Evaluating the AD1955 High Performance, Multibit Sigma-Delta DAC with SACD Playback

EVAL-AD1955EBZ PACKAGE CONTENTS
AD1955 evaluation board
USBi control interface board
USB cable

OTHER SUPPORTING DOCUMENTATION
AD1955 data sheet

EVALUATION BOARD OVERVIEW
This document explains the design and setup of the evaluation board for the AD1955. The evaluation board must be connected to an external ±12 V dc power supply and ground. On-board regulators derive 5 V and 3.3 V supplies for the AD1955 and peripherals. The AD1955 is controlled through an SPI interface. A small external interface board, EVAL-ADUSB2EBZ (also called USBi), connects to a PC USB port and provides SPI access to the evaluation board through a ribbon cable. A graphical user interface (GUI) program is provided for easy programming of the chip in a Microsoft® Windows® PC environment. The evaluation board allows demonstration and performance testing of most AD1955 features, including high performance stereo DAC operation.

Additional analog circuitry (DAC I/V converter/filter/buffer) and digital interfaces such as S/PDIF are provided to ease product evaluation.

The board has an S/PDIF receiver with XLR, RCA, and optical connectors, as well as a discrete serial audio interface. Analog interfaces are accessible with XLR or RCA connectors.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
TABLE OF CONTENTS
EVAL-AD1955EBZ Package Contents 1
Other Supporting Documentation 1
Evaluation Board Overview .. 1
Functional Block Diagram ... 1
Revision History .. 2
Setting Up the Evaluation Board 3
 Standalone Mode .. 3
 SPI control ... 3
 Automated Register Window Builder Software Installation ... 3
 Hardware Setup—USBi ... 3
 Powering the Board ... 3
 Reset and Mute for the Evaluation Board 4
 Setting Up the Master Clock (MCLK) 4
 Digital Audio Connections and Routing 4
 VREF Jumper ... 5
 Connecting Analog Audio Cables 5
 Configuring Mono Mode ... 6
 Schematics and Artwork .. 7
 CPLD Code .. 20
 Ordering Information ... 25
 Bill of Materials ... 25

REVISION HISTORY
2/10—Revision 0: Initial Version
SETTING UP THE EVALUATION BOARD

STANDALONE MODE

By default, with no control interface connected, the evaluation board and AD1955 DAC run in standalone mode, which fixes the functionality of the AD1955 into I2S data format, running at 256 × fS (default register condition). The default configuration of the evaluation board routes clock and audio data from the selected S/PDIF input through the CPLD and to the AD1955 DAC. Other serial audio routing configurations are described in the Digital Audio Connections and Routing section.

SPI CONTROL

The evaluation board can be configured for live control over the registers in the AD1955. When the Automated Register Window Builder software is installed and the USBi control interface is plugged into the board, the software controls the AD1955. The Automated Register Window Builder is available for download at http://www.analog.com/AD1955.

AUTOMATED REGISTER WINDOW BUILDER SOFTWARE INSTALLATION

The Automated Register Window Builder is a program that launches a graphical user interface for direct, live control of the AD1955 registers. The GUI content for the part is defined in a part-specific .xml file; this file is included in the software installation. To install the Automated Register Window Builder software, follow these steps:

1. At www.analog.com/AD1955, find the Resources & Tools list.
2. In the list, find Evaluation Boards & Development Kits and click Evaluation Boards/Tools to open the provided ARWBvXX.zip file.
3. Double-click the provided .msi file to extract the files to an empty folder on your PC.
4. Then double-click setup.exe and follow the prompts to install the Automated Register Window Builder. A computer restart is not required.
5. Copy the .xml file for the AD1955 from the extraction folder into the C:\Program Files\Analog Devices Inc\AutomatedRegWin folder, if it does not appear in the folder after installation.

HARDWARE SETUP—USBi

To set up the USBi hardware, follow these steps:

1. Plug the USBi ribbon cable into the J26 control interface header.
2. Connect the USB cable to your computer and to the USBi.
3. When prompted for drivers, follow these steps:
 a. Choose Install from a list or a specific location.
 b. Choose Search for the best driver in these locations.
 c. Check the box for Include this location in the search.
 d. Find the USBi driver, C:\Program Files\Analog Devices Inc\AutomatedRegWin\USB drivers.
 e. Click Next.

 If prompted to choose a driver, select CyUSB.sys.
 g. If the PC is running Windows XP and a message appears saying that the software has not passed Windows logo testing, click Continue Anyway.

You can now open the Automated Register Window Builder application and load the .xml file for the part on your evaluation board.

POWERING THE BOARD

The AD1955 evaluation board requires a power supply input of ±12 V dc and ground to the three binding posts; +12 V draws ~250 mA and −12 V draws ~100 mA. The on-board regulators provide two 3.3 V and two 5.0 V rails. The 3.3 V rails supply AVDD and DVDD for the active peripheral components on the board. The 5.0 V rails provide voltage to both the peripherals and the AD1955. D5V0 (see Figure 3) provides power for the CPLD routing IC, as well as power for DVDD of the AD1955. A5V0 (see Figure 4) provides power only for AVDD of the AD1955.

Links are provided along the power rails to give access for current measurement. These links also allow the user to supply voltage from an outside source. All of these links are hardwired by a trace on the backside of the PCB.

The 3.3 V rails, A3V3 and D3V3, each have a link, LK2 and LK3, that can isolate the S/PDIF receiver. The links are shown in Figure 2.

![Figure 2. A3V3 and D3V3 Rail Links](image2)

The D5V0 supply has two links; J4 is before the on-board regulator and LK1 is after. LK1 provides power for the AD1955, as well as the other 5V0 peripherals. These links are shown in Figure 3.

![Figure 3. D5V0 Rail Links](image3)

The A5V0 link, J5, is before the regulator shown in Figure 4.
Additionally, the AD1955 has local power links for both AVDD and DVDD, as shown in Figure 5. The only components on the load side of these links are the ferrite bead, the decoupling capacitor, and the AD1955 power pin. These are appropriate places to measure the current drawn by the AD1955.

The board has a socket for an active oscillator, U3. Its use is described in the Setting Up the Master Clock (MCLK) section. A jumper is provided to select between 5V0 and 3V3 power, as shown in Figure 6.

RESET AND MUTE FOR THE EVALUATION BOARD

The SW2 reset switch on the evaluation board resets three devices: the S/PDIF receiver, the CPLD, and the AD1955. The reset line is held high by a pull-up resistor until the reset switch pulls the line to ground, as shown in Figure 22.

The SW6 mute switch is tied directly to the mute port (Pin 22) of the AD1955.

SETTING UP THE MASTER CLOCK (MCLK)

The MCLK routing on the evaluation board is normally controlled by the CPLD. The various MCLK sources on the board do not pass through the CPLD; instead, they pass through a series of three-state buffers that are controlled by the CPLD. MCLK can be sourced from the S/PDIF receiver or either of the serial audio headers. The SW3 rotary octal switch, shown in Figure 7, selects the MCLK source, as well as other routing and control options.

There are two features of the board that are not implemented in the CPLD code: the U3 EXT oscillator and the J11 MCLK select jumper block. The EXT oscillator output, shown in Figure 6, drives the OMCK input of the S/PDIF receiver, as well as an unused port on the CPLD. The feed of a clock to the OMCK input of the S/PDIF receiver has the effect of maintaining clock stability and silence from the receiver if the S/PDIF cable is unplugged. The feed to the unused port of the CPLD allows the EXT oscillator to provide MCLK for the entire board.

The J11 MCLK select jumper block allows for hardwiring of the three MCLK sources, providing a direct connection without a buffer in the path. Both of these features can be implemented or modified by changing the CPLD code, which is presented in the CPLD Code section.

DIGITAL AUDIO CONNECTIONS AND ROUTING

The AD1955 evaluation board has three separate inputs for digital audio signals: S/PDIF (labeled DIR on the board), PCM/I2S (labeled EXT), and DSD.

The S/PDIF receiver can handle any of three options: AES/EBU uses the XLR-F jack, J14; S/PDIF uses the RCA jack, J24; and optical uses the Toslink jack, J15. The input is selected using SW1, as shown in Figure 9. Note that the S/PDIF receiver cannot handle a digital waveform at its input of greater than 1 V p-p. Higher amplitude signals cause an apparent decrease in SNR of the AD1955. This issue can be avoided by lowering the amplitude below 1 V p-p; testing has shown that an amplitude of 500 mV p-p works very well. This adjustment is usually available for either the XLR or RCA input in the signal generator.
SW5 to the desired f_s rate, the board must be reset using SW2. Next, the AD1955 sample rate register must be set using the Automated Register Window Builder. DAC Control Register 0 [9:8] must be set to 10.

The PCM/I2S and DSD headers shown in Figure 10 offer ways of feeding serial digital audio into the AD1955. The serial audio connectors use 1 × 2 100 mil spaced headers, signal, and ground. The odd numbered pins are the ground connections.

Routing of the BCLK, LRCLK, and SDATA signals is handled by the CPLD, controlled by the SW3 rotary mode select switch shown in Figure 7. Table 1 details the available selections.

<table>
<thead>
<tr>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S/PDIF input, IrS format, 48 kHz – 96 kHz f_s</td>
</tr>
<tr>
<td>1</td>
<td>S/PDIF input, left justified, 48 kHz – 96 kHz f_s</td>
</tr>
<tr>
<td>2</td>
<td>S/PDIF input, DSP format, 48 kHz – 96 kHz f_s</td>
</tr>
<tr>
<td>3</td>
<td>S/PDIF input, 24-bit right justified, 48 kHz – 96 kHz f_s</td>
</tr>
<tr>
<td>4</td>
<td>S/PDIF input, 16-bit right justified, 48 kHz – 96 kHz f_s</td>
</tr>
<tr>
<td>5</td>
<td>PCM/IrS input (J8)</td>
</tr>
<tr>
<td>6</td>
<td>DSD input (J9)</td>
</tr>
<tr>
<td>7</td>
<td>S/PDIF input, IrS format, 192 kHz f_s</td>
</tr>
</tbody>
</table>

VREF JUMPER

The current-to-voltage (I-to-V) converters are biased on the non-inverting inputs of the summing amps. A jumper is provided to select between two settings. The 2v80 reference is derived from a filtered voltage divider; this selection provides the best performance from the circuit (see Figure 11).

Alternatively, there is an option to use the FILTR reference of the AD1955 as the VREF for the I-to-V converter. This selection offers better stability over a wide temperature range at the cost of slightly reduced performance (see Figure 12).

It is also possible to supply an external VREF by connecting the voltage source directly to the center pin of J16.

CONNECTING ANALOG AUDIO CABLES

There are two forms of the analog outputs of the AD1955 evaluation board: differential and single ended. The differential outputs use XLR-M jacks, following the standard Pin 2 hot, and have a maximum differential output level of 6 V rms when the DAC is fed with a 0 dBFS signal. The single-ended outputs use RCA jacks and have a maximum output level of 2 V rms.

The extra load of the difference amplifier on the I-to-V converter increases the THD + N that appears at the differential output. The evaluation board provides a series of jumpers that isolate this difference amplifier when it is not being used. To isolate the difference amp, set the jumpers as shown in Figure 13 and Figure 14.

To use the single-ended output, set the jumpers as shown in Figure 15 and Figure 16.
CONFIGURING MONO MODE

To improve the SNR by 3 dB, the AD1955 can be configured in mono mode, combining the outputs from the two current output channels. To set up mono mode, follow these steps:

1. Cut LK4 and LK5 on the bottom of the board to disconnect the IOUTL+ and IOUTL− from the left I-to-V converter (see Figure 17).
2. Short LK8 and LK9 to sum IOUTL−/IOUTR+ and IOUTL+/IOUTR− (see Figure 17).
3. Replace R80, R82, R95, and R97 with 1 kΩ, 0.1% resistors to adjust gain and bias (see Figure 18).
4. Set DAC Control Register 0, Bits[11:10] to 10 to select mono left input or to 11 to select mono right operation.
5. Mono audio appears at the right analog output of the evaluation board jacks.
Figure 19. Schematic, Page 1—S/PDIF Receiver
Figure 21. Schematic, Page 3—CPLD Routing Control
Figure 22. Schematic Page 4—AD1955 and MCLK Selector
Figure 23. Schematic, Page 5—I/V Converter, Left Channel
Figure 24. Schematic, Page 6—I/V Converter, Right Channel
Figure 25. Schematic Page 7—Power Supply Decoupling
Figure 26. Schematic, Page 8—Power Supply Regulation
Figure 27. Top Assembly
Figure 28. Top Layer Copper
Figure 30. L3 Power
CPLD CODE

MODULE IF_Logic
TITLE 'AD1955 Eval. Board Interface Logic'

//---
//
LIBRARY 'MACH';
 MACH_SLEW(Fast,1,MCLK);

DECLARATIONS

"INPUTS

SW2_1, SW2_2, SW2_4, SW2_8
 pin 31, 32, 33, 34; // signal routing
X8416_SDO, X8416_LRCLK, X8416_BCLK
 pin 6, 7, 8; // Data, clocks from 8416(1)
// X8416_SDO_AUX
 pin 10; // Data from 8416(2)
RDATA_INTF
 pin 96; // Data from Ext port
DSD_RDATA_INTF, DSD_LDATA_INTF
 pin 83, 84; // Data from DSD port
DSD_SCLK_INTF, DSD_PHASE_INTF
 pin 85, 86;
RESETB
 pin 81; // Reset (active low)
CCLK_INTF, CDATA_INTF, CLATCH_INTF
 pin 44, 45, 46; // Data from SPI
MCLK
 pin 68; // Master clock
// TDI, TMS, TCK
 pin 3, 27, 28; // JTAG input

"OUTPUTS

X8416_M0, X8416_M1, X8416_M2, X8416_M3
 pin 24, 23, 22, 21; // 8416(1) and 8416(2) Mode Select
4816(2) Mode Select
CCLK_DUT, CDATA_DUT, CLATCH_DUT
 pin 48, 49, 50; // SPI data out to DUT
DSD_PHASE_DUT, DSD_RDATA_DUT
 pin 57, 58; // DSD data to DUT
DSD_LDATA_DUT, DSD_SCLK_DUT
 pin 59, 60;
RDATA_DUT, SDATA_DUT, BCLK_DUT, LRCLK_DUT
to DUT
 pin 71, 72, 73, 74; // Main data out
// TDO

EXT_MCLK_EN
pin 78;
// JTAG output

DIR_MCLK_EN

MCLK_EXT_EN

DSD_MCLK_EN

"INPUT/OUTPUTS
SDATA_INTF, BCLK_INTF

LRCLK_INTF
// X8416_LRCLK_AUX, X8416_BCLK_AUX
// master or slave mode signals to 8416 aux

// unused pins

// PIN_4
pin 4;

// PIN_9
pin 9;

// PIN_13
pin 13;

// PIN_18, PIN_19, PIN_20
pin 18, 19, 20;

// PIN_25, 26
pin 25, 26;

// PIN_43
pin 43;

// PIN_47
pin 47;

// PIN_54, PIN_55, PIN_56
pin 54, 55, 56;

// PIN_61, PIN_62, PIN_63
pin 61, 62, 63;

// PIN_70
pin 70;

// PIN_75, PIN_76
pin 75, 76;

// PIN_82
pin 82;

// PIN_88
pin 88;

// PIN_93, PIN_94
pin 93, 94;

// PIN_100
pin 100;
// PIN_35, PIN_36, PIN_38
 pin 35, 36, 38

"NODES

HCLK

node istype 'reg, buffer'; // MAKE THIS CLOCK MASTER/128 = 192K

ACLK, BCLK, CCLK, DCLK, ECLK, FCLK node istype 'reg, buffer'; // clock divisions

// Registers for delaying the 8416 data in RJ and DSP modes
// such that it is output in the correct format
// to match the signal requirements for the AD1954.

QA, QB, QC, QD, QE, QF node istype 'reg, buffer';

QG, QH

node istype 'reg, buffer';

Q24

node istype 'reg, buffer';

QDSP

node istype 'reg, buffer';

"MACROS

// These are the eval board signal routing modes determined by the SW2 switch position

D_14_1 = (SW2_8 & SW2_4 & SW2_2 & SW2_1); // SW2 position 0 I2S

8416(1) input

D_14_2 = (SW2_8 & SW2_4 & SW2_2 & !SW2_1); // SW2 position 1 LJ-24

D_14_3 = (SW2_8 & SW2_4 & !SW2_2 & SW2_1); // SW2 position 2 DSP

D_14_4 = (SW2_8 & SW2_4 & !SW2_2 & !SW2_1); // SW2 position 3 RJ-24

D_14_5 = (SW2_8 & !SW2_4 & SW2_2 & SW2_1); // SW2 position 4 RJ-16

EXTDAT = (SW2_8 & !SW2_4 & SW2_2 & !SW2_1); // SW2 position 5 external port

select PCM and HDCD

SACD = (SW2_8 & !SW2_4 & !SW2_2 & SW2_1); // SW2 position 6 HDCD

D_14_192 = (SW2_8 & !SW2_4 & !SW2_2 & !SW2_1); // SW2 position 7 192K mode

// D_E_4 = (!SW2_8 & SW2_4 & SW2_2 & SW2_1); // SW2 position 8

// D_E_5 = (!SW2_8 & SW2_4 & SW2_2 & !SW2_1); // SW2 position 9

// HDCD = (!SW2_8 & SW2_4 & !SW2_2 & SW2_1); // SW2 position A

// SACD = (!SW2_8 & SW2_4 & !SW2_2 & !SW2_1); // SW2 position B

// D_14_192 = (!SW2_8 & !SW2_4 & SW2_2 & SW2_1); // SW2 position C

// SPARE2_2 = (!SW2_8 & !SW2_4 & SW2_2 & !SW2_1); // SW2 position D

// SPARE2_1 = (!SW2_8 & !SW2_4 & !SW2_2 & SW2_1); // SW2 position E

// SPARE2_0 = (!SW2_8 & !SW2_4 & !SW2_2 & !SW2_1); // SW2 position F

EQUATIONS
// from master clock
clocks divided

 ACLK.clk = MCLK; // master/2 frequency
 ACLK.d = !ACLK; // use this as the bit clock in 192k mode

 BCLK.clk = ACLK; // master/4
 BCLK.d = !BCLK;
 CCLK.clk = BCLK; // master/8
 CCLK.d = !CCLK;
 DCLK.clk = CCLK; // master/16
 DCLK.d = !DCLK;
 ECLK.clk = DCLK; // master/32
 ECLK.d = !ECLK;
 FCLK.clk = ECLK; // master/64
 FCLK.d = !FCLK;
 HCLK.clk = FCLK; // master/128
 HCLK.d = !HCLK; // should be a 192k clock, assuming input of 24.576 MHz

// Shift register for DSP, RJ_20, and RJ_24 modes from 8416

 [QH, QG, QF, QE, QD, QC, QB, QA] := [QG, QF, QE, QD, QC, QB, QA, X8416_SDO];
 Q24 := QH; // Q24 returns
 RJ-24 mode
 QDSP := QA;

 [QH, QG, QF, QE, QD, QC, QB, QA].clk = !X8416_BCLK;
 Q24.clk = X8416_BCLK;
 QDSP.clk = X8416_BCLK;

// Pass through SPI signals INVERTED

 CDATA_DUT = !CDATA_INTF;
 CCLK_DUT = !CCLK_INTF;
 CLATCH_DUT = !CLATCH_INTF;

// Master clock source enable

 DIR_MCLK_EN = !(D_14_1 # D_14_2 # D_14_3 # D_14_4 # D_14_5 # D_14_192); // enable clock from 8416
 EXT_MCLK_EN = !EXTDAT;
 DSD_MCLK_EN = !SACD;
 MCLK_EXT_EN = !(D_14_1 # D_14_2 # D_14_3 # D_14_4 # D_14_5 # D_14_192); // enable MCLK from 8416 to EXT

// normal data selection

 RDATA_DUT = (EXTDAT & RDATA_INTF);

 SDATA_DUT = X8416_SDO & (D_14_1 # D_14_2 # D_14_5)
 # D_14_3 & QDSP
D_14_4 & Q24
SDATA_INTF & EXTDAT;
//
D_14_192 & // 192K data output goes here

BCLK_DUT = !X8416_BCLK & (D_14_2 # D_14_4)
X8416_BCLK & (D_14_1 # D_14_3 # D_14_5)
BCLK_INTF & EXTDAT
D_14_192 & ACLK; //this should be okay for 192K mode

LRCLK_DUT = X8416_LRCLK & (D_14_1 # D_14_2 # D_14_3 # D_14_4 # D_14_5)
LRCLK_INTF & EXTDAT
D_14_192 & HCLK; //this should be okay for 192K mode

// SACD data input
DSD_PHASE_DUT = DSD_PHASE_INTF;
DSD_RDATA_DUT = DSD_RDATA_INTF;
DSD_LDATA_DUT = DSD_LDATA_INTF;
DSD_SCLK_DUT = DSD_SCLK_INTF;

// Configuration of the primary 8416, however these signals go to both 8416's
X8416_M3 = !RESETB;
X8416_M2 = !RESETB # D_14_3 # D_14_5;
X8416_M1 = !RESETB # D_14_1 # D_14_192;
X8416_M0 = !RESETB # D_14_5; //both M1 and M2 must be high to set up the aux 8416 to slave mode.

// Output of 8416 to EXT
SDATA_INTF = SDATA_DUT;
SDATA_INTF.oe = (D_14_1 # D_14_2 # D_14_3 # D_14_4 # D_14_5 # D_14_192); //enable SDATA from 8416 to EXT

BCLK_INTF = BCLK_DUT;
BCLK_INTF.oe = (D_14_1 # D_14_2 # D_14_3 # D_14_4 # D_14_5 # D_14_192); //enable BCLK from 8416 to EXT

LRCLK_INTF = LRCLK_DUT;
LRCLK_INTF.oe = (D_14_1 # D_14_2 # D_14_3 # D_14_4 # D_14_5 # D_14_192); //enable LRCLK from 8416 to EXT

END IF_Logic
ORDERING INFORMATION

BILL OF MATERIALS

Table 2.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>C4, C13, C16, C20, C23, C31, C34, C35, C57, C63, C65, C98, C101, C107, C112, C115, C118, C126, C130, C131, C133</td>
<td>Polyester film capacitor, 100°C, 5.0 mm, TH</td>
<td>BC Components</td>
<td>2222 370 22104</td>
</tr>
<tr>
<td>4</td>
<td>C1, C2, C134, C135</td>
<td>Multilayer ceramic capacitor, 16 V, X7R (0402)</td>
<td>Panasonic EC</td>
<td>ECJ-0EX1C104K</td>
</tr>
<tr>
<td>31</td>
<td>C7, C8, C1, C12, C25, C26, C28, C41 to C44, C50, C69, C70, C72, C79, C81 to C84, C87, C88, C93, C99, C102, C109, C110, C113, C114, C116, C125</td>
<td>Multilayer ceramic capacitor, 50 V, X7R (0805)</td>
<td>Panasonic EC</td>
<td>ECJ-2YB1H104K</td>
</tr>
<tr>
<td>2</td>
<td>C80, C91</td>
<td>Multilayer ceramic capacitor, 50 V, NPO (0805)</td>
<td>Panasonic EC</td>
<td>ECJ-2VC1H102J</td>
</tr>
<tr>
<td>2</td>
<td>C64, C92</td>
<td>Multilayer ceramic capacitor, 50 V, NPO (0805)</td>
<td>Panasonic EC</td>
<td>ECJ-2VC1H101J</td>
</tr>
<tr>
<td>4</td>
<td>C3, C22, C106, C123</td>
<td>Polypropylene film capacitor, 85°C, radial</td>
<td>Panasonic EC</td>
<td>ECQ-P1H101JZ</td>
</tr>
<tr>
<td>13</td>
<td>R29 to R38, R89 to R91</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF1000V</td>
</tr>
<tr>
<td>6</td>
<td>R5, R13, R42, R65, R81, R96</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-100R</td>
</tr>
<tr>
<td>23</td>
<td>R19 to R28, R57, R60 to R62, R66 to R69, R71, R88, R92 to R94</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF1002V</td>
</tr>
<tr>
<td>5</td>
<td>C29, C58, C59, C76, C77</td>
<td>Multilayer ceramic capacitor, 50 V, X7R (0805)</td>
<td>Panasonic EC</td>
<td>ECJ-2VB1H103K</td>
</tr>
<tr>
<td>7</td>
<td>C10, C36, C37, C61, C62, C71, C86</td>
<td>Aluminum electrolytic capacitor, FC, 105°C, SMD_B</td>
<td>Panasonic EC</td>
<td>EEE-FC1C100R</td>
</tr>
<tr>
<td>1</td>
<td>R49</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF1100V</td>
</tr>
<tr>
<td>8</td>
<td>R9, R10, R15, R16, R86, R87, R98, R99</td>
<td>0.25 W, 0.1%, metal film resistor</td>
<td>IRC</td>
<td>RC55LF-D-1K-B-B</td>
</tr>
<tr>
<td>3</td>
<td>D1, D2, D7</td>
<td>TVS Zener, 15 V, 600 W, SMB</td>
<td>ON Semiconductor</td>
<td>1SMB15AT3G</td>
</tr>
<tr>
<td>4</td>
<td>C39, C60, C78, C100</td>
<td>Polypropylene film capacitor, 85°C, radial</td>
<td>Panasonic EC</td>
<td>ECQ-P1H072GZ</td>
</tr>
<tr>
<td>4</td>
<td>R18, R47, R54, R73</td>
<td>0.25 W, 0.1%, metal film resistor</td>
<td>IRC</td>
<td>RC55LF-D-226R-B-B</td>
</tr>
<tr>
<td>1</td>
<td>C90</td>
<td>Multilayer ceramic capacitor, 50 V, X7R (0805)</td>
<td>Panasonic EC</td>
<td>ECJ-2VB1H223K</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF2430V</td>
</tr>
<tr>
<td>2</td>
<td>R44, R45</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF2800V</td>
</tr>
<tr>
<td>8</td>
<td>R4, R6, R12, R14, R80, R82, R95, R97</td>
<td>0.25 W, 0.1%, metal film resistor</td>
<td>IRC</td>
<td>RC55LF-D-2K-B-B</td>
</tr>
<tr>
<td>1</td>
<td>R59</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-2K21</td>
</tr>
<tr>
<td>1</td>
<td>R63</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-2K49</td>
</tr>
<tr>
<td>1</td>
<td>R50</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-2K80</td>
</tr>
<tr>
<td>2</td>
<td>C68, C105</td>
<td>Polypropylene film, 85°C, radial</td>
<td>Panasonic EC</td>
<td>ECQ-P1H392GZ</td>
</tr>
<tr>
<td>4</td>
<td>R41, R48, R64, R74</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-324R</td>
</tr>
<tr>
<td>2</td>
<td>R53, R76</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-332R</td>
</tr>
<tr>
<td>2</td>
<td>C21, C124</td>
<td>Polypropylene film capacitor, 85°C, radial</td>
<td>Panasonic EC</td>
<td>ECQ-P1H391JZ</td>
</tr>
<tr>
<td>1</td>
<td>R58</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF301I1V</td>
</tr>
<tr>
<td>12</td>
<td>C5, C15, C24, C33, C40, C67, C85, C104, C108, C117, C127, C132</td>
<td>Aluminum electrolytic capacitor, PW, 105°C, radial</td>
<td>Nichicon</td>
<td>UPW1V4R7MDD</td>
</tr>
<tr>
<td>4</td>
<td>C17, C27, C119, C128</td>
<td>Polypropylene film, 85°C, radial</td>
<td>Panasonic EC</td>
<td>ECQ-P1H471JZ</td>
</tr>
<tr>
<td>1</td>
<td>R56</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF4752V</td>
</tr>
<tr>
<td>Qty</td>
<td>Reference</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>C45 to C49, C51 to C55, C120 to C122</td>
<td>Multilayer ceramic capacitor, 50 V, NP0 (0805)</td>
<td>Panasonic EC</td>
<td>ECJ-2VC1H470J</td>
</tr>
<tr>
<td>2</td>
<td>C73, C97</td>
<td>Aluminum electrolytic capacitor, FC, 105°C, radial</td>
<td>Panasonic EC</td>
<td>EEU-FC1C470</td>
</tr>
<tr>
<td>2</td>
<td>C6, C32</td>
<td>Aluminum electrolytic capacitor, FC, 105°C, SMD_D</td>
<td>Panasonic EC</td>
<td>EEE-FC1C470P</td>
</tr>
<tr>
<td>3</td>
<td>C14, C18, C19</td>
<td>Aluminum electrolytic capacitor, FC, 105°C, SMD_E</td>
<td>Panasonic EC</td>
<td>EEV-FC1E470P</td>
</tr>
<tr>
<td>4</td>
<td>C38, C66, C89, C103</td>
<td>Polypropylene film capacitor, 85°C, radial</td>
<td>Panasonic EC</td>
<td>ECQ-P1HS62GZ</td>
</tr>
<tr>
<td>7</td>
<td>R2, R11, R39, R40, R77 to R79</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF6490V</td>
</tr>
<tr>
<td>4</td>
<td>R43, R46, R70, R72</td>
<td>0.25 W, 0.1%, metal film resistor</td>
<td>IRC</td>
<td>RC55LF-D-681R-B-B</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF7150V</td>
</tr>
<tr>
<td>1</td>
<td>U7</td>
<td>IC buffer, quad, three-state, 14 SOIC</td>
<td>Fairchild Semiconductor</td>
<td>74AC125SC</td>
</tr>
<tr>
<td>2</td>
<td>U10, U17</td>
<td>IC inverter, hex, TTL/LSTTL, 14 SOIC</td>
<td>NXP Semi</td>
<td>74HC04D-T</td>
</tr>
<tr>
<td>1</td>
<td>R55</td>
<td>Chip resistor, 1%, 125 mW, thick film (0805)</td>
<td>Panasonic EC</td>
<td>ERJ-6ENF75R0V</td>
</tr>
<tr>
<td>4</td>
<td>R7, R17, R84, R100</td>
<td>0.25 W, 1%, metal film resistor</td>
<td>Yageo Corporation</td>
<td>MFR-25FBF-806R</td>
</tr>
<tr>
<td>1</td>
<td>U13</td>
<td>High performance, multibit, sigma-delta DAC with SACD playback</td>
<td>Analog Devices</td>
<td>AD1955ARZ</td>
</tr>
<tr>
<td>6</td>
<td>U2, U5, U6, U14, U16, U21</td>
<td>Ultralow distortion, ultralow noise op amp</td>
<td>Analog Devices</td>
<td>AD797BRZ</td>
</tr>
<tr>
<td>1</td>
<td>U20</td>
<td>Microprocessor voltage supervisor</td>
<td>Analog Devices</td>
<td>ADM811TARTZ-REEL7</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>Voltage regulator, low drop, low noise</td>
<td>Analog Devices</td>
<td>ADP3303ARZ-5</td>
</tr>
<tr>
<td>1</td>
<td>U8, U9</td>
<td>Voltage regulator, low drop, low noise</td>
<td>Analog Devices</td>
<td>ADP3303ARZ-3.3</td>
</tr>
<tr>
<td>1</td>
<td>J3</td>
<td>5-way binding post, black, uninsulated base, TH</td>
<td>Deltron</td>
<td>552-0100 BLK</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>5-way binding post, mini, green, uninsulated base, TH</td>
<td>Deltron</td>
<td>552-0400 GRN</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>5-way binding post, mini, red, uninsulated base, TH</td>
<td>Deltron</td>
<td>552-0500 RED</td>
</tr>
<tr>
<td>4</td>
<td>C74, C75, C95, C96</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>C9, C30, C56, C94, C111, C129</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>U11</td>
<td>192 kHz, AES3/S/PDIF receiver</td>
<td>Cirrus Logic</td>
<td>CS8416-DZZ</td>
</tr>
<tr>
<td>3</td>
<td>D3 to D5</td>
<td>Passivated rectifier, 1 A, 50 V, MELF</td>
<td>Micro Commercial</td>
<td>DL4001-TP</td>
</tr>
<tr>
<td>1</td>
<td>SW1</td>
<td>Switch slide, DP3T, PC MNT, L = 4 mm</td>
<td>E-Switch</td>
<td>EG2305</td>
</tr>
<tr>
<td>9</td>
<td>L1 to L9</td>
<td>Chip ferrite bead, 600 Ω at 100 MHz</td>
<td>Steward</td>
<td>HZ0805E601R-10</td>
</tr>
<tr>
<td>4</td>
<td>J8, J9, J22, J26</td>
<td>10-way shrouded, polarized header</td>
<td>3M</td>
<td>N2510-6002RB</td>
</tr>
<tr>
<td>1</td>
<td>J11</td>
<td>Connector header, 0.100 dual STR, 72 position</td>
<td>3M</td>
<td>PBC06DAAN; or cut PBC36DAAN</td>
</tr>
<tr>
<td>1</td>
<td>SW3</td>
<td>16-position rotary switch, hex</td>
<td>APEM</td>
<td>PT65503</td>
</tr>
<tr>
<td>10</td>
<td>J7, J10, J12, J13, J16 to J21</td>
<td>3-positoion SIP header</td>
<td>Sullins</td>
<td>PBC035AAAN; or cut PBC365AAAN</td>
</tr>
<tr>
<td>3</td>
<td>J4, J5, LK1</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>LK2 to LK10</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>U12</td>
<td>Complex programmable logic device, CPLD, high performance E2CMOS PLD</td>
<td>Lattice Semiconductor</td>
<td>L4A5-128/64-10YNC</td>
</tr>
<tr>
<td>2</td>
<td>D8, D15</td>
<td>Green, diffused, 10 millicandela, 565 nm (1206)</td>
<td>Lumex Opto</td>
<td>SML-LX1206GW-TR</td>
</tr>
<tr>
<td>1</td>
<td>D16</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Qty</td>
<td>Reference</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>D6, D13</td>
<td>Red, diffused, 6.0 millicandela, 635 nm (1206)</td>
<td>Lumex Opto</td>
<td>SML-LX1206IW-TR</td>
</tr>
<tr>
<td>5</td>
<td>D9 to D12, D14</td>
<td>Yellow, diffused, 4.0 millicandela, 585 nm (1206)</td>
<td>CML Innovative Tech</td>
<td>CMD15-21VYD/TR8</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>3-terminal adjustable voltage regulator, DPak</td>
<td>STMicroelectronics</td>
<td>LM317MDT-TR</td>
</tr>
<tr>
<td>1</td>
<td>RP1</td>
<td>Resistor network, bussed 9-res</td>
<td>CTS Corp</td>
<td>770101103P</td>
</tr>
<tr>
<td>2</td>
<td>R51, R83</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>R8, R52, R75, R85</td>
<td>Do not populate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>Oscillator socket, full size, 4-pin</td>
<td>Aries Electronics</td>
<td>1107741</td>
</tr>
<tr>
<td>1</td>
<td>J24</td>
<td>RCA jack, PCB, TH mount, R/A, orange</td>
<td>Connect-Tech Products</td>
<td>CTP-021A-S-ORANGE</td>
</tr>
<tr>
<td>1</td>
<td>J23</td>
<td>RCA jack, PCB, TH mount, R/A, red</td>
<td>Connect-Tech Products</td>
<td>CTP-021A-S-RED</td>
</tr>
<tr>
<td>1</td>
<td>J15</td>
<td>RCA jack, PCB, TH mount, R/A, white</td>
<td>Connect-Tech Products</td>
<td>CTP-021A-S-WHITE</td>
</tr>
<tr>
<td>2</td>
<td>U18, U19</td>
<td>IC 2-bit dual bus, TXRX 8-SSOP</td>
<td>Texas Instruments</td>
<td>SN74LVC2T45DCTR</td>
</tr>
<tr>
<td>3</td>
<td>SW4 to SW6</td>
<td>SPDT slide switch, PC mount</td>
<td>E-Switch</td>
<td>EG1218</td>
</tr>
<tr>
<td>1</td>
<td>SW2</td>
<td>Tact switch, 6 mm, gull wing</td>
<td>Tyco/Alosvitch</td>
<td>FSM6JSM-A</td>
</tr>
<tr>
<td>1</td>
<td>U15</td>
<td>25 Mbps fiber optic receiving module with shutter</td>
<td>Toshiba</td>
<td>TORX142L(F)</td>
</tr>
<tr>
<td>50</td>
<td>TP1 to TP41, TP44 to TO52</td>
<td>Mini test point, white, 0.1" OD</td>
<td>Keystone Electronics</td>
<td>5002</td>
</tr>
<tr>
<td>1</td>
<td>J14</td>
<td>PC-mount, female XLR-3 receptacle</td>
<td>Neutrik</td>
<td>NC3FAH1</td>
</tr>
<tr>
<td>2</td>
<td>J6, J25</td>
<td>PC-mount, male XLR-3 receptacle</td>
<td>Neutrik</td>
<td>NC3MAH</td>
</tr>
</tbody>
</table>
NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.