Evaluating the **ADG5209F**, Overvoltage Protected Dual 4:1 Multiplexer

FEATURES

Supply voltages
- Dual supply: ±5 V to ±22 V
- Single supply: 8 V to 44 V

Protected against overvoltage on source pins
- Signal voltages up to −55 V and +55 V

Parallel interface compatible with 3 V logic

On-board low dropout (LDO) regulator for digital supply and control, if required

GENERAL DESCRIPTION

The EVAL-ADG5209FEBZ is the evaluation board for the ADG5209F and features an overvoltage protected dual 4:1 multiplexer. The ADG5209F has overvoltage detection and protection circuitry on the source pins and is protected against signals up to −55 V and +55 V in both the powered and unpowered states.

Figure 1 shows the EVAL-ADG5209FEBZ in a typical evaluation setup. The ADG5209F is soldered to the center of the evaluation board, and wire screw terminals are provided to connect to each of the source and drain pins. Three screw terminals power the device, with a fourth terminal used to provide a user defined digital logic supply voltage, if required. Alternatively, a low dropout (LDO) regulator is provided for 5 V digital logic supply.

Full specifications on the ADG5209F are available in the ADG5209F data sheet, which must be consulted in conjunction with this user guide when using the evaluation board.

EVALUATION KIT CONTENTS

EVAL-ADG5209FEBZ evaluation board

ONLINE RESOURCES

Documents Needed
- ADG5209F data sheet
- EVAL-ADG5209FEBZ user guide

EQUIPMENT NEEDED

DC voltage source
- ±22 V for dual supply
- 44 V for single supply

Optional digital logic supply: 3 V to 5 V

Analog signal source

Method to measure voltage, such as a digital multimeter (DMM)

TYPICAL EVALUATION SETUP

![Figure 1. EVAL-ADG5209FEBZ, Power Supply, and Signal Generator](image-url)
TABLE OF CONTENTS
Features ... 1
Evaluation Kit Contents... 1
Online Resources .. 1
Equipment Needed ... 1
General Description ... 1
Typical Evaluation Setup 1
Revision History .. 2
Getting Started .. 3
 Evaluation Board Setup Procedure 3
 Evaluation Board Hardware 4
 Power Supply ... 4
 Input Signals ... 4
 Jumper Settings .. 5
 Switches and 0 Ω Resistors 5
 SMB Connectors ... 5
 Evaluation Board Schematics and Artwork 6
 Ordering Information ... 11
 Bill of Materials ... 11

REVISION HISTORY
5/2016—Rev. 0 to Rev. A
Changes to Figure 1 .. 1
Changes to Input Signals Section 4
Changes to SMB Connectors Section and Table 1 ... 5

8/2015—Revision 0: Initial Version
GETTING STARTED
EVALUATION BOARD SETUP PROCEDURE

The EVAL-ADG5209FEBZ evaluation board operates independently and does not require any additional evaluation boards or software to operate. An on-board LDO regulator is provided as the digital power supply to manually control the ADG5209F.

Supply the evaluation board with a dual power source of up to ±22 V or a single supply of up to +44 V by connecting VSS and GND together.

A functionality test can be set up as follows:
1. Connect a power supply to J5. Connect VSS and GND together if a single supply is required.
2. Ensure a 0 Ω resistor is inserted in R15 to use the on-board LDO regulator, and that a 0 Ω resistor is inserted in R14.
3. SW1 through SW3 control the digital signals for the ADG5209F.

Figure 2. EVAL-ADG5209FEBZ Block Diagram
EVALUATION BOARD HARDWARE

The operation of the ADG5209F is evaluated using the EVAL-ADG5209FEBZ. Figure 1 shows a typical evaluation setup where only a power supply and signal generator are required. Figure 2 shows the block diagram of the main components of the evaluation board.

Using this evaluation board, the ADG5209F passes signals from either the source or drain connectors. The source pins have fault detection circuitry that react to an overvoltage event. During an overvoltage event, the channel on which the fault occurs is turned off. See the ADG5209F data sheet for more details.

POWER SUPPLY

Connector J5 provides access to the supply pins of the ADG5209F. VDD, GND, and VSS on J5 link to the appropriate pins on the ADG5209F. For dual-supply voltages, the evaluation board can be powered from ±5 V to ±22 V. For single-supply voltages, the GND and VSS terminals must be connected together, and power the evaluation board with 8 V to 44 V. Additionally, an on-board LDO regulator is provided for a digital control voltage. If necessary, a secondary voltage source can be connected to EXT_VL and used to control the digital voltages. To use EXT_VL, move the 0 Ω resistor from R14 to R13. Do not expose the on-board LDO regulator to voltages greater than 28 V; remove R15 and supply an alternative digital voltage via EXT_VL, if required.

INPUT SIGNALS

Four screw connectors are provided to connect to both the source and drain pins of the ADG5209F. Additional Subminiature Version B (SMB) connector pads are available if extra connections are required. The ADG5209F is overvoltage protected on the source side, and each source terminal (S1A to S4A and S1B to S4B) can be presented with a voltage of up to +55 V or −55 V. See the ADG5209F data sheet for more details.

Each trace on the source and drain side includes two sets of 0603 pads that can be used to place a load on the signal path to ground. A 0 Ω resistor is placed in the signal path and can be replaced with a user defined value. Use the resistor combined with the 0603 pads to create a simple resistor capacitor (RC) filter.

The ADG5209F uses a parallel interface to control the operation of the switches. The switch operation can be manually controlled using the SW1 to SW3 switches, or an external controller can be interfaced directly to the control pins by using the SMB connectors (EN, A0, and A1) and removing the 0 Ω R31, R33, and R35 resistors.
JUMPER SETTINGS
SWITCHES AND 0 Ω RESISTORS

Switches control the ADG5209F manually and 0 Ω resistors configure the digital control voltage. Table 2 shows a summary of the switches and 0 Ω resistors and how they are used on the evaluation board.

Use SW2 and SW3 to control the switches of the ADG5209F. Position L (low) is tied to GND and sets the logic low, and Position H (high) is tied to VL and sets the logic high.

Use SW1 to enable or disable the device. Position DIS (disable) is tied to GND and disables the device, and Position EN (enable) is tied to VL and enables the device.

Table 1. ADG5209F Truth Table

<table>
<thead>
<tr>
<th>SW3 (A1)</th>
<th>SW2 (A0)</th>
<th>SW1 (EN)</th>
<th>Connected SX</th>
</tr>
</thead>
<tbody>
<tr>
<td>X¹</td>
<td>X¹</td>
<td>DIS (disable)</td>
<td>All switches off</td>
</tr>
<tr>
<td>L (low)</td>
<td>L (low)</td>
<td>EN (enable)</td>
<td>S1A/S1B</td>
</tr>
<tr>
<td>L (low)</td>
<td>H (high)</td>
<td>EN (enable)</td>
<td>S2A/S2B</td>
</tr>
<tr>
<td>H (high)</td>
<td>L (low)</td>
<td>EN (enable)</td>
<td>S3A/S3B</td>
</tr>
<tr>
<td>H (high)</td>
<td>H (high)</td>
<td>EN (enable)</td>
<td>S4A/S4B</td>
</tr>
</tbody>
</table>

¹ X means don’t care.

Table 2. Switch and 0 Ω Resistor Descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>DIS (disable)</td>
<td>Logic 0 on the EN pin</td>
</tr>
<tr>
<td></td>
<td>EN (enable)</td>
<td>Logic 1 on the EN pin</td>
</tr>
<tr>
<td>SW2</td>
<td>L (low)</td>
<td>Logic 0 on the A0 pin</td>
</tr>
<tr>
<td></td>
<td>H (high)</td>
<td>Logic 1 on the A0 pin</td>
</tr>
<tr>
<td>SW3</td>
<td>L (low)</td>
<td>Logic 0 on the A1 pin</td>
</tr>
<tr>
<td></td>
<td>H (high)</td>
<td>Logic 1 on the A1 pin</td>
</tr>
<tr>
<td>R13/R14</td>
<td>R14</td>
<td>On-board LDO regulator digital voltage</td>
</tr>
<tr>
<td></td>
<td>R13</td>
<td>EXT_VL digital voltage</td>
</tr>
<tr>
<td>R15</td>
<td>Inserted</td>
<td>LDO regulator powered up</td>
</tr>
<tr>
<td></td>
<td>Removed</td>
<td>LDO regulator unpowered</td>
</tr>
<tr>
<td>R31, R33, R35</td>
<td>Inserted</td>
<td>SW1 to SW3 are used to control digital logic</td>
</tr>
<tr>
<td></td>
<td>Removed</td>
<td>SMB connectors are used to control digital logic</td>
</tr>
</tbody>
</table>

R15 connects the on-board LDO regulator to the VDD supply. Remove this resistor to protect the LDO regulator from voltages higher than 28 V. Change the 0 Ω resistor to the R13 position to use an alternative digital voltage connected to DC_V1.

SMB CONNECTORS

The parallel interface of the ADG5209F is controlled manually using the link headers (SW1 to SW3), or it can be accessed using the SMB connectors (EN, A0, and A1). To use the SMB connectors, remove the 0 Ω R31, R33, and R35 resistors.
EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 3. ADGS209F Evaluation Board Schematic (Part 1)
Figure 4. ADG5209F Evaluation Board Schematic (Part 2)

Figure 5. ADG5209F Evaluation Board Schematic (Part 3)
Figure 6. EVAL-ADG5209FEBZ Silkscreen

Figure 7. EVAL-ADG5209FEBZ Top Layer
Figure 8. EVAL-ADG5209FEBZ Layer 2

Figure 9. EVAL-ADG5209FEBZ Layer 3
Figure 10. EVAL-ADG5209FEBZ Bottom Layer
ORDERING INFORMATION

BILL OF MATERIALS

Table 3.

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer Part Number</th>
<th>Stock Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0, A1, EN</td>
<td>50 Ω, straight, SMB jacks</td>
<td>SMB1251B1-3GT30G-50</td>
<td>FEC 1111349</td>
</tr>
<tr>
<td>C3, C4, C7, C8</td>
<td>50 V, X7R, 0603 size, 0.1 µF, multilayer ceramic capacitors</td>
<td>GRM188R71H104KA93D</td>
<td>FEC 882-0023</td>
</tr>
<tr>
<td>C1, C2</td>
<td>50 V, tantalum, D size, 10 µF capacitors</td>
<td>TAJD106K050RNU</td>
<td>FEC 143-2387</td>
</tr>
<tr>
<td>C5, C6</td>
<td>Ceramic, multilayer, 4.7 µF capacitors</td>
<td>C2012X5R1H475K125AB</td>
<td>FEC 2346932</td>
</tr>
<tr>
<td>DA, DB</td>
<td>50 Ω, SMB sockets</td>
<td>SMB1251B1-3GT30G-50</td>
<td>Do not insert</td>
</tr>
<tr>
<td>J1, J2, J5</td>
<td>Black test points</td>
<td>20-2137</td>
<td>FEC 873-1128</td>
</tr>
<tr>
<td>J3, J4</td>
<td>4-pin terminal blocks (5 mm pitch)</td>
<td>CTB5000/4</td>
<td>FEC 151791</td>
</tr>
<tr>
<td>R2, R5, R8, R11, R12, R20, R23, R26, R29, R31, R33, R35, R38, R41</td>
<td>2-pin terminal blocks (5 mm pitch)</td>
<td>CTB5000/2</td>
<td>FEC 151789</td>
</tr>
<tr>
<td>R1, R3, R4, R6, R7, R9, R10, R16, R18, R19, R21, R22, R24, R25, R27, R28, R30, R37, R39, R40, R42</td>
<td>0603, 1%, 0 Ω resistors</td>
<td>MC0063W06030R</td>
<td>FEC 9331662</td>
</tr>
<tr>
<td>R32, R34, R36</td>
<td>SMD, 0603 resistors</td>
<td>Not applicable</td>
<td>Do not insert</td>
</tr>
<tr>
<td>R14, R15</td>
<td>1 kΩ, 0.063 W, 1%, 0603, resistors</td>
<td>MC0063W060311K</td>
<td>FEC 9330380</td>
</tr>
<tr>
<td>R13</td>
<td>0805, 1%, 0 Ω resistors</td>
<td>MC01W08050R</td>
<td>FEC 9333681</td>
</tr>
<tr>
<td>S1A, S2A, S3A, S4A, S1B, S2B, S3B, S4B, SW1, SW2, SW3</td>
<td>SMD, 0805 resistor</td>
<td>Not applicable</td>
<td>Do not insert</td>
</tr>
<tr>
<td>T1, T2, T3, T4, T5, T6, T7, T8, T9, T10</td>
<td>50 Ω, SMB sockets</td>
<td>SMB1251B1-3GT30G-50</td>
<td>Do not insert</td>
</tr>
<tr>
<td>T_A0, T_A1, T_EN</td>
<td>Single-pole, double throw (SPDT), SMT slide switches</td>
<td>CAS-120TA</td>
<td>Digi-Key CAS120JCT-ND</td>
</tr>
<tr>
<td>U1</td>
<td>Red test points</td>
<td>20-313137</td>
<td>FEC 873-1144</td>
</tr>
<tr>
<td>U2</td>
<td>Red test points</td>
<td>20-313137</td>
<td>FEC 873-1144</td>
</tr>
<tr>
<td></td>
<td>Fault protection, −0.4 pC Qnu, dual 4:1 multiplexer</td>
<td>ADG5209FBRUZ</td>
<td>ADG5209FBRUZ</td>
</tr>
<tr>
<td></td>
<td>Linear regulator, 5.0 V, LDO</td>
<td>ADP7142AUJZ-5.0</td>
<td>ADP7142AUJZ-5.0-R7</td>
</tr>
</tbody>
</table>
NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to promptly return the Evaluation Board to ADI. ADI’s total liability from any and all causes shall be limited to the amount of one hundred US dollars ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.