Enclosed are the results from the Clause # 33 PSE Conformance testing performed on:

- **Device Under Test (DUT):** DC981A/B, LTC4263 Midspan/Endpoint PSE
- **Ports Tested:** Endpoint Port, Midspan OUT
- **Hardware Version:** Not Available
- **Power Chipset:** Linear LTC4263
- **Power Supply Voltage:** 48 Volts
- **Magnetics:** Pulse Jack, JK0-0044

The test suite referenced in this report is available at the UNH-IOL website:

There were no issues uncovered during Clause 33 PSE testing.
Digital Signature Information

This document was created using an Adobe digital signature. A digital signature helps to ensure the authenticity of the document, but only in this digital format. For information on how to verify this document’s integrity proceed to the following site:

http://www.iol.unh.edu/certifyDoc

If the document status still indicates “Validity of author NOT confirmed”, then please contact the UNH-IOL to confirm the document’s authenticity. To further validate the certificate integrity, Adobe 6.0 should report the following fingerprint information:

MD5 Fingerprint: A569 F807 031D B1EC E509 4110 95E3 5362
SHA-1 Fingerprint: F007 7D91 2FAA A22C A3D9 F93F 05AC 09DB E219 84B2

Result Key

The following table contains possible results and their meanings:

<table>
<thead>
<tr>
<th>Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>The Device Under Test (DUT) was observed to exhibit conformant behavior.</td>
</tr>
<tr>
<td>PASS with</td>
<td>The DUT was observed to exhibit conformant behavior however an additional</td>
</tr>
<tr>
<td>Comments</td>
<td>explanation of the situation is included, such as due to time limitations</td>
</tr>
<tr>
<td></td>
<td>only a portion of the testing was performed.</td>
</tr>
<tr>
<td>FAIL</td>
<td>The DUT was observed to exhibit non-conformant behavior.</td>
</tr>
<tr>
<td>Warning</td>
<td>The DUT was observed to exhibit behavior that is not recommended.</td>
</tr>
<tr>
<td>Informatives</td>
<td>Results are for informative purposes only and are not judged on a pass of</td>
</tr>
<tr>
<td></td>
<td>fail basis.</td>
</tr>
<tr>
<td>Refer to</td>
<td>From the observations, a valid pass or fail could not be determined. An</td>
</tr>
<tr>
<td>Comments</td>
<td>additional explanation of the situation is included.</td>
</tr>
<tr>
<td>Not Applicable</td>
<td>The DUT does not support the technology required to perform these tests.</td>
</tr>
<tr>
<td>Not Available</td>
<td>Due to testing station or time limitations, the tests could not be performed.</td>
</tr>
<tr>
<td>Borderline</td>
<td>The observed values of the specified parameters are valid at one</td>
</tr>
<tr>
<td></td>
<td>extreme, and invalid at the other.</td>
</tr>
<tr>
<td>Not Tested</td>
<td>Not tested due to the time constraints of the test period.</td>
</tr>
</tbody>
</table>
Test Setup

<table>
<thead>
<tr>
<th>Testing Equipment</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time DSO</td>
<td>TEKTRONIX, TDS 3014</td>
</tr>
<tr>
<td>Current Probe and Amplifier</td>
<td>TEKTRONIX, TPS305 and TPSA300</td>
</tr>
<tr>
<td>Digital Multimeter</td>
<td>HEWLETT-PACKARD, 34401A</td>
</tr>
<tr>
<td>Digital Power Supply</td>
<td>AGILENT TECHNOLOGIES, E3641A</td>
</tr>
<tr>
<td>Arbitrary Waveform Generator</td>
<td>SONY/TEK, AWG2041,0,CF:91.1CT FV:1.26</td>
</tr>
<tr>
<td>Vector Network Analyzer</td>
<td>“HEWLETT-PACKARD,8712B,US34400165,B.03.02”</td>
</tr>
<tr>
<td>UNH-IOL Developed Test Board</td>
<td>PoE Test Board Version 1.0</td>
</tr>
</tbody>
</table>

Basic Testing Configuration

The basic testing configuration is defined in the UNH Interoperability Laboratory PSE Parametric Test Suite v2.2
GROUP 1: DETECTION CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.1 – PSE location</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the PSE is in a valid location with respect to the link segment, and it performs detection and powers on the correct set of pins.

a. A PSE operating as an endpoint must perform detection and apply power on Alternative A or Alternative B. A PSE operating as a midspan must perform detection and supply power on the Alternative B pairs. An Alternative B device must supply positive Vport on pins 4 and 5, and negative Vport on pins 7 and 8.

Comments on Test Results

a. The PSE is in a valid location and powers on the correct set of pins.

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.2 - Detection Circuit</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify the Thevenin equivalent detection circuit of the PSE detection source.

a. The DUT loaded circuit voltage should be less than half the open circuit PI voltage or reject current into V_detect+.

The open circuit voltage should not exceed 30V.

Comments on Test Results

a. Open circuit voltage = 13.5 V

The DUT was observed to reject current into Vdetect+ port. This is compliant with the Alternative PSE detection source shown in Figure 33-9. Output Impedance was not calculated (not applicable due to diode configuration).

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.3 - BackDrive Current</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the detection circuit of the PSE can withstand maximum backdrive current over the range of V_port.

a. The DUT should not be affected by backdrive current

Comments on Test Results

a. The DUT was observed to properly ignore the backdrive current.
### Test # and Label	Part(s)	Result(s)
33.1.4 - Open Circuit Voltage | a | PASS

Expected Results and Procedural Comments

Purpose: To verify that the open circuit voltage at the PI of the PSE during detection mode is below the conformance limits.

b. The open circuit voltage \(V_{oc} \) should not exceed 30 Volts.

Comments on Test Results

b. Open Circuit Voltage = 13.5 V

### Test # and Label	Part(s)	Result(s)
33.1.5 – Detector Circuit Output Current | a | PASS

Expected Results and Procedural Comments

Purpose: To verify that the short circuit output current of the PSE during PD detection is within the conformance limits.

a. The output short circuit current should not exceed 5 mA.

Comments on Test Results

a. The observed short circuit output current was 2.5 mA.

### Test # and Label	Part(s)	Result(s)
33.1.6 – Detector Circuit Output Voltage	a	PASS
b	PASS	
c	PASS	

Expected Results and Procedural Comments

Purpose: To verify the voltage output of the PSE's detection circuit conforms to the specified limits.

a. The loaded circuit voltage should be between 2.8 and 10V.
b. The voltage difference between any consecutive detection probe voltages should be at least 1V.
c. The slew rate of the probe voltages should be no greater than 0.1V/µs.

Comments on Test Results

a. Probe Voltage1 = 6.95 V
 Probe Voltage2 = 5.50 V
b. Detection probe voltage difference = 1.84 V
c. Maximum slew rate of the probe voltages = 0.029 V/µs

Please refer to the figures appended to the report.
Expected Results and Procedural Comments

Purpose: To verify that the PSE probes its PI with valid detection pulses and completes an entire detection sequence within the proper time period.

a. The total pulse width of the detection pulse should not be greater than 500ms.
b. The detection probe voltages should have a duration of at least 2 ms.

Comments on Test Results

a. Probe Voltage1 pulse width = 117.0 ms
 Probe Voltage2 pulse width = 131.0 ms
b. Duration of the detection probe voltages > 2 ms

Please refer to the figures appended to the report.

Expected Results and Procedural Comments

Purpose: To verify that the DUT will properly detect a PD's Signature impedance.

a. The minimum accepted input resistance should be between 15 kΩ and 19 kΩ.
b. The maximum accepted input resistance should be between 26.5kΩ and 33 kΩ.
c. The DUT must detect a proper signature if the input capacitance is less than 150nF.
d. The DUT must accept capacitances below 10μF and reject capacitances above 10μF.

Comments on Test Results

a. \(16.7 \, k\Omega \leq R_{\text{accept(min)}} \leq 16.8 \, k\Omega\)
b. \(31.2 \, k\Omega \leq R_{\text{accept(max)}} \leq 31.3 \, k\Omega\)
c. The DUT was observed to accept capacitances less than 150nF.
d. The DUT was observed to reject improper capacitances above 10μF.
Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.9 – PD Classification</td>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>PASS with comments</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that a DUT supporting Classification properly performs PD class detection.

a. During classification the PSE should supply a voltage between 15.5 and 20.5 V.
b. The DUT should accurately classify the PD.
c. The DUT should classify the PD as Class 0 if the current drawn is equal to or greater than 51 mA.
d. The DUT should not supply a current greater than 100 mA.

Comments on Test Results

a. \(V_{\text{Class}} = 18.58 \text{ V} \)
b. During the do_classification portion of the state diagram, only the pd_request_power variable was available, and not mr_pd_class_detected. This variable indicates the power class of the PD. pd_request_power has a value of 0 for Class 1, 1 for Class 2, and 2 for Class 0, Class 3 and Class 4.
c. The DUT was observed to correctly classify the PD as Class 0.
d. The DUT was observed to supply a maximum current of 60 mA.

Please refer to the figures appended to the report.

Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.10 – Classification Timing</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that a PSE capable of classifying a PD completes classification within the proper time period after successfully completing the detection of a PD.

a. The DUT should complete classification between 10 ms and 75 ms after PD detection.

Comments on Test Results

a. \(T_{\text{pdc}} = 36.4 \text{ ms} \)

Please refer to the figures appended to the report.
Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.11 – New Detection Cycle</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that if the PSE is unable to supply power within T_{pse}, then, it initiates and successfully completes a new detection cycle before powering on.

a. The DUT should complete a full detection cycle before applying power onto the link segment.

Comments on Test Results

a. The DUT was observed to successfully complete a new detection cycle before applying power onto the link segment.

Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.12 – Alternative A Backoff Cycle</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that if a PSE implementing Alternative A detects an invalid signature at its PI, it will resume detection within the maximum conformant time.

a. The DUT should resume detection in times less than 1 seconds.

Comments on Test Results

a. The DUT was observed to wait for 240ms before resuming detection.

Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.13 – Alternative B Backoff Cycle</td>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that if a PSE implementing Alternative B fails to detect a valid detection signature at its PI, it will wait for the appropriate period of time before beginning a new detection cycle and applies a voltage on to the PI that falls within the defined limits.

a. The DUT should not apply a voltage greater than 2.8 V$_{dc}$ to the PI.

b. The value for T_{dbo} should be at least 2 sec.

Comments on Test Results

a. The DUT was observed to apply a voltage less than 2.8V to the PI during the backoff cycle.

b. The DUT was observed to wait for 3.1 seconds before resuming detection.
GROUP 2: POWER FEED CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.2.1 – Turn On Rise Time</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that when the PSE turns on power, the response times of the PSE are within the conformance limits.

a. The measured slew rate should not exceed 3.04V/µs.

Comments on Test Results

a. The observed slew rate was 0.67 V/µs

Please refer to the figures appended to the report.

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.2.2 – Power Feed Ripple and Noise</td>
<td>a</td>
<td>Informative</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Informative</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Informative</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Informative</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the power feeding ripple and noise are within the conformance limits.

The peak-to-peak values of ripple and noise transmitted on the line by the DUT, in both the common mode and pair-to-pair, should not exceed:

a. 0.5 V_{pp} between 0-500 Hz
b. 0.2 V_{pp} between 500 Hz -150 kHz
c. 0.15 V_{pp} between 150-500 kHz
d. 0.1 V_{pp} between 500 kHz-1 MHz

Comments on Test Results

Total Ripple and Noise = 0.036 V$_{pp}$

Note: This test is currently under development. Individual frequency range information is not currently available.
33.2.3 – Load Regulation

<table>
<thead>
<tr>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Not Available</td>
</tr>
<tr>
<td>b</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Purpose: To verify that the PSE performs load regulation while supplying power to the PI.

- a. Voltage transients should not exceed 3.5 V/µs.
- b. The DUT output voltage should be between 44 and 57 V for all values of I_{port}.

Comments on Test Results

- a. This test is currently under development.
- b. $V_{port\ (max)} = 47.8$ V
 $V_{port\ (min)} = 46.6$ V

33.2.4 – Power Turn On Timing

<table>
<thead>
<tr>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Purpose: To verify that the DUT supplies power onto the link segment within the acceptable turn on time after it has successfully detected a PD.

- a. The DUT should start supplying power within T_{pon} (400ms) after detection.

Comments on Test Results

- a. $T_{pon} = 95.6$ ms

33.2.5 – Apply Power

<table>
<thead>
<tr>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td>b</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Purpose: To verify that the PSE applies power on the same pairs as those used for detection after completing a valid detection.

- a. The PSE should perform a valid detection sequence before powering the PD.
- b. The PSE should supply power on the same pairs as that it performed detection for the PD.

Comments on Test Results

- a. The DUT performed a valid detection sequence before supplying power onto the link segment.
- b. The DUT applied power on the same pairs as those it detected on.
Purpose:
To verify that the current unbalance between the two conductors of the power pairs of the PSE over the current load range is within the permissible range.

a. The current unbalance between the two conductors per power pair should not be greater than 10.5mA.

Comments on Test Results

a. The DUT was observed to have a current unbalance less than 1.1 mA for minimum and maximum I_{port}.

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.2.6 – PSE Current Unbalance</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>
GROUP 3: ERROR DETECTION AND POWER REMOVAL

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3.1 – Overload Current Detection Range</td>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the PSE removes power if the Iport exceeds the specified limits.

a. If the DUT supports classification, then the value of I_{CUT} should be between $P_{class}/44$ to 400mA, otherwise I_{CUT} is between 15.4/Vport and 400mA (inclusive).

b. The voltage at the PI of the DUT should be between 44 to 57V (inclusive).

Comments on Test Results

a. $I_{CUT} = 381$ mA
b. $V_{port} (min) = 46.6$ V

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3.2 – Overload Time Limits</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the PSE removes power if the Iport exceeds I_{CUT} for greater than overload time interval.

a. The overload time limit (T_{ovld}) should be between 50ms and 75ms (inclusive).

Comments on Test Results

a. $T_{ovld} = 55.4$ ms

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3.3 – Inrush Current</td>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the PSE will start removing power from the PI within T_{LIM} when it detects a short circuit condition.

a. The inrush current at the PI of the DUT should be between 400 to 450mA (inclusive).

b. The inrush current at the PI of the DUT should be at least 60mA.

Comments on Test Results

a. $I_{INRUSH} = 430$ mA
b. This test is currently under development.
Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3.4 – Short Circuit Time Limit</td>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose

To verify that when the PSE detects a short circuit condition it starts removing power from the PI within T_{LIM} and must be done removing power within the conformant time limit.

a. The short circuit time limit (T_{LIM}) should be between 50ms and 75ms (inclusive).

Comments on Test Results

a. $T_{\text{LIM}} = 59.0$ ms

Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3.5 – Error Delay Timing</td>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose:

To verify that the PSE waits for at least the minimum conformant time before attempting subsequent detection after it removes power due to detection of error condition.

a. The DUT should wait for at least 750ms after detecting a short circuit condition and removing power before resuming detection.
b. The DUT should wait for at least 750ms after detecting an overload condition and removing power before resuming detection.

Comments on Test Results

a. The DUT was observed to wait 3.9 s after a short circuit event before resuming signature detection.
b. The DUT was observed to wait 3.9 s after an overload event before resuming signature detection.

Test # and Label

<table>
<thead>
<tr>
<th>Test # and Label</th>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3.6 – Range of T_{MPDO} Timer</td>
<td>a</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose:

To verify that PSE correctly monitors the PD Maintain Power Signature

a. DC disconnect: $300\text{ms} \leq T_{\text{MPDO}} \leq 400\text{ms}$
b. AC disconnect: $300\text{ms} \leq T_{\text{MPDO}} \leq 400\text{ms}$

Comments on Test Results

a. DC disconnect: $343 \text{ ms} \leq T_{\text{MPDO}} \leq 347 \text{ ms}$
b. AC disconnect: $348 \text{ ms} \leq T_{\text{MPDO}} \leq 351 \text{ ms}$
Test # and Label	**Part(s)**	**Result(s)**
33.3.7 - PD MPS Dropout Current Limits (I\text{MIN} measurement)	a	PASS
	b	PASS

Expected Results and Procedural Comments

Purpose: To verify that PSE correctly monitors the PD Maintain Power Signature for DC disconnect.

a. The DUT may remove power if the current drawn is between 5 mA and 10 mA (I\text{MIN2 (max)}) for 400 ms.
b. The DUT must remove power if the current drawn is less than 5 mA (I\text{MIN1 (max)}) for 400 ms.

Comments on Test Results

a. 7.3 mA ≤ I\text{MIN2 (max)} ≤ 7.4 mA
b. The DUT removes power when current draw is less than 5mA.

Test # and Label	**Part(s)**	**Result(s)**
33.3.8 – PD MPS Time for Validity | a | PASS

Expected Results and Procedural Comments

Purpose: To verify that the PSE waits for at least the minimum MPS validity time when it monitors the DC MPS component.

a. The DUT should not remove power from a PD that provides a valid DC MPS signature for at least T\text{MPS} every T\text{MPS}+T\text{MPDO}.

Comments on Test Results

a. The DUT was observed to remain powering when a valid DC MPS signature was presented for at least T\text{MPS} every T\text{MPS}+T\text{MPDO}.

Test # and Label	**Part(s)**	**Result(s)**
33.3.9 – AC MPS Signal Parameters	a	PASS
	b	PASS
	c	PASS

Expected Results and Procedural Comments

Purpose: To verify that the PI probing AC signals fall within the conformance limits.

a. The PI probing AC voltage (V\text{open}) should be between 1.9V to 10% of Vport (V\text{pp}).
b. The AC probing signal frequency should not be greater than 500 Hz.
c. The AC probing signal slew rate should not be greater than 0.1V/µs.

Comments on Test Results

a. V\text{open} = 2.75 V
b. AC probing signal frequency= 110 Hz
c. Slew rate =0.003 V/µs
# Test # and Label	Part(s)	Result(s)
33.3.10 – AC Disconnect Detection Voltages	a	PASS
	b	PASS

Expected Results and Procedural Comments

Purpose: To verify that the PI probing AC voltages during AC disconnect detection fall within the conformance limits.

a. The AC ripple voltage (V_{CLOSE}) should be less than 0.5Vpp.
b. The measured V_{Port} (V_p) should not exceed 60V.

Comments on Test Results

a. $V_{\text{CLOSE}} = 0.036$ Vpp
b. $V_p = 49.9$

# Test # and Label	Part(s)	Result(s)
33.3.11 – AC MPS Signature	a	PASS
	b	PASS

Expected Results and Procedural Comments

Purpose: To verify that the PSE that implements AC MPS component correctly monitors the PD Maintain Power Signature.

a. The DUT should supply power to the PD for signature impedance less than 27kΩ.
b. The measured impedance should be between 27kΩ and 1980kΩ (inclusive).

Comments on Test Results

a. The DUT remained powering for maintain power signatures less than 27kΩ.
b. $490 \text{ k}\Omega \leq Z_{ac2} \leq 500 \text{ k}\Omega$

# Test # and Label	Part(s)	Result(s)
33.3.12 – Turn Off Time Limits | a | PASS

Expected Results and Procedural Comments

Purpose: To verify that the PSE disconnects power within T_{off} through a test resistor.

a. The DUT should remove power in times less than 500ms through a test resistor of 320kΩ.

Comments on Test Results

a. The DUT was observed to remove power in 97 ms.
GROUP 4: PSE TRANSMITTER AND RECEIVER CHARACTERISTICS

Test # and Label	Part(s)	Result(s)
33.4.1 – Midspan PSE Return Loss | a | PASS

Expected Results and Procedural Comments

Purpose: To verify that the return loss of a Midspan PSE is greater than the minimum conformant value.

a. The DUT’s return loss should be greater than 23dB from 1 to 20MHz and greater than 14dB from 20MHz to 100MHz.

Comments on Test Results

<table>
<thead>
<tr>
<th>Return Loss Margin</th>
<th>TX pair</th>
<th>14.26</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX pair</td>
<td>6.24</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the figures appended to the report.

Test # and Label	Part(s)	Result(s)
33.4.2 – Midspan PSE Insertion Loss | a | PASS

Expected Results and Procedural Comments

Purpose: To verify that the insertion loss of a Midspan PSE is no greater than the maximum conformant value.

a. The DUT’s insertion loss should be no greater than the limit described by equation 33-6 and the maximum conformant value of 0.1dB.

Comments on Test Results

<table>
<thead>
<tr>
<th>Insertion Loss Margin</th>
<th>TX pair</th>
<th>0.08</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX pair</td>
<td>0.08</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the figures appended to the report.

Test # and Label	Part(s)	Result(s)
33.4.3 – Midspan PSE NEXT Loss | a | Not Available

Expected Results and Procedural Comments

Purpose: To verify that the NEXT between the transmit and receive pairs of the DUT is within conformance limits.

a. The DUT’s NEXT loss should be no greater than the limit described by equation 33-5 and the minimum conformant value of 65 dB.

Comments on Test Results

This test is currently under development.
33.4.4 – PSE Impedance Balance

<table>
<thead>
<tr>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the common-mode to differential-mode impedance balance of the transmit and receive pairs of the PI is greater than the specified limits.

a. The common-mode to differential-mode impedance balance for a 100Mb/s transmitter and receiver shall exceed $34 - 19.2 \log_{10}(f/50)$ dB (where f is the frequency in MHz) over the frequency range of 1.0 MHz to 100 MHz.

Comments on Test Results

<table>
<thead>
<tr>
<th>Impedance Balance Margin</th>
<th>TX pair</th>
<th>9.12</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX pair</td>
<td>7.87</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the figures appended to the report.

33.4.5 – PSE Common Mode Output Voltage

<table>
<thead>
<tr>
<th>Part(s)</th>
<th>Result(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Expected Results and Procedural Comments

Purpose: To verify that the common mode AC output voltage at the PI is below the conformant limits.

a. The magnitude of the common-mode AC output voltage, E_{cm_out}, shall not exceed 50 mV peak when operating at 10 Mb/s, and 50 mV peak-to-peak when operating at 100 Mb/s or greater.

Comments on Test Results

This test is currently under development.
Annex A: Figures

Attached are the figures illustrating the Detection Pulse Sequence, Classification Pulse (Optional), Turn on Rise Time, V\textsubscript{PORT}, Midspan PSE Return Loss, Midspan PSE Insertion Loss, and Midspan Impedance Balance. These were captured either with the real time DSO or the Vector Network Analyzer and post processed using custom Matlab scripts.
Detection Pulse Identification

- Detection Pulse: 6.95 Volts
- Detection Sequence: 5.53 Volts

Amplitude - Volts

Time - ms

0 100 200 300 400 500 600 700

Detection Pulse Identification

- Detection Sequence
- Detection Pulse

6.95 Volts

5.53 Volts
Classification Pulse Identification

Detection/Startup Sequence
Class Pulse

18.59 volts
Midspan Return Loss: Transmit Pair

Frequency (MHz) vs. Magnitude (dB) chart.
Midspan Insertion Loss: Receive Pair

Frequency (MHz)

Magnitude (dB)
Impedance Balance: Receive Pair