DESIGN IDEAS

LTC1709-85 High Efficiency Converter with VRM 8.5 Compliant VID Control Minimizes Input and Output Capacitors

by Peter Guan

Introduction

The LTC1709-85 is a 5-bit VID programmable, 2-phase, current mode, step-down switching regulator controller that drives two synchronous stages, composed of all N-channel power MOSFETs, 180° out of phase. This architecture reduces the number of input and output capacitors without increasing the switching frequency. The relatively low switching frequency and integrated high current MOSFET drivers help provide high power-conversion efficiency for low voltage, high current applications. Because of the resulting output ripple current cancellation, lower value inductors can be used, resulting in a faster load transient response. This, plus the 5-bit VID table, makes this device particularly attractive for CPU power supply applications. The VID table complies with the Intel VRM 8.5 specification.

Design Example

Figure 1 shows the schematic diagram of a 30A power supply for the Intel Pentium® III microprocessor; its output voltage is programmable from 1.05V to 1.825V in 25mV intervals by the 5 VID input bits. With only one LTC1709-85, eight tiny SO-8 N-channel power MOSFETs, and two 1μH low profile surface mount inductors, an efficiency of 86% is achieved.

Pentium is a registered trademark of Intel Corp.

Figure 1. Schematic diagram of a 30A power supply using the LTC1709-85
DESIGN IDEAS

Greater than 85% efficiency can be maintained throughout the load range of 3A to 30A.

Features of the LTC1709-85 include true output remote sensing for high current applications, constant frequency operation for lower EMI, current mode control to ensure true load current sharing and OPTI-LOOP™ compensation for optimum transient response with minimized output capacitance. Protection features such as overvoltage soft latch, current foldback, output short-circuit latch-off and soft start are included to ensure smooth operation and to protect the device itself as well as the load (CPU) during faults on the input and output. It is also pin-to-pin compatible with the LTC1709-7.

The LTC1709-85’s 4 MSB (VID0 to VID3) VID input bits are backward compatible with the previous generation of Pentium microprocessor (VRM 8.4). The new LSB, VID25mV, provides 25mV interval steps to the output. VRM 8.5 voltage range is from 1.05V to 1.825V.

Compared to single-phase switching regulators, a 2-phase converter such as the LTC1709-85 reduces the input ripple current by 35% and the output ripple current by 45% through ripple-current cancellation, a benefit of the two output stages being driven 180° out of phase (see Table 1). As a result, the reduction in the cost and size of the input and output capacitors and the elimination of heat sinks combine to minimize the overall cost of the power supply.

Table 1. Comparison of input and output ripple current for single-phase and 2-phase configurations (L = 1µH, fS = 250kHz)

<table>
<thead>
<tr>
<th>Phases</th>
<th>Input Ripple Current (Arms)</th>
<th>Output Ripple Current (Arms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>8.7</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>4.75</td>
</tr>
</tbody>
</table>

*Assumes that the single-phase circuit uses two 10µH/15A inductors in parallel to provide 30A output

For more information on parts featured in this issue, see http://www.linear-tech.com/go/ltmag

For more information on parts featured in this issue, see http://www.linear-tech.com/go/ltmag

Figure 2. with settling time measuring less than 90ns. Reducing the error band to ±1/2LSB moves the measured settling time out to just inside 120ns, at which point the effects of the transient are clearly finished. Persistence over a 500ns window was excellent but, although no longer settling tails were seen, the circuit was not intended or fully characterized for longer term 16-bit precision.

AC linearity of the circuit was measured operating with a sinusoidal output of 1MHz and a 25Msps clock. The results are shown in Figure 3, with the second harmonic down 83dB and the third harmonic down 86dB. The circuit’s DC linearity was measured at less than ±1LSB INL and DNL. Power consumption was measured at 30mA from the +5V supply and 50mA from the –5V supply, efficient for a DAC of this speed.

Conclusion

The LT1807 and LTC1668 combine to make a small, fast, versatile and precise voltage output DAC. The excellent AC specifications make the circuit suitable for demanding waveform synthesis applications, whereas the fast settling and 16-bit resolution make it suitable for precise closed-loop control systems.

1 1.00708MHz to be exact, with recurring data every 4096 samples or 165 cycles.