Evaluation Board for the ADG798 High Temperature, Low Voltage, 8-Channel Multiplexer

FEATURES
- High temperature operation up to 210°C
- Supply voltages
 - Dual supply: ±2.5 V
 - Single supply: 3.0 V to 5.5 V
- Parallel interface compatible with 3 V logic

GENERAL DESCRIPTION
The EVAL-ADG798EB1Z is the evaluation board for the ADG798, which is a high temperature, 8:1 multiplexer. The entire board assembly is constructed with high temperature compliant materials and is suitable for short duration evaluation up to 210°C.

Figure 1 shows the EVAL-ADG798EB1Z in a typical evaluation setup. The ADG798 is soldered to the center of the evaluation board, and headers are provided to connect to each of the source and drain pins. A 4-pin header powers the device and provides a user defined digital logic supply voltage.

Full specifications on the ADG798 are available in the ADG798 data sheet, which should be consulted in conjunction with this user guide when using the evaluation board.

EVALUATION KIT CONTENTS
- EVAL-ADG798EB1Z evaluation board

ONLINE RESOURCES
Documents Needed
- ADG798 data sheet
- EVAL-ADG798EB1Z user guide

EQUIPMENT NEEDED
- DC voltage sources
 - ±2.5 V for dual supply
 - 3.0 V or 5.5 V for single supply
- Digital logic supply: 3 V to 5 V
- Analog signal source
- Method to measure voltage, such as a digital multimeter (DMM)

TYPICAL EVALUATION SETUP

![Figure 1. EVAL-ADG798EB1Z, Power Supply, and Signal Generator](image-url)
TABLE OF CONTENTS

- Features .. 1
- Evaluation Kit Contents... 1
- Online Resources ... 1
- Equipment Needed ... 1
- General Description ... 1
- Typical Evaluation Setup .. 1
- Revision History ... 2
- Getting Started .. 3
 - Evaluation Board Setup Procedure .. 3
- Evaluation Board Hardware .. 4
 - Power Supply ... 4
- Input Signals ... 4
- Board Construction .. 4
- Jumper Settings .. 5
- Switches and 0 Ω Resistors .. 5
- SMB Connectors ... 5
- Decoupling Capacitors .. 5
- Evaluation Board Schematics and Artwork 6
- Ordering Information ... 9
- Bill of Materials ... 9

REVISION HISTORY

9/2016—Revision 0: Initial Version
GETTING STARTED
EVALUATION BOARD SETUP PROCEDURE

The EVAL-ADG798EB1Z evaluation board operates independently and does not require any additional evaluation boards or software to operate.

Supply the evaluation board with a dual power source of ±2.5 V, or a single supply from 3.0 V to 5.5 V, by connecting VSS and GND together.

Set up a functionality test as follows:
1. Connect a power supply to J10. Connect VSS and GND together if a single supply is required.
2. Use LK1 through LK4 to control the digital signals for the ADG798. See Table 1 for the logic control truth table.

Figure 2. EVAL-ADG798EB1Z Block Diagram
EVALUATION BOARD HARDWARE

Evaluate the operation of the ADG798 using the EVAL-ADG798EB1Z. Figure 1 shows a typical evaluation setup where only a power supply and signal generator are required. Figure 2 shows the block diagram of the main components of the evaluation board.

Using the EVAL-ADG798EB1Z evaluation board, the ADG798 passes signals from either the source or drain connectors.

POWER SUPPLY

Connector J10 provides access to the supply pins of the ADG798. VDD, GND, and VSS on J10 link to the appropriate pins on the ADG798. For dual-supply voltages, the evaluation board can be powered by ±2.5 V. For single-supply voltages, the GND and VSS terminals must be connected together, and the evaluation board must be powered with a 3.3 V to 5.5 V voltage range. Use the J10 header to supply the voltage that controls the digital logic voltage level (VL).

INPUT SIGNALS

Headers connect to both the source pins and the drain pins of the ADG798. Additional subminiature Version B (SMB) connector pads are available if extra connections are required.

Each trace on the source and drain side includes two sets of 0805 pads, which can be used to place a load on the signal path to ground. A 0 Ω resistor is placed in the signal path and can be replaced with a user defined value. The resistor, combined with the 0805 pads, creates a simple resistor-capacitor (RC) filter.

The ADG798 uses a parallel interface to control the operation of the switches. The switch operation can be manually controlled using the LK1 to LK4 switches, or an external controller can be interfaced directly to the control pins by using the SMB connector pads, if required (EN, A0, A1, and A2). See Table 1 for the logic control truth table.

BOARD CONSTRUCTION

The entire board assembly uses high temperature rated components, including passives, connectors, printed circuit board (PCB) material, and solder material. A polyimide PCB laminate is used due to its very high glass transition temperature (T_g), which allows the board to maintain integrity at high temperature when standard laminate typically deteriorates. Sn90Sb10, Pb-free solder is used due to its high melting point (245°C to 250°C). NiAu surface finish (plating) is used on the PCB to avoid intermetallic formation between the tin in the solder with copper PCB traces at high temperatures. The resistors, capacitors, and connectors used are rated for extended temperature by their respective manufacturers. For more details on the board construction, see the bill of materials in Table 3.
JUMPER SETTINGS

SWITCHES AND 0 Ω RESISTORS

Links are used to control the ADG798 manually. Table 2 shows a summary of the links.

Use LK2 to LK4 to control the switches of the ADG798. Position L is tied to GND and sets the logic low, and Position H is tied to VL and sets the logic high.

Use LK1 to enable or disable the device. Position L is tied to GND and disables the device, and Position H is tied to VL and enables the device.

SMB CONNECTORS

The parallel interface of the ADG798 is controlled manually using the link headers of LK1 to LK4. The parallel interface can also be accessed using the SMB footprints: EN, A0, A1, and A2. Note that these footprints are unpopulated.

DECOUPLING CAPACITORS

The board comes with 0.1 μF decoupling capacitors populated on both the VDD and VSS power supplies. This provides sufficient decoupling for the ADG798. However, if extra decoupling is required due to a particular reason, such as a noisy power supply, use C4 and C6 to add additional decoupling capacitors.

Table 1. ADG798 Truth Table

<table>
<thead>
<tr>
<th>LK4 (A2)</th>
<th>LK3 (A1)</th>
<th>LK2 (A0)</th>
<th>LK1 (EN)</th>
<th>Connected</th>
<th>Sx</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>All switches off</td>
<td></td>
</tr>
<tr>
<td>Position L</td>
<td>Position L</td>
<td>Position L</td>
<td>Position H</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>Position L</td>
<td>Position L</td>
<td>Position H</td>
<td>Position L</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>Position L</td>
<td>Position L</td>
<td>Position L</td>
<td>Position H</td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>Position L</td>
<td>Position L</td>
<td>Position H</td>
<td>Position H</td>
<td>S4</td>
<td></td>
</tr>
<tr>
<td>Position H</td>
<td>Position L</td>
<td>Position L</td>
<td>Position H</td>
<td>S5</td>
<td></td>
</tr>
<tr>
<td>Position H</td>
<td>Position L</td>
<td>Position H</td>
<td>Position H</td>
<td>S6</td>
<td></td>
</tr>
<tr>
<td>Position H</td>
<td>Position L</td>
<td>Position H</td>
<td>Position L</td>
<td>S7</td>
<td></td>
</tr>
<tr>
<td>Position H</td>
<td>Position H</td>
<td>Position H</td>
<td>Position H</td>
<td>S8</td>
<td></td>
</tr>
</tbody>
</table>

1 X means don’t care.

Table 2. Switch and 0 Ω Resistor Descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK1</td>
<td>L</td>
<td>Logic 0 on the EN pin</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Logic 1 on the EN pin</td>
</tr>
<tr>
<td>LK2</td>
<td>L</td>
<td>Logic 0 on the A0 pin</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Logic 1 on the A0 pin</td>
</tr>
<tr>
<td>LK3</td>
<td>L</td>
<td>Logic 0 on the A1 pin</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Logic 1 on the A1 pin</td>
</tr>
<tr>
<td>LK4</td>
<td>L</td>
<td>Logic 0 on the A2 pin</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Logic 1 on the A2 pin</td>
</tr>
</tbody>
</table>
Figure 3. ADG798 Evaluation Board Schematic (Part 1)
Figure 4. ADG798 Evaluation Board Schematic (Part 2)

Figure 5. EVAL-ADG798EB1Z Silkscreen
ORDERING INFORMATION

BILL OF MATERIALS

Table 3.

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer Part Number</th>
<th>Stock Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 to A2, EN, S1 to S8, D</td>
<td>50 Ω, straight, SMB jacks</td>
<td>Not applicable</td>
<td>Do not insert</td>
</tr>
<tr>
<td>C1 to C3, C5, C4, C6</td>
<td>Ceramic capacitor, 0.1 μF, 100 V, NP0 1210</td>
<td>C1210H104J1GACTU</td>
<td>Digikei 399-5748-2-ND</td>
</tr>
<tr>
<td>T1 to T9, T_A0 to T_A2, T_EN, GND1, GND2</td>
<td>Through hole, electrolytic capacitor</td>
<td>Not applicable</td>
<td>Do not insert</td>
</tr>
<tr>
<td>J1 to J9</td>
<td>Test point</td>
<td>YMC02SAAN</td>
<td>Digikei 59665-02-ND</td>
</tr>
<tr>
<td>J10</td>
<td>Vertical, high temperature series, through hole, header, 4 positions, 2.54 mm</td>
<td>YMC04SAAN</td>
<td>Digikei 59665-04-ND</td>
</tr>
<tr>
<td>R1 to R9</td>
<td>Vertical, high temperature series, through hole, header, 2 positions, 2.54 mm</td>
<td>SPJ3003-0RN1</td>
<td>Trendsetter Electronics</td>
</tr>
<tr>
<td>R10 to R27</td>
<td>0 Ω, 0805, 0.125 W, maximum operating temperature = 300°C</td>
<td>Not applicable</td>
<td>Do not insert</td>
</tr>
<tr>
<td>LK1 to LK4</td>
<td>SMD, 0805 resistors</td>
<td>YMC03SAAN and WDC02XNN</td>
<td>Digikei 59665-03-ND and Digikei 59663-ND</td>
</tr>
<tr>
<td>U1</td>
<td>High temperature, high voltage, latch-up proof, 8-channel multiplexer;</td>
<td>ADG798HFRZ</td>
<td>ADG798HFRZ</td>
</tr>
<tr>
<td>Not applicable</td>
<td>Solder, Sn90Sb10 alloy</td>
<td>Indium indalloy 259 solder paste, 8.9 HF</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a non-exclusive, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.