RELIABILITY REPORT
FOR
MAX31855ESA+
PLASTIC ENCAPSULATED DEVICES

June 15, 2011

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by

<table>
<thead>
<tr>
<th>Sokhom Chum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Reliability Engineer</td>
</tr>
</tbody>
</table>
Conclusion

The MAX31855ESA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description IV.Die Information
II.Manufacturing Information V.Quality Assurance Information
III.Packaging Information VI.Reliability Evaluation
.....Attachments

I. Device Description

A. General

The MAX31855 performs cold-junction compensation and digitizes the signal from a K, J, N, T, or E type thermocouple. (Contact the factory for S and R type thermocouples.) The data is output in a signed 14-bit, SPI™-compatible, read-only format. This converter resolves temperatures to 0.25NC, allows readings as high as +1800NC and as low as -270NC, and exhibits thermocouple accuracy of ±2NC for temperatures ranging from -200NC to +700NC for K-type thermocouples. For full range accuracies and other thermocouple types, see the Thermal Characteristics specifications.
II. Manufacturing Information

A. Description/Function: Cold-Junction Compensated Thermocouple-to-Digital Converter
B. Process: S4
C. Number of Device Transistors: 25614
D. Fabrication Location: Texas
E. Assembly Location: Malaysia
F. Date of Initial Production: March 25, 2011

III. Packaging Information

A. Package Type: 8-pin SOIC (N)
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: Level 1
J. Single Layer Theta Ja: 170°C/W
K. Single Layer Theta Jc: 40°C/W
L. Multi Layer Theta Ja: 132°C/W
M. Multi Layer Theta Jc: 38°C/W

IV. Die Information

A. Dimensions: 76 X 118 mils
B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Richard Aburano (Manager, Reliability Engineering)
 Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

\[
\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 77 \times 2}
\]

(Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

\[
\lambda = 14.3 \times 10^{-9}
\]

\[
\lambda = 14.3 \text{ F.I.T. (60\% confidence level @ 25°C)}
\]

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor.
Cumulative monitor data for the S4 Process results in a FIT Rate of 0.05 @ 25C and 0.83 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot ZM163058B D/C 1111)

The DT03 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.
<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>$T_a = 135°C$</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
<td>ZM163058B, D/C 1111</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td>& functionality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.