RELIABILITY REPORT

FOR

MAX3663ETG

PLASTIC ENCAPSULATED DEVICES

November 26, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager Reviewed by

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX3663 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
IV.Die Information
.....Attachments

I. Device Description

Item

A. General (Maxim Quick View Datasheet—Cut and Paste)

The MAX3663 is a complete, +3.3V laser driver with automatic power-control (APC) circuitry for SDH/SONET applications up to 622Mbps. It accepts differential PECL inputs, provides bias and modulation currents, and operates over a -40°C to +85°C temperature range.

An APC feedback loop is incorporated to maintain a constant average optical power over temperature and lifetime. The wide modulation current range from 5mA to 75mA and bias current of 1mA to 80mA are easy to program, making this product ideal for use in various SDH/SONET applications. Two pins are provided to monitor the current levels in the laser: BIASMON with current proportional to laser bias current, and MODMON with current proportional to laser modulation.

The MAX3663 also provides enable control and a failure-monitor output to indicate when the APC loop is unable to maintain the average optical power. The MAX3663 is available in a compact 4mm x 4mm 24-pin thin QFN package.

Rating

B. Absolute Maximum Ratings (Maxim Datasheet-Use Text Tool in Acrobat)

	<u>-</u>
Supply Voltage, VCC	-0.5V to +7.0V
Current into BIAS	-20mA to +150mA
Current into OUT+, OUT-	-20mA to +100mA
Current into MD	-5mA to +5mA
Voltage at DATA+, DATA-, ENABLE,	
FAIL, BIASMON, MODMON	-0.5V to (VCC + 0.5V)
Voltage at OUT+, OUT-	+1.5V to (VCC + 1.5V)
Voltage at MODSET, APCSET, BIASMAX, CAPC	-0.5V to +3.0V
Voltage at BIAS	+1.0V to (VCC + 0.5V)
Operating Junction Temperature Range	-55°C to +150°C
Storage Temperature Range	-65°C to +165°C
Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation (TA=+70°C)	
24-Pin QFN	1354mW
Derates above +70°C	
24-Pin QFN	20.8mW/°C

II. Manufacturing Information

A. Description/Function: +3.3V, 622Mbps SDH/SONET Laser Driver with Current Monitors and APC

B. Process: GST2 High-Speed Double Ploy-Silicon Bipolar

C. Number of Device Transistors: 1525

D. Fabrication Location: Oregon, USA

E. Assembly Location: Thailand

F. Date of Initial Production: September, 2002

III. Packaging Information

A. Package Type: 24-Pin QFN

B. Lead Frame: Copper

C. Lead Finish: Solder Plate

D. Die Attach: Silver-filled Epoxy

E. Bondwire: Gold (1.3 mil dia.)

F. Mold Material: Epoxy with silica filler)

G. Assembly Diagram: # 05-7001-0615

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity

per JEDEC standard JESD22-112: Level 1

IV. Die Information

A. Dimensions: 70 x 83 mils

B. Passivation: Si_3N_4 (Silicon nitride)

C. Interconnect: Poly/AU

D. Backside Metallization: None

E. Minimum Metal Width: 1.4 microns (as drawn)

F. Minimum Metal Spacing: 1.4 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)

Bryan Preeshl (Executive Director) Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{} = \underbrace{\frac{1.83}{192 \times 9823 \times 60 \times 2}}_{} \text{(Chi square value for MTTF upper limit)}$$

$$\underbrace{\text{Temperature Acceleration factor assuming an activation energy of } 0.8\text{eV}$$

$$\lambda = 8.09 \times 10^{-9}$$

 λ = 8.09 F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. . Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The HF22-6 die type has been found to have all pins able to withstand a transient pulse of <200V), per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250 mA and/or $\pm20V$.

Table 1 Reliability Evaluation Test Results

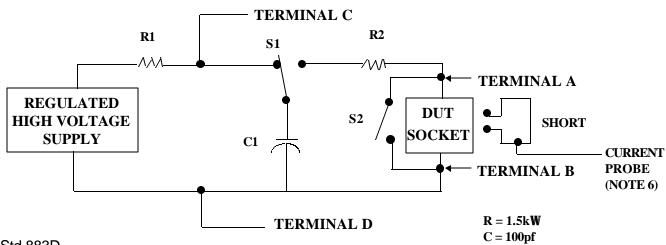
MAX3663ETG

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test	t (Note 1)				
	Ta = 135°C or 150°C Biased Time = 192 hrs.	DC Parameters & functionality		60	0
Moisture Testir	ng (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	QFN	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Str	ress (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters		77	0

Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data

Attachment #1

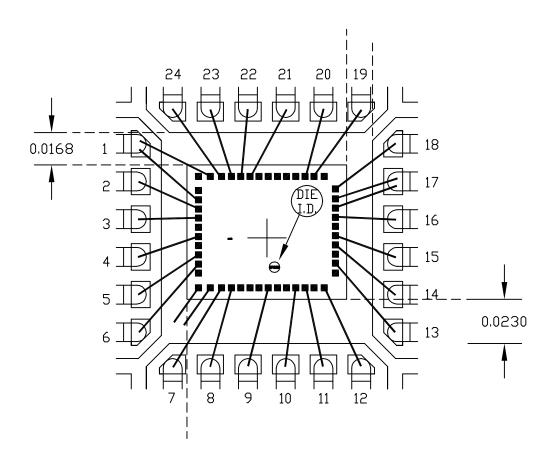
TABLE II. Pin combination to be tested. 1/2/


	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} 3/	All V _{PS1} pins
2.	All input and output pins	All other input-output pins

- 1/ Table II is restated in narrative form in 3.4 below.
- $\overline{2}$ No connects are not to be tested.
- 3/ Repeat pin combination I for each named Power supply and for ground

(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

3.4 Pin combinations to be tested.


- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(\lambda_{S1} \), or \(\lambda_{S2} \) or \(\lambda_{S3} \) or \(\lambda_{CC1} \), or \(\lambda_{CC2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D Method 3015.7 Notice 8

4x4x0.8 MM QFN THIN PKG.

EXPOSED PAD PKG.

PKG. CODE: T2444-1		SIGNATURES	DATE	CONFIDENTIAL & PROPRIE	1
CAV./PAD SIZE:	PKG.			BOND DIAGRAM #:	REV:
110×110	DESIGN			05-7001-0615	С