Evaluating the ADMV1013 24 GHz to 44 GHz, Wideband Microwave Upconverter

FEATURES
- Fully featured evaluation board for the ADMV1013
- On-board USB for SPI control
- 5 V operation
- ACE software interface for SPI control

EVALUATION KIT CONTENTS
- ADMV1013-EVALZ evaluation board

EQUIPMENT NEEDED
- 5 V dc power supply
- RF frequency generator
- Spectrum analyzer
- 180° hybrid from 5.4 GHz to 10.25 GHz
- Power supply cables, 2.92 mm coaxial cables
- PC
- Mini USB to USB cable

DOCUMENTS NEEDED
- ADMV1013 data sheet

SOFTWARE NEEDED
- ACE software
- ADMV1013 plugins
- ADMV1013-EVALZ USB driver

GENERAL DESCRIPTION
The ADMV1013-EVALZ evaluation board incorporates the ADMV1013 with a microcontroller, low dropout (LDO) regulators, and the AD5601 nanoDAC® to allow the quick and easy evaluation of the ADMV1013. The microcontroller allows the user to configure the ADMV1013 register map through the Analysis, Control, Evaluation (ACE) software. The LDO regulators allow the ADMV1013 to be powered on by a single supply, and offer power supply ripple rejection. The AD5601 nanoDAC allows the user to attenuate the radio frequency (RF) power from the mixer of the ADMV1013 without using an external power supply.

The ADMV1013 is a silicon germanium (SiGe) design, wideband, microwave upconverter optimized for point to point microwave radio designs operating in a frequency range of 24 GHz to 44 GHz. The ADMV1013 comes in a compact, thermally enhanced, 6 mm × 6 mm LGA package, and operates over a temperature range of −40°C to +85°C. For full details on the ADMV1013, see the ADMV1013 data sheet. Consult the data sheet in conjunction with this user guide when using the ADMV1013-EVALZ evaluation board.

EVALUATION BOARD PHOTOGRAPH

Figure 1.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Evaluation Kit Contents</td>
<td>1</td>
</tr>
<tr>
<td>Equipment Needed</td>
<td>1</td>
</tr>
<tr>
<td>Documents Needed</td>
<td>1</td>
</tr>
<tr>
<td>Software Needed</td>
<td>1</td>
</tr>
<tr>
<td>General Description</td>
<td>1</td>
</tr>
<tr>
<td>Evaluation Board Photograph</td>
<td>1</td>
</tr>
<tr>
<td>Revision History</td>
<td>2</td>
</tr>
<tr>
<td>Evaluation Board Hardware</td>
<td>3</td>
</tr>
<tr>
<td>Evaluation Board Software Quick Start Procedures</td>
<td>6</td>
</tr>
<tr>
<td>Installing the ACE Software, ADMV1013 Plugins, and ADMV1013 USB Drivers</td>
<td>6</td>
</tr>
<tr>
<td>Initial Setup</td>
<td>7</td>
</tr>
<tr>
<td>ADMV1013 Block Diagram and Functions</td>
<td>8</td>
</tr>
<tr>
<td>Setting VCTRL Voltage for the ADMV1013</td>
<td>11</td>
</tr>
<tr>
<td>Updating Register 0x0A Sequence</td>
<td>11</td>
</tr>
<tr>
<td>Test Results</td>
<td>12</td>
</tr>
<tr>
<td>IF Results</td>
<td>12</td>
</tr>
<tr>
<td>Evaluation Board Schematics and Artwork</td>
<td>13</td>
</tr>
<tr>
<td>Configuration Options</td>
<td>18</td>
</tr>
</tbody>
</table>

REVISION HISTORY

- Changes to Equipment Needed Section and Software Needed Section: 1
- Changes to Figure 2 and Evaluation Board Hardware Section: 3
- Changes to Installing the ADMV1013 Plugin Section: 6
- Changes to Initial Setup Section: 7
- Changes to Table 1: 8
- Changes to Setting VCTRL Voltage for the ADMV1013 Section: 11
- Changes to Figure 19: 13
- Changes to Figure 21: 15
- Changes to Figure 24 and Figure 25: 16
- Changes to Figure 26 and Figure 27: 17
- Changes to Table 2: 18

5/2019—Rev. 0 to Rev. A
- Changes to Figure 1: 1
- Changes to Figure 2: 3
- Changes to Figure 4 and Figure 6: 4
- Changes to Figure 7: 5
- Changes to Initial Setup Section: 7
- Changes to Figure 19: 14
- Changes to Figure 23: 16
- Changes to Figure 24: 17
- Changes to Figure 27: 18
- Changes to Table 2: 19

12/2018—Revision 0: Initial Version
The ADMV1013-EV ALZ evaluation board contains a built in ADMV1013 chip. Figure 2 shows the location of this chip on the ADMV1013-EV ALZ evaluation board and the block diagram of the ADMV1013. The local oscillator (LO) input path shown in Figure 3 operates from 5.4 GHz to 10.25 GHz with an LO amplitude range of −6 dBm to +6 dBm. The LO input path also has an internal quadrupler and a programmable band-pass filter. Program the LO band-pass filter from QUAD_FILTERS (Register 0x09, Bits[3:0]).

The LO path operates differentially or single-ended. LOP and LON are the inputs to the LO path. Switch the LO path from differential to single-ended, or vice versa, by setting the QUAD_SE_MODE (Register 0x09, Bits[9:6]) through the serial peripheral interface (SPI). Refer to the ADMV1013 data sheet for the appropriate setting.

The ADMV1013-EV ALZ evaluation board has two IF inputs, IF_I and IF_Q, for single sideband upconversion, and four I/Q inputs, I_P, I_N, Q_P, and Q_N, for direct conversion from I/Q to RF. To evaluate the device in IF mode, connect the IF inputs to a frequency generator through a 90° hybrid. To evaluate the device in IF mode, the I/Q inputs must be kept floating without the jumper, in this case Jumper J1 to Jumper J4. To evaluate the device in I/Q mode, connect the I/Q inputs, I_P, I_N, Q_P, and Q_N, to an I/Q baseband generator, and use Jumper J1 to Jumper J4 with the I/Q inputs. The ADMV1013-EV ALZ evaluation board operates on a 5 V dc supply. Figure 4 shows the top view of the ADMV1013-EV ALZ evaluation board, and is for evaluation purposes only with no implied guarantee of performance or reliability.
Figure 4. Top View of the ADMV1013-EVALZ

Connect the 5 V dc power supply to the 5V test point, and the ground connection to the GND8 test point. The 3.3V and 1.8V test points are for evaluation purposes only. Connect the spectrum analyzer to the Southwest SRI 2.92 mm connector, RF_OUT. Connect the Southwest SRI 2.92 mm connectors, LO_N and LO_P, differentially to the low phase noise frequency generator. Use a 180° hybrid from 5.4 GHz to 10.25 GHz for the differential inputs. In IF mode, connect the IF_I and IF_Q inputs to the frequency generator through a 90° hybrid from 800 MHz to 6 GHz for the quadrature inputs. Keep the I/Q inputs floating and remove any jumpers from the ADMV1013-EVALZ evaluation board.

In I/Q mode, connect the I_P, I_N, Q_N, and Q_P inputs to the I/Q baseband generator. Plug the USB cable into the mini USB connector XP2 to connect the PC to the ADMV1013-EVALZ evaluation board (see Figure 5, Figure 6, and Figure 7). Use the AD5601 nanoDAC on the ADMV1013-EVALZ evaluation board to generate the control voltage (V_{CTRL}) voltage. See the Setting V_{CTRL} Voltage for the ADMV1013 section for additional details. If the ADMV1013 needs a hard reset, use Reset Button S1 to hard reset the ADMV1013-EVALZ evaluation board.

Figure 5. Block Diagram of the ADMV1013 Lab Bench Setup

Figure 6. ADMV1013-EVALZ Lab Bench Setup for the I/Q Inputs
Figure 7. ADMV1013-EVALZ Lab Bench Setup for the IF Inputs
EVALUATION BOARD SOFTWARE QUICK START PROCEDURES

INSTALLING THE ACE SOFTWARE, ADMV1013 PLUGINS, AND ADMV1013 USB DRIVERS

Installing the ACE Software

The ADMV1013-EVALZ software uses the Analog Devices, Inc., ACE software. Instructions on how to install and use the ACE software are available on the ACE software page. If the ACE software has already been installed, ensure that the software is the latest version as shown on the ACE software page. If the ACE software installed is not the latest version, update the software with the latest version.

To update previously installed ACE software with the latest version,
1. Uninstall the current version of ACE software on the PC.
2. Delete the ACE folder in C:\ProgramData\Analog Devices.
3. Install the latest version of ACE software. During the installation, check the SDP Drivers, LRF Drivers and .NET 40 Client driver installations as well (see Figure 8).

Installing the USB Driver

After the ACE software is installed, take the following steps to install the ADMV1013 USB driver, which allows proper usage of the ADMV1013-EV ALZ evaluation board:

2. Click the ADMV1013 USB Driver link. The ADMV1013 USB driver downloads automatically.
3. In the folder where the ADMV1013 USB driver is downloaded, right click the downloaded file and click Extract All.
4. In the extracted folder, double click the ADMV1013EvaluationBoardUSBDriver.Exec file to install the ADMV1013 USB driver. An internet connection is required for this installation.

Installing the ADMV1013 Plugin

After installing the ACE software and ADMV1013 USB driver, take the following steps to install the ADMV1013 plugin on the ACE software:

1. After installing the ADMV1013 USB drivers, download the Board.ADMV1013.acezip file from the ACE software page anywhere on the PC.
2. When the download is complete, double click the Board.ADMV1013.acezip file to install the ADMV1013 plugin on the ACE software.
3. Alternatively, in the main ACE window, click Plugins Marketplace, and then click Available Packages. Search for the Board.ADMV1013 plugin. Highlight the search result and click Install Selected (see Figure 9).

When the installations are complete and the ACE software starts, the ADMV1013-EVALZ plugin appears (see Figure 10).
INITIAL SETUP
To set up the ADMV1013-EVALZ evaluation board, take the following steps:

1. Connect the USB cable to the PC, and then connect the USB cable to the ADMV1013-EVALZ evaluation board.
2. Power up the ADMV1013-EVALZ evaluation board with the 5 Vdc power supply. Connect the 5 Vdc connection to the 5V test point and connect the ground connection to the GND8 test point. When the USB cable connects to the PC, the blue light emitting diode (LED) illuminates. The PC recognizes the ADMV1013-EVALZ evaluation board as ADMV1013-044718, Rev. A.
3. Press the S1 button to hard reset the device.
4. Open the ACE software. The ADMV1013-044718, Rev. A plugin (ADMV1013-EVALZ) appears in the Attached Hardware section shown in Figure 11. Double click the ADMV1013-044718 RevA plugin within the Attached Hardware section.

Note that when the device is turned off and on while the ACE software is open, or when the USB cable is unplugged and plugged back in while the ACE software is open, contact with the ADMV1013-EVALZ evaluation board is lost. To regain contact, click the System tab, then click the USB symbol on the ADMV1013-044718 RevA subsystem, and then click Acquire. This command allows the user to reconnect to the ADMV1013-EVALZ evaluation board. This procedure may not be successful and the user must close the ACE session by clicking the File menu and then clicking Close Session.

5. When the ADMV1013-EVALZ plugin is double clicked, the ADMV1013-044718 RevA tab shown in Figure 12 opens. On the left side of the window, open the INITIAL CONFIGURATION section, click Gain Setup, and enter the VCTRL in the VCTRL1 and VCTRL2 Voltage (mV) box. Note that 1800 mV is the highest gain setting for the device.
6. Click Apply and then click Reset Board to set the VCTRL voltage. This action resets the ADMV1013-EVALZ evaluation board and allows it to start in the correct configuration.
7. Double click the ADMV1013 button shown on the right side of the window, and click Reset Board each time the USB is plugged into the PC for optimal performance. When the ADMV1013 button is double clicked, the ADMV1013 block diagram shown in Figure 13 appears.

Figure 11. **Attached Hardware** Section When the ADMV1013-044718, Rev. A (ADMV1013-EVALZ) is Connected

Figure 12. **Initial Configuration for the Gain Setup and Board Plugin View**

Figure 13. **ADMV1013 Block Diagram in the ACE Software**
ADMV1013 BLOCK DIAGRAM AND FUNCTIONS

The ADMV1013 plugin appears similar to the block diagram shown in the ADMV1013 data sheet. The similarities between the plugin and the block diagram make it easy to correlate the functions on the ADMV1013-EVALZ evaluation board with the corresponding descriptions in the ADMV1013 data sheet. The ADMV1013 data sheet provides a full description of each block and register, as well as the corresponding settings. Some blocks and functions pertain to the ADMV1013-EVALZ evaluation board. Figure 14 shows the full screen ADMV1013 block diagram with labels, and Table 1 describes the functionality of each block.

Table 1. ADMV1013 Block Diagram Label Functions (See Figure 14)

<table>
<thead>
<tr>
<th>Label</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>To apply all register values to the device, click Apply Changes (Label A). When Auto Apply is highlighted in the ADMV1013-044718, Rev. A tab, the Apply Changes feature and the Read All feature (Label B) continuously run every few seconds, and the Apply Changes and Read All buttons do not need to be clicked to apply or read back the block diagram settings.</td>
</tr>
<tr>
<td>B</td>
<td>To read back all SPI registers of the device, click Read All (Label B). When Auto Apply is highlighted in the ADMV1013-044718, Rev. A tab, the Apply Changes feature and the Read All feature continuously run every few seconds, and the Apply Changes and Read All buttons do not need to be clicked to apply or read back the block diagram settings.</td>
</tr>
<tr>
<td>C</td>
<td>Click Reset Chip (Label C) to reset the 1.8 V SPI including the SPI_SOFT_RESET bit. The functionality of the Reset Chip command is the same as the functionality of the Reset Chip button (Label F1).</td>
</tr>
<tr>
<td>D</td>
<td>Click Diff (Label D) to show registers that are different on the device.</td>
</tr>
<tr>
<td>E</td>
<td>Click Software Defaults (Label E) to load the software defaults on to the device, and then click Apply Changes.</td>
</tr>
<tr>
<td>F1</td>
<td>Click the Reset Chip button (Label F1) to set the following bits: SPI_SOFT_RESET bit (Bit 14, Register 0x00) to 0x1. PARITY_EN bit (Bit 15, Register 0x00) to 0x1. VVA_TEMPERATURE_COMPENSATION bits (Bits[15:0], Register 0x0A) to 0xE700. Mixer_OFF_ADJ_I_P bits (Bits[15:9], Register 0x07) to 0x3F. Mixer_OFF_ADJ_I_N bits (Bits[8:2], Register 0x07) to 0x3F. Mixer_OFF_ADJ_Q_P bits (Bits[15:9], Register 0x08) to 0x3F. Mixer_OFF_ADJ_Q_N bits (Bits[8:2], Register 0x08) to 0x3F.</td>
</tr>
<tr>
<td>F2</td>
<td>Click Parity Enable (Label F2), and then click Apply Changes to set the PARITY_EN bit (Bit 15, Register 0x00). When Parity Enable is highlighted, the PARITY_EN bit is enabled. When Parity Enable is not highlighted, the PARITY_EN bit is disabled. For proper functionality of the ADMV1013-EVALZ evaluation board, it is recommended to always keep Parity Enable highlighted.</td>
</tr>
<tr>
<td>Label</td>
<td>Function</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>F3</td>
<td>Click Bandgap Power Down (Label F3), and then click Apply Changes to set the BG_PD bit (Bit 10, Register 0x03). When Bandgap Power Down is highlighted, the band gap is powered down. When the Bandgap Power Down button is not highlighted, the band gap is powered up.</td>
</tr>
<tr>
<td>G or H</td>
<td>Click VGA Power down (Label G and Label H), then click Apply Changes to set the VGA_PD bit (Bit 15, Register 0x03). When VGA Power down is highlighted, the VGA is powered on. When the VGA Power down is not highlighted, the VGA is powered down.</td>
</tr>
<tr>
<td>I</td>
<td>Click Quadrupler On (Label I), then click Apply Changes to set the QUAD_PD bits (Bits[13:11], Register 0x03). When Quadrupler On is highlighted, these three bits are disabled. When Quadrupler On is not highlighted, these three bits are enabled and the quadrupler is powered down.</td>
</tr>
</tbody>
</table>
| J | Click the dropdown list on the band-pass filter to set the **LO Bandpass Filter** (Label J), and then click **Apply Changes** to set the QUAD_FILTERS bits (Bits[3:0], Register 0x09) to choose the appropriate LO input bandwidth. The four bandwidth options include the following:
 - LO frequency bandwidth of 8.62 GHz to 10.25 GHz.
 - LO frequency bandwidth of 6.6 GHz to 9.2 GHz.
 - LO frequency bandwidth of 5.4 GHz to 8 GHz.
 - LO frequency bandwidth of 5.4 GHz to 7 GHz. |
| K | Choose the appropriate **LO Single Ended/ Differential Mode** (Label K), and then click **Apply Changes** to set the QUAD_SE_MODE bits (Bits[9:6], Register 0x09). There are three options: differential, single-ended positive side disable, and single-ended negative side disable. |
| L | Enter a value for the common-mode voltage (VCM) in the **Common Mode Voltage** (Label L) box, and then click **Apply Changes**. The **Common Mode Voltage** value corresponds to MIXER_VGATE bits (Bits[6:0], Register 0x05). The **Common Mode Voltage** box accepts values between 0.0 V and 2.6 V. The MIXER_VGATE decimal value is calculated by the following equations:
 \[
 \text{MIXER_VGATE} = 23.89 \times \text{VCM} + 81
 \]
 \[
 \text{MIXER_VGATE} = 23.75 \times \text{VCM} + 1.25
 \]
| M | Click **IF Enable** (Label M), and then click **Apply Changes** to set the MIXER_IF_EN bit (Bit 7, Register 0x03). When **IF Enable** is highlighted, the bit is enabled. When **IF Enable** is not highlighted, the bit is disabled. |
| P | Click **Mixer Powerdown** (Label P), and then click **Apply Changes** to set the MIXER_PD bit (Bit 14, Register 0x03). When **Mixer Powerdown** is highlighted, the MIXER_PD bit is disabled and the mixer is powered down. |
| Q1 to Q2 | Use the scroll arrows or enter a value between 0 and 127 in the **PHASE ADJUST IFINE** box (Label Q1), and then click **Apply Changes** to set the LOAMP_PH_ADJ_Q_FINE bits (Bits[13:7], Register 0x06). See the Setting V_CTRL Voltage for the ADMV1013 section for additional details. |
| R | **VCTRL Voltage** (Label R). See the Setting V_CTRL Voltage for the ADMV1013 section for additional details. |
| T1 to T8 | Use the error mask and readback blocks as follows:
 - **Parity Error Mask** (Label T1), and then click **Apply Changes** to set the PARITY_ERROR_MASK bit (Bit 15, Register 0x02). When **Parity Error Mask** is highlighted, the PARITY_ERRORS_MASK bit is enabled. When **Parity Errors Mask** is not highlighted, the PARITY_ERRORS_MASK bit is disabled.
 - **Too Few Errors Mask** (Label T2), and then click **Apply Changes** to set the TOO_FEW_ERRORS_MASK bit (Bit 14, Register 0x02). When **Too Few Errors Mask** is highlighted, the TOO_FEW_ERRORS_MASK bit is enabled. When **Too Few Errors Mask** is not highlighted, the TOO_FEW_ERRORS_MASK bit is disabled.
 - **Many Errors Mask** (Label T3), and then click **Apply Changes** to set the TOO_MANY_ERRORS_MASK bit (Bit 13, Register 0x02). When **Many Errors Mask** is highlighted, the TOO_MANY_ERRORS_MASK bit is enabled. When **Many Errors Mask** is not highlighted, the TOO_MANY_ERRORS_MASK bit is disabled.
 - **Address Errors Mask** (Label T4), and then click **Apply Changes** to set the ADDRESS_RANGE_ERROR_MASK bit (Bit 12, Register 0x02). When **Address Errors Mask** is highlighted, the ADDRESS_RANGE_ERROR_MASK bit is enabled. When **Address Errors Mask** is not highlighted, the ADDRESS_RANGE_ERROR_MASK bit is disabled.
 - When the PARITY_ERROR_MASK bit (Bit 15, Register 0x02) is set, **Parity Error** (Label T5) is red when toggling the PARITY_ERROR bit (Bit 15, Register 0x01).
 - When the TOO_FEW_ERRORS_MASK bit (Bit 14, Register 0x02) is set, **Too Few Errors** (Label T6) is red when toggling the TOO_FEW_ERRORS bit (Bit 14, Register 0x01).
 - When the TOO_MANY_ERRORS_MASK bit (Bit 13, Register 0x02) is set, **Many Errors** (Label T7) is red when toggling the TOO_MANY_ERRORS bit (Bit 13, Register 0x01).
 - When the ADDRESS_RANGE_ERROR_MASK bit (Bit 12, Register 0x02) is set, **Address Errors** (Label T8) lights up red when toggling the ADDRESS_RANGE_ERROR bit (Bit 12, Register 0x01).
<table>
<thead>
<tr>
<th>Label</th>
<th>Function</th>
</tr>
</thead>
</table>
| U1 to U2 | Use the detector as follows:
Click **Detector Enable** (Label U1), and then click **Apply Changes** to set the DET_EN bit (Bit 5, Register 0x03) and turn on the detector. When **Detector Enable** is highlighted, the DET_EN bit is enabled. When **Detector Enable** is highlighted, the DET_EN bit is disabled.
The output of the envelope detector is on the **VENV_P** and **VENV_N** (Label U2) connectors and is differential. |
| V1 to V4 | Use the LO nulling section as follows:
Use the scroll or enter a value between 0 and 127 in the **OFFSET_ADJUST_IP** box (Label V1) and click **Apply Changes** to set the MXER_OFF_ADJ_I_P bits (Bits[15:9], Register 0x07).
Use the scroll arrows or enter a value between 0 and 127 in the **OFFSET_ADJUST_IN** box (Label V2) and click **Apply Changes** to set the MXER_OFF_ADJ_I_N bits (Bits[8:2], Register 0x07).
Use the scroll arrows or enter a value between 0 and 127 in the **OFFSET_ADJUST_QP** box (Label V3) and click **Apply Changes** to set the MXER_OFF_ADJ_Q_P bits (Bits[15:9], Register 0x08).
Use the scroll arrows or enter a value between 0 and 127 in the **OFFSET_ADJUST_QN** box (Label V4) and click **Apply Changes** to set the MXER_OFF_ADJ_Q_N bits (Bits[8:2], Register 0x08). |
| W | Click **Proceed to Memory Map** (Label W) to open the ADMV1013 Memory Map tab (see Figure 15). |

Figure 15. ADMV1013 Memory Map Tab in the ACE Software
SETTING V_{CTRL} VOLTAGE FOR THE ADMV1013

The ADMV1013-EVALZ evaluation board comes with the AD5601 nanoDAC. The AD5601 nanoDAC sets the V_{CTRL} voltage for the VCTRL1 and VCTRL2 pins of the ADMV1013. When the ADMV1013 plugin opens, enter the V_{CTRL} voltage in the VCTRL1 and VCTRL2 Voltage (mV) box in the INITIAL CONFIGURATION section to set the voltage (see Figure 12). Note that 1800 mV is the highest gain setting for the devices.

When using an external power supply for the V_{CTRL} voltage, use the AD5601 nanoDAC plugin to change the voltage or power down the AD5601 nanoDAC. To open the AD5601 nanoDAC plugin, double click the AD5601 button in the ADMV1013-044718 RevA tab (see Figure 12). Figure 16 shows the AD5601 nanoDAC user interface. The user interface contains the Power Down Modes box, the VCTRL1 and VCTRL2 Voltage (mV) box, and the Equivalent Decimal Value box.

To power up or power down the AD5601 nanoDAC, enter a value in the Power-Down Modes box, or use the scroll arrows to adjust the value. To use the AD5601 nanoDAC, set the Power-Down Modes box to 0. When the V_{CTRL} voltage is being applied externally through the test loop, set the Power Down Modes box to 1, 2, or 3. For more information on the different power-down modes of the AD5601 nanoDAC, see the AD5601 data sheet.

To set the V_{CTRL} voltage, enter a value in the VCTRL1 and VCTRL2 Voltage (mV) box, or type the corresponding decimal number for an 8-bit register in the Equivalent Decimal Value box. The V_{CTRL} voltage range available is 0 mV to 3300 mV. Set the VCTRL1 and VCTRL2 Voltage (mV) value to 0 mV for the lowest gain of the ADMV1013, and to set it to 1800 mV for the highest gain of the ADMV1013. There is no change in the gain of the ADMV1013 for V_{CTRL} values above 1800 mV.

After making any changes to the voltage or to the power-down mode, click Apply Changes (see Figure 16). To allow the changes to take place automatically, select Auto Apply in the ADMV1013-044718 RevA tab. There is no need to click Apply Changes after selecting Auto Apply.

UPDATING REGISTER 0x0A SEQUENCE

When Register 0x0A needs to be updated, the update must follow a specific sequence. The ACE software automatically follows this sequence when Register 0x0A is in need of an update. The sequence that the ACE software carries out is as follows:

1. Disable PARITY_EN bit (Bit 15, Register 0x00).
2. Write to Register 0x0A.
3. Enable PARITY_EN bit (Bit 15, Register 0x00).
TEST RESULTS

The following results test results of the ADMV1013-EVALZ evaluation board are the expected results. VCTRL = 1800 mV is used for both the IF results and the I/Q results.

IF RESULTS

Jumper J1 to Jumper J4 are excluded from the IF measurements that follow. The hybrids and evaluation board RF traces have not been de-embedded.

Figure 17 shows the results of an IF input of 1000 MHz at -10 dBm, single tone mixed, with a 7 GHz LO at 0 dBm to an RF output of 29 GHz for upper sideband settings.

See Figure 18 for the graphical user interface (GUI) settings that produce the results shown in Figure 17.
Figure 19. ADMV1013 Connections
Figure 20. Microcontroller and Level Shifter Connections
Figure 21. LDO Regulator Connections

Figure 22. ADMV1013-EVALZ Evaluation Board Top

Figure 23. ADMV1013-EVALZ Evaluation Board Bottom
1. SILKSCREEN MIGHT BE SLIGHTLY DIFFERENT DEPENDING ON THE REVISION OF THE BOARD.

Figure 24. ADMV1013-EVALZ Evaluation Board Printed Circuit Board (PCB), Top Layer

Figure 25. ADMV1013-EVALZ Evaluation Board PCB, Second Layer
NOTES

1. SILKSCREEN MIGHT BE SLIGHTLY DIFFERENT DEPENDING ON THE REVISION OF THE BOARD.

Figure 26. ADMV1013-EVALZ Evaluation Board PCB, Third Layer

Figure 27. ADMV1013-EVALZ Evaluation Board PCB, Bottom Layer
CONFIGURATION OPTIONS

Table 2. ADMV1013-EVALZ Configuration Options

<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
<th>Default Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 V, 3.3V_1013, 3.3 V, 5 V, GND</td>
<td>Power supplies and ground</td>
<td>Not applicable</td>
</tr>
<tr>
<td>LON, LOP, IF_I, IF_Q, Q_P, Q_N, I_N, I_P, RF_OUT, VENV_N, VENV_P</td>
<td>RF data and clock local oscillator and envelope signal</td>
<td>Not applicable</td>
</tr>
<tr>
<td>R2 to R4, R6, R8</td>
<td>33 Ω series resistors for SPI pins</td>
<td>R2, R3, R4, R6, R8 = 33 Ω (0402)</td>
</tr>
<tr>
<td>R5, R7</td>
<td>1.1 kΩ series resistors for BG_RBIASx pins</td>
<td>R5, R7 = 1.1 kΩ (0402)</td>
</tr>
<tr>
<td>5V, 3.3V, 3.3V_1013, 1.8V, VCTRL1, VCTRL2, GND1</td>
<td>Test points</td>
<td>Not applicable</td>
</tr>
<tr>
<td>R14, R15, R17, R18, R19, R20, R23, XR6</td>
<td>Shorts or power supply decoupling resistors</td>
<td>R17, R18, R19 = 0 Ω (0603), R15 = 100 kΩ (0402), R14, R20, R23 = 0 Ω (0402), XR6 = 80.6 Ω (1206)</td>
</tr>
<tr>
<td>R1, R13, R16, R22, XR2</td>
<td>Pull-up or pull-down resistors</td>
<td>XR2, R1, R13, R22 = 10 kΩ (0603), R16 = 100 kΩ (0402)</td>
</tr>
<tr>
<td>C2 to C4, C5, C11 to C31, C34 to C42, C43 to C51, C140, C141, XC12, XC4 to XC8</td>
<td>Capacitors provide the required decoupling of the supply related pins</td>
<td>XC4, C4, C13, C16, C19, C22, C25, C28, C31, C36, C39, C42, C45 = 10 μF (3216), XC12 = 10 μF (0603), C5, C44, C46, C48, C49, C51 = 4.7 μF (0603), XC5, XC6, XC7, XC8 = 0.1 μF (0402), C43, C47, C50 = 0.001 μF (0603), C3, C12, C15, C18, C21, C24, C27, C30, C35, C38, C41 = 0.01 μF (0402), C2, C11, C14, C17, C20, C23, C26, C29, C37, C40 = 100 pF, C24 = 0.01 μF, C140, C141, XC5 to XC8 = 0.1 μF (0603)</td>
</tr>
<tr>
<td>JP1 to JP4</td>
<td>IQ path configuration</td>
<td>Default: JP1 to JP4 = do not install</td>
</tr>
<tr>
<td>C1, R21</td>
<td>Do not install</td>
<td>C1, R21 = 0402</td>
</tr>
<tr>
<td>XP1</td>
<td>Programming header</td>
<td>Not applicable</td>
</tr>
<tr>
<td>XP2</td>
<td>Mini USB connector</td>
<td>Connect the mini USB cable to XP2 to interface with the SPI</td>
</tr>
<tr>
<td>S1</td>
<td>Reset button</td>
<td>Push the reset button to reset the device.</td>
</tr>
<tr>
<td>USB</td>
<td>Red LED</td>
<td>LED is blue when the USB is connected to XP2, and the PC and the ADMV1013-EVALZ evaluation board are powered on with a 5 V supply</td>
</tr>
<tr>
<td>XU1</td>
<td>Microcontroller</td>
<td>PIC18F24J50</td>
</tr>
<tr>
<td>U1</td>
<td>Level shifter</td>
<td>FXL4TD245BQX</td>
</tr>
<tr>
<td>U3 to U5</td>
<td>3.3 V and 1.8 V regulators</td>
<td>ADM7170 (U3) = 1.8 V regulator, ADM7172 (U5) = 3.3 V regulator, ADM7172 (U4) = 3.3 V regulator for ADMV1013</td>
</tr>
<tr>
<td>U2</td>
<td>AD5601 nanoDAC</td>
<td>Not applicable</td>
</tr>
<tr>
<td>DUT</td>
<td>ADMV1013 device under test</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PCB</td>
<td>PCB, ADMV1013-EVALZ</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

1 The ADMV1013-EVALZ evaluation board material between Layer 1 and Layer 2 is made of 10.7 mil Rogers 4350B LoPro®.