

RELIABILITY REPORT

FOR

MAX4618CUE+

PLASTIC ENCAPSULATED DEVICES

June 15, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ö[n Šā̞] •
Quality Assurance
Tæ)æ*^r, Reliability Engineering

Conclusion

The MAX4618CUE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX4617/MAX4618 are high-speed, low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4617), two 4-channel multiplexers (MAX4618), and three single-pole/double-throw (SPDT) switches (MAX4619). These CMOS devices can operate continuously with a +2V to +5.5V single supply. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA at TA = +25°C and 10nA at TA = +85°C. All digital inputs have 0.8V to 2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5V supply.

II. Manufacturing Information

A. Description/Function: High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches

B. Process: TS60

C. Number of Device Transistors:

D. Fabrication Location: Taiwan

E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: July 24, 1999

III. Packaging Information

A. Package Type: 16-pin TSSOP

B. Lead Frame: Copper

C. Lead Finish: 100% matte TinD. Die Attach: ConductiveE. Bondwire: Au (1 mil dia.)

F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: #05-1201-0133
 H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

Level 1

J. Single Layer Theta Ja: 106°C/W
K. Single Layer Theta Jc: 27°C/W
L. Multi Layer Theta Ja: 90°C/W
M. Multi Layer Theta Jc: 27°C/W

IV. Die Information

A. Dimensions: 72 X 63 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: Metal 1 - 0.9 microns / Metal 2 - 0.9 microns (as drawn)

F. Minimum Metal Spacing: Metal 1 - 0.9 microns / Metal 2 - 0.9 microns (as drawn)

Metal 1 - 0.9 microns / Metal 2 - 0.9 microns (as drawn)

Metal 1 - 0.9 microns / Metal 2 - 0.9 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ö[} Êą] • (T æ) æ* ^r, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = 1 \over MTTF$$
 = 1.83 (Chi square value for MTTF upper limit) (Chi square value for MTTF upper limit) (where 4340 x 80 x 2 (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

(where 4540 = Temperature Acceleration factor assuming an activation energy of 0.5eV

$$\lambda = 13.7 \times 10^{-9}$$

 $\lambda = 13.7 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the TS60 Process results in a FIT Rate of 0.5 @ 25C and 8.57 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AH24-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX4618CUE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	lote 1)				
	Ta =	DC Parameters	80	0	
	Biased	& functionality			
	Time = 192 hrs.	·			
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased	-			
	Time = 96hrs.				
Mechanical Stress	(Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data