Evaluating TxVGAs for Use with RF DACs and Transceivers

FEATURES
- Full featured evaluation board for the ADL6316
- SPI control via SDP-S board
- 5.0 V single-supply operation

EVALUATION KIT CONTENTS
- ADL6316-EVALZ evaluation board

ADDITIONAL HARDWARE REQUIRED
- Analog signal generator
- Analog signal analyzer
- Power supplies (6 V, 5 A)
- PC with Windows® XP, Windows 7, or Windows 10 operating system
- USB 2.0 port, recommended (USB 1.1-compatible)
- EVAL-SDP-CS1Z (SDP-S) controller board

ADDITIONAL SOFTWARE REQUIRED
- Analysis | Control | Evaluation (ACE) software

GENERAL DESCRIPTION
The ADL6316 transmit variable gain amplifier (TxVGA) provides an interface for radio frequency (RF) digital-to-analog converters (DACs), transceivers, and systems on a chip (SoC) to power amplifiers (PAs). Integrated balun and hybrid couplers allow high performance RF capability over a frequency range of 0.5 GHz to 1.0 GHz.

To optimize performance vs. power level, the ADL6316 includes a voltage variable attenuator (VVA), high linearity amplifiers, and a digital step attenuator (DSA). The devices integrated into the ADL6316 are programmable via a 4-wire serial port interface (SPI).

This user guide describes the evaluation board and software for the ADL6316. For full details, see the ADL6316 data sheet, which must be consulted when using the evaluation board. The ADL6316-EVALZ evaluation board is fabricated with FR-370HR, Rogers 4350B in four layers.

EVALUATION BOARD PHOTOGRAPH

Figure 1. ADL6316-EVALZ
TABLE OF CONTENTS

Features .. 1
Evaluation Kit Contents .. 1
Additional Hardware Required .. 1
Additional Software Required .. 1
General Description ... 1
Evaluation Board Photograph ... 1
Revision History ... 2
Evaluation Board Hardware .. 3
 Power Supply .. 3
 RF Input .. 3
 RF Outputs .. 3
 Signal Path Modes Selection .. 3
 Evaluation Board Software .. 4
 Software Requirements and Installation 4
 Installing ADL6316 ACE Plugins .. 4
 ACE Software Suite ... 4
 Configuration and Programming Sequence 5
 Evaluation Board Schematic .. 7

REVISION HISTORY

10/2019—Revision 0: Initial Version
EVALUATION BOARD HARDWARE

The ADL6316-EVALZ evaluation board provides the support circuitry required to operate the ADL6316 in various modes and configurations. Figure 2 shows the typical bench setup to evaluate the performance of the ADL6316.

POWER SUPPLY

The ADL6316-EVALZ evaluation board requires a single, 5.0 V power supply.

RF INPUT

The on-board balun enables single-ended driving. The ADL6316 operates the 0.5 GHz to 1.0 GHz frequency range.

RF OUTPUTS

The RF outputs are available on the evaluation board at the RF_OUT SMA connectors, which can drive a load of 50 Ω.

SIGNAL PATH MODES SELECTION

The ADL6316 has two signal path modes. This feature allows two predefined modes of operation to be controlled by the logic level on TXEN, a real-time external pin (Pin 37), without SPI latency. Table 1 shows the hardware configuration to select the desired mode.

![Figure 2. ADL6316 Typical Measurement Setup](image)

Table 1. Mode Selection and Setup Registers

<table>
<thead>
<tr>
<th>TXEN (Pin 37) Logic Level</th>
<th>Register</th>
<th>Functional Blocks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x0102</td>
<td>DSA attenuation</td>
<td>0 dB to ~14 dB range, 0.45 dB step</td>
</tr>
<tr>
<td></td>
<td>0x0107</td>
<td>AMP1</td>
<td>Amplifier 1 optimization</td>
</tr>
<tr>
<td></td>
<td>0x0108</td>
<td>AMP1</td>
<td>Amplifier 1 enable</td>
</tr>
<tr>
<td></td>
<td>0x0109</td>
<td>AMP2</td>
<td>Amplifier 2 optimization</td>
</tr>
<tr>
<td></td>
<td>0x010A</td>
<td>AMP2</td>
<td>Amplifier 2 enable</td>
</tr>
<tr>
<td>1</td>
<td>0x0112</td>
<td>DSA attenuation</td>
<td>0 dB to ~14 dB range, 0.45 dB step</td>
</tr>
<tr>
<td></td>
<td>0x0117</td>
<td>AMP1</td>
<td>Amplifier 1 optimization</td>
</tr>
<tr>
<td></td>
<td>0x0118</td>
<td>AMP1</td>
<td>Amplifier 1 enable</td>
</tr>
<tr>
<td></td>
<td>0x0119</td>
<td>AMP2</td>
<td>Amplifier 2 optimization</td>
</tr>
<tr>
<td></td>
<td>0x011A</td>
<td>AMP2</td>
<td>Amplifier 2 enable</td>
</tr>
</tbody>
</table>
EVALUATION BOARD SOFTWARE
The ADL6316 on the ADL6316-EVALZ evaluation board and the SDP-S controller board are configured with a USB friendly interface to allow programmability of the ADL6316 registers.

SOFTWARE REQUIREMENTS AND INSTALLATION
The Analysis | Control | Evaluation (ACE) software is required to program and control the ADL6316 and the ADL6316-EVALZ evaluation board.

The ACE software suite allows bit control of the ADL6316 register map via the SPI, and communicates to the SDP-S controller board via the USB connection. The SDP-S controller board configures the SPI lines (CS, SDI, SDO, and SCLK) accordingly to communicate to the ADL6316.

Installing the ACE Software Suite
To install the ACE software suite, take the following steps:
1. Download the software from the ACE product page.
2. Open the downloaded file to begin the installation process. The default installation path is C:\Program Files (x86)\Analog Devices\ACE.
3. If desired, the user can create a desktop icon for the ACE software. Otherwise, the ACE executable can be found by clicking Start > Analog Devices > ACE.

INSTALLING ADL6316 ACE PLUGINS
When the ACE software installations are complete, the user must install the evaluation board plugins to the hard drive of the PC.
1. Download the ADL6316 ACE plugins (Board.ADL631x.1.2019.34200.acezip) from the ADL6316-EVALZ product page.
2. Double-click the Board.ADL631x.1.2019.34200.acezip file to install the evaluation board plugins.
3. Ensure that the Board.ADL631x.1.2019.34200 and Chip.ADL631x.1.2019.34200 folders are located inside the C:\ProgramData\Analog Devices\ACE\Plugins folder.

ACE SOFTWARE SUITE
Power up the ADL6316-EVALZ evaluation board and connect the USB cable to the PC and to the SDP-S board mounted on the ADL6316-EVALZ evaluation board.
1. Double-click the ACE shortcut on the PC desktop (if created). The software automatically detects the ADL6316-EVALZ evaluation board. The software opens the ACE plugin view, as shown in Figure 3.
CONFIGURATION AND PROGRAMMING SEQUENCE

To configure and program the evaluation board, take the following steps:

1. Run the ACE software as explained in the Error! Reference source not found. section.
2. Click Initialize Chip (Label A, see Figure 6).
3. Click and adjust the block (Label B to Label H in Figure 6) if necessary.
4. After changing the block in the ACE software as directed in Step 3, click Apply Changes (Label K, see Figure 7) to update the ADL6316.
5. To adjust an individual register and bit, click Proceed to Memory Map. This button opens the ADL6316 memory map for bit control (see Figure 8). The ADL6316 can be configured by either putting data into Data(Hex) column (Label L, see Figure 8) or by clicking a specific bit in the Data(Binary) column (Label M, see Figure 8) of the register map (see Figure 8). Click Apply Changes (Label N, see Figure 8) to save changes and program the ADL6316.

<table>
<thead>
<tr>
<th>Label</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Initialize chip button.</td>
</tr>
<tr>
<td>B</td>
<td>3.3 V low dropout regulator (LDO) enable.</td>
</tr>
<tr>
<td>C</td>
<td>VVA control block.</td>
</tr>
<tr>
<td>C1</td>
<td>VVA Enable checkbox.</td>
</tr>
<tr>
<td>C2</td>
<td>Selects VVA voltage source: DAC = VVA attenuation set by internal 12-bit DAC, set DAC code (0 to ~4095 range) in VVA Atten (Dec Code) field. VVA_ANALOG = VVA attenuation set by analog voltage applied on ANLG pin.</td>
</tr>
<tr>
<td>C3</td>
<td>DAC Enable checkbox for VVA attenuation when the VVA Source field is set to DAC.</td>
</tr>
<tr>
<td>C4</td>
<td>VVA Atten (Dec Code) menu. Selects VVA DAC code in decimal (0 to ~4095 range). Higher numbers equal less attenuation.</td>
</tr>
<tr>
<td>D</td>
<td>DSA control block, DSA Atten 0 and DSA Atten 1 are selected by the logic level on TXEN (see Table 1).</td>
</tr>
<tr>
<td>D1</td>
<td>DSA Enable checkbox.</td>
</tr>
<tr>
<td>D2</td>
<td>Set DSA Atten 0 attenuation.</td>
</tr>
<tr>
<td>D3</td>
<td>Set DSA Atten 1 attenuation.</td>
</tr>
<tr>
<td>E</td>
<td>AMP1 Enable checkbox. AMP1 can be set individually by the logic level on TXEN (see Table 1).</td>
</tr>
<tr>
<td>F</td>
<td>AMP2 Enable checkbox. AMP2 can be set individually by the logic level on TXEN (see Table 1).</td>
</tr>
<tr>
<td>G</td>
<td>Read Temp Sensor button and ADC Code text fields. These functions are for proportional to absolute temperature (PTAT) ADC code readback.</td>
</tr>
<tr>
<td>H</td>
<td>ADC Enable checkbox.</td>
</tr>
<tr>
<td>I</td>
<td>IBIAS Enable checkbox. This function enables the bias generator.</td>
</tr>
<tr>
<td>J</td>
<td>IP3 Optimization control block.</td>
</tr>
<tr>
<td>J1</td>
<td>Enable checkbox for IP3 optimization.</td>
</tr>
<tr>
<td>J2</td>
<td>TRM AMP2 IP3M dropdown menu. Set TRM_AMP2_IP3M bits value for IP3 optimization.</td>
</tr>
</tbody>
</table>

Figure 6. ADL6316 Chip Block Diagram
Figure 7. ADL6316-EVALZ ACE Chip View After Chip Initialization

Figure 8. ADL6316-EVALZ ACE Memory Map View
EVALUATION BOARD SCHEMATIC

Figure 9. ADL6316-EVALZ Evaluation Board Schematic
NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. If you do not agree, you must return the Evaluation Board to Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assigns, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, WARRANTIES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.