gain Elements
	Gain Table Format
	Peak Detectors and Power Measurement Detectors

	ORx Gain Control
	Gain Control Modes
	Manual Gain Control (MGC)
	Automatic Gain Control (AGC)
	Peak Detect Mode
	Priorities and Overall Operation
	Power Detect Mode

	AGC Clock and Gain Block Timing
	Peak and Power Detectors
	ADC Overload Detector
	Half-Band 2 Peak Detector
	Power Detector

	AGC API Functions
	Rx and ORx Power Measurement API Functions
	AGC Sample Script
	Gain Compensation, Floating Point Formatter and Slicer
	Mode 1: No Digital Gain Compensation (Default)
	Mode 2: Digital Gain Compensation With Slicer GPIO Outputs
	Mode 3: Digital Gain Compensation With Embedded Slicer Position
	Mode 4: Digital Gain Compensation and Floating-Point Formatting
	Rx Data Format Data Structure

	Rx Data Formatter API Functions

	Digital Filter Configuration
	Overview
	Receiver Signal Path
	Decimation Stages
	DEC3
	Finite Impulse Response 2 (FIR2)
	Finite Impulse Response 1 (FIR1)
	Receive Half Band 2 (HB2)
	Rx Programmable Finite Impulse Response (PFIR)
	DDC NCO
	Digital Down-Conversion Half Band 3 (DDC HB3)
	Digital Down-Conversion Half Band 2 (DDC HB2)
	Digital Down-Conversion Half Band 1 (DDC HB1)
	Resampling Finite Impulse Response (Resamp FIR)

	Rx Datapath API Functions
	Transmitter Signal Path
	Interpolation By 3 High Bandwidth Filter (INT3 High BW)
	Interpolation By 3 Low Bandwidth Filter (INT3 Low BW)
	Finite Input Response 3 (FIR3)
	Finite Input Response 2 (FIR2)
	Finite Input Response 1 (FIR1)
	Tx Programmable Finite Impulse Response (PFIR)
	Sigma Delta Modulator (SDM)
	PN Generator (PN GEN)
	Test NCO (NCO1 Test and NCO2 Test)
	Digital Up-Conversion Half Band 1 (DUC HB1)
	Digital Up-Conversion Half Band 2 (DUC HB2)
	Digital Up-Conversion Half Band 3 (DUC HB3)
	DUC NCO1
	Loopback Half-Band 1 Filter (LPBK HB1)
	Coarse NCO

	Tx Datapath API Functions
	Observation Receivers Signal Path
	Decimation Stages
	Fine NCO
	DEC3
	Finite Impulse Response 2 (FIR2)
	Finite Impulse Response 1 (FIR1)
	Observation Receive Half Band 2 (HB2)
	Observation Receive Half Band 1 (HB1)
	TxLOL NCO
	NCO

	ORx Datapath API Functions
	NCO Frequency Change Procedure
	Tx DUC NCO
	RX DDC NCO
	ORx NCO

	General Purpose Input/Output Configuration
	Digital GPIO Operation
	Digital GPIO Input Modes
	Digital GPIO Output Modes

	Digital GPIO API Functions
	Analog GPIO Operation
	Gain Table External Control Word

	Analog GPIO API Functions
	General Purpose Interrupt
	GP Interrupt API Functions
	How to Use GP_INT

	JTAG Boundary Scan
	Thermal Considerations
	DELPHI Compact Model
	Maximum Junction Temperature
	Thermal API Functions

	Power Management Considerations
	Power Supply Domain Connections
	Power Supply Sequence
	Power Supply Architecture
	RBIAS Setup
	Power Saving Modes
	DTx Mode
	Channel Standby Mode
	Chip Standby Mode
	Chip Power Down Using RESETB

	Power Saving Modes API Functions

	RF Port Impedance Matching
	RF Port Impedance Data
	ADS Setup Using Data Access Component and SEDZ File
	Transmitter Bias and Port Interface
	General Receiver Path Interface

	PCB Layout Considerations
	PCB Layout Overview
	PCB Material and Stack Up Selection
	Fanout and Trace Spacing Guidelines
	Component Placement and Routing Guidelines
	Signals With Highest Routing Priority
	Signals With Second Routing Priority
	Signals With Lowest Routing Priority

	RF and JESD Transmission Line Layout
	RF Routing Guidelines
	Transmitter Bias Supply Guidelines
	JESD204B/JESD204C Routing Recommendations

	Isolation Techniques
	Isolation Between RF I/O Ports
	Isolation Between SERDES Lines

	Power Management Layout Design
	Analog Power Ring Approach
	Analog Power Star Connections
	Digital Power Routing (VDIG_0P8)
	Interface Supply Input (VIF_1P8)
	Ground Returns
	Input Bypass Component Placement

	Digital Signal Routing Considerations
	Analog GPIO Signal Routing Considerations
	RBIAS Routing Considerations
	Unused Pin Instructions

