The user with the ability to filter is that the integrator section of enabling the inverse CIC response curve. However, some spectrum of the incoming data to a the inverse CIC filter is not required This FIR filter modifies the data. The CIC filter is not without its shortcomings, however. There are three distinct disadvantages associated with the use of a CIC filter, but each of these shortcomings can overcome in the AD9857 through digital signal design. The first problem is that if the data rate is multiplied, then the output the stage of the CIC filter is not a related function of the output signal to eliminate an upconversion image of the output signal. The second problem is that the AD9857 meets the GSM spectral mask margin to spare. Figure 5 shows a spectral plot of the setup of Fig. 3, the basic GSM carrier frequency up to 54.6 MHz. To implement a CIC filter, consider Fig. 1. The basic GSM carrier is capable of carrying a complex modulated carrier. This demonstrates that the AD9857 has been designed to operate as a quadrature digital upconverter. The 14-b integrated circuit (IC) provides improved image rejection in sympathy with the 0's and 1's of an in the halfband-filter section. www.analog.com 
A parallel and distributed architecture makes it possible to achieve a high degree of freedom in the generation of PRBS from a fixed program. The data path includes a microcontroller-based logic processor that handles the generation of the PRBS and communication with the external world. The device is designed to allow for the generation of a wide range of output signals, including PRBS, linear chirps, and arbitrary waveforms. The device also includes a high-speed DAC that can be used to generate PRBS signals with high fidelity.

The device supports a wide range of modulation schemes, including GMSK, QPSK, and 16-QAM. The modulation schemes are implemented using a combination of digital and analog techniques, including digital signal processing, frequency synthesis, and analog filtering. The device also includes a high-speed A/D converter that can be used to acquire and process real-time data.

The device is designed to be flexible and scalable, allowing it to be used in a variety of applications, including telecommunications, radar, and medical imaging. The device includes a range of features, including a high-speed serial interface, a low-power mode, and a range of interface options.

Additionally, the device supports a range of output modes, including analog, digital, and mixed-signal modes. The digital output mode can be used to generate a wide range of digital signals, including PRBS, linear chirps, and arbitrary waveforms. The analog output mode can be used to generate a wide range of analog signals, including GMSK, QPSK, and 16-QAM. The mixed-signal output mode can be used to generate a wide range of mixed-signal signals, including a combination of digital and analog signals.
In the past, upconversion has been employed in various applications to shift a baseband signal to a higher frequency. However, this process can suffer the effects of thermal drift and noise, which can degrade the performance of signal-processing functions. Consequently, a more robust and flexible device is needed to overcome these limitations.

The AD9857 quadrature digital upconverter is designed specifically for integration in digital technology. It offers a high degree of precision, with excellent noise performance, all while requiring a reduced noise floor over the extended industrial supply (with ±5-volt supplies). This device is capable of operating at rates up to 10 MHz, making it ideal for high-end applications such as telecommunications and radar systems. Additionally, the digital samples can be upsampled by a factor of 2 prior to delivering the data to the AD9857. This feature allows for higher sampling rates and improved signal-to-noise ratio.

The AD9857's most notable feature is its multichannel capability, which enables it to handle multiple input signals. With its 32-b tuning word, the DDS can provide a spurious-free dynamic range (SFDR) of 125 decibels, making it suitable for high-end applications.

The AD9857's modular design enables it to function as a combination of digital and analog circuits. This allows for a reduction in size and cost compared to other devices. The digital circuits used to implement the DDS is the simultaneous generation of a complex signal (a DAC-induced artifact), which is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio.

The DAC is implemented as a current output device, which means that the user must choose a sampling rate that is greater than twice the maximum clock rate of 1.9 times the specified fundamental frequency. For example, if the frequency of interest is 100 Hz, the maximum sampling rate is 1900 Hz. However, the AD9857 also supports single-ended clock sources, which makes it compatible with a wide range of applications.

A fundamental requirement for high-performance DDS is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio. The AD9857's modular design enables it to function as a combination of digital and analog circuits. This allows for a reduction in size and cost compared to other devices. The digital circuits used to implement the DDS is the simultaneous generation of a complex signal (a DAC-induced artifact), which is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio.

The DAC is implemented as a current output device, which means that the user must choose a sampling rate that is greater than twice the maximum clock rate of 1.9 times the specified fundamental frequency. For example, if the frequency of interest is 100 Hz, the maximum sampling rate is 1900 Hz. However, the AD9857 also supports single-ended clock sources, which makes it compatible with a wide range of applications.

A fundamental requirement for high-performance DDS is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio. The AD9857's modular design enables it to function as a combination of digital and analog circuits. This allows for a reduction in size and cost compared to other devices. The digital circuits used to implement the DDS is the simultaneous generation of a complex signal (a DAC-induced artifact), which is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio. The DAC is implemented as a current output device, which means that the user must choose a sampling rate that is greater than twice the maximum clock rate of 1.9 times the specified fundamental frequency. For example, if the frequency of interest is 100 Hz, the maximum sampling rate is 1900 Hz. However, the AD9857 also supports single-ended clock sources, which makes it compatible with a wide range of applications.

A fundamental requirement for high-performance DDS is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio. The AD9857's modular design enables it to function as a combination of digital and analog circuits. This allows for a reduction in size and cost compared to other devices. The digital circuits used to implement the DDS is the simultaneous generation of a complex signal (a DAC-induced artifact), which is that the sample rate at the output of the digital upconverter is doubled. This results in a significant reduction in distortion and noise, providing an improved signal-to-noise ratio. The DAC is implemented as a current output device, which means that the user must choose a sampling rate that is greater than twice the maximum clock rate of 1.9 times the specified fundamental frequency. For example, if the frequency of interest is 100 Hz, the maximum sampling rate is 1900 Hz. However, the AD9857 also supports single-ended clock sources, which makes it compatible with a wide range of applications.
sequence of pulses through a variety of data rates. However, the end result is a decrease in the SNR. A high-speed DAC output signal with adequate rise time and turn-on time will be defined in the bandwidth of the baseband I and Q signals. As mentioned earlier, it is often desirable to suppress the baseband I and Q signals by providing a delay greater than the inherent rise time of the DAC. This is typically accomplished through analog mixers, which are used in many applications. A DAC is part of a digital-to-analog converter (DAC) that converts digital signals to analog signals. Digitally generated signals are used in many applications, including audio, video, and telecommunications. The DAC is designed to convert a digital signal into an analog signal. The analog signal can then be used to control various analog devices and systems.
Digital Upconverter IC Tames Complex Modulation

Ken Gentile

An improved 14-bit architecture, simplified synchronization, and enhanced power-saving circuitry are a few of the features of this quadrature digital upconverter.

DIGITAL technology continues to replace many analog functions in modern receiver architectures. The latest contributor to this trend is the AD9857 quadrature digital upconverter from Analog Devices, Inc. (Norwood, MA), which can replace several front-end components, including a mixer and local oscillator (LO). The 14-bit integrated circuit (IC) provides improved dynamic range, resolution, and power consumption when compared to its 12-bit predecessor, while also offering enhanced power-saving circuitry. This makes the AD9857 an excellent choice for a wide range of applications.

Ken Gentile is a System Design Engineer with Analog Devices, Inc., Greensboro, NC 27409; (336) 605-4073, FAX: (336) 605-4187, e-mail: ken.gentile@analog.com. Digital权利由Reprint Services授权。电话：651-582-3800, 邮件：reprints@analog.com。所引用的内容由Microwaves & RF, August 2000年8月授权。该内容的全部或部分不得以任何形式（电子或纸质）复制或散播。
The author gratefully acknowledges the technical and editorial suggestions of Jim Lantzy, a former Analog Devices engineer, and the editorial assistance of Ken Gentile.

Ken Gentile

For reorders call Reprint Services at 651-582-3800. For subscription information, call 201-393-6060.

www.analog.com

www.analog.com