Design Checklist for LTC297X Family of PSM Managers

Introduction
Please review this checklist to ensure the following topics are considered for your LTC®297x board design. If you make any exceptions to these rules, please contact Linear Technology® to make sure your design will work properly. The term “LTC297x” refers to the following devices: LTC2974, LTC2975, LTC2977, LTC2978, LTC2978A, LTC2980, LTM2987.

Connect Logic/Coordination Signals
- Tie WDI/RESETB to V_{DD33} with a 10kΩ resistor. Do not connect a capacitor to the WDI/RESETB pin.
- Tie all SHARE_CLK pins together, pull up to 3.3V with a single 5.49kΩ resistor.
- FAULTB pins may be tied together or separated but make sure each FAULTB pin has a 10kΩ pull-up to V_{DD33}. FAULTB pins are not only outputs, but inputs as well. If a FAULTB pin is floating, this could cause unexpected faulting behavior.
- Tie CONTROL pins high or low, pull up/down to 3.3V/GND with a 10kΩ resistor if CONTROL pin is used to enable outputs (CONTROL pin behavior depends on device configuration).
- Tie all ALERTB pins together, pull up to 3.3V with a single 10kΩ resistor.
- Tie all SCL pins together; tie all SDA pins together; pull up each to 3.3V with a 10kΩ resistor.
- Adjust SDA/SCL pull-up or add an I^2C bus buffer if stray capacitance is an issue. Check the rising edges of SCL/SDA with an oscilloscope to confirm.
- Tie all WP pins together, pull up/down to 3.3V with a single 10kΩ resistor to enable/disable write-protect.
- Do not leave WDI/RESETB, SHARE_CLK, CONTROL or FAULTB pins floating!

Addressing (ASEL)
- The address select pins (ASELs) are tri-level inputs: low, high, and float. Check the Address Look-Up Table in the data sheet. The device responds to the address: base address + offset. The base address is defined by the MFR_I2C_BASE_ADDRESS register and the offset is defined by the ASEL pins.
- Check for collision with other devices on the bus and any global addresses published in their data sheets (e.g., do not use address 0x5D if using LTC4306 I^2C addressable bus multiplexer since this device uses 0x5D for the mass write address).
- Best practice is to use a single common base address for all devices and tie ASEL pins such that each device has a different offset. This provides smooth bus enumeration and ensures recovery if in-system programming fails.
Output Enable Pins (VOUT_EN)
- Connect the output enable pins of the LTC297x device to the RUN/SHDN pins of the switchers/LDOs.
- Use appropriate pull-ups on all VOUT_ENn pins; 10kΩ is a typical value.
- The absolute maximum voltages of the VOUT_ENn pins are:
 - VOUT_EN[3:0]: –0.3V to 15V (for all LTC297x), these pins have an optional weak internal pull-up to 12V
 - VOUT_EN[7:4]: –0.3V to 6V (LTC2977/LTC2978/LTC2978A).

Anti-Aliasing Filters (VSENSE, ISENSE)
- Add anti-aliasing filters to the LTC297x inputs VSENSEPn, VSENSEMn, ISENSEPn and ISENSEMn.
- The recommended filtering for voltage inputs is 100Ω and 100nF.
- The recommended filtering for current sensing is 1kΩ and 10nF (LTC2974/LTC2975).
- Add a first stage matched filter when using DCR current sensing.
- There is no need to add an external resistive divider to sense voltages up to 15V on the VIN_SNS pin. This pin has an internal calibrated divider.

Remote Temperature Sensing (TSENSE) (LTC2974/LTC2975 Only)
- Use a diode-connected PNP or NPN (2N3906/3904).
- Do not use real diodes such as 1N4148 for temperature sensing!
- The ground connection should go back to the LTC2974/LTC2975 local ground.
- Use up to 330nF decoupling capacitance if the layout is noisy.
- Route the temperature sensing traces away from switch nodes or other noise sources.
- Tie unused TSENSE pins to ground.
- If TSENSE pins are connected to a removable board (floating inputs in some situations), connect inputs to ground with 100kΩ resistors.

Decoupling Capacitors
- Use 100nF decoupling capacitors for VPWR, VDD33, VDD25, and between the REFP and REFM pins.
- Use 10nF decoupling capacitor on VIN_SNS_CAP pin of an LTC2975 device.

REFP
- Do not exceed 100µA of load current on the REFP pin (typically used for negative rail sensing).
Fault Handling

- For maximum flexibility and software control, tie all FAULTB pins together and pull up to 3.3V with a single 10kΩ resistor.
- Do not mix power good, fault, and control pins to design custom fault-handling or event-based sequencing schemes. These approaches are extremely difficult to debug and do not allow last minute software fixes.

Unused Inputs

- Connect all unused VSENSEPn, VSENSEMn, TSENSEn, and VDACMn pins to GND. Do not allow these pins to float.

Programming

- Use the schematic below for each LTC297x if programming with DC1613 dongle power only is desired.
- Ensure that VDD33 consumes less than 100mA to avoid overloading the DC1613 I²C dongle. Otherwise use DC2086 to provide more current.
- No body diodes between SDA/SCL from any slave device are allowed.
Trim DAC Resistors

- Select the trim DAC resistors using the resistor selection tool in the LTpowerPlay® GUI:
 - From the main menu “Utilities” -> “Resistor Selection Tool”
 - Enter the required information in the form (feedback voltage, desired trim range, etc.).
 - The closest 1% standard resistor values are displayed.

Special Note for LTC2980 and LTM2987

These two devices integrate two separate LTC2977s into a single package. If powered from VPWR, do not connect the VDD33(A) and VDD33(B) pins together. Each VDD33 pin has an independent internal regulator. However, if power from an external 3.3V supply is being applied directly to the VDD33 pins, tie all VPWR and VDD33 pins (A and B sides) together.

Use of CPLD/FPGA with PSM

Best practices: connect VOUT_ENn pins to RUN, connect CPLD enables to LTC297x CONTROL pins.

Caution should be taken when connecting CPLD/FPGA to a power system manager. Decide which device has control of the RUN pins of the DC/DC converters. If the CPLD controls DC/DC converters, it is recommended to configure PSM to monitor-only.

Unprogrammed CPLD/FPGA I/O pins may have unpredictable behavior at first board bring up. Consider adding hardware provisions that allow a way to temporarily disconnect CPLD signals (jumpers/zero ohm resistors that can be removed).

Revision History

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/14</td>
<td>Initial release.</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>08/16</td>
<td>Improved readability, added 2980/87 section.</td>
<td>All</td>
</tr>
</tbody>
</table>