RELIABILITY REPORT FOR MAX9920ASA+ PLASTIC ENCAPSULATED DEVICES April 20, 2012 # **MAXIM INTEGRATED PRODUCTS** 120 SAN GABRIEL DR. SUNNYVALE, CA 94086 | Approved by | |----------------------| | Sokhom Chum | | Quality Assurance | | Reliability Engineer | #### Conclusion The MAX9920ASA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. #### **Table of Contents** | IDevice Description | IVDie Information | | | |-----------------------------|--------------------------------|--|--| | IIManufacturing Information | VQuality Assurance Information | | | | IIIPackaging Information | VIReliability Evaluation | | | | Attachments | | | | # I. Device Description #### A. General The MAX9918/MAX9919/MAX9920 are single-supply, high-accuracy current-sense amplifiers with a high input common-mode range that extends from -20V to +75V. These amplifiers are well suited for current monitoring of inductive loads such as motors and solenoids, where common-mode voltages can become negative due to inductive kickback, reverse-battery conditions, or transient events. The MAX9918/MAX9920 feature adjustable gain set by an external resistive-divider network. The MAX9919 features fixed gains of 45V/V (MAX9919F) and 90V/V (MAX9919N). The MAX9918/MAX9920 operate as unidirectional amplifiers when VREFIN = GND and as bidirectional amplifiers when VREFIN = VCC/2. The MAX9920 attenuates the input signal by a factor of 4 at the input level-shifting stage allowing the device to sense voltages up to 200mV (unidirectional operation) or ±100mV (bidirectional operation). The MAX9918/MAX9919/MAX9920 operate with a single 5V supply voltage, are fully specified over the -40°C to +125°C automotive temperature range, and are available in an 8-pin SOIC package. #### II. Manufacturing Information A. Description/Function: -20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers B. Process: BCD88 C. Number of Device Transistors: 529 D. Fabrication Location: Oregon E. Assembly Location: Thailand F. Date of Initial Production: October 25, 2009 # III. Packaging Information A. Package Type: 150 mil 8L SOIC B. Lead Frame: Copper C. Lead Finish: 100% matte Tin D. Die Attach: Conductive E. Bondwire: Au (1 mil dia.) F. Mold Material: Epoxy with silica filler G. Assembly Diagram: #05-9000-3213 / BH. Flammability Rating: Class UL94-V0 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C J. Single Layer Theta Ja: 52°C/W K. Single Layer Theta Jc: 6°C/W L. Multi Layer Theta Ja: 41°C/W M. Multi Layer Theta Jc: 7°C/W ### IV. Die Information A. Dimensions: 80 X 91 mils B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide) C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier D. Backside Metallization: None E. Minimum Metal Width: 3.0 microns (as drawn)F. Minimum Metal Spacing: 3.0 microns (as drawn) G. Bondpad Dimensions: H. Isolation Dielectric: SiO₂ I. Die Separation Method: Wafer Saw #### V. Quality Assurance Information A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering) Don Lipps (Manager, Reliability Engineering) Bryan Preeshl (Vice President of QA) B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects. C. Observed Outgoing Defect Rate: < 50 ppm D. Sampling Plan: Mil-Std-105D # VI. Reliability Evaluation #### A. Accelerated Life Test The results of the biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows: $$_{\lambda}$$ = $\frac{1}{\text{MTTF}}$ = $\frac{1.83}{1000 \times 4340 \times 80 \times 2}$ (Chi square value for MTTF upper limit) $_{\lambda}$ = 2.6 x 10⁻⁹ $_{\lambda}$ = 2.6 F.I.T. (60% confidence level @ 25°C) The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the BCD88 Process results in a FIT Rate of 0.06 @ 25C and 1.08 @ 55C (0.8 eV, 60% UCL) # B. E.S.D. and Latch-Up Testing (lot JNXWCQ002D D/C 1006) The OY22-3 die type has been found to have all pins able to withstand a transient pulse of: ESD-HBM: +/- 2000V per JEDEC JESD22-A114 ESD-CDM: +/- 750V per JEDEC JESD22-C101 Latch-Up testing has shown that this device withstands a current of+/- 250mA and overvoltage per JEDEC JESD78. # **Table 1**Reliability Evaluation Test Results # MAX9920ASA+ | TEST ITEM | TEST CONDITION | FAILURE
IDENTIFICATION | SAMPLE SIZE | NUMBER OF
FAILURES | COMMENTS | |----------------------|--|----------------------------------|-------------|-----------------------|----------------------| | Static Life Test (No | ote 1) Ta = 135°C Biased Time = 1000 hrs. | DC Parameters
& functionality | 80 | 0 | JNXXCQ003A, D/C 1011 | Note 1: Life Test Data may represent plastic DIP qualification lots.