

RELIABILITY REPORT
FOR
DG507AAZ/883B

March 29, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Don Lipps	
Quality Assurance	
Manager, Reliability Engineering	

Conclusion

The DG507AAZ/883B successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

Maxim's DG506A/DG507A are monolithic CMOS analog multiplexers. The DG506A is a single 16-channel (1 of 16) multiplexer and the DG507A is a differential 8-channel (2 of 16) multiplexer. Both devices feature break-before-make switching. Maxim guarantees that these multiplexers will not latch-up if the power supplies are turned off with the input signals still present as long as absolute maximum ratings are not violated. The multiplexers operate over a wide range of power supplies from ±4.5V to ±18V. Compared to the original manufacturer's devices, Maxim's DG506A/DG507A consume significantly less power, making them ideal for portable equipment. Maxim's DG506A/DG507A meet or exceed the specifications of, and are drop-in replacements for Intersil's IH6116 and IH6216, Siliconix's DG506A and DG507A, and Harris' HI506 and HI507.

II. Manufacturing Information

A. Description/Function: Monolithic CMOS Analog Multiplexers

B. Process: M6H

C. Number of Device Transistors:

D. Fabrication Location: OregonE. Assembly Location: PhilippinesF. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 28-pin LCC
B. Lead Frame: Substrate
C. Lead Finish: Gold
D. Die Attach: Agglass

E. Bondwire: Al (1.25 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-0301-0334
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

Level 1

J. Single Layer Theta Ja: 98°C/W
K. Single Layer Theta Jc: 12°C/W
L. Multi Layer Theta Ja: n/a
M. Multi Layer Theta Jc: n/a

IV. Die Information

A. Dimensions: 114 X 160 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/1.0%SiD. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
 F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 720 \times 2}$$
 (Chi square value for MTTF upper limit)
$$\lambda = 1.53 \times 10^{-9}$$

$$\lambda = 1.53 \text{ F.I.T. (60\% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the M6H Process results in a FIT Rate of 0.30 @ 25C and 5.17 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AG30-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

DG507AAZ/883B

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	lote 1)				
·	Ta = 135°C	DC Parameters	720	0	
	Biased	& functionality			
	Time = 192 hrs.	·			
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress	(Note 2)				
Temperature	-55°C/125°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
•	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data