Evaluating the ADAU1452 SigmaDSP Audio Processor

FEATURES
- On-board AD1938 codec with 4 analog inputs and 8 analog outputs
- Stereo S/PDIF input and output
- Self boot EEPROM memory

EVALUATION KIT CONTENTS
- EVAL-ADAU1452REVBZ evaluation board
- EVAL-ADUSB2EBZ communications adapter (USBi)
- USB cable with mini-B plug
- AC to 6 V dc power supply

EQUIPMENT REQUIRED
- PC running Windows XP, Windows Vista, or Windows 7 OS
- Analog, stereo audio source with an output cable terminated with a 3.5 mm (1/8 inch) plug (for analog input)
- Headphones, desktop speakers, or audio input with a cable terminated with a 3.5 mm (1/8 inch) plug (for analog output)
- S/PDIF audio source and receiver, each with optical cables terminated with TOSLINK connectors (for digital input/output)
- Audio cables

DOCUMENTS NEEDED
- ADAU1452 data sheet
- AD1938 data sheet
- AN-1006 Application Note

SOFTWARE REQUIRED
- SigmaStudio software, available for download from the SigmaStudio product page

GENERAL DESCRIPTION
This user guide describes the design, setup, and operation of the EVAL-ADAU1452REVBZ evaluation board. This board evaluates and develops the software for the ADAU1452 and ADAU1462 SigmaDSP® processors. The ADAU1452 and the ADAU1462 are functionally identical, except that the ADAU1462 has more program and data memory. Selecting this component in the software instructs the compiler to limit the amount of allocated memory to match the ADAU1462.

All other procedures and instructions in this user guide are applicable to both the ADAU1462 and ADAU1452.

The EVAL-ADAU1452REVBZ evaluation board provides access to the digital serial audio ports of the ADAU1452 and some of the general-purpose input/outputs (GPIOs). An analog input and output is provided by the AD1938 codec included in the evaluation kit.

The ADAU1452 core is programmed using the Analog Devices, Inc., SigmaStudio® software, which interfaces to the evaluation board via the universal serial bus interface (USBi). The on-board electronically erasable programmable read-only memory (EEPROM) can be programmed for self boot mode.

The evaluation board is powered by a 6 V dc supply, which is regulated to the voltages required on the board. The printed circuit board (PCB) is a 4-layer design with a ground plane and a power plane on the inner layers. The evaluation board includes connectors for external analog inputs and outputs and optical Sony/Philips digital interface (S/PDIF) interfaces. The integrated oscillator circuit and the on-board, 12.288 MHz passive crystal (Y1) provides the master clock.

For full details, see the ADAU1452 and AD1938 data sheets, which must be used in conjunction with this user guide when using the EVAL-ADAU1452REVBZ evaluation board.
TABLE OF CONTENTS
Features ... 1
Evaluation Kit Contents ... 1
Equipment Required .. 1
Documents Needed .. 1
Software Required ... 1
General Description .. 1
Revision History ... 2
Evaluation Board Photograph 3
Setting Up the Evaluation Board 4
Installing the SigmaStudio Software 4
Installing the EVAL-ADUSB2EBZ (USBi) Drivers 4
Disabling the Self Boot Switch 5
Powering Up the Evaluation Board 6
Connecting the Audio Cables 6
Setting Up Communications in SigmaStudio 8
Creating a Basic Signal Flow 9
Downloading the Program to the DSP 11
Adding S/PDIF Input and Output to the Project 11
Controlling Volume with a Potentiometer 16
Using the Evaluation Board 19
Power Supply ... 19
Inputs and Outputs .. 19
Multipurpose (MPx) Pins 21
AUXADCx Pins ... 22
Communications Header 22
Self Boot ... 23
Reset ... 25
Status LEDs ... 25
Codec Control from SigmaStudio Modification 26
Modifying the EVAL-ADUSB2EBZ (USBi) 27
Modifying the EVAL-ADAU1452REVBZ 28
Using the Modified EVAL-ADAU1452REVBZ Board and USBi ... 32
Hardware Descriptions ... 35
ICs ... 35
Status LEDs ... 35
Switch and Push-Button Descriptions 36
Evaluation Board Schematics and Artwork 37
Ordering Information ... 51
Bill of Materials .. 51

REVISION HISTORY
10/2019—Revision 0: Initial Version
EVALUATION BOARD PHOTOGRAPH

Figure 1.
SETTING UP THE EVALUATION BOARD

Using the EVAL-ADAU1452REVBZ evaluation board requires a PC running a Windows® XP operating system (OS) or later with a USB interface, the USBi, and an internet connection. The PC communicates with the evaluation board using the included USBi.

The software tool chain used with the ADAU1452 is SigmaStudio, a fully graphical user interface (GUI)-based programming environment. No digital signal processing (DSP) programming is required. A full version of SigmaStudio, which includes a library of DSP building blocks and the required USBi drivers, can be downloaded from the SigmaStudio software page on the Analog Devices website at www.analog.com/SigmaStudio.

INSTALLING THE SigmaStudio SOFTWARE

To download the latest version of SigmaStudio, take the following steps:

1. Go to the SigmaStudio software page on the Analog Devices website and select the latest version of the SigmaStudio software from the Downloads and Related Software section.
2. Determine whether the software must be installed on a 32-bit or 64-bit version of Windows and locate the latest, corresponding release version of SigmaStudio.
3. Download the installer and run the executable file. Follow the prompts in the program and accept the license agreement to install the software.

INSTALLING THE EVAL-ADUSB2EBZ (USBi) DRIVERS

To use the USBi, install SigmaStudio first (see the Installing the SigmaStudio Software section). After installing the SigmaStudio, take the following steps:

1. Connect the USBi to an available USB 2.0 port using the USB cable included in the evaluation board kit. The USBi does not function properly with a USB 3.0 port.
2. Install the driver software (see the Using Windows XP section or the Using Windows 7 or Windows Vista section for more information).

Using Windows XP

After connecting the USBi to the USB 2.0 port, Windows recognizes the device (see Figure 2) and prompts the user to install the required drivers. To install these drivers, take the following steps:

1. From the Found New Hardware Wizard window, select the Install from a list or specific location (Advanced) radio button and click Next > (see Figure 3).

2. In the next window, select the Search for the best driver in these locations radio button, select the Include this location in the search: checkbox, and click Browse to find the USB drivers subdirectory within the SigmaStudio directory (see Figure 4).

Figure 2. Found New Hardware Notification

Figure 3. Found New Hardware Wizard—Installation

Figure 4. Found New Hardware Wizard—Search and Installation Options
3. When the warning about Windows logo testing appears, click **Continue Anyway** (see Figure 5).

![Hardware Installation](image1.png)

Figure 5. Hardware Installation—Windows Logo Testing Warning

The **USBi** drivers are now installed. Leave the **USBi** connected to the PC.

Using Windows 7 or Windows Vista

After connecting the **USBi** to the USB 2.0 port, Windows 7 or Windows Vista recognizes the device and installs the drivers automatically (see Figure 6). After the installation is complete, leave the **USBi** connected to the PC.

![USBi Driver Installed Correctly Notification](image2.png)

Figure 6. USBi Driver Installed Correctly Notification

Confirming Proper Installation of the USBi Drivers

To confirm that the **USBi** drivers are properly installed, take the following steps:

1. With the **USBi** still connected to the computer, check that both the yellow I2C LED and the red power indicator (D4) LED are illuminated (see Figure 7).
2. In the Windows **Device Manager** under the **Universal Serial Bus controllers** section (see Figure 8), check that **Analog Devices USBi (programmed)** is displayed.

![Device Manager](image3.png)

Figure 8. Confirming Driver Installation with the Device Manager

DISABLING THE SELF BOOT SWITCH

When setting up the EVAL-ADAU1452REVBZ evaluation board, ensure that the first switch of the four-position, dual, inline package (DIP) switches, S3, is in the off position, meaning the switch is pointed away from the **SELFBOOT** label on the evaluation board (see Figure 67).

When the default S3 switch position is in the off (disabled) position, the **ADAU1452** is prevented from executing a self boot operation at power-up. When the switch is in the on position, LED D7 (see Figure 76) illuminates and a self boot operation executes. Self boot also causes the **ADAU1452** to attempt to load code from an EEPROM when the device powers up or comes out of reset.
POWERING UP THE EVALUATION BOARD

To power up the evaluation board, take the following steps:

1. Connect the included 6 V dc power supply to the wall outlet (100 V to 240 V, ac 50 Hz to 60 Hz).
2. Connect the female plug of the power supply to the J4 male connector on the EVAL-ADAU1452REVZ board, as shown in Figure 9.

3. After the power supply is connected, the D2 (A_3V3) status LED illuminates (see Figure 76).
4. Connect the ribbon cable of the USBi to the control port of the EVAL-ADAU1452REVZ (see Figure 10). The USBi must already be connected to the USB 2.0 port of the computer.

CONNECTING THE AUDIO CABLES

To connect the audio cables to the evaluation board, take the following steps:

1. Connect an analog stereo audio source to J9 (IN1) with a standard 3.5 mm (1/8 inch) stereo tip, ring, and sleeve (TRS) audio cable (see Figure 11). The audio signals must be single-ended and line level with a maximum voltage of 2.8 V p-p. The tip of the plug is the left channel analog audio, the ring is the right channel analog audio, and the sleeve is the common or ground.
2. Connect headphones or powered speakers to J10 (OUT1) (see Figure 12).

Figure 11 shows the input source connection and Figure 12 shows the output connection. Figure 13 shows the location of the input and output connectors on the evaluation board.
Figure 13. Location of J10 (OUT1) and J9 (IN1), Schematic Rotated 90°
SETTING UP COMMUNICATIONS IN SigmaStudio

When using the EVAL-ADAU1452REVBZ board to evaluate the ADAU1462, select the ADAU1462 block rather than the ADAU1452, as shown in Figure 15.

To set up communications with the EVAL-ADAU1452REVBZ board in SigmaStudio, take the following steps:

1. Start the SigmaStudio software either by double-clicking the desktop shortcut or by finding and running the executable file in File Explorer.
2. To create a new SigmaStudio project, select New Project from the File menu or by pressing the Ctrl + N keys. The Hardware Configuration tab is the default view of the new project.
3. In the Hardware Configuration tab, add the appropriate components to the project space by clicking and dragging them from the left Tree ToolBox panel to the empty white project space on the right of the window. The user can change the names of the component blocks as desired.
4. Add a USB Interface block (the USBi) to the project by clicking USBi from the Communication Channels subsection of the Tree ToolBox (see Figure 14), and then dragging it to the project space.
5. Add an IC1 block to the project by clicking the ADAU1452 component from the Processors (ICs/DSPs) subsection (see Figure 15), and then dragging it into the project space.
6. Ensure that SigmaStudio can detect the USBi on the USB port of the PC by checking if the background of the USB label is green in the USB Interface block (see Figure 16).
7. When SigmaStudio cannot detect the USBi connected to the PC USB port, the background of the USB label is red (see Figure 17). This error can occur either when the USBi is not connected to the port or when the drivers are installed incorrectly.
8. To connect the USB Interface block to the IC1 block, the ADAU1452, click and drag a line representing a wire between the blue pin of the USB Interface block and the green pin of the IC1 block (see Figure 18). This connection allows the USBi to communicate with the ADAU1452. The corresponding drop-down field of the USB Interface block automatically fills with the default mode and channel for the connected IC1 block. With the ADAU1452, the default communications mode is SPI, the default slave select line is 1, and the default address is 0.
CREATING A BASIC SIGNAL FLOW

To create a signal processing flow, take the following steps:

1. Click the Schematic tab near the top of the window (see Figure 19).

![Figure 19. Schematic Tab](image)

2. To add the appropriate elements to the project space, click and drag the elements from the Tree ToolBox to the empty white project space on the right of the window. The Tree ToolBox contains all the algorithms that can run in SigmaDSP.

3. Add an Input1 block by clicking the Input component from the (IC 1) ADAU1452 > IO > Input > sdata 0-15 folder (see Figure 20), and then dragging it into the empty project space. The Input1 block, which represents an input channel, then appears as shown in Figure 21. By default, Channel 0 and Channel 1 are selected and this configuration matches the analog audio source hardware connections shown in Figure 11 and Figure 12. Therefore, no modifications are needed.

![Figure 20. Adding an Input Component](image)

![Figure 21. Input1 Block in the Project Space](image)

4. Add two output blocks, Output1 and Output2, by clicking the Output component from the (IC 1) ADAU1452 > IO > Output folder (see Figure 22), and then dragging it into the project space. Ensure that these blocks, which represent output channels, are assigned to Channel 0 and Channel 1.

![Figure 22. Adding an Output Component](image)

5. Repeat Step 4 to add another output (see Figure 23).

![Figure 23. Output1 and Output2 Blocks in the Project Space](image)
6. To connect each Input1 channel to the corresponding output block, click and drag a line representing a wire between the blue pin of the Input1 block and the green pin of the corresponding output block (see Figure 24). Input1 Channel 0 connects to Output1 Channel 0 and Input1 Channel 1 connects to Output2 Channel 1.

![Figure 24. Signal Flow with Two Analog Inputs and Two Analog Outputs Connected](image)

The default register settings in SigmaStudio are configured to match the EVAL-ADAU1452REVBZ board hardware, including the signal routing between the ADAU1452 and the AD1938 codec.

When these steps are complete, the basic signal flow is complete and the stereo analog input source passes directly through the SigmaDSP and connects to the stereo analog output.

Add Volume Control

To add volume control functionality to the project, take the following steps:

1. Add a Single1 block (volume control) by clicking the Single Volume component from the Volume Controls > Adjustable Gain > Clickless HW Slew folder (see Figure 25), and then dragging it to the project space.

![Figure 25. Adding a Single Volume Component](image)

2. By default, the Single1 block has one input and one output, meaning it is a single channel. To add another channel, right-click the empty white space of the Single1 block and from the drop-down menu that appears, select the Grow Algorithm > 1. Gain (HW slew) > 1 option (see Figure 26).

3. To delete the existing yellow connection wires, the connections added in Step 6 of the Creating a Basic Signal Flow section, click the connection wires and then press the Delete key.

4. Connect the blocks as shown in Figure 27.

![Figure 27. Completed Signal Flow with Volume Control](image)

After performing these steps, the schematic of the completed signal flow (see Figure 27) is ready to be compiled and downloaded to the evaluation board.
DOWNLOADING THE PROGRAM TO THE DSP

After the signal is completed, compile and download the DSP code to the DSP either by clicking the **Link/Compile/Download** button in the main toolbar of **SigmaStudio** (see Figure 28) or by pressing the **F7** key.

After the code is downloaded to the DSP, the following events occur almost simultaneously:

- If the compiler finishes compiling the project, the compiled data downloads from **SigmaStudio** via the **USBi** to the **ADAU1452**, and the **SigmaDSP** starts running.
- The status bar in the lower right corner of the **SigmaStudio** window (see Figure 29) turns from blue to green and the text changes from **Design Mode** to **Active: Downloaded** (see Figure 29 and Figure 30). Until this point, **SigmaStudio** is in design mode, as noted by the blue status bar and the **Design Mode** text in the lower right corner of the **SigmaStudio** window (see Figure 29).

- The signal flow runs on the **EVAL-ADAU1452REVBZ** board and the audio passes from the analog input to the analog output. To change the volume in real time, click and drag the volume control slider in the **Single1** block in the **Schematic** tab (see Figure 27).

- The **Output** window shown in Figure 31 is open by default at the time of compilation and displays a compiler output log. Open or close the **Output** window by using the keyboard shortcut, **Ctrl + 4**. The **Output** window shows the compiler output log only if it is open when the **Link/Compile/Download** button is clicked.

ADDING S/PDIF INPUT AND OUTPUT TO THE PROJECT

The **EVAL-ADAU1452REVBZ** evaluation board has two optical S/PDIF interfaces. One interface is an optical input that converts the optical signal to an electrical signal that is sent to the **ADAU1452** S/PDIF receiver (the SPDIFIN pin). The other interface is an optical output that takes the electrical output from the **ADAU1452** S/PDIF transmitter (the SPDIFOUT pin) and converts it to an optical signal.

Figure 32 shows the location of the optical input connector and the optical output connector. The connectors are located on the underside of the PCB.
Figure 32. Location of S/PDIF Optical Input (J5) and S/PDIF Optical Output (J6), Schematic Rotated 90°
To add a stereo S/PDIF input and output to the project in SigmaStudio, take the following steps:

1. Connect an S/PDIF source to the EVAL-ADAU1452REVBZ board by connecting a standard TOSLINK® optical cable to the S/PDIF receiver connector, U2 (see Figure 33).

2. Configure the S/PDIF input and output by modifying the ADAU1452 registers with the following steps in order:

 - Click the Hardware Configuration tab, then click the IC 1 – ADAU145x Register Controls tab at the bottom of the window (see Figure 34).
 - Next, click the SPDIF_RX tab (see Figure 35).
 - Enable the SPDIF_RESTART register by clicking the Do not automatically restart the audio on relock button (see Figure 36). After clicking this button, the text displayed on the button changes to Restarts the audio automatically on relock and the color changes from red to green (see Figure 37).
 - To enable the S/PDIF interface, click the Disabled button in the SPDIF TX EN section. When this button is clicked, the text displayed on the button changes to Enabled and the button color changes from red to green (see Figure 38).

3. Click the ROUTING_MATRIX tab in the register controls tab shown in Figure 34 to allow users to configure the routing matrix (see Figure 39).
4. To configure the S/PDIF receiver signal routing, click the first asynchronous sample rate converter (ASRC) button, ASRC 0 (see Figure 40), in the ROUTING_MATRIX tab to open the window in Figure 41. Configure the ASRC 0 routing matrix registers using the drop-down menus until the menus match Figure 41. This configuration routes the S/PDIF receiver signal through an ASRC before the signal is accessed in the DSP core. It is necessary to route the signal through the ASRC because the clock recovered from the S/PDIF source is not synchronous to the ADAU1452.

5. To configure the S/PDIF transmitter signal routing, begin by clicking the S/PDIF TX box (see Figure 42).

6. From the drop-down menu that appears, select the From DSP option to choose the signal coming from the DSP core to route the DSP core outputs to the S/PDIF transmitter (see Figure 43).

7. Close the SPDIFTX INPUT dialog box shown in Figure 43.

8. Confirm the DSP core outputs are routed to the S/PDIF transmitter by verifying that the color of the S/PDIF TX box changes from gray to black (see Figure 44). If the color of the box changes to black, the DSP core is successively routed to the S/PDIF transmitter, allowing the output of ASRC 0 to be used in the DSP program.

9. Click the Schematic tab at the top of the window to return to the schematic design view.

10. Add an Asrcin1 block (the S/PDIF input) to the project by clicking the Asrc Input component from the IO > ASRC > From ASRC folder (see Figure 45), and dragging it to the project space where it appears as shown in Figure 46.
Because the left and right signals of the S/PDIF receiver pass through the ASRC 0, the input to the DSP program is the Asrcin1 block in SigmaStudio. The naming convention for the input and output blocks is such that all blocks in SigmaStudio are named from the perspective of the DSP core. Therefore, the Asrcin1 block in SigmaStudio represents the input to the DSP from the ASRC outputs. The inputs to the ASRCs themselves are defined in the register window (see Figure 41).

By default, Channel 0 and Channel 1 are active when the corresponding checkboxes are selected. Because the ASRC 0 outputs correspond to Channel 0 and Channel 1, use the default configuration shown in Figure 46. For reference, Table 1 provides a mapping of the ASRC outputs to the corresponding channels on the Asrcin1 block in the DSP schematic.

<table>
<thead>
<tr>
<th>ASRC Output</th>
<th>Corresponding Channels on ASRC Input Block in SigmaStudio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASRC 0</td>
<td>Channel 0 and Channel 1</td>
</tr>
<tr>
<td>ASRC 1</td>
<td>Channel 2 and Channel 3</td>
</tr>
<tr>
<td>ASRC 2</td>
<td>Channel 4 and Channel 5</td>
</tr>
<tr>
<td>ASRC 3</td>
<td>Channel 6 and Channel 7</td>
</tr>
<tr>
<td>ASRC 4</td>
<td>Channel 8 and Channel 9</td>
</tr>
<tr>
<td>ASRC 5</td>
<td>Channel 10 and Channel 11</td>
</tr>
<tr>
<td>ASRC 6</td>
<td>Channel 12 and Channel 13</td>
</tr>
<tr>
<td>ASRC 7</td>
<td>Channel 14 and Channel 15</td>
</tr>
</tbody>
</table>

11. Add two S/PDIF output blocks, SpdifOut1 and SpdifOut2, to the project by clicking the Spdif Output component (see Figure 47), and then dragging it to the project space.
12. Repeat the previous step to add another S/PDIF output block.
13. Connect the signals from the Asrcin1 block to the SpdifOut1 and SpdifOut2 blocks with wires so that the resulting signal flow resembles Figure 48.
14. Click the Link/Compile/Download button (see Figure 28) or press the F7 key. The signal flow then compiles and downloads to the hardware.
15. Confirm the S/PDIF inputs, outputs, and ASRCs are properly oriented by checking that any signal input to the S/PDIF optical receiver is copied and output on the S/PDIF optical transmitter.

Add a Filter
To add a filter, take the following steps:

1. Add a MidFilter1 block by clicking the Medium-Size Eq component from the Filters > Second Order > Double Precision folder (see Figure 49), and then dragging it to the project space.
2. By default, the block has one input and one output (single channel). To add another channel, right-click the empty white space of the MidFilter1 block, then select Grow Algorithm > 1. Multi-Channel – Double Precision: Grow Channels > 1 option from the drop-down menu that appears (see Figure 50).
3. Connect the filter in series between the Asrcin1 block and the SpdifOut1 and SpdifOut2 blocks to apply the filter to the signals passing through the DSP. The completed signal flow resembles Figure 51.

4. Click the Link/Compile/Download button (see Figure 28) or press the F7 key to compile the signal flow and download it to the evaluation board hardware. The audio signal passes from the S/PDIF receiver through the ASRCs, into the DSP and the filter, and then out on the S/PDIF transmitter.

5. To change the settings of the filter, click the blue icon at the top left of the Mid Filter1 block (see Figure 51). To change the filter gain in real time while the project is running, drag the control slider in the MidFilter 1 block.

CONTROLLING VOLUME WITH A POTENTIOMETER

The 10-bit auxiliary analog-to-digital converter (ADC) (AUXADC) on the ADAU1452 eliminates the need for a microcontroller in many applications by using analog control signals as user interface devices. For example, the EVAL-ADAU1452REVBZ board includes two 10 kΩ linear potentiometers, R1 and R2 (see Figure 66), connected to Channel AUXADC0 and Channel AUXADC1. These potentiometers can be used as an inexpensive, versatile, and physical way to control parameters such as gain, filter corner frequency, slew rate, and compression level. The following steps demonstrate how to configure a potentiometer as a stereo volume control:

1. Create a new project in SigmaStudio, and use the Hardware Configuration tab to use an ADAU1452 as described in the Setting up Communications in SigmaStudio section.

2. Add an Input1 block and two output blocks as described in the Creating a Basic Signal Flow section.

3. Add an ADC In1 block by clicking the Auxiliary ADC Input component from the IO > GPIO > Input folder (see Figure 52), and then dragging it to the project space.

4. Add a Shift1 block by clicking the Arithmetic Shift component from the Basic DSP > Arithmetic Operations folder (see Figure 53), and then dragging it to the project space.
5. The Shift1 block performs a bitwise shift to the right or to the left. Click the blue button in the Shift1 block in Figure 58 to select the direction of the shift. Ensure the block is performing a left shift for a multiplication function. The Shift1 block appears as shown in Figure 58.

6. To set the number of bits the ADC In1 block is shifted by to 14, click and type in the yellow text box in the Shift1 block in Figure 58.

7. Add two DSP Readback blocks to the project space by clicking the DSP Readback component from the Basic DSP > DSP Functions folder (see Figure 54), and then dragging it to the project space.

8. Repeat Step 7 to add another DSP Readback block.

9. The DSP Readback block uses the USBi to read a signal value from the memory of the DSP core as the algorithm is executing. The block passes the signal (unchanged) through from the Input1 block to the output blocks.

10. Click the Read button in the DSP Readback block (see Figure 55) to fetch the instantaneous value of the signal passing through the block.

11. It is possible to set the DSP Readback block to poll the current sample value repeatedly. This polling feature is useful for debugging but substantially increases the amount of computer processing time, USB communication, and screen refreshes performed by SigmaStudio. Avoid setting a large number of DSP Readback blocks to read continuously because this action can cause the PC to run slowly. Note that this action does not affect the real-time processing on the SigmaDSP core.

12. On each DSP Readback block, click the blue dot to the left of the Read button to read both blocks continuously (see Figure 55).

13. For one of the DSP Readback blocks, change the numeric format used to decode and display the signal value to 32.0 by inputting 32 in the left format box and then pressing the Tab key. SigmaDSP uses a numeric format of 8.24 for audio signals. See Figure 58 for more details.

14. Add an externally controlled volume control with slew (to prevent zipper noise), the Slew vol 1 block, by clicking the Single Slew Ext Vol component from the Volume Controls > Adjustable Gain > Clickless HW Slew folder (see Figure 56), and then dragging it to the project space.

15. By default, the Slew vol 1 block has one audio signal input. To add another channel, right-click the empty white space of the Slew vol 1 block and select the Grow Algorithm > 1. Gain (HW slew) > 1 option from the drop-down menu that appears (see Figure 57).

16. Wire the blocks together as shown in Figure 58. The position of blocks in the diagram does not matter.

17. Click the Link/Compile/Download button (see Figure 28) or press the F7 key to compile the signal flow and download it to the evaluation board hardware. The audio signal passes from the S/PDIF receiver through the ASRCs into the DSP and the filter, and then out on the S/PDIF transmitter. To change the settings of the filter, click the blue icon at the top of the Mid Filter1 block (see Figure 51). Drag the control slider in the Mid Filter1 block to change the filter gain in real time while the project is running.
The schematic (see Figure 58) shows audio from input Channel 0 and input Channel 1 connected to the input of a **Slew vol 1** block. The volume is controlled by the **AUX_ADC_1** value of the **ADC In1** block, which is controlled by the left potentiometer, R1.

The output of the AUXADC on the **ADAU1452** is a 10-bit integer value in a 32-bit register. The first **DSP Readback** block before the left shift displays the output of the ADC in 32.0 format, which can be interpreted as 32 integer bits and 0 fractional bits. When the potentiometer is turned fully counterclockwise, this block reads back the minimum ADC output value of 0. When the potentiometer is turned fully clockwise, this block reads back the maximum ADC output value of 1023 (within the range of the component tolerance).

The native audio format of the **ADAU1452** is 8.24. In this example, the volume control multiplies the input signal by a fractional value ranging from 0 (silence) to 1 (unity gain). Therefore, the control signal from the ADC must be shifted left 14 bits to scale the maximum value appropriately.

The second **DSP Readback** block after the left shift displays the output of the ADC in 8.24 format, which can be interpreted as eight integer bits and 24 fractional bits. When the potentiometer is turned fully counterclockwise, this **DSP Readback** block reads back the minimum ADC output value of 0. When the potentiometer is turned fully clockwise, this block reads back the maximum ADC output value of 1 (within the range of the component tolerance).

Figure 58. Completed Signal Flow with DSP Readback
USING THE EVALUATION BOARD

POWER SUPPLY

Power is supplied to the evaluation board using a dc power supply with a female positive center plug. The plug has a 2.1 mm inner diameter, a 5.5 mm outer diameter, and a 9.5 mm length (see Figure 59). The output must range between 5 V and 7 V and must be able to source at least 1.5 A of current. Connect the power supply to Connector J4 (see Figure 9). The unregulated supply powers the operational amplifiers used in the active audio filters for the analog audio inputs and outputs.

An on-board linear regulator (U5) generates the 3.3 V dc supply required for the ADAU1452 and AD1938, as well as other supporting ICs. When the power supply is connected properly, LED D2 (A_3V3) illuminates (see Figure 76).

INPUTS AND OUTPUTS

The EVAL-ADAU1452REVBZ board provides access to the serial ports, S/PDIF interfaces, multipurpose (MPx) pins, and AUXADCs of the ADAU1452.

AD1938 Codec

Two of the four serial input ports are connected to the ADCs of the AD1938. All four serial output ports are connected to the digital-to-analog converters (DACs) of the AD1938 for a total of four analog audio input channels and eight analog audio output channels.

The AD1938 is hardwired in standalone mode and the serial ports are configured as clock slaves. Therefore, the corresponding serial ports on the ADAU1452 must be set as clock masters. By default, all serial ports on the ADAU1452 are set as clock masters when a new project is created in SigmaStudio.

Table 2. Mapping of Stereo Analog Input Signals to SigmaStudio Channels

<table>
<thead>
<tr>
<th>Input Jack</th>
<th>Plug Contact</th>
<th>AD1938 ADC Pins</th>
<th>ADAU1452 Serial Input Pins</th>
<th>Input Channel in SigmaStudio</th>
</tr>
</thead>
<tbody>
<tr>
<td>J9</td>
<td>Left (tip)</td>
<td>ADC1LN, ADC1LP</td>
<td>SDATA_IN0</td>
<td>0</td>
</tr>
<tr>
<td>J9</td>
<td>Right (ring)</td>
<td>ADC1RN, ADC1RP</td>
<td>SDATA_IN0</td>
<td>1</td>
</tr>
<tr>
<td>J7</td>
<td>Left (tip)</td>
<td>ADC2LN, ADC2LP</td>
<td>SDATA_IN1</td>
<td>16</td>
</tr>
<tr>
<td>J7</td>
<td>Right (ring)</td>
<td>ADC2RN, ADC2RP</td>
<td>SDATA_IN1</td>
<td>17</td>
</tr>
</tbody>
</table>

Stereo Line Inputs

Two stereo input jacks allow four, single-ended, line level analog input signals. The AD1938 ADC inputs are configured such that the full-scale signal is 2.8 V p-p, which is approximately 1 V rms for a sine wave. Any signal that exceeds 2.8 V p-p at the audio jack is clipped, which creates distortion. The signals are fed to active, low-pass filters and converted to differential pairs before reaching the ADCs of the AD1938. The filters are designed for a system sample rate of 44.1 kHz or 48 kHz.

The stereo input jacks accept standard stereo TRS 3.5 mm (1/8 inch) mini plugs. The tip is connected to left audio, the ring is connected to the right audio, the sleeve is connected to the common left and right audio grounds with two channels of audio (see Figure 60).
Stereo Line Outputs

Four stereo output jacks allow eight, line level analog output signals. The AD1938 DAC outputs are configured such that a full-scale signal is 2.8 V p-p at the jack, which is approximately 1 V rms for a sine wave. The signals output from the DACs are fed to active low-pass filters and then ac-coupled before reaching the output jacks. The filters are designed for a system sample rate of 44.1 kHz or 48 kHz.

The output filters are designed to drive high impedance loads, such as loads from active speakers. Some low impedance loads, such as loads from headphones, can also be driven by these filters. However, very low (< 64 Ω) impedance loads, such as loads from passive speakers, cannot be driven by these output filters.

The stereo output jacks accept standard stereo TRS 1/8 inch mini plugs. The tip is connected to left audio, the ring is connected to the right audio, the sleeve is connected to the common left and right audio grounds with two channels of audio (see Figure 60).

The signals first pass from the ADAU1452 serial outputs in I2S format to the AD1938 DACs, where they are converted to analog signals and sent through the output filters to the output jacks. Table 3 shows the mapping among the SigmaStudio output channels, output serial ports, and output jacks.

S/PDIF Optical Transmitter and Receiver

The ADAU1452 S/PDIF interfaces are connected directly to the AD1938 DACs, where they are converted to analog signals and sent through the output filters to the output jacks. Table 3 shows the mapping among the SigmaStudio output channels, output serial ports, and output jacks.

The ADAU1452 S/PDIF receiver accepts signals with sample rates between 18 kHz and 192 kHz. Because the incoming signal is asynchronous to the system sample rate, use an ASRC to convert the sample rate of the incoming signal. Optionally, configure the SigmaDSP core to start processing audio samples based on the sample rate of the incoming S/PDIF receiver signal, negating the need for an ASRC. However, users are strongly recommended to use an ASRC for performance and reliability reasons.

The ADAU1452 S/PDIF transmitter typically transmits signals from the DSP core so the sample rate of the audio coming out of the S/PDIF transmitter on the EVAL-ADAU1452REVBZ board is typically 44.1 kHz or 48 kHz. Optionally, configure the S/PDIF transmitter in a pass through mode, where the transmitter simply transmits a copy of the signal directly from the receiver.

Both the S/PDIF receiver and transmitter carry two channels of uncompressed audio.

Serial Audio Interface

Two of the four ADAU1452 serial input ports are connected to the AD1938. Because the AD1938 is in standalone mode, the device always drives the SDATA_IN0 and SDATA_IN1 pins of the ADAU1452. As a result, external data signals cannot be input to either of the SDATA_IN0 or SDATA_IN1 pins.

However, the remaining two serial input ports (Serial Input 2 and Serial Input 3) are composed of the SDATA_IN2 pin and the SDATA_IN3 pin grouped with the corresponding clock pins, BCLK_IN2, LRCLK_IN2/MP12, BCLK_IN3, and LRCLK_IN3/MP13. The serial port signals are directly accessible via the J2 and J3 headers (see Figure 62).
Table 3. Mapping of SigmaStudio Channels to Output Jacks

<table>
<thead>
<tr>
<th>Output Jack</th>
<th>Plug Contact</th>
<th>AD1938 DAC Pin</th>
<th>ADAU1452 Serial Output Pin</th>
<th>Output Channel in SigmaStudio</th>
</tr>
</thead>
<tbody>
<tr>
<td>J10</td>
<td>Left (tip)</td>
<td>OL1</td>
<td>SDATA_OUT0</td>
<td>0</td>
</tr>
<tr>
<td>J10</td>
<td>Right (ring)</td>
<td>OR1</td>
<td>SDATA_OUT0</td>
<td>1</td>
</tr>
<tr>
<td>J8</td>
<td>Left (tip)</td>
<td>OL2</td>
<td>SDATA_OUT1</td>
<td>16</td>
</tr>
<tr>
<td>J8</td>
<td>Right (ring)</td>
<td>OR2</td>
<td>SDATA_OUT1</td>
<td>17</td>
</tr>
<tr>
<td>J6</td>
<td>Left (tip)</td>
<td>OL3</td>
<td>SDATA_OUT2</td>
<td>32</td>
</tr>
<tr>
<td>J6</td>
<td>Right (ring)</td>
<td>OR3</td>
<td>SDATA_OUT2</td>
<td>33</td>
</tr>
<tr>
<td>J5</td>
<td>Left (tip)</td>
<td>OL4</td>
<td>SDATA_OUT3</td>
<td>40</td>
</tr>
<tr>
<td>J5</td>
<td>Right (ring)</td>
<td>OR4</td>
<td>SDATA_OUT3</td>
<td>41</td>
</tr>
</tbody>
</table>

Standard headers with 0.1 inch (2.54 mm) spacing provide connections from user selected external sources. The J2 and J3 headers are each comprised of two columns and three rows of pins. There is one signal column and one ground column. Always connect at least one ground wire between the header and the external signal source to maintain proper signal integrity. A standard ribbon cable provides signal integrity over longer distances because signal wires are separated by ground wires (see Figure 63).

The signals passing between the ADAU1452 serial output ports and the AD1938 DAC are also accessible via the test points (see Figure 64) situated between the two ICs. Signals can be tapped from these test points and connected to external digital audio sinks if desired (see Figure 64 for connection details). When connecting these signals to external devices, connect at least one ground signal to maintain signal integrity.

MULTIPURPOSE (MPx) PINS

The MPx pins on the ADAU1452 can use GPIOs when configured to do so by using the ADAU1452 control registers. Of the 14 MPx pins, three are connected to switches that pull the signals low or tie them high, three are on test points and connected to high impedance inputs to LED drivers, and two GPIO pins are available on headers. The remaining six pins are used for other functionalities and cannot be used as multipurpose pins.

The signal from the LRCLK_OUT1/MP5 pin is fed to an inverter that drives LED D4. The signal from the LRCLK_OUT3/MP9 pin is fed to an inverter that drives LED D3. The signal from the LRCLK_IN1/MP11 pin is fed to an inverter that drives LED D5. See the Status LEDS section for more information about the LEDs.

Table 4 describes the five MPx pins available for use as GPIOs, along with the corresponding access points on the evaluation board.
Table 4. Multipurpose Pins and Hardware Access Points

<table>
<thead>
<tr>
<th>MPx Pin</th>
<th>Connection</th>
<th>Access Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRCLK_OUT1/MP5</td>
<td>Input to inverter (LED D4)</td>
<td>TP56</td>
</tr>
<tr>
<td>LRCLK_OUT3/MP9</td>
<td>Input to inverter (LED D3)</td>
<td>TP48</td>
</tr>
<tr>
<td>LRCLK_IN1/MP11</td>
<td>Input to inverter (LED D5)</td>
<td>TP29</td>
</tr>
<tr>
<td>LRCLK_IN2/MP12</td>
<td>Pin multiplexed with LRCLK_IN2</td>
<td>Header J3, Pin 4</td>
</tr>
<tr>
<td>LRCLK_IN3/MP13</td>
<td>Pin multiplexed with LRCLK_IN3</td>
<td>Header J2, Pin 4</td>
</tr>
</tbody>
</table>

To configure the operation of the MPx pins as desired, navigate to the MULTIPURPOSE/AUXADC tab in the Hardware Configuration tab in SigmaStudio (see Figure 65).

AUXADCx PINS

The ADAU1452 AUXADC is a 10-bit, successive approximation register (SAR) multiplexed across six input channels. These channels are used for analog control signals to the DSP. Channel AUXADC0 and Channel AUXADC1 (see Figure 66) are connected to Linear Potentiometer R1 and Linear Potentiometer R2. Channel AUXADC2 to Channel AUXADC5 are accessible on test points next to the ADAU1452 (see Figure 66). Inputs to the ADCs between 0 V and 3.3 V can be connected to these test point pads and used in the SigmaStudio signal flow (see Figure 66 for the inputs).

Figure 66 shows the potentiometers with installed knobs that are not included with the EVAL-ADAU1452REV B board. Order these knobs from Digi-Key using part number 1722-1241-ND. The part number of the manufacturer part is 1221-J.

COMMUNICATIONS HEADER

The communications header is a 10-pin header designed to work with the EVAL-ADUSB2EBZ (USBi). The SPI signals are wired from the communications header to the corresponding SPI slave port pins on the ADAU1452. The I2C pins are not used in this design. A reset line is also included, which allows the user to reset the devices on the EVAL-ADAU1452REVBZ board via a command in SigmaStudio, search the EngineerZone™ forums or contact SigmaDSP@analog.com for more information. When the EVAL-ADUSB2EBZ board is connected to the EVAL-ADAU1452REVBZ board and PC, powered, and recognized by the PC, LED D1 illuminates (see Figure 10).

SigmaStudio also controls the 5 V output to LED D1.
SELF BOOt
A 1 Mb, 20 MHz, SPI, serial EEPROM memory is included on the EVAL-ADAU1452REVBZ evaluation board. The ADAU1452 can boot and execute a program without help from an external microcontroller. This self boot feature allows any project developed within SigmaStudio to execute on a rising edge of the RESET pin signal or when the ADAU1452 powers up. Section 1 of the S3 DIP switch (see Figure 67) sets the state of the ADAU1452 SELFBOOT pin. Setting Section 1 of the S3 switch to off disables the self boot feature. LED D7 illuminates when the EVAL-ADAU1452REVBZ board is set to self boot (see Figure 76).

To use the self boot functionality, take the following steps:

1. Add an IC2 (E2Prom) block to the project space of the Hardware Configuration tab from the Tree ToolBox. From the Processors (ICs / DSPs) folder, click E2Prom (see Figure 68) and drag it to the project space.
2. Connect the green input pin of the IC2 block to one of the available blue output pins of the USB Interface block in SigmaStudio.
3. Set the communication mode to SPI 0x1 ADR0 by clicking the text fields of the USB Interface block (see Figure 69). There is no physical connection between the USBi connector (a connector to the evaluation board) and the evaluation EEPROM on the EVAL-ADAU1452REVBZ board. Therefore, SigmaStudio cannot directly communicate with the EEPROM. To circumvent this lack of communication, SigmaStudio writes a program to the ADAU1452, which then uses the master SPI port to write the self boot data to the EEPROM. Adding the IC2 block allows users to configure the EEPROM and informs SigmaStudio that a hex file must be produced.
4. The pull-down text field in the USB Interface block sets the type of communication the EEPROM uses. Both SPI and I2C are supported communication types and can differ from the communication standard used by ADAU1452 the slave port. As shown in Figure 69, users are recommended to connect the IC2 block to an unused pin on the USB Interface block.
5. Before downloading the self boot data to the EEPROM, click the Link/Compile/Download button (see Figure 28) or press the F7 key to compile the SigmaStudio project file.
6. When writing to the EEPROM, set the self boot switch (Section 1 of Switch S3) to the disabled position.
7. To write to the EEPROM through the ADAU1452 master SPI port, right-click the white space in the IC1 block in the Hardware Configuration tab. From the pull-down menu that appears, select the Self-boot Memory >Write Latest Compilation through DSP option (see Figure 70).
8. An **EEPROM Properties** dialog box appears. Enter the values shown in Figure 71 to the text fields and then click **OK**.

9. A warning dialog window appears to remind the user that executing an external memory write erases and overwrites any data currently stored on the EEPROM (see Figure 72). Click **OK** to proceed.

10. **SigmaStudio** begins the EEPROM write operation. This operation can take several minutes to complete. Users can view the progress of the write operation with the status window shown in Figure 73. When the window disappears, the operation is complete.

To execute a self boot operation, take the following steps:

1. Set the **SELFBOOT** switch (Section 1 of S3) to the enabled position on the EVAL-ADAU1452REVBZ board (see Figure 67).
2. Press and release the **RESET** push-button (S1) (see Figure 74).
3. A self boot operation is performed and the **ADAU1452** runs the user created program.
RESET
To manually reset the ADAU1452 and AD1938, press and release the **RESET** push-button, S1 (see Figure 74). A reset generator circuit toggles the reset pins on the ADAU1452 and AD1938 to perform a full hardware reset of both devices.

To generate a reset in the software, right-click the white border of the **USB Interface** block in the **Hardware Configuration** tab, and then choose the **Device Enable/Disable** option from the pull-down menu that appears (see Figure 75). Choosing this option sets the system reset signal to logic low.

STATUS LEDs
Six status LEDs provide information about the state of the EVAL-ADAU1452REVBZ evaluation board (see Figure 76 for LED locations). For more information about the status LEDs, see Table 6.
CODEC CONTROL FROM **SigmaStudio** MODIFICATION

The AD1938 codec is set up to operate in standalone hardware mode. Therefore, the codec and the evaluation board only operate at a 48 kHz sampling rate and the serial communication between the codec and DSP must be in F’s format. The codec and DSP are capable of operating at different sample rates and data formats but cannot do this if the codec is in standalone mode. Users must modify the USBi and EVAL-ADAU1452REVZ board to control the codec from **SigmaStudio**.

The master port of the **SigmaDSP** can also control the codec but this method requires a more complicated setup. Controlling the codec from **SigmaStudio** allows the user to both change the codec setup in real time, and to read data back from the codec. After the settings are set as the user desires, the **SigmaDSP** or a controller can easily capture or use the register settings after the product application is developed.

The ADAU1452 CLKOUT pin clocks the master clock of the codec, allowing flexibility of clock rates to the codec.

The only limitation in sample rate is the crystal on the evaluation board, Y1. Y1 is a 12.288 MHz crystal. Therefore, the codec can only use sample rates in multiples of 48 kHz.

The DSP has other clock generators, but the codec must be divided down from the master clock. Otherwise, it can be operated by using the DLRCLK pin or the ARLCLK pin of the codec as a phase-locked loop (PLL) input. Operating the codec PLL from the DLRCK pin or the ARLCLK pin complicates evaluation board modifications because the codec loop filter must be changed. See the AD1938 data sheet for more information. If the sample rate must operate at a rate of 44.1 kHz, Y1 must be changed to 256 × sample rate (fₛ).
MODIFYING THE EVAL-ADUSB2EBZ (USBi)

In addition to modifying the evaluation board, the EVAL-ADUSB2EBZ must also be modified. J1 on the EVAL-ADUSB2EBZ PCB is a footprint for a 14-pin ribbon cable but only a 10-way ribbon is used. The unused pins are the extra SPI latch signals and one of the extra SPI latch signals control the codec. See the AN-1006 Application Note for more details about using the extra SPI latch signals.

SPI Latch 0x02 is found on Pin 1 on the 14-pin ribbon footprint. The 10-way ribbon uses Pins 3 to 12 of the 14-pin footprint so that Pin 1 is unused. See Figure 77 for the location of Pin 1, the square pin on the PCB footprint. Only one pin connection (Pin 1 in this example) is required for the modification shown in Figure 77. It is recommended to use prefabricated header jumpers that can be cut in half. Solder one half to the PCB and connect the other half to the EVAL-ADAU1452REVBZ board. This way, users can remove the USBi when needed without desoldering a wire.

Figure 79 shows the single pin connector that allows the CLATCH connection to the USBi to be removed. See the Modifying the EVAL-ADAU1452REVBZ section for more information.
MODIFYING THE EVAL-ADAU1452REVBZ

Perform the following steps to modify the EVAL-ADAU1452REVBZ board and see Figure 78 for a graphical representation of all modifications:

1. Remove the R6, R9, R10, and R11 resistors.
2. Add a single square header pin onto the AD1938_/CLATCH test point located near R11.
3. Solder a jumper wire from the AD1938_CCLK test point near R10 to the SCLK test point located near Pin 10 of J1.
4. Solder a jumper wire from the AD1938_COUT test point near R9 to the MISO test point near U5.
5. Solder a jumper wire from the AD1938_CDATA test point near R6 over to the MOSI test point near J1.
6. Add a 10 kΩ pull-up resistor on the AD1938_/CLATCH signal line test point. The CLATCH signal must be pulled up to the D3V3 power supply. This power supply is located to the left of the C20 capacitor.

It is best practice to run and glue the jumper wires to the bottom of the PCB so that the wires run close to the ground plane of the PCB for optimal signal integrity.

Figure 79 shows the four resistors (R6, R9, R10, and R11) removed and placed on one of the pads for future use. Figure 79 also shows the 10 kΩ resistor connected between the pin soldered at the AD1938_/CLATCH test point, and the D3V3 voltage located to the left of the C20 capacitor. See the ADAU1452 data sheet for more information about the pins.

Figure 80 shows the three jumper wires attached to the bottom of the PCB. The blue wire is the AD1938_CDATA connection, the yellow wire is the AD1938_COUT connection, and the red wire is the AD1938_CCLK connection.

Figure 81 shows the EVAL-ADAU1452REVBZ board with all completed modifications and the EVAL-ADUSB2EBZ board attached and ready for use.
Figure 78. Codec Control Modification Overview

- **REMOVE RESISTORS**
- **ADD PULL-UP RESISTOR**
- **ADD THREE JUMPER WIRES ONTO BOTTOM OF PCB**
Figure 79. Resistor Modifications and AD1938_/CLATCH Connection

Figure 80. Jumper Wires Soldered on Bottom of the PCB.
Figure 81. Completed Modification with EVAL-ADUSB2EBZ (USBi) Connected.
USING THE MODIFIED EVAL-ADAU1452REVBZ BOARD AND USBi

Figure 82 shows the required setup to control the DSP and codec using SigmaStudio. Drag the AD193x block to the Hardware Configuration tab from the Tree ToolBox. The SPI latch (SPI 0x2 ADR0) on the USB Interface block must be changed from the default SPI 0x1 ADR0 to SPI 0x2 ADR0 so that the AD1938 codec uses the second SPI latch output of the USBi. Clicking the register control tabs of either device allows real-time changes of register settings.

After the user sets the registers as desired for the codec, the Get Current Setting from Chip button (see Figure 83) can be used to read the registers to the Capture window (see Figure 84) to be copied and exported. Use the following procedure to read the registers to the Capture window:
1. Clear the Capture window with the red X on the upper left of the window.
2. In the IC 1 - AD193x Register Controls tab, click the Get Current Setting from Chip button (see Figure 83). Clicking this button performs a register dump of all current codec settings and the register settings are then displayed in the Capture window and register control window.
3. Click the first element in the list shown in Figure 84, press the Shift key, and then click the last element in the list to highlight all elements.
4. Hover over the list and right-click it to open the pull-down menu with the options Save as Text… or Save as Raw Data (see Figure 85). The second option gives the user several more options to either save the data to import into a microcontroller or to save the list as an .XML file for the DSP to use to boot the codec. To allow the DSP to boot the codec, move the codec SPI connections to the master communications port. This information is not described in this user guide. Contact SigmaDSP@analog.com for more information.
Figure 83. SigmaStudio Downloading the Current Codec Settings, Register Dump

Figure 84. SigmaStudio Capture Window Codec Register Dump
Figure 85. SigmaStudio Capture Window Save Options
HARDWARE DESCRIPTIONS

ICs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Functional Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Everlight PLT133/T8 optical transmitter</td>
<td>S/PDIF optical (TOSLINK) output.</td>
</tr>
<tr>
<td>U2</td>
<td>Everlight PLT133/T10W optical receiver</td>
<td>S/PDIF optical (TOSLINK) input.</td>
</tr>
<tr>
<td>U3</td>
<td>ADAU1452 SigmaDSP audio processor</td>
<td>Acts as an audio hub for all audio inputs and outputs in the system and performs digital signal processing on those input and output signals.</td>
</tr>
<tr>
<td>U4</td>
<td>AD1938 audio codec</td>
<td>Converts analog audio inputs to digital data for the ADAU1452 processor and takes the digital data back from the ADAU1452 to convert to analog audio outputs signals.</td>
</tr>
<tr>
<td>U5</td>
<td>ADP3338AKCZ-3.3-RL or ADP3338AKCZ-3.3RL7 LDO voltage regulator</td>
<td>Accepts the unregulated dc supply voltage between 5 V and 7 V that is provided on Connector J4 and regulates the supply voltage down to 3.3 V.</td>
</tr>
<tr>
<td>U7</td>
<td>ADM811TARTZ reset supervisor</td>
<td>Generates a master reset signal for the ADAU1452 and the AD1938 if the \texttt{RESET} push-button (S1) is pressed, or if SigmaStudio sends a reset command via the USBi.</td>
</tr>
<tr>
<td>U10</td>
<td>Microchip 25AA1024 serial EEPROM</td>
<td>Stores data, allowing the ADAU1452 to perform a self boot operation.</td>
</tr>
<tr>
<td>U6, U8, U9, U11, U12, U13, U15, U16, U17, U14</td>
<td>ADA4841-2 dual, low power, low noise, and low distortion rail-to-rail output amplifier</td>
<td>Implements the analog audio filtering required for the stereo line inputs and outputs.</td>
</tr>
<tr>
<td>U14</td>
<td>74ACT04SC hexadecimal inverter</td>
<td>Buffers logic signals and drives status LEDs.</td>
</tr>
</tbody>
</table>

STATUS LEDS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Functional Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>USB connected 3.3 V supply status LED</td>
<td>Illuminates when the USBi is recognized by Windows after the USBi is connected to Control Port J1 and the USB 2.0 port of the computer.</td>
</tr>
<tr>
<td>D2</td>
<td>MP9 general-purpose LED</td>
<td>Illuminates when the status of the ADAU1452 LRCLK_OUT3/MP9 pin is set to logic high by the ADAU1452.</td>
</tr>
<tr>
<td>D3</td>
<td>MP5 general-purpose LED</td>
<td>Illuminates when the status of the ADAU1452 LRCLK_OUT1/MP5 pin is set to logic high by the ADAU1452.</td>
</tr>
<tr>
<td>D4</td>
<td>MP11 general-purpose LED</td>
<td>Illuminates when the status of the ADAU1452 LRCLK_IN1/MP11 pin is set to logic high by the ADAU1452.</td>
</tr>
<tr>
<td>D5</td>
<td>Master reset status LED</td>
<td>Illuminates when the master reset signal generated by the ADM811TARTZ reset supervisor IC is logic low, which puts the ADAU1452 and AD1938 in hardware reset. LED D3 does not illuminate when the master reset signal is logic high and the ADAU1452 and AD1938 are out of reset.</td>
</tr>
<tr>
<td>D6</td>
<td>Self boot status LED</td>
<td>Illuminates when the self boot switch (Position 1 of Switch S3) is set to the on position, signifying that a self boot operation is executed on the rising edge of the ADAU1452 RESET signal, or when ADAU1452 is powered up. LED D2 does not illuminate when the self boot slide switch (S2) is set to the disabled position, which signifies that no self boot operation is to occur.</td>
</tr>
</tbody>
</table>
SWITCH AND PUSH-BUTTON DESCRIPTIONS

Table 7. Switch and Push-Button Descriptions

<table>
<thead>
<tr>
<th>Reference</th>
<th>Functional Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>RESET push-button</td>
<td>When this switch is pressed and released, a reset signal is generated and causes the ADM811TARTZ reset supervisor to generate a master reset signal for the ADAU1452 and AD1938.</td>
</tr>
<tr>
<td>S3</td>
<td>Self boot, MP6, MP7, and MP8 switches</td>
<td>When in the on position, Position 1 of Switch S3 asserts the SELFBOOT pin of the ADAU1452. When in the on position, Position 2 of Switch S3, Position 3 of Switch S3, and Position 4 of Switch S3 tie the MP6, MP7, and MP8 pins high, respectively. When in the off position, these switches pull the MP6, MP7, and MP8 pins low.</td>
</tr>
</tbody>
</table>
Figure 86. Functional Block Diagram
Figure 87. EVAL-ADAU1452REVBZ Evaluation Board Layout Block Diagram
Figure 88. SigmaDSP Audio Processor Schematic
Figure 89. Self Boot Circuit Schematic

Figure 90. S/PDIF Optical Interfaces Schematic
Figure 91. Status LEDs Schematic

Figure 92. DIP Switch Schematic
AD1938 CONFIGURED FOR STANDALONE OPERATION

CLOCK SLAVE

SDATA_OUT0 [1]
SDATA_OUT1 [1]
SDATA_OUT2 [1]
SDATA_OUT3 [1]
LRCLK_OUT0 [1]
LRCLK_OUT1 [1]
BCLK_OUT0 [1]
BCLK_OUT1 [1]
SDATA_IN1 [1]
SDATA_IN0 [1]
AD1938_CDATA
AD1938_COUT
AD1938_CCLK
AD1938_CLATCH

DAC1L [5]
DAC1R [5]
DAC2L [5]
DAC2R [5]
DAC3L [5]
DAC3R [5]
DAC4L [5]
DAC4R [5]

LF
FILTR
CM

RESET (1,2,6)

AD1938 CONFIGURED FOR STANDALONE OPERATION
CLOCK SLAVE

Figure 93. AUXADC Potentiometer Schematic

Figure 94. AD1938 Audio Codec Schematic
Figure 95. Power Supply Schematic

Figure 96. Reset Generator Circuit Schematic

Figure 97. SPI Communication Interface Header Schematic
Figure 98. Analog Input Channel 0 and Channel 1 Schematic
Figure 99. Analog Input Channel 16 and Channel 17 Schematic

Figure 100. Analog Output Channel 0 and Channel 1 Schematic
Figure 101. Analog Output Channel 16 and Channel 17 Schematic

Figure 102. Analog Output Channel 32 and Channel 33 Schematic
Figure 103. Analog Output Channel 40 and Channel 41 Schematic

Figure 104. ADC Op Amp Reference Voltage Schematic

Figure 105. Plane Decoupling Capacitors Schematic
Figure 108. EVAL-ADAU1452REVBZ Layout, Ground Plane

Figure 109. EVAL-ADAU1452REVBZ Layout, Power Plane
Figure 110. EVAL-ADAU1452REVBZ Layout, Bottom Copper

4-Layer Construction Detail

- Layer 1: Top Side, 1.5 oz Cu. Finished, Silkscreen, Soldermask, Laminate = 0.010 inch thick
- Layer 2: Ground Plane, 1.0 oz Cu., Core Prepreg = 0.40 inch thick
- Layer 3: Power Plane, 1.0 oz Cu.
- Layer 4: Bottom Side, 1.5 oz Cu. Finished, Soldermask, Silkscreen

0.05 inches to 0.07 inches

Figure 111. Cross Section of PCB Stack Up
BILL OF MATERIALS

Table 8.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Value</th>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>0.10 μF</td>
<td>C1, C6 to C10, C13, C14, C16 to C18, C20, C22, C23, C25 to C31, C34, C36, C41 to C44, C48, C50, C55, C58, C70, C71, C80, C87, C88, C91, C93, C104, C109, C112, C122 to C124</td>
<td>Multilayer ceramic capacitors, 16 V, X7R, 0402</td>
<td>Murata</td>
<td>GRM155R71C104KA88D</td>
</tr>
<tr>
<td>4</td>
<td>10 nF</td>
<td>C11, C12, C15, C19</td>
<td>Multilayer ceramic capacitors, 25 V, X7R, 0402</td>
<td>Murata</td>
<td>GRM155R71E103JA01J</td>
</tr>
<tr>
<td>2</td>
<td>47 μF</td>
<td>C125, C126</td>
<td>Aluminum electrolytic capacitors, 105°C, SMD_D</td>
<td>Panasonic</td>
<td>EEE-FC1C470P</td>
</tr>
<tr>
<td>26</td>
<td>10 μF</td>
<td>C21, C24, C47, C53, C56, C59, C61, C64, C66, C67, C75, C78, C81, C82, C86, C89, C94, C98, C101, C102, C106, C111, C113, C115, C116, C121</td>
<td>Multilayer ceramic capacitors, 10 V, X7R, 0805</td>
<td>Murata</td>
<td>GRM21BR71A106KE51L</td>
</tr>
<tr>
<td>3</td>
<td>100 μF</td>
<td>C2, C3, C45</td>
<td>Aluminum, electrolytic capacitors, 105°C, SMD_E</td>
<td>Panasonic</td>
<td>EEE-FC1C101P</td>
</tr>
<tr>
<td>1</td>
<td>390 pF</td>
<td>C32</td>
<td>Multilayer ceramic capacitor, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H391JA01D</td>
</tr>
<tr>
<td>2</td>
<td>1.0 μF</td>
<td>C35, C39</td>
<td>Multilayer ceramic capacitors, 16 V, X7R, 0603</td>
<td>Murata</td>
<td>GRM188R71C105KA12D</td>
</tr>
<tr>
<td>2</td>
<td>10 μF</td>
<td>C37, C38</td>
<td>Aluminum electrolytic capacitors, 105°C, SMD_B</td>
<td>Panasonic</td>
<td>EEE-FC1C100R</td>
</tr>
<tr>
<td>1</td>
<td>150 pF</td>
<td>C4</td>
<td>Multilayer ceramic capacitor, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H151JA01D</td>
</tr>
<tr>
<td>1</td>
<td>10 μF</td>
<td>C40</td>
<td>Multilayer ceramic capacitor, 25 V, X7R, 1210</td>
<td>Murata</td>
<td>GCM32ER71E106KA57L</td>
</tr>
<tr>
<td>8</td>
<td>1.8 nF</td>
<td>C46, C52, C65, C77, C85, C100, C105, C120</td>
<td>Multilayer ceramic capacitors, 25 V, NP0, 0402</td>
<td>Kemet</td>
<td>C0402C182J3GACTU</td>
</tr>
<tr>
<td>8</td>
<td>180 pF</td>
<td>C49, C51, C69, C74, C90, C96, C108, C118</td>
<td>Multilayer ceramic capacitors, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H181GA01D</td>
</tr>
<tr>
<td>2</td>
<td>5.6 nF</td>
<td>C5, C33</td>
<td>Multilayer ceramic capacitors, 25 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM155R71E562KA01D</td>
</tr>
<tr>
<td>4</td>
<td>330 pF</td>
<td>C54, C72, C92, C107</td>
<td>Multilayer ceramic capacitors, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H331JA01D</td>
</tr>
<tr>
<td>8</td>
<td>1.0 nF</td>
<td>C57, C68, C76, C84, C95, C103, C114, C119</td>
<td>Multilayer ceramic capacitors, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H102JA01D</td>
</tr>
<tr>
<td>8</td>
<td>100 pF</td>
<td>C60, C62, C79, C83, C97, C99, C110, C117</td>
<td>Multilayer ceramic capacitors, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H101JZ01D</td>
</tr>
<tr>
<td>2</td>
<td>22 pF</td>
<td>C63, C73</td>
<td>Multilayer ceramic capacitors, 50 V, NP0, 0402</td>
<td>Murata</td>
<td>GRM1555C1H220JZ01D</td>
</tr>
<tr>
<td>8</td>
<td>571 nm</td>
<td>D1 to D7</td>
<td>LEDs, green, 2 V, 3 mcd, 0603</td>
<td>Lite-On</td>
<td>LTST-C191KGKT</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>J1</td>
<td>Header, 2 × 5, 0.1 inch, shrouded, polarized</td>
<td>3M</td>
<td>N2510-6002RB</td>
</tr>
<tr>
<td>2</td>
<td>N/A</td>
<td>J2, J3</td>
<td>Headers, 2 × 3, 0.1 inch, unsnoshrouded</td>
<td>3M</td>
<td>PBC06DAAN, or cut PBC36DAAN</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>J4</td>
<td>Jack, power connector, 2.0 mm ID, 5.5 mm, outside diameter, through hole, right angle</td>
<td>Switchcraft</td>
<td>RAPC722X</td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>J5 to J10</td>
<td>Jacks, 3.5 mm headphone, stereo, right angle, SMD</td>
<td>CUI Inc.</td>
<td>SJ-3523-SMT</td>
</tr>
<tr>
<td>1</td>
<td>600 Ω</td>
<td>L1</td>
<td>Chip ferrite bead, at 100 MHz, 500 mA, 0805</td>
<td>Steward</td>
<td>HZ0805E601R-10</td>
</tr>
<tr>
<td>2</td>
<td>47 μH</td>
<td>L2, L3</td>
<td>Chip inductors, 140 mA, 3.25 Ω, 0603</td>
<td>Taiyo Yuden</td>
<td>CBMF1608T470K</td>
</tr>
<tr>
<td>Qty.</td>
<td>Value</td>
<td>Reference Designator</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>Q1</td>
<td>Transistor, BJT, PNP, 60 V, 5 A, TO-252AA</td>
<td>STMicroelectronics</td>
<td>STD2805T4</td>
</tr>
<tr>
<td>1</td>
<td>562 Ω</td>
<td>R12</td>
<td>Chip resistor, 1%, 63 mW, thick film, 0402</td>
<td>Stackpole</td>
<td>RC0402FR-0762R</td>
</tr>
<tr>
<td>2</td>
<td>10 kΩ</td>
<td>R1, R2</td>
<td>Potentiometers, linear taper, 9 mm, vertical</td>
<td>Panasonic</td>
<td>EVU-F2MFL3B14</td>
</tr>
<tr>
<td>5</td>
<td>1 kΩ</td>
<td>R3, R13, R14, R19, R26</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Yageo</td>
<td>RC0402FR-071KL</td>
</tr>
<tr>
<td>18</td>
<td>49.9 Ω</td>
<td>R16, R18, R22, R30, R33, R37, R42, R49, R54, R57, R60, R67, R77, R78, R82, R88, R94, R98</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Yageo</td>
<td>RC0402FR-0749R9L</td>
</tr>
<tr>
<td>7</td>
<td>10 kΩ</td>
<td>R17, R35, R45, R90, R92, R95, R101</td>
<td>Chip resistors, 1%, 100 mW, thick film, 0402</td>
<td>Panasonic</td>
<td>ERJ-2RKF1002X</td>
</tr>
<tr>
<td>8</td>
<td>768 Ω</td>
<td>R20, R31, R39, R52, R58, R75, R84, R96</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Yageo</td>
<td>RC0402FR-07768RL</td>
</tr>
<tr>
<td>8</td>
<td>13 kΩ</td>
<td>R21, R32, R40, R53, R59, R76, R85, R97</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Yageo</td>
<td>RC0402FR-0713KL</td>
</tr>
<tr>
<td>13</td>
<td>100 kΩ</td>
<td>R23, R24, R27, R34, R41, R50, R55, R61, R71, R72, R86, R89, R93</td>
<td>Chip resistors, 1%, 100 mW, thick film, 0402</td>
<td>Panasonic</td>
<td>ERJ-2RKF1003X</td>
</tr>
<tr>
<td>1</td>
<td>0 Ω</td>
<td>R25</td>
<td>Jumper, 125 mW, 0805</td>
<td>Panasonic</td>
<td>ERJ-6GEY0R00V</td>
</tr>
<tr>
<td>16</td>
<td>4.99 kΩ</td>
<td>R28, R29, R38, R44, R47, R48, R56, R63, R65, R66, R73, R81, R83, R87, R91, R100</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Stackpole</td>
<td>RMCF0402FT4K99</td>
</tr>
<tr>
<td>1</td>
<td>4.32 kΩ</td>
<td>R4</td>
<td>Chip resistor, 1%, 100 mW, thick film, 0402</td>
<td>Panasonic</td>
<td>ERJ-2RKF4321X</td>
</tr>
<tr>
<td>5</td>
<td>100 Ω</td>
<td>R43, R51, R62, R80, R99</td>
<td>Chip resistors, 1%, 100 mW, thick film, 0402</td>
<td>Panasonic</td>
<td>ERJ-2RKF1000X</td>
</tr>
<tr>
<td>1</td>
<td>33 Ω</td>
<td>R102</td>
<td>Resistor network, 4-resistor, isolated, 5%, 63 mW</td>
<td>CTS</td>
<td>741X083330JP</td>
</tr>
<tr>
<td>6</td>
<td>0 Ω</td>
<td>R6, R9 to R11, R36, R106</td>
<td>Resistors, 125 mW, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEY0R00V</td>
</tr>
<tr>
<td>6</td>
<td>475 Ω</td>
<td>R64, R68 to R70, R74, R79</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Stackpole</td>
<td>RMCF0402FT475R</td>
</tr>
<tr>
<td>8</td>
<td>33.2 Ω</td>
<td>R5, R7, R8, R15, R46, R103 to R105</td>
<td>Chip resistors, 1%, 63 mW, thick film, 0402</td>
<td>Stackpole</td>
<td>RMCF0402FT33R2</td>
</tr>
<tr>
<td>1</td>
<td>0.50 Ω</td>
<td>R107</td>
<td>Chip resistor, 1%, 167 mW, thick film, 0402</td>
<td>Panasonic</td>
<td>ERJ-2BQFR47X</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>S1</td>
<td>Switch, top actuated, tactile, SPST normally open, 6 mm gull wing</td>
<td>Tyco/Alcoswitch</td>
<td>FSM6JSMA</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>S3</td>
<td>Switch, 4-section, SPST, surface-mount device (SMD)</td>
<td>CTS Corp</td>
<td>219-4LPST</td>
</tr>
<tr>
<td>68</td>
<td>N/A</td>
<td>TP1 to TP9, TP14 to TP25, TP30 to TP76</td>
<td>Test points, white</td>
<td>Keystone Electronics</td>
<td>5002</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U1</td>
<td>Optical transmitter, 16 Mbps</td>
<td>Everlight</td>
<td>PLT133/T10W</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U10</td>
<td>EEPROM, 128 K×8, 1.8 V to 5.5 V, SOJ-8</td>
<td>Microchip</td>
<td>25AA1024-I/SM</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U14</td>
<td>Inverter, 6-channel, SOIC-14</td>
<td>Fairchild Semi</td>
<td>74ACT045C</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U2</td>
<td>Optical receiver, 16 Mbps</td>
<td>Everlight</td>
<td>PLR135/T10</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U3</td>
<td>SigmaDSP processor, 300 MHz</td>
<td>Analog Devices</td>
<td>ADAU1452WBCPZ</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U4</td>
<td>Codec, 4-ADC, 8-DAC, 192 kHz, 24-bit</td>
<td>Analog Devices</td>
<td>AD1938YSTZ</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U5</td>
<td>Voltage regulator, high accuracy, low dropout, 3.3 V dc</td>
<td>Analog Devices</td>
<td>ADP3338AKCZ-3.3-R7</td>
</tr>
<tr>
<td>9</td>
<td>N/A</td>
<td>U6, U8, U9, U11 to U13, U15 to U17</td>
<td>Op amp, dual, low power, low noise, low distortion, rail-to-rail, 8-lead SOIC</td>
<td>Analog Devices</td>
<td>ADA4841-2YRZ</td>
</tr>
<tr>
<td>Qty.</td>
<td>Value</td>
<td>Reference Designator</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>U7</td>
<td>Supervisor reset generator, 3.08 V, logic low output, 4-lead SOT-143</td>
<td>Analog Devices</td>
<td>ADM811TARTZ-REEL7</td>
</tr>
<tr>
<td>1</td>
<td>18 pF</td>
<td>Y1</td>
<td>Crystal, 12.288 MHz, SMD-4</td>
<td>Abracon Corp</td>
<td>ABM3B-12.288MHZ-10-1-U-T</td>
</tr>
</tbody>
</table>

1 N/A means not applicable.

FC refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA, Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.