Evaluating the **ADuCM355** Precision Analog Microcontroller with Chemical Sensor Interface

FEATURES
- Debug and programming capability of the **ADuCM355**
- Evaluation capability with electrochemical gas sensors **ADT7420**
- 0.5°C accurate temperature sensor via I²C
- USB power option and connection to PC

EQUIPMENT NEEDED
- PC
- Electrochemical gas sensor (not provided)

DOCUMENTS NEEDED
- **ADuCM355** hardware reference manual
- **ADuCM355** data sheet

SOFTWARE NEEDED
- IAR Embedded Workbench

GENERAL DESCRIPTION
The **ADuCM355** system on a chip provides the features needed to bias and to measure a range of different electrochemical sensors. The **EVAL-ADuCM355QSPZ** allows users to evaluate the performance of the **ADuCM355** when implementing a range of different electrochemical techniques, including chronoamperometry, voltammetry, and electrochemical impedance spectroscopy (EIS).

EVALUATION BOARD PHOTOGRAPH

![EVAL-ADuCM355QSPZ Evaluation Board](image)

Figure 1.
TABLE OF CONTENTS
Features .. 1
Equipment Needed .. 1
Documents Needed ... 1
Software Needed ... 1
General Description .. 1
Evaluation Board Photograph .. 1
Revision History .. 2
Power Configurations .. 3
 USB Direct via P4 .. 3
 3.3 V Direct via AVDD and DVDD Connectors 5
Power via USB from 8-Pin Connector (P27) .. 5
Power via External 5 V Supply to 2-Pin Connector (P37) 5
Connecting an Electrochemical Sensor ... 6
Getting Started with the IAR Embedded Workbench Tool 7
 Installing the ADuCM355 Support Package 7
 Running GPIO Example ... 7
Application Examples .. 10
 Cyclic Voltammetry Example ... 10
 Electrochemical Impedance Spectroscopy (EIS) Example 11
 Chronoamperometry Example ... 11
 DC Current Example ... 12
 HSTIA Gain Resistor Calibration .. 13
 Low Power TIA0/TIA1 Gain Resistor Calibration 16
 Connecting an External Gain Resistor Across the High Speed TIA ... 19
 AFE Die Watchdog Timer Example .. 19
 4-Lead Electrochemical Sensor Example 19
 Mass Erase a Device Not Responding to SWD Commands 21

REVISION HISTORY
10/2018—Revision 0: Initial Version
POWER CONFIGURATIONS

This section lists and describes the four different options to power the evaluation board. The different power options include the following:

- Power via a microUSB connector, P4, which is the default power option.
- Connect 3.3 V to the AVDD and DVDD connectors. This setup is useful for measuring current consumption of the evaluation board via the current meter.
- Power via Debug Header P27 (ultimately a different USB connection option to the PC). This setup is useful if using the older serial wire debug (SWD) and universal asynchronous receiver transmitter board (UART), the EVAL-SWD/UART-EMUZ setup.
- Power via the ADP7158 low dropout (LDO) regulator. The USB connector sources 5 V for the LDO regulator.

USB DIRECT VIA P4

MicroUSB Connector, P4 Setup

To power the evaluation board via the microUSB connector, take the following steps:

 - JP45 and JP46 connect the UART pins from the ADuCM355 to the UART-USB transceiver chip (U2) (see Figure 1 and Figure 2).
 - JP40 connects the 5 V USB supply to the input of the LDO (U3) (see Figure 1, Figure 3, and Figure 4).
 - JP42 connects the LDO output (3.3 V) to the board power supply filters (see Figure 1, Figure 3, and Figure 4).
 - JP43 and JP44 connect the DVDD rail to filters for the AVDD_DD and AVDD analog supplies to the ADuCM355 (see Figure 1, Figure 3, and Figure 4).

2. Open JP37.

Figure 2. Power via MicroUSB Cable Directly
Figure 3. JP45 and JP46 Connect the ADuCM355 UART Pins to the USB Transceiver

Figure 4. Schematic Section Showing Key Jumpers Around LDO and Power Supply
3.3 V DIRECT VIA AVDD AND DVDD CONNECTORS

The 3.3 V direct connection to the AVDD and DVDD connectors set up is useful for measuring the current consumption (I_{DD}) of the ADuCM355 itself.

To power the EVAL-ADuCM355QSPZ evaluation board, apply 3.3 V supply directly to Pin 1 on AVDD and DVDD.

Jumper Setup

To set up the jumper, take the following steps:

2. Open JP37 and JP42.

For additional information, see Figure 6.

POWER VIA USB FROM 8-PIN CONNECTOR (P27)

If using the older USB-SWD/UART connector and debug interface, the ADuCM355 can also be powered from the USB. The UART-USB interface is handled by the USB-SWD/UART board.

Jumper Setup

To set up the jumper, close JP35, JP40, JP42, JP43, and JP44 (see Figure 5).

POWER VIA EXTERNAL 5 V SUPPLY TO 2-PIN CONNECTOR (P37)

The last option is to connect 5 V to the 2-pin header (P37). This 5 V is the input to the ADP7158 LDO regulator that has a 3.3 V output voltage. Do not connect the microUSB cable to P4. This option is a debug and/or test option only.
CONNECTING AN ELECTROCHEMICAL SENSOR

The ADuCM355 has two measurement channels for electrochemical sensors. A 2-lead, 3-lead, or 4-lead sensor can be connected to either CH0 or CH1. Figure 7 shows an electrochemical sensor connected to CH1.

Figure 7. Sensor Connector
GETTING STARTED WITH THE IAR EMBEDDED WORKBENCH TOOL

DOWNLOADING IAR
Ensure you have downloaded and installed a full or evaluation version of the IAR Embedded Workbench for ARM first. Version 8.32.1 or later of the Embedded Workbench for ARM fully support the ADuCM355.

INSTALLING THE ADuCM355 SUPPORT PACKAGE
Download the ADuCM355 support package and extract the contents. Run the executable and follow the installation instructions to install the required drivers.

Download the ADuCM355 support package and extract the contents. Run the executable and follow the installation instructions to install the required drivers.

Only check the ADuCM355 IAR EW ARM Support option if you are using an older version than Version 8.32.1 of the IAR Embedded Workbench for ARM, as shown in Figure 8.

When the ADuCM355 IAR EWARM Support option is checked, the installer adds a patch to EWARM to add ADuCM355 support. This is not necessary for Version 8.32.1 and later.

By default, the sample firmware installs in C:\Analog Devices\ADuCM355Vx.x.x.x.

The sample firmware contains the following folders:
- The Common folder contains all library files common to every application.
- The Examples folder contains specific example projects (see the Running GPIO Example section).
- The Inc folder contains some included files for the microprocessor.

RUNNING GPIO EXAMPLE
To run the general purpose input/output (GPIO) example, open the ADuCM355Vx.x.x.x directory and go to examples > M355_GPIO.iar. Double click M355_GPIO.eww to open the project in the IAR Embedded Workbench (see Figure 9).

Figure 9. M355_GPIO.eww File Location

IAR Project Folder Structure
The IAR project folder structure is shown to the left of the IAR Embedded Workbench window (see Figure 10). The app folder contains files specific to the open application. In Figure 10, M355_GPIO.c is the example shown. The common folder contains the required library files for the open application. For the GPIO example, the library files are AfeWdtLib.c, ClkLib.c, DioLib.c, and UrtLib.c. The start-up folder contains start-up files for the microprocessor, and the output folder contains the M355_GPIO.out file. All subsequent firmware examples follow this folder structure in the IAR Embedded Workbench.
Compiling and Running Firmware

To compile and build the firmware, take the following steps:

1. Go to Project > Rebuild All (see Figure 11).

2. The message shown in Figure 12 appears in the Build window.

3. To run the firmware on the ADuCM355, ensure the evaluation board is powered on and the J-Link debugger is connected. Press Download and Debug to load the firmware to the ADuCM355 and launch the debugger (see Figure 13). Launching and downloading usually takes a few seconds, but the delay can be longer.

4. Open a terminal program such as RealTerm to view the UART data from the ADuCM355 (see Figure 14). The baud rate is 57600 bps.

5. Figure 15 shows the debug interface. Click on the blue arrow (shown in the red box) to begin code execution. The UART then prompts the user to press either S2 or S3. The LED (DS2) toggles on and off with each button press.
Figure 15. Debug Interface
APPLICATION EXAMPLES

CYCLIC VOLTAMMETRY EXAMPLE

Cyclic voltammetry is a common electrochemical measurement in which the current on the sense electrode is measured in response to a ramp like the voltage applied on the counter electrode. Figure 16 shows a typical, stepped differential voltage between the REx and WEx electrodes of the sensor.

![Figure 16. Typical Cyclic Voltammetry Waveform](image)

In the ADuCM355 firmware package, the M355_CyclicVolta...m measurement on the ADuCM355. In the M355_Ramp.c file, there is a description of the measurement. There are also a number of macro definitions that define the measurement.

For this example project, the selected options are as follows:

- `#define SENSOR_DUAL_CHANNEL_ENABLE 0 //Only run test on Channel 0`
- `#define SENSOR_RAMP_SE 1 //Select SE0 electrode for measurement`
- `#define REC_OPTION REC_ADCDAT //Record ADC Data`
- `#define OPT_RAMP_MEAS. 1 //Measure current and pin voltages`
- `#define SNS_DC_VBIAS_DEFAULT0 sets the Channel 0 VBIAS default voltage`
- `#define SNS_DC_VZERO_DEFAULT0 sets the Channel 0 VZERO default voltage`
- `#define SNS_DC_RLOAD_DEFAULT0 sets the Channel 0 low power TIA (LPTIA) RLOAD default value`
- `#define SNS_DC_RGAIN_DEFAULT0 sets the Channel 0 gain resistor (RTIA) of the LPTIA gain default value`

To test the firmware, constructing a dummy electrochemical cell using 1 kΩ resistors in a star network is recommended (see Figure 17). Connect each pin of the resistor network to CE0, RE0, SE0, and DE0 on P5.

To begin measuring and gathering data, open a terminal program such as RealTerm. Configure the baud rate for 115200. Compile and build the project in the IAR Embedded Workbench and launch the debugger. Run the measurement and save the data to a .csv file for processing. If OPT_RAMP_MEAS is set to 1, there are six measurements for each channel, which includes the following:

- Current on Channel 1
- Voltage on DE0
- Voltage on RE0
- VZERO voltage
- VBIAS0 voltage
- Current

To plot the current response of the ramp test, open the saved .csv file in Microsoft Excel. The first set of data points under RAMP_DATA is the current measurements. Figure 18 shows the RAMP_DATA data points after being plotted.

![Figure 18. Example SE0 Channel Current Measurement—ADC Codes on the Y-Axis, and ADC Sample Number on X-Axis](image)
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) EXAMPLE

EIS is a common electrochemical measurement in which an ac excitation signal is applied to an electrochemical cell. The response current is measured, and the impedance is calculated.

On the ADuCM355, the EIS measurement is a three step process. The response current in each step is measured using a high speed transimpedance amplifier (HSTIA).

The EIS measurement process is as follows:
1. Signal is applied across R_CAL.
2. Signal is applied across R_LOAD.
3. Signal is applied across Z_SENSOR + R_LOAD.

R_CAL is a precision resistor connected to the RCAL0 pin and the RCAL1 pin, R_LOAD is the internal load resistor on the SE0 path, and Z_SENSOR is the impedance under test.

Use the following equation to calculate the actual impedance:

\[
Z_{SENSOR} = Z_{SENSOR + R_LOAD} - Z_{R_LOAD}
\]

where:
- \(Z_{SENSOR + R_LOAD}\) is the impedance of \(R_{SENSOR} + R_{LOAD}\) connected together.
- \(Z_{R_LOAD}\) is the impedance of \(R_{LOAD}\).

For the purpose of this initial test, a dummy electrochemical cell was used. Connect three 1 k\(\Omega\) resistors in a star network and connect to the resistors to the CE0, RE0, and SE0 pins on P5 (see Figure 19).

The two user options in the M355_ECSns_EIS.c file are as follows:
- The #define EIS_DCBIAS_EN macro defines whether there is a dc bias applied across the sensor as is required for oxygen sensors.
- Select the frequency of the sine wave excitation signal. This is defined in the ImpResult [] array. By default, 12 frequencies are already populated. These frequencies can be modified as required.

To run the impedance measurement, take the following steps:
1. Launch the debugger in the IAR Embedded Workbench.
2. Open a terminal program with a 57600 baud rate.
3. Start to execute the code.
4. A prompt to press S2 is sent over the UART and displayed in the terminal. Press S2 to begin the impedance test. It takes up to 20 seconds because there are 12 frequency points to measure.
5. When the impedance measurement completes, the results are sent to the UART (see Figure 20). Optionally, save the results in a Microsoft Excel file for further analysis.

CHRONOAMPEROMETRY EXAMPLE

Chronoamperometry is an electrochemical technique in which the voltage applied to an electrochemical cell is stepped. The response current on the sense electrode is measured. Figure 21 and Figure 22 show a typical chronoamperometric measurement and sensor response.
In the ADuCM355 firmware development package, the M355_ECSns_CapaTest project implements a chronoamperometric measurement.

The M355_ECSns_CapaTest.c file contains a data structure defined to select measurement options. The user can change these measurement options to modify measurements.

There is also a structure (SNS_CFG_Type) that sets up a data structure to configure each sensor channel. For this demonstration, only Sensor Channel 0 is used.

All default values are used. The resistor star model is connected to P5 as was the case in the examples described in the Cyclic Voltammetry Example section and the Electrochemical Impedance Spectroscopy (EIS) Example section.

Load the project in the IAR Embedded Workbench and open a terminal program. Compile and build the project and launch the debugger interface. Start the code execution and save the UART data to a .csv file for processing.

The example code sends three arrays of results to the UART, 8191 of each (see Figure 23):

- First 8191 values are the current measurement results for the SE0 channel in μA.
- The next 8191 values are the voltage measurement results for the RE0 channel in mV.
- The final 8191 values are the voltage measurement results for the SE0 channel in mV.

DC CURRENT EXAMPLE

The dc current is a standard electrochemical measurement. Depending on the sensor type, a bias voltage is applied between the reference and sense electrodes. The current output on the sense electrode is measured.

In the ADuCM355 firmware package, the M355_ECSns_DCTest project implements a dc current measurement on two electrochemical cells connected to Channel 0 (CH0) and Channel 1 (CH1). CH0 is configured for a zero biased sensor, $V_{BIAS} - V_{ZERO} = 0$. A carbon monoxide (CO) sensor is an example of a zero biased sensor. CH1 is configured for a biased sensor, $V_{BIAS} - V_{ZERO} = 600$ mV. An oxygen (O2) sensor is an example of a biased sensor.

For the purpose of testing, connect the 1 kΩ resistor star network to CH0 and CH1. Ensure that the ADuCM355 board is powered, and that the debugger is connected to the PC. Then, open the project in the IAR Embedded Workbench, build, and run the debugger. Open a terminal program to view the results. The output is the raw analog-to-digital converter (ADC) codes (see Figure 24).
HSTIA GAIN RESISTOR CALIBRATION

HSTIA has three different programmable gain resistor options (see Figure 25).

The user adjusts the gain resistors shown in Figure 25 to convert the current from the SE0, SE1, and DE0 inputs or the DE1 input to a differential voltage across the R_{TIA2} resistor, $R_{TIA2_{03}}$ resistor, or $R_{TIA2_{05}}$ resistor.

The R_{TIA2}, $R_{TIA2_{03}}$, and $R_{TIA2_{05}}$ resistors have an initial accuracy range as specified in the ADuCM355 data sheet. The resistors also vary with temperature as specified in the ADuCM355 data sheet.

If the HSTIA is uncalibrated for the selected gain resistor and the ADC PGA setting, an error will be present when measuring an absolute input current.

By using the high speed DAC (HS DAC) to create a differential voltage across an external precision R_{CAL} resistor that is connected to the ADuCM355 R_{CAL0} pin and R_{CAL1} pin, a precision calibration current can generate, which is routed through any of the three HSTIA gain resistors.

Because the calibration current value is known, and the ADC can measure the voltage drop across the R_{TIA2} resistor, $R_{TIA2_{03}}$ resistor, and $R_{TIA2_{05}}$ resistor, the exact $R_{TIA2}/R_{TIA2_{03}}/R_{TIA2_{05}}$ value can be determined.

Figure 26 shows the setup and switch settings that connect the HS DAC output to the external R_{CAL} resistor and the current flow into the HSTIA and R_{TIA2} gain resistor.

Figure 25. HSTIA Programmable Gain Resistors
Figure 26. HS DAC, HSTIA, and Switch Matrix Settings for R_{TIA2} Calibration

Figure 27. HS DAC, HSTIA, and Switch Matrix Settings for R_{TIA2,03} Calibration

Figure 28. HS DAC, HSTIA, and Switch Matrix Settings for R_{TIA2,05} Calibration
The **M355_HSRTIA_Calibration** code example project in the **examples** folder demonstrates how to configure the device to calibrate the 5 kΩ setting for RTIA2, RTIA2_03, and RTIA2_05.

The example code sends text to the UART similar to that shown in the Figure 29. The baud rate used is 57600-8-N-1. The text can be viewed by a viewing terminal such as RealTerm or HyperTerminal. To use the **M355_HSRTIA_Calibration** example code, take the following steps:

1. Press the S3 button on the EVAL-ADuCM355QSPZ evaluation board to start the calibration sequence.
 - The program calibrates the ADC offset and gain errors for LP mode with a programmable gain amplifier (PGA) gain setting of 1.5.
 - The HS DAC offset error is calibrated out.
 - The required HS DAC differential voltage is generated across the external R_cal resistor

2. After calibration, apply a current source to any of the SE0, DE0, or DE1 inputs. Press the S2 button to trigger a measurement of the input currents to the SE0 pin, DE0 pin, and DE1 pin. S2 may also be pressed before calibration to allow the user to compare the precalibration and post-calibration results.

- The voltage across R_cal is measured via the ADC P_NODE and N_NODE input channels, which allows determining the calibration current i.
- The calibration current is switched into each of the R_TIA2, R_TIA2_03, and R_TIA2_05 resistors, and the voltage drop across each measured in turn.
- The ADC HPTIA_P input channel and HPTIA_N input channel are measured for each of the three switch configurations shown in Figure 26, Figure 27, and Figure 28.
LOW POWER TIA0/TIA1 GAIN RESISTOR CALIBRATION

The ADuCM355 contains two independent, low power TIA channels.

Each TIA has an independent, programmable gain resistor to scale the input current from the SE0 pin and the SE1 pin to a voltage that the ADC can measure.

Figure 30 shows the gain resistor for the low power Channel 0 (LPTIA0). A similar diagram is valid for low power Channel 1 (LPTIA1).

Similar to the example described in the HSTIA Gain Resistor Calibration section, the user adjusts the gain resistor to convert the current from the SE0 input pin and the SE1 input pin to a differential voltage across the RTIA resistors.

These resistors have an initial accuracy range as specified in the ADuCM355 data sheet. These resistors also vary with temperature as specified in the ADuCM355 data sheet.

When uncalibrated, an error is present when trying to measure an absolute input current.

By using the low power DAC to create a differential voltage across an external precision R_{CAL} resistor that is connected to the ADuCM355 RCAL0 pin and RCAL1 pin, a precision calibration current can be generated and routed through either the LPTIA0 gain resistor or the LPTIA1 gain resistor.

Because the calibration current value is known and the ADC can measure the voltage drop across each RTIA resistor, the exact RTIA value can be determined.

Figure 31 and Figure 32 show the setup and switch settings used to connect the low power DAC outputs to the external R_{CAL} resistor and the current flows into the LPTIA gain resistors (LPRTIAx).

The M355_LPTIA_Calibration code example project in the examples folder demonstrates how to configure the device to calibrate the 4 kΩ setting for RTIA for the both LPTIA0 and LPTIA1.

The example code sends text to the UART similar to that shown in Figure 33. The baud rate used is 57600-8-N-1. View the text in a viewing terminal such as RealTerm or HyperTerminal.
Figure 31. HSTIA, LPTIA0, and Switch Matrix Settings for LPRTIA0 Calibration

Figure 32. HSTIA, LPTIA1, and Switch Matrix Settings for LPRTIA1 Calibration
To use the M355_LPTIA_Calibration sample code, take the following steps:

1. Press the S3 button on the EVAL-ADuCM355QSPZ evaluation board to start the calibration sequence.
 - The program first calibrates the ADC offset and gain errors for LP mode with a PGA gain setting of 1.5.
 - The required LP DAC differential voltage is generated across the external R_CAL resistor.
 - The voltage across R_CAL is measured via the ADC P_NODE input channel and N_NODE input channel. This method of measurement allows the user to determine the calibration current \(i \).
 - The calibration current \(i \) is then switched into each of the RTIAs across the LPTIA0 amplifier and LPTIA1 amplifier and the voltage drop across each measured in turn.
 - The ADC LPTIAx_P input channel and LPTIAx_N input channel are measured for each LPTIA (see Figure 31).

2. After calibration, apply a current source to either the SE0 input or SE1 input and press S2 to trigger a measurement of the input currents to the SE0 pin and the SE1 pin. The S2 button can also be pressed before calibration to allow the user to compare the precalibration and postcalibration results.
 - Do not apply a current to the SE0 pin or the SE1 pin while the calibration is taking place.

Figure 34 shows how to load the ADC gain calibration register for the LPTIA1 channel (ADCGNLPTIA1) in the main while() loop.
CONNECTING AN EXTERNAL GAIN RESISTOR ACROSS THE HIGH SPEED TIA

The internal high speed transimpedance amplifier (TIA) has a programmable gain resistor that allows users to configure a high speed current measurement channel for different input current ranges. However, there is an option to connect an external gain resistor instead.

The EVAL-ADuCM355QSPZ supports the connection of an external RTIA resistor across the AIN0 pin and DE0 pin, which are labelled RTIA on the top side of the printed circuit board (PCB).

The current into the HSTIA flows from AIN0 into the HSTIA inverting input with the HSTIA connected to DE0.

The ADC measures the voltage drop across the external RTIA by selecting the input channels HPTIA_P and HPTIA_N (see Figure 35).

When the external gain resistor is populated by the customer, this gain resistor can be used instead of the internal RTIA2 resistor, RTIA2_03 resistor, and RTIA2_05 resistor.

The M355_ExternalRTIA code example project in the examples folder shows how to setup the HSTIA for an external gain resistor.

AFE DIE WATCHDOG TIMER EXAMPLE

The ADuCM355 supports a watchdog timer on the analog front end (AFE) die. The watchdog timer clocks via an oscillator that is completely independent of the clocks in the Cortex-M3 core and thus meets the IEC 61508 requirement of an independent watchdog timer for a microcontroller and saves the need for an external watchdog timer chip.

The M355_AfeWdt code example project in the examples folder shows how to configure the windowed watchdog mode.

The WDT_INTERRUPT_EN #define parameter configures the project to generate a reset or an interrupt.

The default timeout period used by the project is 16 sec with a minimum period of 4 sec required before a watchdog refresh is allowed, refreshing the watchdog within 4 sec, which causes a reset or interrupt to occur.

The refresh of the watchdog timer is triggered by sending the ASCII Character 1 from a PC.

4-LEAD ELECTROCHEMICAL SENSOR EXAMPLE

Many electrochemical sensors come in 4-lead packages. The 4-lead packages referred to have a counter, reference, and two sensing electrodes. The ADuCM355 supports biasing and measuring of these sensor types.

This example project is based on the CiTiceL 4COSH dual gas sensor (carbon monoxide, CO, and hydrogen sulphide, H2S). The current flowing from the SE0 electrode indicates H2S levels. Current flowing from the SE1 electrode indicates the CO level.

This example project configures the low power, potentiostat Channel 0 to bias the sensor. The current flowing to and from SE0 is measured via the low power TIA0 channel. The current flowing from the SE1 electrode is measured via the low power TIA1 channel.

The refresh of the watchdog timer is triggered by sending the ASCII Character 1 from a PC.

For most accurate absolute measurements, combine this example with the Low Power TIA0 Gain resistor Calibration example project.
Figure 37. Circuit Setup for 4-Lead, Dual Gas Detection Sensor
MASS ERASE A DEVICE NOT RESPONDING TO SWD COMMANDS

The SWD debug tools can only communicate with the microcontroller when the device is in active mode. Similarly, watchdog or software resets when a debug session is starting result in the debug session ending with errors. To recover a device that is locked like this, mass erase the user flash.

To mass erase the user flash, take the following steps:

1. Put the device into boot mode by holding the S3 button down.
2. While holding the S3 button down, press and release the reset button (S1).
3. The device is now locked in a loop in the kernel space and does not execute user code.
4. In the IAR Embedded Workbench, navigate to Project > Download > Erase memory (see Figure 38).
5. The window shown in Figure 39 then appears. Press OK.
NOTES

I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT, ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOSS PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

UG16887-0-2/19(0)