Complete APD Bias Solution in 60mm² with On-the-Fly Adjustable Current Limit and Adjustable V_{APD}

By Xin (Shin) Qi

Introduction

The overriding factor limiting functionality in fiber-optic communication systems is available space. A compact APD (avalanche photo diode) bias solution with a high degree of feature integration is the key to breaking new ground in system size and performance. The LT3571 offers such a solution in a tiny 3mm × 3mm QFN package.

The LT3571 combines a current mode step-up DC/DC converter and a high side fixed voltage drop APD current monitor with an integrated 75V power switch and Schottky diode. The combination of a traditional voltage loop and a unique current loop allows customers to set an accurate APD current limit at any given bias voltage. The integrated high side current monitor provides an 8% accurate current that is proportional to the load current, making it possible to adjust the APD bias voltage via the CTRL pin. This feature-rich device makes it possible to produce a single stage boost converter to bias high voltage APDs in only 60mm².

Low Noise APD Bias Supply

The gain of the APD is dependent on the bias voltage, so the bias supply must minimize the noise contamination from switching regulators and other sources. Figure 1 shows the LT3571 configured to produce an ultralow noise power supply for a 45V APD with 2.5mA of load current capability. The MONIN voltage is regulated by the internal voltage reference and the resistor divider made up of R1 and R2. Resistor R_{SENSE} is selected to set the APD current limit at 200mV/1.2R_{SENSE} – 0.2mA.

When the CTRL pin is connected to a supply above 1V, the output voltage is regulated with feedback at 1V. When driven below 1V, the feedback and the output voltage follow accordingly.

The APD pin, the output of the current monitor, provides a voltage to the APD load that is fixed 5V below the MONIN pin. The LT3571 includes a precise current mirror with a factor-of-five attenuation. The proportional current output signal at the MON pin can be used to accurately indicate the APD signal strength. The voltage variance of APD pin voltage is only ±200mV over the entire input current range and the whole temperature range. Figure 2 shows the evaluation board for this topology.

The topology uses several filter capacitors to achieve ultralow noise performance. The capacitor at V_{OUT} pin and the 0.1µF capacitor at the APD pin suppress switching noise. The 10nF feedforward capacitor across the MONIN and FB pins filters out high frequency internal reference and error amplifier noise. Figure 3 shows the measured switching noise is less than 500µV_{P-P} at 1mA load current. This exceptionally low noise bias voltage
gives the APD greater sensitivity and dynamic range.

Fast APD Current Monitor Transient Response

Design efforts in modern communications systems increasingly focus on 10Gbits/s GPON systems, which demand that the transient response of the APD current monitor is less than 100ns for a two-decades-of-magnitude input current step. To meet this challenging requirement, many designers rely on a simple discrete current mirror topology to reduce parasitic capacitance on the signal path, sacrificing monitor accuracy and board space. In contrast, the LT3571’s APD current monitor is carefully designed to provide not only a fixed voltage drop and high accuracy, but also the required fast transient response.

Figure 4 shows a compact circuit that responds quickly to current transients. Unlike the ultralow noise topology shown in Figure 1, the filter capacitor at the APD pin is moved to the MONIN pin. C2, C3 and RSENSE form a π filter to isolate the APD current monitor from high frequency switching noise. The capacitor at the MON pin is also removed to reduce the transient delay on the measurement path.

The transient speed is measured using the same technique described in the Linear Technology Design Note 447 “A Complete Compact APD Bias Solution for a 10GBit/s GPON System.” Figures 5 and 6 show the measured input signal falling transient response and input signal rising transient response, respectively, where the input current levels are 10µA and 1mA. Note that there is an inversion and DC offset present in the measurement. The measurements show a transient response time of less than 100ns, well within the stringent speed demands of the 10Gbits/s GPON system.

APD Bias Voltage Temperature Compensation

Typically, the APD reverse bias voltage is designed with a compensatory positive temperature coefficient. This can be easily implemented via the CTRL pin of the LT3571—a less complex
and expensive solution than typical microprocessor-controlled methods. The simplest scheme uses a resistor divider from the \(V_{\text{REF}} \) pin to the CTRL pin, where the top resistor in the divider is an NTC (negative temperature coefficient) resistor. While simple, this method suffers from non-linear temperature coefficient of the NTC resistor. A more precise method uses a transistor network as shown in Figure 7. The PTC (Positive Temperature Coefficient) of the CTRL pin voltage is realized by an emitter follower of \(Q_1 \) and a \(V_{\text{BE}} \) multiplier of \(Q_2 \).

Assuming:

\[
V_{\text{BE}(Q_1)} = V_{\text{BE}(Q_2)} = V_{\text{BE}}
\]

and

\[
\frac{dV_{\text{BE}(Q_1)}}{dT} = \frac{dV_{\text{BE}(Q_2)}}{dT} = \frac{2mV}{^\circ\text{C}}.
\]

then the CTRL pin voltage is

\[
V_{\text{CTRL}} = V_{\text{REF}} - \frac{R_8}{R_7} V_{\text{BE}}
\]

with

\[
\frac{dV_{\text{CTRL}}}{dT} = \frac{R_8}{R_7} \cdot \frac{2mV}{^\circ\text{C}}
\]

Given \(V_{\text{OUT}} \) at room and \(dV_{\text{OUT}}/dT \), the \(R_1/R_2 \) and \(R_8/R_7 \) can be calculated as follows

\[
\frac{R_8}{R_7} = \frac{V_{\text{REF}}}{V_{\text{BE}} + \frac{2mV}{^\circ\text{C}} \cdot \frac{V_{\text{OUT}}}{dV_{\text{OUT}}/dT}}
\]

\[
\frac{R_1}{R_2} = \frac{V_{\text{BE}} \cdot \frac{dV_{\text{OUT}}}{dT} + \frac{2mV}{^\circ\text{C}} \cdot V_{\text{OUT}}}{\frac{2mV}{^\circ\text{C}} \cdot V_{\text{REF}} - 1}
\]

Figure 8. Temperature response of the circuit shown in Figure 7

LT8410, continued from page 23

out of shutdown, the \(V_{\text{REF}} \) pin is first discharged for 70\(\mu \)s with a strong pull down current, and then charged with 10\(\mu \)A to 1.235V. This achieves soft start since the output is proportional to \(V_{\text{REF}} \). Full soft-start cycles occur even with short SHDN low pulses since \(V_{\text{REF}} \) is discharged when the part is enabled.

In addition, the LT8410/-1 features a 2.5V to 16V input voltage range, up to 40V output voltage and overvoltage protection for \(V_{\text{CAP}} \) and \(V_{\text{OUT}} \).

Conclusion

The LT8410/-1 is a smart choice for applications which require low quiescent current and low input current. The ultralow quiescent current, combined with high value integrated feedback resistors, keeps the average input current very low, significantly extending battery operating time. Low current limit internal switches (8mA for the LT8410-1, 25mA for the LT8410) make the part ideal for high impedance sources such as coin cell batteries. The LT8410/-1 is packed with features without compromising performance or ease of use and is available in a tiny 8-pin 2mm \(\times \) 2mm package.

Figure 4. Efficiency of the circuit in Figure 3

Conclusion

The accurate programmable output current limit of the LT3653 and LT3663 eliminates localized heating from an output overload, reduces the maximum current requirements on the power components, and makes for a robust power supply solutions.