

RELIABILITY REPORT
FOR
DG411DY+

PLASTIC ENCAPSULATED DEVICES

September 11, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by

Ken Wendel

Quality Assurance

Director, Reliability Engineering

Conclusion

The DG411DY+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

Maxim's redesigned DG411/DG412/DG413 analog switches now feature low on-resistance matching between switches (3 max) and guaranteed on-resistance flatness over the signal range (4 max). These low on-resistance switches conduct equally well in either direction. They guarantee low charge injection, low power consumption, and an ESD tolerance of 2000V minimum per Method 3015.7. The new design offers lower off-leakage current over temperature (less than 5nA at +85°C). The DG411/DG412/DG413 are quad, single-pole/single-throw (SPST) analog switches. The DG411 is normally closed (NC), and the DG412 is normally open (NO). The DG413 has two NC switches and two NO switches. Switching times are less than 150ns max for tON and less than 100ns max for tOFF. These devices operate from a single +10V to +30V supply, or bipolar ±4.5V to ±20V supplies. Maxim's improved DG411/DG412/DG413 are fabricated with a 44V silicon-gate process.

II. Manufacturing Information

A. Description/Function: Improved, Quad, SPST Analog Switches

B. Process: S5

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Philippines, Thailand, Malalysia

F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 16-pin SOIC (N)

B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive Epoxy

E. Bondwire:

Gold (1.3 mil dia.)

F. Mold Material:

G. Assembly Diagram:

H. Flammability Rating:

#05-0301-0596

Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

Level 1

J. Single Layer Theta Ja: 115°C/W
K. Single Layer Theta Jc: 32°C/W
L. Multi Layer Theta Ja: 82.2°C/W
M. Multi Layer Theta Jc: 32°C/W

IV. Die Information

A. Dimensions: 80 X 97 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 5.0 microns (as drawn)F. Minimum Metal Spacing: 5.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate () is calculated as follows:

(where 4545 = Temperature Acceleration factor assuming an activation energy of 0.500)

$$\lambda = 13.4 \times 10^{-9}$$

 $\lambda = 13.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S5 Process results in a FIT Rate of 0.09 @ 25C and 1.55 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AG38 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

DG411DY+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	lote 1)				
	Ta = 135°C	DC Parameters	80	0	
	Biased	& functionality			
	Time = 192 hrs.	·			
Moisture Testing ((Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress	(Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data