How to Reproduce the EEMBC CoreMark and ULPMark Core Profile Score for the ADuCM4050

INTRODUCTION
This reference manual describes how to reproduce the Embedded Microprocessor Benchmark Consortium (EEMBC®) CoreMark® and ULPMark™-Core Profile (CP) score for the ADuCM4050 microcontroller.

This reference manual describes the steps necessary to install the software and to set up the hardware for measuring the CoreMark and ULPMark-CP score.

This reference manual helps the user reproduce the EEMBC CoreMark and ULPMark-CP score on the EV-COG-AD4050LZ or the EV-COG-AD4050WZ board.

This reference manual provides details of the performance and the energy consumed by the ADuCM4050 microcontroller in the different power modes used on the benchmark, confirming the data sheet power specifications.

ABOUT THE ADuCM4050
The ADuCM4050 processor is an ultralow power, integrated, mixed-signal, microcontroller system used for processing, control, and connectivity. The microcontroller unit (MCU) subsystem is based on the ARM® Cortex™-M4F processor, a collection of digital peripherals, cache embedded SRAM and flash memory, and an analog subsystem that provides clocking, reset, and power management capabilities along with the analog-to-digital converter (ADC).

The ADuCM4050 processor provides a collection of power modes and features, such as dynamic and software controlled clock gating and power gating, to support extremely low dynamic and hibernate power management.

Full specifications on the ADuCM4050 are available in the product data sheet. Consult the data sheet in conjunction with this reference manual when working with the EV-COG-AD4050LZ and the EV-COG-AD4050WZ.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>About the ADuCM4050</td>
<td>1</td>
</tr>
<tr>
<td>Revision History</td>
<td>2</td>
</tr>
<tr>
<td>About EEMBC</td>
<td>3</td>
</tr>
<tr>
<td>CoreMark</td>
<td>3</td>
</tr>
<tr>
<td>ULPMark</td>
<td>3</td>
</tr>
<tr>
<td>IAR Setup</td>
<td>4</td>
</tr>
<tr>
<td>IAR Tools Installation</td>
<td>4</td>
</tr>
<tr>
<td>IAR Project Configuration</td>
<td>4</td>
</tr>
<tr>
<td>CoreMark</td>
<td>7</td>
</tr>
<tr>
<td>Loading the CoreMark Project</td>
<td>7</td>
</tr>
<tr>
<td>Running the CoreMark Application</td>
<td>8</td>
</tr>
<tr>
<td>Building the CoreMark Application</td>
<td>8</td>
</tr>
<tr>
<td>Downloading the CoreMark Code</td>
<td>8</td>
</tr>
<tr>
<td>Running the CoreMark Project</td>
<td>8</td>
</tr>
<tr>
<td>CoreMark Results</td>
<td>9</td>
</tr>
<tr>
<td>Results at 26 MHz</td>
<td>10</td>
</tr>
<tr>
<td>Results at 52 MHz</td>
<td>11</td>
</tr>
<tr>
<td>ULPMark-CP</td>
<td>12</td>
</tr>
<tr>
<td>The EnergyMonitor</td>
<td>12</td>
</tr>
<tr>
<td>Installing the EnergyMonitor Software Drivers</td>
<td>12</td>
</tr>
<tr>
<td>Building the ULPMark-CP Application Code</td>
<td>12</td>
</tr>
<tr>
<td>Building the ULPMark-CP Application</td>
<td>12</td>
</tr>
<tr>
<td>Downloading the ULPMark-CP Code</td>
<td>12</td>
</tr>
<tr>
<td>Running the ULPMark-CP Benchmark</td>
<td>13</td>
</tr>
<tr>
<td>Running the ULPMark-CP</td>
<td>13</td>
</tr>
<tr>
<td>Running the ULPMark-Crystalless Profile</td>
<td>14</td>
</tr>
<tr>
<td>Results Analysis</td>
<td>14</td>
</tr>
</tbody>
</table>

REVISION HISTORY

6/2018—Revision 0: Initial Version
ABOUT EEMBC

EEMBC is a nonprofit industry association that detected the need for a joint, democratic effort involving the leading suppliers in the embedded industry to make new benchmarks a reality.

EEMBC members represent more than 40 of the world’s leading semiconductor, intellectual property, compiler, real-time operating system, and system companies. Furthermore, EEMBC is licensed by more than 80 companies and more than 100 universities worldwide. Through the combined efforts of its members, EEMBC benchmarks have become an industry standard for evaluating the capabilities of embedded processors and systems according to objective, clearly defined, application-based criteria.

EEMBC has benchmark suites targeting cloud and big data, mobile devices (for phones and tablets), networking, ultralow power microcontrollers, the Internet of Things (IoT), digital media, automotive, and other application areas. EEMBC also has benchmarks for general-purpose performance analysis including CoreMark, MultiBench (multicore), and FPMark (floating point).

This reference manual focuses on the CoreMark and ultralow power microcontrollers benchmarks, targeted to measure the power processing and the MCU energy efficiency, respectively, because these aspects are key features of the ADuCM4050 processor.

CoreMark

To select an MCU for a specific application, the user must know if the MCU has enough processing power to meet the application requirements. Several benchmarking options are available. Dhrystone is the most widely used benchmarking option; however, this option has a few problems, such as requiring library calls to be within a timed portion and susceptibility to the ability of a compiler to optimize work. To address these problems and to provide a simple, open source benchmark, EEMBC created the CoreMark.

CoreMark is a benchmark that measures the performance of central processing units (CPUs) used in embedded systems. CoreMark was developed in 2009 at EEMBC and is intended as an industry standard, replacing the antiquated Dhrystone benchmark. Written in C, the code contains implementations of the following algorithms:

- List processing (find and sort)
- Matrix manipulation (common matrix operations)
- State machine (determines if an input stream contains valid numbers)
- Cyclic redundancy check (CRC)

ULPMark

Whether the target is edge nodes for the IoT or any other type of battery-powered application, the implications of ultralow power (ULP) varies. The lowest active current is required when the power source is severely limited (for example, energy harvesting). The lowest sleep current is required when the system spends most of its time in standby or sleep mode, waking up infrequently (periodically or asynchronously) to process a task. ULP also implies great energy efficiency, whereby the most work is performed in a limited time. Overall, the application requires a combination of trade-offs on all the previously mentioned criteria. To ensure ULP operation over periods of months, years, and decades, application developers face a number of optimization challenges. There are an increasing number of microcontrollers claiming ULP capabilities; however, developers cannot rely on data sheet parameters alone. The EEMBC ULPMark standardizes data sheet parameters and provides a methodology to reliably and equitably measure MCU energy efficiency.

The foundations of ULPMark are as follows:

- Comparability, making it easy to compare devices.
- Transparency, making all measurements and setup processes transparent.
- Reproducibility, making it easy for any user to reproduce the benchmark scores.
IAR SETUP

IAR TOOLS INSTALLATION

The IAR Embedded Workbench® and the included IAR C/C++ Compiler™ generates the fastest performing, most compact code in the industry for ARM-based applications. Therefore, Analog Devices, Inc., provides the device family package (DFP) for the ADuCM4050.

Support for the ADuCM4050 is provided in the DFP. The IAR KickStart Kit™ is a free starter kit and evaluation version of IAR®. This edition has limitations both in code size (32 kB) and in the service and support provided.

Download the IAR Embedded Workbench from the IAR website.

IAR PROJECT CONFIGURATION

This section describes the IAR configuration for proper operation. Only the sections that must be modified from the default values are mentioned.

Use the following procedure to configure the IAR:

1. Right click the name of the project and click Options…, as shown in Figure 2.

2. Under General Options, ensure that AnalogDevices ADuCM4050 is selected as the target, depending on the microcontroller used.

3. Under C/C++ Compiler, ensure that the optimization for high speed is chosen (see Figure 4). Also, check the No size constraints option. Some functions, such as pltInitialize, are protected to ensure that these functions are not optimized. The following code protects a function and prevents the compiler from modifying the function code:

   ```
   #pragma optimize=none
   ```

Figure 2. Project Options

Figure 3. General Options—Target Configuration

Figure 4. C/C++ Compiler—Optimizations Configuration
Figure 5 shows the included directories path and the defined symbols settings necessary for a proper compilation of the ULPMark-CP project.

The full list of necessary paths for the ULPMark-CP project is as follows:

\$\text{PROJ_DIR}\text{	extbackslash inc}
\$\text{PROJ_DIR}\text{	extbackslash inc\textbackslash CoreMark}
\$\text{PROJ_DIR}\text{	extbackslash inc\textbackslash sys}
\$\text{PROJ_DIR}\text{	extbackslash inc\textbackslash config}
\$\text{PROJ_DIR}\text{	extbackslash inc\textbackslash rtos_map}
\$\text{TOOLKIT_DIR}\text{	extbackslash inc\textbackslash AnalogDevices}
\$\text{TOOLKIT_DIR}\text{	extbackslash CMSIS\textbackslash Include}

To avoid undesired warnings, add the following diagnostics to the \textit{Suppress following diagnostics} option: Pa050 and Pa082.

4. A 32-bit cyclic redundancy check (CRC) checksum stored in the \textit{Signature} field enables user code to request an integrity check of user space. The user can configure the checksum as shown in Figure 7 and Figure 8 (both configurations can be found in the \textit{Linker} menu).

Figure 6 shows the included directories path and the defined symbol settings necessary for a proper compilation of the CoreMark project.

The full list of necessary paths for the CoreMark project is as follows:

\$\text{PROJ_DIR}\inc
\$\text{PROJ_DIR}\inc\CoreMark
\$\text{PROJ_DIR}\inc\sys
\$\text{PROJ_DIR}\inc\config
\$\text{PROJ_DIR}\inc\drivers
\$\text{PROJ_DIR}\inc\rtos_map
\$\text{PROJ_DIR}\inc\sys
5. The debugger used is CMSIS DAP (see Figure 9). Verify that both Verify download and Use flash loader(s) are checked on the Debugger > Download menu, as shown in Figure 10.

6. Figure 11 and Figure 12 show the CMSIS DAP configuration. Use the Hardware target reset.
CoreMark

LOADING THE CoreMark PROJECT

The project with the CoreMark source files and core_portme.* files are tuned to the Analog Devices platform. The following steps describe how to add the CoreMark project on IAR.

1. Open the IAR workbench.
2. Open the project in IAR.
3. Under Project, click Add Existing Project…, as shown in Figure 13.

4. Browse through the project obtained and open the .ewp extension file. The files available in the workspace are shown in Figure 14.

The DFP sources folder includes the DFP files for configuring the device properly. The CoreMark sources folder includes the source files given by the EEMBC. The Platform sources folder contains the core_portme.c file given by the EEMBC but tuned to configure properly the tested device (in this case, the ADuC4050 processor).

EEMBC does not restrict changing the core_portme.* files to suit the Analog Devices platform. The differences between the core_portme.c file and the file given by the EEMBC are as follows:

- Code for UART printing.
- Code for calculating the ticks of execution using the oscillator and crystal.
- Code to configure the microcontroller properly.
- Header files to support these codes.
- Device configuration. Note that the high power buck is enabled to reduce the power consumption; this is useful during power measurement when CoreMark is running (see the Power Measurements section).

The core_portme.h file has three definitions:

- The UART_PRINT definition prints the result through the UART. If this definition is commented, the results are printed only on the terminal input and output.
- The crystal definition decides whether to measure the ticks using an external crystal oscillator or the internal resistor capacitor oscillator. If this definition is commented, the internal oscillator is used; otherwise, the crystal oscillator is used.
- The phase-locked loop (PLL) definition enables the PLL. The processor runs at 52 MHz. By default, this definition is commented and the processor runs at 26 MHz.
RUNNING THE CoreMark APPLICATION

Building the CoreMark Application

To build or compile the application code, take one of the following steps:

- Click Project and select Rebuild All (as shown in Figure 15).
- Right click the project name and click Rebuild All, as shown in Figure 16. The user is then prompted to save the workspace in the .eww extension. The project must build without any errors.

Downloading the CoreMark Code

To load the code onto the EV-COG-AD4050LZ or the EV-COG-AD4050WZ board, take one of the following steps:

- Under Project, click Download and select Download active application, as show in Figure 17.
- Click Download and Debug, as shown in Figure 18.

Running the CoreMark Project

To run the code, click Go, as shown in Figure 19.
CoreMark RESULTS
The requirement is that the CoreMark code must run for at least 10 seconds. The provided code has 10,000 iterations set up, resulting in approximately 2 minutes to complete the execution.

The results are printed out on the terminal input and output. To view the terminal input and output, click View and then select Terminal I/O. Note that users must be in debug mode for this option to be active.

By default, the UART_PRINT definition in the core_portme.h file is commented. To print the results through UART, uncomment the UART_PRINT definition.

The following steps describe how to print the results through UART:
1. Uncomment the UART_PRINT definition.
2. Connect the UART port of the EV-COG-AD4050LZ or the EV-COG-AD4050WZ to the PC using a USB cable.
3. From the Control Panel, click Device Manager.
4. Check the COM port number to which the UART is connected.
5. Open a terminal that can connect to the UART port (PuTTY is used here).
6. Set the Connection type to Serial and input the corresponding COM port number. The other settings are shown in Figure 22.

Figure 20. View Terminal Input and Output

Figure 21. USB to UART Connection

Figure 22. Additional UART Configuration
Rebuild the project, following the instructions in the Running the CoreMark Project section. The results are printed through UART (see Figure 24).

The CoreMark number shows the raw horsepower, and the CoreMark/MHz number shows the efficiency of the core. To calculate the CoreMark/MHz number, the CoreMark number must be divided by the clock speed used when the benchmark is performed.

\[\text{CoreMark (MHz)} = \frac{\text{CoreMark Score}}{\text{Clock Frequency}} \]

Results at 26 MHz

In this project, the ADuCM4050 processors run at 26 MHz.

\[\text{CoreMark (MHz)} = \frac{91.59}{26 \text{ MHz}} \]

The CoreMark/MHz score is 3.52.

This score is almost equal to the CoreMark/MHz score of the ARM Cortex-M4F processor, whose score is 3.40.

To report the score, CoreMark recommends the following format:

CoreMark 1.0 : 91.591873 / IAR EWARM
7.60.1.11216 /--no_size_constraints--
-cpu=Cortex-M4 -D__ADUCM4050__
-no_code_motion =Ohs -e --fpu=VFPv4_sp --
endian=little / FLASH

Power Measurements at 26 MHz

The following steps describe how to monitor the current consumption of the ADuCM4050 processor when the device executes the CoreMark code:

1. Ensure that UART_PRINT define in the core_portme.h file is commented so that the UART pins are not floating.
2. Load the code onto the microcontroller.
3. Connect the positive terminal of the source to the JP5 connector.
4. Connect the GND of the source to the GND of the board.
5. Remove all the jumpers.
6. Press the Reset button.
7. Monitor the current consumption on the meter. The current consumption must be approximately 1645 μA when the processor executes the code at 26 MHz.
8. For dynamic current consumption, repeat the procedure with a different frequency. Change the CLKDIV definition variable to 4 so that the frequency is divided by 4, yielding a value of 26 MHz/4 = 6.5 MHz.
9. Monitor the current consumption on the meter. The current consumption must be approximately 564 μA.

To obtain the dynamic current consumption value, calculate the slope of the line formed by the two points (frequency and current).

The slope is calculated as follows:

\[\text{Slope} = \frac{(1645 - 564)/(26 - 6.5)) = 55.44 \mu A/MHz} \]

The dynamic current consumption is 55.44 μA/MHz.
Result at 52 MHz

Enabling the PLL, the ADuCM4050 processors runs at 52 MHz. To enable the device, uncomment PLL_52MHz define in the core_portme.h file. Then, follow the steps explained in the CoreMark Results section to run the CoreMark score.

\[
\text{CoreMark/MHz} = 183.87/52 \text{ MHz}
\]

The CoreMark/MHz score is 3.54.

Power Measurements at 52 MHz

The following steps describe how to monitor the current consumption of the ADuCM4050 processor when the device executes the CoreMark code:

1. Ensure that UART_PRINT definition in the core_portme.h file is commented so that the UART pins are not floating.
2. Load the code onto the microcontroller.
3. Connect the positive terminal of the source to the JP5 connector.
4. Connect the ground of the source to the ground of the board.
5. Remove all the jumpers.
6. Press the Reset button.
7. Monitor the current consumption on the meter. The current consumption must be approximately 3094 μA when the processor executes the code at 52 MHz.
8. For dynamic current consumption, repeat the procedure with a different frequency. Comment the PLL_52MHz definition and uncomment the PLL_26MHz definition for a frequency of 26 MHz.
9. Monitor the current consumption on the meter. The current consumption must be approximately 1663 μA.

To obtain the dynamic current consumption value, calculate the slope of the line formed by the two points (frequency and current).

The slope is calculated as follows:

\[
\text{Slope} = \frac{(3094 - 1663)/(52 - 26)}{55.04 \text{ μA/MHz}}
\]
ULPMark-CP
THE EnergyMonitor
The EEMBC ULPMark EnergyMonitor software is an accurate tool for measuring energy. The EEMBC EnergyMonitor hardware (shown in Figure 27) is required to measure ULPMark-CP scores. This hardware can be purchased from the EEMBC website.

Figure 27 shows the EEMBC EnergyMonitor hardware, and the VCC and GND pins used to power the EV-COG-AD4050LZ or the EV-COG-AD4050WZ board.

Installing the EnergyMonitor Software Drivers
The first time the EnergyMonitor hardware is connected to a PC, a USB driver message appears because the hardware is an unrecognized USB device.

When the USB driver message appears, click Next, and then click Manually locate USB drivers.

If the driver message does not appear, go to the Device Manager and locate the EEMBC Application UART1 and EEMBC Energy Tool V1 devices to install the driver on each of them.

Install the USB drivers, which are located at /bin/USB_CDC/monitor_driver.inf and /bin/USB_CDC/monitor_driver.cat. A security warning will then appear indicating that the publisher cannot be verified. Click Install this driver software anyway.

By default, 64-bit versions of Windows® Vista and later versions of Windows load a kernel mode driver only if the kernel can verify the driver signature. If using one of these versions of Windows, and the drivers cannot be installed, use the appropriate mechanisms to temporarily disable load time enforcement of a valid driver signature (the appropriate mechanism depends on the Windows version).

BUILDING THE ULPMark-CP APPLICATION CODE
Building the ULPMark-CP Application
To build or compile the application code, click Project, and click Rebuild All.

Figure 28. Build or Compile the Project

Download the ULPMark-CP Code
To download the code, click Project > Download > Download active application.

Figure 30. Downloading the Application
After power cycling the device, the code runs on the ADuCM4050 device.
RUNNING THE ULPMark-CP BENCHMARK
Running the ULPMark-CP
This section provides step by step information on how to set up the EV-COG-AD4050LZ or the EV-COG-AD4050WZ board for measuring the ULPMark-CP score.

1. Remove the USB cable.
2. Remove all the jumpers (J7, J8, J9, and so on) except TH1, TH2, TH4 and TH5. These mostly connect the external components of the board (LEDs, switches, sensors, battery, and so on).
3. Place the VBAT and GND cable of EMON to the TH3 test point, as shown in Figure 32.

The connection as shown in Figure 32 is now established.
Proceed to measure the score by starting the EnergyMonitor software and clicking Start. The EnergyMonitor hardware powers the EV-COG-AD4050LZ or the EV-COG-AD4050WZ board and measures the energy consumption of the core profile. At the end of the run, the software calculates the EEMBC ULPMark-CP score and displays the score on screen. The software also displays the average energy consumed for previous cycles in the history window.

The score obtained for typical devices at 52 MHz is around 189 EEMarks™-CP. This value may vary depending on process and temperature conditions. Figure 31 shows an example of a score for a typical device.

Figure 31. ULPMark-CP Score

Figure 32. Board Setup for Measuring the Score
Running the ULPMark-Crystalless Profile

If an application does not require an accuracy as high as the one provided by a crystal, a low frequency oscillator can be used as the source clock of the real-time clock to reduce the energy consumption. Both the low frequency oscillator and crystal frequencies are 32 kHz.

The distributed code includes a define directive (Line 51 of the Platform.c file) to allow testing of the ULPMark-Crystalless Profile. Uncomment the define USE_LFOSC line to use the low frequency oscillator as the real-time clock:

```
#define USE_LFOSC
```

The score obtained for typical devices at 52 MHz is around 189 EEMarks-CP. This value may vary depending on process and temperature conditions. Figure 33 shows an example of a score for a typical device.

RESULTS ANALYSIS

The ULPMark-CP uses a formula that takes the reciprocal of the energy values (median of 5 times the average energy per second for 10 ULPMark-CP cycles).

\[
\text{Energy (μJ)} = \frac{1000}{\text{EEMarkCP}}
\]

The consumed energy is obtained as the sum of the energy consumed while the device is executing the workload (in active mode) and while the device is in hibernate.

\[
\text{Energy} = \text{Active Energy} + \text{Sleep Energy}
\]

According to the ADuCM4050 data sheet, the typical value for an active current at 52 MHz with cache disabled (similar to the ULPMark-CP behavior) is 3.21 mA, and for a hibernate current, 783 nA with low frequency crystal and real-time clock enabled. The active time duration is 217 μs.

\[
\text{Active Energy} = 3 \text{ V} \times 3210 \mu\text{A} \times 0.217 \text{ ms} = 2.09 \mu\text{J}
\]

\[
\text{Sleep Energy} = 3 \text{ V} \times 0.783 \mu\text{A} \times 999.783 \text{ ms} = 2.34 \mu\text{J}
\]

According to the data sheet numbers and the execution time, the energy for the active current is 2.04 μJ, and the energy consumed during the sleep time is 2.34 μJ.

The score according to those values approaches the ones measured with the EEMBC EnergyMonitor software. The difference is due to the energy lost on the wake-up process.

\[
\text{Energy (μJ)} = 2.09 + 2.34 = 4.43 \mu\text{J} \approx \frac{1000}{201} = 4.97 \mu\text{J}
\]
NOTES

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.