

RELIABILITY REPORT
FOR
MAX6007BEUR+

PLASTIC ENCAPSULATED DEVICES

June 1, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX6007BEUR+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX6006-MAX6009 ultra-low-power shunt references are ideal for space-critical and low-power applications. They are offered in 3-pin SOT23 packages, and the minimum operating current is guaranteed to be <1µA. The devices feature low temperature coefficients of <30ppm/°C and initial accuracy of better than 0.2%. Available in +1.25V, +2.048V, +2.5V, and 3V output voltages, the MAX6006-MAX6009 have references of +1.25V, +2.048V, +2.5V, and +3.0V, respectively. The devices can be used as lower-power, higher-precision upgrades to the ICL8069, LM385, LT1004, and LM4040 references. The MAX6006-MAX6009 are available in two grades: A and B. The A grade features a temperature coefficient of 30ppm/°C over the extended temperature range of -40°C to +85°C, with an initial accuracy of 0.2%. Grade B features a temperature coefficient of 75ppm/°C with an initial accuracy of 0.5%. MAX6006 in+1.25V and MAX6008 in +2.5V are offered in 8-pin SOIC packages, as plug in upgrades for LT1004 and LM285.

II. Manufacturing Information

A. Description/Function: 1µA SOT23 Precision Shunt Voltage Reference

B. Process: S12

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Carsem Malaysia, UTL Thailand

F. Date of Initial Production: July 22, 2000

III. Packaging Information

A. Package Type: 3-pin SOT23
B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Non-conductive Epoxy
E. Bondwire: Gold (1 mil dia.)
F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-0901-0161H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Jb: 250*°C/WK. Single Layer Theta Jc: 130°C/W

IV. Die Information

A. Dimensions: 44 X 31 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide

C. Interconnect: Aluminum/0.5% Cu

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn)F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 236 \times 2}$$
 (Chi square value for MTTF upper limit)
where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 4.55 \times 10^{-9}$$

 $\lambda = 4.55 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the S12 Process results in a FIT Rate of 0.09 @ 25C and 1.48 @ 55C, data limited (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The RF28-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1

Reliability Evaluation Test Results

MAX6007BEUR+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (Note 1)				
,	Ta = 135°C	DC Parameters	236	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased	·			
	Time = 1000hrs.				
Mechanical Stres	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data