Improve Hot Swap Performance and Save Design Time with Hot Swap Controller that Integrates 2A MOSFET and Sense Resistor

by David Soo

Introduction

The LTC4217 Hot Swap controller turns a board’s supply voltage on and off in a controlled manner allowing the board to be safely inserted and removed from a live backplane. No surprise there, this is generally what Hot Swap controllers do, but the LTC4217 has a feature that gives it an advantage over other Hot Swap controllers. It simplifies the design of Hot Swap systems by integrating the controller, MOSFET and sense resistor in a single IC. This saves significant design time that would otherwise be spent choosing an optimum controller/MOSFET combination, setting current limits, and carefully designing a layout that protects the MOSFET from excessive power dissipation.

One significant advantage of an integrated solution over discrete solutions is that the current limit accuracy is well known. In discrete solutions, the overall precision of the current limit is a function of adding the tolerances of contributing components, while in the LTC4217, it appears as a single 2A specification.

The integrated solution also simplifies layout issues by optimizing MOSFET and sense resistor connections. The inrush current, current limit threshold and timeout can be set to default values with no external components or easily adjusted using resistors and capacitors to better suit a large range of applications. The part is able to cover a wide 2.9V to 26.5V voltage range and includes a temperature and current monitor. The MOSFET is kept in the safe-operating–area (SOA) by using a time-limited foldback current limit and overtemperature protection.

The LTC4217 can be easily applied in its basic configuration, or, with a few additional external components, set up for applications with special requirements.

Monitoring the MOSFET

The LTC4217 features MOSFET current and temperature monitoring. The current monitor outputs a current proportional to the MOSFET current, while a voltage proportional to the MOSFET temperature is available. This allows external circuits to predict possible failure and shutdown the system.

The current in the MOSFET passes through a sense resistor, and the voltage on the sense resistor is converted to a current that is sourced out the \(I_{\text{MON}} \) pin. The gain is 50µA from \(I_{\text{MON}} \) for 1A of MOSFET current. The output current can be converted to a voltage using an external resistor to drive a comparator or ADC. The voltage compliance for the \(I_{\text{MON}} \) pin is from 0V to \((\text{INTV}_{\text{CC}} - 0.7V) \).

The MOSFET temperature corresponds linearly to the voltage on the \(I_{\text{SET}} \) pin, with the temperature profile shown in Figure 1. The open circuit voltage on this pin at room temperature is 0.63V. In addition, the overtemperature shutdown circuit turns off the MOSFET when the controller die temperature exceeds 145°C, and turns it on again when the temperature drops to 125°C.

12V Application

Figure 2 shows the LTC4217-12 in a 12V Hot Swap application with default settings. The only external component required is the capacitor on the \(\text{INTV}_{\text{CC}} \) pin. The current limit, inrush current control, and protection timer are internally set at levels that protect the integrated MOSFET. The input voltage monitors are preset for a 12V supply using internal resistive dividers from the \(V_{\text{DD}} \) supply to drive the UV and OV pins. The UV condition occurs when \(V_{\text{DD}} \) falls below 9.23V; OV when \(V_{\text{DD}} \) exceeds 15.05V.

The LTC4217 turns a board’s supply voltage on and off in a controlled...
manner, allowing the board to be safely inserted and removed from a live backplane. Several conditions must be present before the internal MOSFET can be turned on. First the \(V_{DD} \) supply exceeds its 2.73V undervoltage lockout level and the internally generated INTVCC crosses 2.65V. Next the UV and OV pins must indicate that the input power is within the acceptable range. These conditions must be satisfied for the duration of 100ms to ensure that any contact bounce during the insertion has ended.

The MOSFET is then turned on by a controlled 0.3V/ms gate ramp as shown in Figure 3. The voltage ramp of the output capacitor follows the slope of the gate ramp thereby setting the supply inrush current at:

\[
I_{\text{INRUSH}} = C_L \times (0.3\,\text{V/ms})
\]

To reduce inrush current further, use a shallower voltage ramp than the default 0.3V/ms by adding a ramp capacitor (with a 1k series resistor) from gate to ground.

As OUT approaches the \(V_{DD} \) supply, the powergood indicator (PG) becomes active. The definition of power good is the voltage on the FB pin exceeds 1.235V while the GATE pin is high. The FB pin monitors the output voltage via an internal resistive divider from the OUT pin. Once the OUT voltage crosses the 10.5V threshold and the GATE to OUT voltage exceeds 4.2V, the PG pin ceases to pull low and indicates that the power is good. Once OUT reaches the \(V_{DD} \) supply, the GATE ramps until clamped at 6.15V above OUT.

The LTC4217 features an adjustable current limit with foldback that protects against short circuits or excessive load current. The default current limit is 2A and can be adjusted lower by placing a resistor between the \(I_{\text{SET}} \) pin and ground. To prevent excessive power dissipation in the switch during active current limit, the available current is reduced as a function of the output voltage sensed by the FB pin as shown in Figure 4.

An overcurrent fault occurs when the current limit circuitry has been engaged for longer than the delay set by the timer. Tying the TIMER pin to INTVCC configures the part to use a preset 2ms overcurrent time-out and a 100ms cool-down time. After the 100ms cool-down, the switch is allowed to turn on again if the overcurrent fault has been cleared. Bringing the UV pin below 0.6V and then high clears the fault. Tying the FLT pin to the UV pin allows the part to self-clear the fault and turn on again after the 100ms cool-down.

Programmable Features

The LTC4217 application shown in Figure 5 demonstrates the adjustable features.

The UV and OV resistive dividers set undervoltage and overvoltage turn-off thresholds while the FB divider determines the power good trip point. The R-C network on the GATE pin decreases the gate ramp to 0.24V/ms from the default 0.3V/ms to reduce the inrush current.

The 20k \(I_{\text{SET}} \) resistor forms a resistive divider with an internal 20k resistor to reduce the current limit threshold (before foldback) to one-half of the original threshold for a 1A current limit. The graph in Figure 6 shows the current limit threshold as the \(I_{\text{SET}} \) resistor varies.

As in the previous application, the UV and FLT signals are tied together so that the part auto-retries turn-on following shutdown for an overcurrent fault. continued on page 25
for the LT3582-5 or LT3582-12, it does permit reading of the chip’s configuration and the ability to disable the power switches through the interface.

Additional I²C functionality is available with the LT3582 including re-programmability of the output voltages, and setting the power up sequencing and power down discharge.

A default power-up configuration can be made permanent in the LT3582 through the One-Time-Programmable memory. The chip will always use the default configuration from OTP memory upon power-up. Unless locked by programming a specific OTP memory bit, the chip configuration can be changed after power-up by writing new settings through the I²C interface.

Conclusion

The LT3582 is an easy-to-use compact solution for DC/DC converter applications where positive and negative outputs are required. It is accurate, efficient and includes an outsized number of features for its diminutive 3mm × 3mm 16-pin QFN package. It is offered in ±5V (LT3582-5), ±12V (LT3582-12) and I²C-programmable (LT3582) output versions.

Figure 11. Tiny AMOLED power supply is 0.8mm (max) thin