INTRODUCTION

USB use has displaced older communications standards, such as RS-232, as the default serial communications port in PC-based systems. When compared to these other standards, USB has many enhanced features, such as power for peripherals, automatic driver installation, and higher data rates. However, when using USB, it is difficult to provide isolation, which has limited its acceptance in medical and industrial applications.

Analog Devices, Inc., has introduced the ADuM4160 and ADuM3160 iCoupler® USB isolators to address the difficult task of isolating the bus. The EVAL-ADuM4160EBZ USB isolator evaluation board allows for an easy interface to existing applications by standard cabling or discrete wiring.

This USB evaluation board comes populated with an ADuM4160; however, because the ADuM4160 and ADuM3160 are electrically identical and pin compatible, any evaluation done with this board and component also applies directly to the ADuM3160. If the user wants to substitute the ADuM3160 on the printed circuit board (PCB), no other changes are required.

The design goals of this evaluation platform are to

- Connect to systems through standard USB Type A and Type B connectors.
- Draw power from the USB host or from an external 5.0 V or 3.3 V power supply.
- Support isolated power for the downstream interface through an ADuM5000 isoPower® dc-to-dc converter.
- Support external downstream power from a 5 V or 3.3 V power supply.
- Provide test points for all power and signal paths.
- Support low and full speed communications.
- Support enumeration control.
- Support external electrostatic discharge (ESD) protection.
- Support common-mode chokes in the xD+/xD− lines.
- Support ferrite inductors in the VBUSx and GNDx lines.

For full details, see the ADuM4160 and the ADuM3160 data sheets, which must be used in conjunction with this user guide when using the EVAL-ADuM4160EBZ evaluation board.

EVAL-ADuM4160EBZ EVALUATION BOARD

Figure 1.

FEATURES OF THE ADuM4160/ADuM3160

The ADuM4160 and ADuM3160 provide support for full speed and low speed data communications by interfacing directly with the USB xD+ and xD− lines. The devices are designed to be transparent to USB data traffic other than adding about as much delay as a hub and cable. Features of the isolator include the following:

- Built in voltage regulators that allow the ADuM4160 and the ADuM3160 to draw power from either 5 V or 3.3 V sources.
- Application of an upstream pull-up resistor is under the control of the downstream pin, PIN (Pin 12).
- Pins on the upstream and downstream sides of the device, SPU and SPD (Pin 5 and Pin 13, respectively), can set the operating speed of the isolator.

The upstream side of the isolator includes Pin 1 through Pin 8, is connected to the left side of the evaluation board, and interfaces through a Type B connector. The downstream facing side includes Pin 9 through Pin 16, is connected to the right side of the evaluation board, and interfaces through a Type A connector.

The evaluation board allows configuration of the features of the ADuM4160/ADuM3160 chip and provides support for a variety of possible power schemes. The evaluation board also allows common-mode voltages; however, it is not recommended for performing safety related testing, such as high voltage withstand testing. Perform this type of testing on the component level or on a production board.
TABLE OF CONTENTS

Introduction ... 1
EVAL-ADuM4160EBZ Evaluation Board 1
Features of the ADuM4160/ADuM3160 .. 1
Revision History .. 2
Power .. 3
Upstream Side .. 3
Downstream Side .. 3
Grounding Scheme .. 3

Speed Selection .. 4
Pull-Up Control ... 4
Series Resistors .. 4
Test Points ... 4
Optional Components .. 4
Evaluation Board Schematic and Artwork 5
Ordering Information .. 8
Bill of Materials .. 8

REVISION HISTORY

7/2017—Rev. A to Rev. B
Changed from EVAL-ADuM4160EBZ/ADuM3160EBZ User Guide to EVAL-ADuM4160EBZ User Guide. Throughout
Changes to Features of the ADuM4160/ADuM3160 Section 1
Changed Evaluation Board Section to EVAL-ADuM4160EBZ Evaluation Board Section ... 1
Changes to Upstream Side Section and Downstream Side Section .. 3
Changes to Table 4, Series Resistors Section, Test Points Section, and Optional Components Section .. 4
Changes to Figure 3 .. 6
Added Figure 4 .. 6
Added Figure 5 and Figure 6 .. 7
Added Ordering Information Section, Bill of Materials Section, and Table 5... 8

9/2010—Rev. 0 to Rev. A
Added ADuM3160 ... Throughout
Changes to Introduction .. 1

2/2010—Revision 0: Initial Version
POWER

UPSTREAM SIDE

The USB standard requires that the upstream facing port of a peripheral device derive power for its pull-up from the 5 V present on the cable. Power can also be used to power functions in the peripheral at up to 500 mA.

The ADuM4160 and ADuM3160 contain an internal voltage regulator that can derive the 3.3 V from VBUSx for use in the data transmission and pull-up power. The user can bypass this regulator if 3.3 V is provided from an external supply. The evaluation board can source its power either from the cable at 5 V or from an external supply connected to J5 terminal block, EXT. Jumper JP1 selects between the two sources. When external power is chosen, the ADuM3160 and ADuM4160 can be configured to accept either 3.3 V or 5 V from that source. If 3.3 V is supplied, the internal regulator must be disabled by shorting Pin 1 and Pin 3 together. Shorting Pin 1 and Pin 3 is accomplished by placing a shunt across JP3, 3.3EXT. This jumper must be open when the USB bus is the source of power.

Table 1. Upstream Power Jumper Settings

<table>
<thead>
<tr>
<th>Power Source</th>
<th>Jumper Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Bus</td>
<td>USB (2 and 3)</td>
</tr>
<tr>
<td>EXT 5.0 V</td>
<td>EXT (1 and 2)</td>
</tr>
<tr>
<td>EXT 3.3 V</td>
<td>EXT (1 and 2)</td>
</tr>
</tbody>
</table>

Table 2. Downstream Power Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Settings/Components</th>
<th>Power Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN SELL (JP3)</td>
<td>5 V/USB</td>
</tr>
<tr>
<td>ADuM5000</td>
<td></td>
</tr>
<tr>
<td>3.3 V</td>
<td>Not installed</td>
</tr>
</tbody>
</table>

DOWNSTREAM SIDE

The USB standard does not allow any power to be sourced from a peripheral port. Power to run the downstream side of the ADuM4160 or ADuM3160 cannot come from the cable connection as it did on the upstream facing side. If the isolator is built into a peripheral device, it can receive power directly from the power supply of the peripheral. If the isolator is not built into the peripheral that it is protecting, power must be provided from an external source or derived from the upstream bus power through a dc-to-dc converter. All of these possible power configurations are addressed in the evaluation board.

Power for the downstream port can be provided from an external 5 V power supply through Terminal Block J3 or from the upstream USB power bus through an ADuM5000 isoPower isolated dc-to-dc converter. The ADuM5000 is shipped loose with the evaluation board and must be soldered to the evaluation board in the U2 position if isolated power is provided by the upstream USB power bus. Only one method of powering the downstream port can be used.

The ADuM5000 can provide a maximum 500 mW of power to the downstream side. Applications that require more power at the downstream port must use the external 5 V power supply option. The ADuM5000 is provided for the convenience of the user, and its use in final applications must be reviewed based on its data sheet precautions for power consumption and electromagnetic interference (EMI) mitigation.

Configuration of the downstream power is accomplished by installing or uninstalling the ADuM5000 converter, applying power to J3 or J4, and setting the appropriate jumper.

As with the upstream side of the ADuM4160 or the ADuM3160, there is an internal regulator that derives the 3.3 V supply for the xD+ and the xD– signal lines from a 5 V source applied to VBUSx. In addition, if VBSER and VDD2 are connected together to a 3.3 V source, the regulator is bypassed, and the voltage is used directly by the chip. The IN SELL (JP3) jumper selects between deriving power from a 5 V source and a 3.3 V source. The 5 V source can either be an external voltage applied to J3 or an ADuM5000. The only 3.3 V source is the J4 terminal block. If external power is used, the ADuM5000 must not be installed on the board.

Table 2. Downstream Power Jumper Settings

<table>
<thead>
<tr>
<th>Power Source</th>
<th>Jumper Settings/Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Bus</td>
<td>5 V/USB</td>
</tr>
<tr>
<td>5 V (J3)</td>
<td>5 V/USB</td>
</tr>
<tr>
<td>3.3 V (J4)</td>
<td>3.3 V</td>
</tr>
</tbody>
</table>

GROUNDING SCHEME

The evaluation board consists of two separate ground and power systems. In addition, there is a floating capacitive structure on the bottom layer of the PCB that provides EMI mitigation for the ADuM5000 dc-to-dc converter. This structure consists of a floating plane on each side of the isolation boundary. To allow evaluation of different EMI mitigation schemes, the planes can be, for example,

- Left floating, which has a minimal effect on EMI.
- Connected by adding a strip of copper tape and soldering it to the exposed pads.
- Connected by safety capacitors installed in through-hole positions, C14 and C19.
In addition, the ground and power planes can be capacitively linked via C15 to C18 at the option of the user. This linking can provide plane-to-plane noise bypassing through several paths to reduce radiated emissions from the ADuM5000 power supply.

Two large screw holes along the top edge of the PCB provide connection to the upstream ground plane and the downstream ground plane. These holes allow grounding of the PCB to the system in multiple configurations. The floating planes are designed with 0.4 mm of setback to all vias and other board planes. If the floating structures are employed for noise reduction, the PCB must not be used for high voltage testing. When this type of structure is required in the final design, build it on an inner layer of the PCB to avoid creepage and clearance issues.

SPEED SELECTION

The **ADuM4160** and **ADuM3160** work at a fixed USB transmission speed, either low speed or full speed. The SPU pin and the SPD pin on the upstream and downstream sides of the device set the speed and must be set by jumpers on the evaluation board. For proper operation, set both speed jumpers to the same speed setting.

<table>
<thead>
<tr>
<th>SPU (JP4)</th>
<th>SPD (JP5)</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short SPU Full</td>
<td>Short SPD full</td>
<td>Full (12 Mbps)</td>
</tr>
<tr>
<td>Short SPU Low</td>
<td>Short SPD low</td>
<td>Low (1.5 Mbps)</td>
</tr>
</tbody>
</table>

PULL-UP CONTROL

The PIN pin allows control of enumeration and disconnect by the peripheral. When PIN is logic high, the pull-up on the upstream side of the **ADuM4160** or the **ADuM3160** is applied to the data line appropriate for the USB speed mode, which allows enumeration and data transmission. When PIN is logic low, the upstream pull-up is disconnected, making the upstream port behave as though the port were not present.

This function allows the peripheral to delay communication with the host by delaying application of the upstream pull-up resistor until it is ready to enumerate on the bus. If this functionality is not required, tie PIN to VDD2, and when power is applied to both the downstream power supplies, the pull-up is applied to the upstream side.

Jumper JP6 provides control of PIN. A 10 kΩ resistor pulls the PIN input high. When a shunt is placed across JP6, it is pulled low, which provides a default state of high to PIN, allowing immediate enumeration.

SERIES RESISTORS

The two USB speeds supported by the **ADuM4160** and **ADuM3160** require different series resistance values at the transceiver terminals.

For full speed operation, the R1, R2, R3, and R4 resistors must be populated with 24 Ω, 1% resistors. These 24 Ω resistors are installed in the base configuration of the evaluation board and, if the evaluation board is operating at full speed, no changes are required.

When the **ADuM4160** operates at low speeds, it is recommended to modify the evaluation board from the as received configuration. For low speed operation, replace the R1, R2, R3, and R4 resistors with 0 Ω, 0805 sized, SMT shunts. If impedance is not critical, the 24 Ω resistors do not significantly affect the low speed performance, and they can be left in place for both speed modes.

TEST POINTS

Positions for eight test points are included on the evaluation board. No headers are provided in the default configuration. Mounting holes for a ground signal pair are provided. The holes fit a standard square pin spaced at 100 mil or 200 mil on center.

This configuration was chosen to match the dimensions of the Tektronix high frequency active probes or standard headers. To obtain an appropriate scope header use a 3-pin SIP (2.54 mm spacing) wire wrap header and remove the center pin. The signal pin can be trimmed to match the spacing of the probe. If another type of connection is required, insert wires into the holes provided for these connections.

OPTIONAL COMPONENTS

Options for installing common-mode chokes and external ESD protection on the **DD+/DD−** and **UD+/UD−** data lines are available on the **EVAL-ADuM4160EBZ** evaluation board. Positions for 1206-sized Wurth WE-CNSW chokes are provided at Position FL1 and Position FL2. Positions for ESD diode packs (NUP2202 from ON Semiconductor) are provided at Position D1 and Position D2. In addition, pads for surface-mount ferrite inductors are provided at Position R6 to Position R10. These positions are included on the PCB as a convenience to the end user and are not necessary for operation. To make use of common-mode chokes, remove the R11, R12, R13, and R14 shunts.
EVALUATION BOARD SCHEMATIC AND ARTWORK

Figure 2. EVAL-ADUM4160EBZ Evaluation Board Schematic
Figure 3. EVAL-ADUM4160EBZ Evaluation Board Layer 1 and Silkscreen

Figure 4. EVAL-ADUM4160EBZ Evaluation Board Layer 2
Figure 5. EVAL-ADUM4160EBZ Evaluation Board Layer 3

Figure 6. EVAL-ADUM4160EBZ Evaluation Board Layer 4 and Silkscreen
ORDERING INFORMATION
BILL OF MATERIALS

Table 5.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer/Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U1</td>
<td>Device under test (DUT)</td>
<td>Analog Devices/ADuM4160BRWZ</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>DUT (shipped with evaluation board; not installed)</td>
<td>Analog Devices/ADuM5000ARWZ</td>
</tr>
<tr>
<td>7</td>
<td>C2, C6, C7, C8, C10, C11, C12</td>
<td>X7R, 0805, capacitors</td>
<td>Murata/GRM21BR71H104KA01L</td>
</tr>
<tr>
<td>3</td>
<td>C5, C9, C13</td>
<td>X5R, 0805, capacitors</td>
<td>Murata/GRM21BR61C106KE15L</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>USB, Type A, PCB connector</td>
<td>FCI/87520-0010BLF_ALT</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>USB, Type B, PCB connector</td>
<td>SAMTEC/USB-B-S-F-B-TH-R</td>
</tr>
<tr>
<td>1</td>
<td>J3</td>
<td>2-position screw terminal</td>
<td>Wieland/25.161.0253</td>
</tr>
<tr>
<td>4</td>
<td>JP1, JP2, JP4, JP5</td>
<td>100 mil (2.54 mm) 3-position headers</td>
<td>Molex/22-03-2031</td>
</tr>
<tr>
<td>4</td>
<td>JP3, JP6</td>
<td>100 mil (2.54 mm) 2-position headers</td>
<td>Amphenol FCI/69157-102HLF</td>
</tr>
<tr>
<td>4</td>
<td>R11, R12, R13, R14</td>
<td>0805, 0 Ω, resistors</td>
<td>Panasonic/ERJ-6GEYR00V</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>0805, 10 kΩ, resistor</td>
<td>Panasonic/ERJ-6ENF1002V</td>
</tr>
<tr>
<td>5</td>
<td>Not applicable</td>
<td>100 mil (2.54 mm) jumpers</td>
<td>FCI/68786-302LF</td>
</tr>
<tr>
<td>9</td>
<td>R1, R2, R3, R4, R6, R7, R8, R9, R10</td>
<td>0805, resistors, not installed</td>
<td>Not applicable</td>
</tr>
<tr>
<td>2</td>
<td>C1, C3, C4</td>
<td>0805, capacitors, not installed</td>
<td>Not applicable</td>
</tr>
<tr>
<td>6</td>
<td>C14, C15, C16, C17, C18, C19</td>
<td>Ledged capacitor position, not installed</td>
<td>Not applicable</td>
</tr>
<tr>
<td>2</td>
<td>D1, D2</td>
<td>Transient voltage suppressor (TVS) arrays, not installed</td>
<td>ON Semiconductor/NUP2202W1T2G</td>
</tr>
<tr>
<td>2</td>
<td>FL1, FL2</td>
<td>SMD, common-mode chokes, not installed</td>
<td>Wurth Elektronik/744232261</td>
</tr>
<tr>
<td>2</td>
<td>J4, J5</td>
<td>2-position screw terminals, not installed</td>
<td>Wieland/25.161.0253</td>
</tr>
<tr>
<td>8</td>
<td>TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8</td>
<td>100 mil, 3-position headers, not installed</td>
<td>Molex/22-03-2031</td>
</tr>
</tbody>
</table>

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided “AS IS” and ADI makes no EXPRESS OR IMPLIED WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2010–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

UG08418-0-7/17(B)