

RELIABILITY REPORT

FOR

MAX17223

PLASTIC ENCAPSULATED DEVICES

August 3, 2017

MAXIM INTEGRATED

160 RIO ROBLES SAN JOSE, CA 95134

Eric Wright Reliability Engineer Brian Standley Manager, Reliability

Conclusion

The MAX17223 successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I.Device Description

IV.Quality Assurance Information

III.Packaging Information

VI.Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX17220-MAX17225 is a family of ultra-low quiescent current boost (step-up) DC-DC converters with a 225mA/0.5A/1A peak inductor current limit and True ShutdownTM. True Shutdown disconnects the output from the input with no forward or reverse current. The output voltage is selectable using a single standard 1% resistor. The 225mA (MAX17220), 500mA (MAX17222/MAX17223), and 1A (MAX17224/MAX17225) peak inductor current limits allow flexibility when choosing inductors. The MAX17220/MAX17222/MAX17224 versions have post-startup enable transient protection (ETP), allowing the output to remain regulated for input voltages down to 400mV, depending on load current. The MAX17220-MAX17225 offer ultra-low quiescent current, small total solution size, and high efficiency throughout the entire load range. The MAX17220-MAX17225 are ideal for battery applications where long battery life is a must.

II. Manufacturing Information

A. Description/Function: 400mV to 5.5V Input, nanoPower Synchronous Boost Converter with True

Shutdown

B. Process: S18
C. Number of Device Transistors: 10551
D. Fabrication Location: USA
E. Assembly Location: Taiwan
F. Date of Initial Production: June 1, 2017

III. Packaging Information

A. Package Type: 6-pin uDFN CU 6-bump thin WLP

B. Lead Frame: Copper N/AC. Lead Finish: 100% matte Tin N/A

D. Bondwire: CuPd (1 mil dia.) N/A (N/A mil dia.)

E. Mold Material: Epoxy with silica filler None
 F. Assembly Diagram: #05-100401 #05-100494
 G. Flammability Rating: Class UL94-V0 Class UL94-V0

H. Classification of Moisture Sensitivity Level 1 Level 1

per JEDEC standard J-STD-020-C

I. Single Layer Theta Ja: N/A°C/W
J. Single Layer Theta Jc: N/A°C/W
K. Multi Layer Theta Ja: 223.6°C/W
L. Multi Layer Theta Jc: 122°C/W
N/A°C/W

IV. Die Information

A. Dimensions: 57.0866X36.2205 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: AI/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.23 microns (as drawn)F. Minimum Metal Spacing: 0.23 microns (as drawn)

G. Isolation Dielectric: SiO₂H. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Eric Wright (Reliability Engineering)

Brian Standley (Manager, Reliability) Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

3. = 13.9 F.I.T. (60% confidence level @ 25°C)

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 79 \times 2}$$
 (Chi square value for MTTF upper limit)
$$\frac{192 \times 4340 \times 79 \times 2}{\text{(where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of } 0.8eV)}$$

$$\lambda = 13.9 \times 10^{-9}$$

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the S18 Process results in a FIT Rate of 0.40 @

B. E.S.D. and Latch-Up Testing

25C and 6.96 @ 55C (0.8 eV, 60% UCL)

The CP03-1 die type has been found to have all pins able to withstand an HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-100mA and overvoltage per JEDEC JESD78.

Table 1Reliability Evaluation Test Results

MAX17223

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (Note 1)					
	Ta = 135C	DC Parameters	79	0	
	Biased	& functionality			
	Time = 192 hrs.				

Note 1: Life Test Data may represent plastic DIP qualification lots.