Lower the Output Voltage Ripple of Positive-to-Negative DC/DC Converters with Optimum Capacitor Hook-Up

by Keith Szolusha

Low ripple voltage positive-to-negative DC/DC converters are used in many of today’s high frequency and noise sensitive disc drives, battery powered devices, portable computers, and automotive applications. A positive-to-negative converter can have very low output ripple voltage (similar to a typical buck converter) as long as the bulk input capacitor is placed between \(V_{IN} \) and \(V_{OUT} \), as opposed to placing it between \(V_{IN} \) and ground. There is a common misconception that positive-to-negative converters in the former configuration have noisy outputs, but this configuration actually solves noise problems rather than introducing them. In either configuration (as shown in Figures 1a and 1b) the \(V_{IN} \) and GND pins of an LT1765 are connected to \(V_{IN} \) and \(V_{OUT} \) respectively. Therefore, placing the input capacitor between \(V_{IN} \) and \(V_{OUT} \) is equivalent to placing it between the LT1765’s \(V_{IN} \) and GND pins (as shown in Figure 1a). The other, commonly accepted method of placing the bulk input capacitor between \(V_{IN} \) and ground (as shown in Figure 1b) significantly increases the output voltage ripple (see Figures 2a and 2b). To make matters worse, this configuration requires an additional high-frequency bypass capacitor between the \(V_{IN} \) and GND pins of the IC.

In simple positive-to-negative converters, like those shown in Figures 1a and 1b, the output voltage ripple is:

\[
\Delta V_{OUT}(P-P) = ESR_{OUT} \cdot \Delta I_{OUT}(P-P)
\]

Low ESR output capacitors, such as ceramics, help to minimize the output voltage ripple in DC/DC converters. For a given output capacitor ESR, output voltage ripple can be further reduced by minimizing the current ripple that the output capacitor is forced to absorb. In Figure 1b, the output capacitor is part of the high \(\text{d}I/\text{d}t \) switching current path, making the output voltage ripple proportionately larger.

With the bulk input capacitor placed as shown in Figure 1a, the peak-to-peak ripple current in the output capacitor is equal to the peak-to-peak ripple current in the inductor, which is designed to be relatively low for continuous-mode operation.

\[
\Delta I_{OUT}(P-P) = \Delta I_{L}(P-P) = (V_{IN} \cdot \text{Duty Cycle})/(f_{SW} \cdot L)
\]

where:

- \(\Delta I_{OUT}(P-P) \) = output cap ripple current
- \(\Delta I_{L}(P-P) \) = inductor ripple current
- \(f_{SW} \) = switching frequency

When the bulk input capacitor is placed as shown in Figure 1b, the peak-to-peak ripple current in the

Figure 1a. LT1765 5V to –5V converter with bulk input cap between \(V_{IN} \) and \(V_{OUT} \) (IC GND pin) has low output ripple. The high \(\text{d}I/\text{d}t \) path, indicated here with bold red lines, does not include the output capacitor.

Figure 1b. LT1765 5V to –5V converter with the bulk cap between \(V_{IN} \) and ground has much higher output ripple than the circuit in Figure 1a. The high \(\text{d}I/\text{d}t \) path, indicated here with bold red lines, includes the output capacitor, thus increasing output ripple.
For such applications the LTC1668 differential current outputs can be amplified with twin transimpedance stages as shown in Figure 2, which offers the opportunity to reduce the DAC current without loss of signal swing.

The circuit shown has the DAC full-scale currents reduced to 2mA to achieve a substantial power savings over the standard 10mA operation. The scale factor of the transimpedance amplifiers is set to provide 2V P–P differentially. Operating at a noise-gain of unity, this circuit provides a small-signal bandwidth of about 12MHz (–3dB). The noise contributed by the LT1723 amplifiers to the differential load is approximately

\[\sqrt{2\varepsilon_A G N BW} = \sqrt{2 \cdot 3.8 \cdot 10^{-9} \cdot 1 \cdot \sqrt{12 \cdot 10^8}} = 19\mu V \]

for the circuit as shown (the resistors in the circuit will add some additional noise bringing the total to about 24\mu V). This compares favorably with the nominal 16-bit LSB increment of 31\mu V, thus barely impacting the converter dynamic range.

The common mode output voltage of the circuit in Figure 2 is fixed at 0.5V DC, though some loads may require a different level if DC-coupling is to be supported, such as when soft-controlled offset nulling is required. Though not shown here, specific matched currents can easily be introduced to the inverting-input nodes of the two amplifiers to provide common-mode output control.

Each of the amplifier circuits presented will deliver +3dBm into 50\Omega with harmonic distortion products below –60dBc for a synthesized full-scale fundamental of 1MHz. The nominal feedback capacitances shown provided ~1% step-response overshoot in the author’s prototype configuration, but as with all amplifier circuits, some tailoring may be required to achieve a desired rolloff characteristic in the final printed-circuit layout.

Conclusion

Instead of placing the bulk input capacitor between the input supply and ground, place it across the input and ground pins of the step-down converter IC such as the LT1765. The result is significantly lower voltage ripple at the output and a simpler circuit design.

LT1722, continued from page 21

The output capacitor is much higher than the inductor’s ripple current alone; it is almost equal to the inductor’s ripple current plus the input capacitor’s ripple current.

\[\Delta I_{CIN(P-P)} = I_{L(P)} = I_{OUT} + I_{IN} + \Delta I_{L(P-P)}/2 \]

\[\Delta I_{COUT(P-P)} = \Delta I_{L(P-P)} + \Delta I_{CIN(P-P)} \]

With much lower output capacitor ripple current, the size of the output capacitor in the circuit shown in Figure 1a can be much smaller than that of the circuit shown in 1b. Also, it does not need to handle nearly as much RMS ripple current (approximately equal to peak-to-peak ripple current divided by the square root of twelve).

Another advantage of removing the output capacitor from the high dI/dt switching loop (by judicious placement of the input capacitor) is that the layout is greatly simplified. The high dI/dt components shown in Figure 1 must be placed in the smallest loop possible to minimize trace inductance and the resulting voltage (noise) spikes. With one less component to worry about in the layout, it is easier to create a noise-free circuit using the layout shown in Figure 1a than it is using the one shown in Figure 1b.

Conclusion

When considering candidate devices for DAC post-amplification, it is important to consider the noise contribution. The LT1722 family of devices offers the low noise and wide bandwidths demanded by modern 16-bit waveform synthesizers, particularly those used for vector modulation, where high-fidelity is paramount.

Additionally, the particularly low noise characteristics of the LT1722, LT1723 and LT1724 op amps provide optimal noise performance for external impedances ranging from several hundred ohms to about 12k\Omega, making these parts ideal for a variety of precision amplification tasks.