

RELIABILITY REPORT FOR MAX2686LEWS+T WAFER LEVEL PRODUCTS

August 28, 2013

# **MAXIM INTEGRATED**

160 RIO ROBLES SAN JOSE, CA 95134

| Approved by          |
|----------------------|
| Sokhom Chum          |
| Quality Assurance    |
| Reliability Engineer |



#### Conclusion

The MAX2686LEWS+T successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

#### Table of Contents

- I. .....Device Description
- II. ......Manufacturing Information
- IV. .....Die Information
- g Information V. .....Quality Assurance Information
- III. .....Packaging Information
- VI. ......Reliability Evaluation

.....Attachments

## I. Device Description

A. General

The MAX2686L/MAX2693L low-noise amplifiers (LNAs) are designed for GPS L1, Galileo, and GLONASS applications. Designed in Maxim's advanced SiGe process, the devices achieve high gain and low noise figure while maximizing the input-referred 1dB compression point and the 3rd-order intercept point. Both devices include an internal LDO ideal for battery-powered applications. For current-sensitive applications, the MAX2693L achieves excellent performance while consuming only 1.8mA current. The devices operate from a +1.6V to +4.2V single supply. The optional shutdown feature in the devices reduces the supply current to less than 20µA. The devices are available in a very small, lead-free, RoHS-compliant, 0.86mm x 0.65mm wafer-level package (WLP).



## II. Manufacturing Information

| A. Description/Function: | GPS/GNSS Low-Noise Amplifiers with Integrated LDO |
|--------------------------|---------------------------------------------------|
| B. Process:              | MB3                                               |

- C. Number of Device Transistors: 1057
- D. Fabrication Location: California
- E. Assembly Location: Japan
- F. Date of Initial Production: March 30, 2012

#### III. Packaging Information

| A. Package Type:                                                            | 4 bmp WLP     |
|-----------------------------------------------------------------------------|---------------|
| B. Lead Frame:                                                              | N/A           |
| C. Lead Finish:                                                             | N/A           |
| D. Die Attach:                                                              | N/a           |
| E. Bondwire:                                                                | N/A           |
| F. Mold Material:                                                           |               |
| G. Assembly Diagram:                                                        | #05-9000-4074 |
| H. Flammability Rating:                                                     | Class UL94-V0 |
| I. Classification of Moisture Sensitivity per<br>JEDEC standard J-STD-020-C | 1             |
| J. Single Layer Theta Ja:                                                   | N/A           |
| K. Single Layer Theta Jc:                                                   | N/A           |
| L. Multi Layer Theta Ja:                                                    | 103°C/W       |
| M. Multi Layer Theta Jc:                                                    | N/A           |
|                                                                             |               |

#### IV. Die Information

| A. Dimensions:             | 33.86 X 33.86 mils        |
|----------------------------|---------------------------|
| B. Passivation:            | BCB                       |
| C. Interconnect:           | Al with top layer 100% Cu |
| D. Backside Metallization: | None                      |
| E. Minimum Metal Width:    | 0.35um                    |
| F. Minimum Metal Spacing:  | 0.35um                    |
| G. Bondpad Dimensions:     |                           |
| H. Isolation Dielectric:   | SiO <sub>2</sub>          |
| I. Die Separation Method:  | Wafer Saw                 |



#### V. Quality Assurance Information

| A. Quality Assurance Contacts:                         | Richard Aburano (Manager, Reliability Engineering)<br>Don Lipps (Manager, Reliability Engineering)<br>Bryan Preeshl (Vice President of QA) |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| B. Outgoing Inspection Level:                          | 0.1% for all electrical parameters guaranteed by the Datasheet.<br>0.1% For all Visual Defects.                                            |
| C. Observed Outgoing Defect Rate:<br>D. Sampling Plan: | < 50 ppm<br>Mil-Std-105D                                                                                                                   |
|                                                        |                                                                                                                                            |

#### VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate ( $\lambda$ ) is calculated as follows:

 $\lambda = 1 = 1.83$  (Chi square value for MTTF upper limit) MTTF = 1.83 (Chi square value for MTTF upper limit) (where 4340 x 48 x 2 (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)  $\lambda = 22.9 \times 10^{-9}$ 

𝔅 = 22.9 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the MB3 Process results in a FIT Rate of 0.02 @ 25C and 0.04 @ 55C (0.8 eV, 60% UCL).

#### B. E.S.D. and Latch-Up Testing (lot SI3WGQ001A, D/C 1142)

The WV21-3 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.



# Table 1 Reliability Evaluation Test Results

# MAX2686LEWS+T

| TEST ITEM        | TEST CONDITION  | FAILURE<br>IDENTIFICATION | SAMPLE SIZE | NUMBER OF<br>FAILURES | COMMENTS             |
|------------------|-----------------|---------------------------|-------------|-----------------------|----------------------|
| Static Life Test | (Note 1)        |                           |             |                       |                      |
|                  | Ta = 135°C      | DC Parameters             | 48          | 0                     | SI3YCQ001E, D/C 1017 |
|                  | Biased          | & functionality           |             |                       |                      |
|                  | Time = 192 hrs. |                           |             |                       |                      |

Note 1: Life Test Data may represent plastic DIP qualification lots.